WO2015016253A1 - Separation membrane element - Google Patents

Separation membrane element Download PDF

Info

Publication number
WO2015016253A1
WO2015016253A1 PCT/JP2014/070039 JP2014070039W WO2015016253A1 WO 2015016253 A1 WO2015016253 A1 WO 2015016253A1 JP 2014070039 W JP2014070039 W JP 2014070039W WO 2015016253 A1 WO2015016253 A1 WO 2015016253A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
sheet
separation
membrane element
less
Prior art date
Application number
PCT/JP2014/070039
Other languages
French (fr)
Japanese (ja)
Inventor
洋帆 広沢
高木 健太朗
俊介 田林
由恵 丸谷
宜記 岡本
山田 博之
修治 古野
佐々木 崇夫
将弘 木村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014536810A priority Critical patent/JPWO2015016253A1/en
Publication of WO2015016253A1 publication Critical patent/WO2015016253A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side

Definitions

  • the present invention relates to a separation membrane element used for separating components contained in a fluid such as liquid or gas.
  • Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brackish water and water containing harmful substances, industrial ultrapure water, wastewater treatment and recovery of valuable materials. It is properly used depending on the separation component and separation performance.
  • separation membrane elements There are various types of separation membrane elements, but they are common in that raw water is supplied to one side of the separation membrane and a permeated fluid is obtained from the other side.
  • the separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeate fluid obtained per one separation membrane element is large. It is formed to become.
  • As the separation membrane element various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to applications and purposes.
  • spiral separation membrane elements are widely used for reverse osmosis filtration.
  • the spiral separation membrane element includes a center tube and a laminate wound around the center tube.
  • the laminated body includes a supply-side channel material that supplies raw water (that is, water to be treated) to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a permeation side that is separated from the supply-side fluid through the separation membrane. It is formed by laminating a permeate-side channel material for guiding fluid to the central tube.
  • the spiral separation membrane element is preferably used in that a large amount of permeated fluid can be taken out because pressure can be applied to the raw water.
  • a polymer net is mainly used as a supply-side channel material in order to form a supply-side fluid channel.
  • a stacked type separation membrane is used as the separation membrane.
  • Laminate type separation membranes are laminated from the supply side to the permeate side, a separation functional layer made of a crosslinked polymer such as polyamide, a porous resin layer (porous support layer) made of a polymer such as polysulfone, polyethylene terephthalate, etc.
  • a non-woven substrate made of the above polymer is provided.
  • a knitted member called a tricot having a smaller interval than the supply side channel material is used for the purpose of preventing the separation membrane from dropping and forming the permeation side channel.
  • Patent Document 1 proposes a separation membrane element including an unevenly shaped sheet as a permeate-side channel material.
  • a separation membrane that does not require a supply-side channel material such as a net or a permeation-side channel material such as a tricot by a channel material composed of an elastomer called a vane disposed on the separation membrane. Elements have been proposed.
  • Patent Document 3 proposes a separation membrane element provided with a flow path material in which yarns are arranged on a nonwoven fabric.
  • an object of the present invention is to provide a separation membrane element that can stabilize the separation and removal performance when the separation membrane element is operated under a particularly high pressure.
  • the separation membrane element of the present invention comprises a sheet having a porosity of 20% or more and 90% or less, and a permeation-side flow path material composed of a plurality of protrusions having a porosity of 5% or less.
  • a high-efficiency and stable permeation side flow path can be formed, and a high-performance, high-efficiency separation membrane element having separation component removal performance and high permeation performance can be obtained.
  • FIG. 2 It is a schematic block diagram which shows one form of a membrane leaf. It is a top view which shows the permeation
  • FIG. 2 and FIG. It is a development perspective view showing one form of a separation membrane element.
  • a separation membrane is a membrane that can separate components in the fluid supplied to the surface of the separation membrane and obtain a permeated fluid that has permeated the separation membrane.
  • the separation membrane can also include a membrane in which embossing or resin is arranged so as to form a flow path.
  • the separation membrane may be one that cannot form a flow path and expresses only a separation function.
  • FIG. 1 an exploded perspective view of a membrane leaf including an example of an embodiment of the separation membrane of the present invention is shown in FIG.
  • the membrane leaf 4 includes a plurality of separation membranes 2a and 2b.
  • the separation membrane 2a has a supply-side surface 21a and a transmission-side surface 22a
  • the separation membrane 2b has a supply-side surface 21b and a transmission-side surface 22b.
  • the two separated separation membranes 2a and 2b are arranged so that the supply-side surface 21a of one separation membrane 2a and the supply-side surface 21b of the other separation membrane 2b face each other.
  • the other separation membrane 2c superimposed thereon is arranged so that the permeation side surface 22c of the separation membrane faces the permeation side surface 22b of the separation membrane 2b below it.
  • 21c is a surface on the supply side of the separation membrane 2c.
  • the “supply side surface” of the separation membrane means the surface on the side of the separation membrane where raw water is supplied.
  • the “permeate side surface” means the surface on the opposite side from which the permeated fluid that has passed through the separation membrane is discharged.
  • the separation membrane 2 includes a base material 201, a porous support layer 202, and a separation function layer 203 as shown in FIG. 7, generally, the surface on the separation function layer 203 side is on the supply side.
  • the surface 21 and the surface on the base material 201 side are the surface 22 on the transmission side.
  • the separation membrane 2 is described as a laminate of a base material 201, a porous support layer 202 and a separation functional layer 203.
  • the surface opened outside the separation functional layer 203 is the supply-side surface 21, and the surface opened outside the base material 201 is the transmission-side surface 22.
  • FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 show the x-axis, y-axis, and z-axis direction axes.
  • the x-axis may be referred to as a first direction and the y-axis may be referred to as a second direction.
  • the separation membrane 2 is rectangular, and the first direction and the second direction are parallel to the outer edge of the separation membrane 2.
  • the first direction may be referred to as the width direction
  • the second direction may be referred to as the length direction.
  • the first direction (width direction) is represented by a CD arrow
  • the second direction (length direction) is represented by an MD arrow.
  • the separation membrane a membrane having separation performance according to the method of use, purpose and the like is used.
  • the separation membrane may be formed of a single layer or a composite membrane including a separation functional layer and a substrate. As shown in FIG. 7, in the composite membrane, a porous support layer 202 may be formed between the separation functional layer 203 and the base material 201.
  • the thickness of the separation functional layer is not limited to a specific numerical value, but is preferably 5 nm or more and 3000 nm or less in terms of separation performance and transmission performance.
  • the thickness is preferably 5 nm or more and 300 nm or less.
  • the thickness of the separation functional layer can be in accordance with a normal separation membrane thickness measurement method.
  • the separation membrane is embedded with resin, and an ultrathin section is prepared by cutting the separation membrane, and the obtained section is subjected to processing such as staining. Thereafter, the thickness can be measured by observing with a transmission electron microscope.
  • measurement can be made at intervals of 50 nm in the cross-sectional length direction of the pleat structure located above the porous support layer, the number of pleats can be measured, and the average can be obtained. it can.
  • the separation function layer may be a layer having both a separation function and a support function, or may have only a separation function.
  • the “separation function layer” refers to a layer having at least a separation function.
  • a layer containing cellulose, polyvinylidene fluoride, polyether sulfone, or polysulfone as a main component is preferably applied as the separation functional layer.
  • X contains Y as a main component means that the Y content in X is 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, or It means a case of 95% by mass or more.
  • the total amount of these components only needs to satisfy the above range.
  • a crosslinked polymer is preferably used in terms of easy control of the pore diameter and excellent durability.
  • a polyamide separation functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide, an organic-inorganic hybrid functional layer, and the like are preferably used in terms of excellent separation performance of components in raw water.
  • These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
  • the separation functional layer can contain polyamide as a main component.
  • a film is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, by applying a polyfunctional amine aqueous solution to the porous support layer, removing the excess amine aqueous solution with an air knife or the like, and then applying an organic solvent solution containing a polyfunctional acid halide, the polyamide separation functional layer Is obtained.
  • the separation functional layer may have an organic-inorganic hybrid structure containing Si element or the like.
  • the separation functional layer having an organic-inorganic hybrid structure can contain, for example, the following compounds (A) and (B): (A) a silicon compound in which a reactive group and a hydrolyzable group having an ethylenically unsaturated group are directly bonded to a silicon atom, and (B) a compound other than the compound (A) and having an ethylenically unsaturated group Compound.
  • the separation functional layer may contain a condensate of the hydrolyzable group of the compound (A) and a polymer of the ethylenically unsaturated group of the compounds (A) and / or (B).
  • the separation functional layer is A polymer formed by condensation and / or polymerization of only the compound (A), -The polymer formed by superposing
  • the polymer includes a condensate.
  • compound (A) may be condensed via a hydrolyzable group.
  • the hybrid structure can be formed by a known method.
  • An example of a method for forming a hybrid structure is as follows.
  • a reaction solution containing the compound (A) and the compound (B) is applied to the porous support layer.
  • heat treatment may be performed.
  • a polymerization initiator, a polymerization accelerator and the like can be added during the formation of the separation functional layer.
  • the surface of the membrane may be hydrophilized with an alcohol-containing aqueous solution or an alkaline aqueous solution, for example, before use.
  • the porous support layer is a layer that supports the separation functional layer, and is also referred to as a porous resin layer.
  • a porous resin layer the material used for a porous support layer and its shape are not specifically limited, For example, you may form on a board
  • the porous support layer polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin or a mixture and laminate of them is used, and polysulfone with high chemical, mechanical and thermal stability and easy to control pore size. Is preferably used.
  • the porous support layer gives mechanical strength to the separation membrane and does not have a separation performance like a separation functional layer for components having a small molecular size such as ions.
  • the pore size and pore distribution of the porous support layer are not particularly limited.
  • the porous support layer may have uniform and fine pores, or the side on which the separation functional layer is formed. It may have a pore size distribution such that the diameter gradually increases from the surface to the other surface (base material side).
  • the projected area equivalent circle diameter of the pores measured using an atomic force microscope or an electron microscope on the surface on the side where the separation functional layer is formed is 1 nm or more and 100 nm or less. preferable.
  • the pores on the surface on the side where the separation functional layer is formed in the porous support layer preferably have a projected area equivalent circle diameter of 3 nm to 50 nm. .
  • the thickness of the porous support layer is not particularly limited, but is preferably in the range of 20 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 300 ⁇ m or less for the purpose of giving strength to the separation membrane.
  • the form of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic force microscope.
  • a scanning electron microscope after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation.
  • the sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 kV to 6 kV.
  • UHR-FE-SEM high resolution field emission scanning electron microscope
  • Hitachi S-900 electron microscope can be used. Based on the obtained electron micrograph, the film thickness of the porous support layer and the projected area equivalent circle diameter of the surface can be measured.
  • the thickness and pore diameter of the porous support layer are average values, and the thickness of the porous support layer is measured at intervals of 20 ⁇ m in a direction perpendicular to the thickness direction by cross-sectional observation, and is an average value of 20 point measurements. Moreover, a hole diameter is an average value of each projected area circle equivalent diameter measured about 200 holes.
  • a porous support layer is formed by casting a solution of polysulfone in N, N-dimethylformamide (hereinafter referred to as DMF) on a substrate to be described later, for example, a densely woven polyester cloth or non-woven cloth to a constant thickness. And can be produced by wet coagulation in water.
  • DMF N, N-dimethylformamide
  • the porous support layer is “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the polymer concentration, the temperature of the solvent, and the poor solvent can be adjusted.
  • a predetermined amount of polysulfone is dissolved in DMF to prepare a polysulfone resin solution having a predetermined concentration.
  • this polysulfone resin solution is applied to a substrate made of polyester cloth or nonwoven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid.
  • a porous support layer can be obtained.
  • the separation membrane can have a substrate.
  • the base material it is preferable to use a fibrous base material in terms of strength, unevenness forming ability and fluid permeability.
  • a base material both a long fiber nonwoven fabric and a short fiber nonwoven fabric can be used preferably.
  • the long fiber nonwoven fabric has excellent film-forming properties, when the polymer solution is cast, the solution penetrates through the permeation, the porous support layer peels off, and Can suppress the film from becoming non-uniform due to fluffing of the substrate and the like, and the occurrence of defects such as pinholes.
  • the base material is made of a long-fiber nonwoven fabric composed of thermoplastic continuous filaments, compared to a short-fiber nonwoven fabric, non-uniform film formation and film defects caused by fiber fluffing during polymer solution casting can be prevented. Can be suppressed. Furthermore, since the separation membrane is tensioned in the film-forming direction when continuously formed, it is preferable to use a long-fiber nonwoven fabric excellent in dimensional stability as a base material.
  • the fibers in the surface layer on the side opposite to the porous support layer are preferably longitudinally oriented compared to the fibers in the surface layer on the porous support layer side in terms of moldability and strength. According to such a structure, not only a high effect of preventing membrane breakage by maintaining strength is realized, but also a laminate comprising a porous support layer and a substrate when imparting irregularities to the separation membrane The moldability is improved, and the uneven shape on the surface of the separation membrane is stabilized, which is preferable.
  • the fiber orientation degree in the surface layer on the side opposite to the porous support layer of the long-fiber nonwoven fabric is preferably 0 ° or more and 25 ° or less, and the fiber orientation in the surface layer on the porous support layer side.
  • the degree of orientation difference with respect to the degree is preferably 10 ° or more and 90 ° or less.
  • the heating process is included in the manufacturing process of the separation membrane and the manufacturing process of the separation membrane element, but the phenomenon that the porous support layer or the separation functional layer contracts due to the heating occurs.
  • the shrinkage is remarkable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small rate of thermal dimensional change is desired.
  • the difference between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the porous support layer side surface layer is 10 ° or more and 90 ° or less, the change in the width direction due to heat is suppressed. Can also be preferred.
  • the fiber orientation degree is an index indicating the direction of the fibers of the nonwoven fabric base material constituting the porous support layer.
  • the fiber orientation degree is an average value of angles between the film forming direction when continuous film forming is performed, that is, the longitudinal direction of the nonwoven fabric base material and the longitudinal direction of the fibers constituting the nonwoven fabric base material. is there. That is, if the longitudinal direction of the fiber is parallel to the film forming direction, the fiber orientation degree is 0 °. If the longitudinal direction of the fiber is perpendicular to the film forming direction, that is, if it is parallel to the width direction of the nonwoven fabric substrate, the degree of orientation of the fiber is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
  • the fiber orientation degree is measured as follows. First, 10 small piece samples are randomly collected from the nonwoven fabric. Next, the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 fibers are selected for each sample, and the angle of the fibers in the longitudinal direction when the longitudinal direction of the nonwoven fabric is 0 ° is measured.
  • the longitudinal direction of the nonwoven fabric refers to “Machine direction” at the time of manufacturing the nonwoven fabric.
  • the longitudinal direction of the nonwoven fabric coincides with the film forming direction of the porous support layer and the MD direction in FIGS.
  • the CD direction in FIGS. 1 and 5 corresponds to “Cross direction” at the time of manufacturing the nonwoven fabric.
  • the angle is measured for a total of 100 fibers per nonwoven fabric.
  • an average value is calculated from the angle in the longitudinal direction.
  • the value obtained by rounding off the first decimal place of the obtained average value is the fiber orientation degree.
  • the thickness of the base material is selected so that the total thickness of the base material and the porous support layer is in the range of 30 ⁇ m to 300 ⁇ m, or in the range of 50 ⁇ m to 250 ⁇ m.
  • the permeation side channel material of the present invention is composed of a sheet having a porosity of 20% or more and 90% or less and a plurality of protrusions having a porosity of 5% or less, and the plurality of protrusions are formed integrally with the sheet.
  • the permeation-side flow resistance can be reduced, and high channel stability can be achieved at the same time.
  • the porosity of the sheet and the plurality of protrusions is within the above range, the flow resistance of the groove formed by the space of the sheet and the plurality of protrusions can be reduced.
  • the gap of the sheet becomes the channel and the permeate passes through the sheet. Can move to another groove.
  • the permeate-side channel material of the present invention is disposed on the permeate-side surface 22 of the membrane leaf 4 as shown in FIG. At this time, whether the projection touches the transmission side surface 22 or the sheet contacts the transmission side surface 22 depends on whether the membrane leaf 4 is wrapped or laminated, Since a protrusion and a sheet
  • the details of the configuration of the permeate-side channel material are as follows.
  • the sheet 302 in the permeate-side flow path member 31 is provided with a band-like region 303 where the protrusions 301 are not disposed at the end thereof.
  • This strip region 303 is referred to as a strip end.
  • the band-shaped end portion is a portion where the protrusions 301 are not provided on the sheet 302.
  • the width of the band-shaped end portion can be determined according to the separation membrane element size, the operating pressure, the thickness of the permeate-side channel material, and the amount of leaf adhesive applied, but is wider than the groove width (CD direction) formed by the protrusion 301 It is better, and it can be appropriately changed, particularly in the range of 0.25 mm to 70 mm. Within this range, good sealing performance can be obtained even if a permeate-side channel material with protrusions fixed to the sheet is used, and the effective membrane area of the separation membrane with leaf adhesive (loaded in the separation membrane element) Among the separated membranes, it is possible to prevent a decrease in the total area of the separation membrane that exhibits the separation function.
  • the sheet 302 constituting the permeate-side flow path member is preferably arranged so that the second direction coincides with the winding direction as shown in FIG. That is, in the separation membrane element of FIGS. 8, 9 and 10, the sheet 302 has a first direction (width direction of the separation membrane) parallel to the longitudinal direction of the water collecting pipe 6 and a second direction (length of the separation membrane). (Direction) is preferably arranged so as to be orthogonal to the longitudinal direction of the water collecting pipe 6.
  • the sheet constituting the permeation side channel material exists in a region where the permeation side surfaces of the separation membrane are bonded to each other. That is, it is preferable that the two separation membranes are bonded to each other with the sheet constituting the permeation side flow path member interposed therebetween, and the sheet exists between the separation membranes in at least a part of the bonded portion.
  • the size of the sheet 302 constituting the permeate-side flow path material and the size of the separation membrane are the same, but actually the sheet may be larger or the separation membrane may be larger. Good. When the separation membrane is larger, the sheet becomes a wall, so that the spread of the adhesive can be suppressed.
  • the thickness unevenness of the sheet 302 constituting the permeate-side channel material is preferably 0.03 mm or less, and more preferably 0.02 mm or less. As the thickness spots are larger, the spread of the leaf adhesive tends to be larger, and the effective film area and the sealing performance as described above are lowered.
  • the thickness unevenness of the sheet can be measured using a commercially available thickness meter (for example, Mitsutoyo Thickness Gauge Part No. 547-401, Keyence Digital Microscope Model No. VHX-1100). The thickness can be measured for the position, and the difference between the maximum value and the minimum value can be regarded as a thickness spot.
  • the porosity of the sheet constituting the permeate side channel material is preferably 20% or more and 90% or less, and particularly preferably 45% or more and 80% or less.
  • the porosity means the ratio of the voids per unit volume of the substrate, and the weight when the substrate is dried is subtracted from the weight when pure water is included in the substrate having a predetermined apparent volume. The value obtained by dividing the obtained value by the apparent volume of the substrate is expressed as a percentage (%).
  • the porosity of the sheet 302 exceeds 90%, the flow resistance is lowered, but the impregnation of the protrusions 301 is easy to proceed, and the back-through occurs, and the thickness of the sheet 302 becomes uneven.
  • the adhesive that bonds the leaves easily spreads, and the area where the adhesive is not applied after formation of the separation membrane element, that is, the area where effective pressure filtration functions effectively (effective membrane area) is reduced. The amount of water produced is reduced.
  • the porosity of the sheet 302 is less than 20%, the impregnation of the protrusions 301 and the adhesive hardly progresses, and the protrusions 301 are peeled off from the sheet 302 and a flow path cannot be formed.
  • the impregnation tends to be insufficient, the supply water flows into the permeate-side flow path and the separation performance deteriorates. Furthermore, the permeated water is difficult to permeate the sheet 302, and the permeated water does not reach the grooves between the protrusions 301 or the flow path in the sheet 302. As a result, the amount of water produced by the separation membrane element is greatly reduced.
  • transmission side channel material is 0.2 mm or less.
  • the sheet is preferably impregnated with an adhesive in order to seal between the permeation side surfaces of the two separation membranes.
  • the separation membrane can be sealed with an adhesive as long as the porosity of the sheet is 80% or more.
  • the strength of the sheet can be ensured when the thickness of the sheet constituting the permeate-side flow path material is 0.02 mm or more, damage to the sheet can be suppressed.
  • the porosity is preferably 20% or more and 80% or less, and the thickness of the sheet exceeds 0.02 mm. If it is 0.4 mm or less, the porosity is more preferably 30% or more and 90% or less.
  • the porosity of the sheet is preferably 30% or more and 90% or less.
  • the porosity of the sheet is 20% or more and 80% or less. Is preferred.
  • the porosity of the protrusions 301 is preferably 5% or less, and more preferably 2% or less.
  • the pressure is concentrated on the protrusion 301 during pressure filtration or winding of the sheet. If the protrusion 301 is deformed, the groove formed by the plurality of protrusions 301 serving as the flow path becomes narrow, and thus the flow resistance increases. However, when the porosity is 5% or less, the protrusions are not easily deformed even during compression.
  • the material constituting the permeate-side channel material that is, the component constituting the sheet and the projection is not limited to a specific substance, but a resin is preferably used. Specifically, in view of chemical resistance, ethylene vinyl acetate copolymer resin, polyolefin such as polyethylene and polypropylene, and polyolefin copolymer are preferable.
  • the material of the permeate side channel material is urethane resin, epoxy resin, polyethersulfone, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, styrene-acrylonitrile copolymer Polymer, styrene-butadiene-acrylonitrile copolymer, polyacetal, polymethyl methacrylate, methacryl-styrene copolymer, cellulose acetate, polycarbonate, polyethylene terephthalate, polybutadiene terephthalate and fluororesin (ethylene trifluoride chloride, polyvinylidene fluoride, tetrafluoride) Ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, tetra
  • thermoplastic resin is easy to mold, it is possible to form a permeate-side channel material having a uniform shape, and the sheet and the protrusion may be the same material or different materials.
  • a composite material can also be applied as the material of the permeate side channel material.
  • the composite material include a material containing the above-described resin as a base material and further containing a filler.
  • the compression elastic modulus of the permeate side channel material can be increased by adding a filler such as a porous inorganic material to the base material.
  • a filler such as a porous inorganic material to the base material.
  • alkaline earth metal silicates such as sodium silicate, calcium silicate and magnesium silicate, metal oxides such as silica, alumina and titanium oxide, and alkaline earth metals such as calcium carbonate and magnesium carbonate.
  • Carbonate, pure meteorite, meteorite powder, caustic clay, wollastonite, sepiolite, attapulgite, kaolin, clay, bentonite, gypsum, talc, etc. can be used as fillers.
  • the addition amount of a filler will not be specifically limited if it is a range which does not impair the effect of this invention.
  • Permeation side channel material composed of polypropylene ⁇ Permeation side channel material composed of polypropylene
  • the permeate side channel material may contain highly crystalline polypropylene and may satisfy the following requirements (a) and (b).
  • the content of the highly crystalline polypropylene is 40 to 95% by weight in the composition constituting the permeation side channel material.
  • the melting endotherm ( ⁇ H) of the channel material is 20 to 70 J / g.
  • curling of the separation membrane in which the permeation side flow path is formed can be suppressed by setting the content of the highly crystalline polypropylene to 95% by weight or less in the composition constituting the permeation side flow path material.
  • the content of the highly crystalline polypropylene is more preferably 85% by weight or less, and further preferably 75% by weight or less.
  • the content of the high crystalline polypropylene is more preferably 45% by weight or more, and further preferably 50% by weight.
  • the highly crystalline polypropylene examples include propylene homopolymer; propylene random copolymer; propylene block copolymer, and the like. These may be used alone or in combination of two or more.
  • the melting point of the highly crystalline polypropylene is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher.
  • the melting point is a value measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • a sample is evaluated using a thermal analyzer such as a thermomechanical analyzer TMA / SS-6000 manufactured by Seiko Instruments Inc. under the conditions of probe: penetration probe, measurement load: 10 g, temperature increase rate: 5 ° C./min. The melting point can be measured.
  • the melt flow rate (MFR) of the highly crystalline polypropylene is preferably 10 to 2000 g / 10 minutes.
  • MFR melt flow rate
  • the MFR of the highly crystalline polypropylene is more preferably 30 to 1800 g / 10 min, and further preferably 50 to 1500 g / min.
  • the MFR is a value measured under conditions of 230 ° C. and a load of 2.16 kg in accordance with JIS-K7200 (1999).
  • the melting endotherm ( ⁇ H) of the permeate-side channel material is preferably 20 to 70 J / g.
  • ⁇ H of the permeate-side channel material is smaller than 20 J / g, curling of the separation membrane is sufficiently suppressed, but on the other hand, crystallization of the composition constituting the permeate-side channel material becomes very slow, The side channel material becomes sticky. As a result, at the time of roll conveyance, the permeate side channel material adheres to the roll, or the permeate side channel material is deformed by contact with the roll.
  • the permeate-side flow path material adheres to the separation functional layer side of the separation membrane, and the unwinding property of the separation membrane roll is significantly deteriorated. Membrane handling is greatly reduced. Furthermore, the amount of compressive deformation under pressure operation increases.
  • the ⁇ H of the permeate-side channel material is more preferably 25 to 65 J / g, and further preferably 30 to 60 J / g.
  • the melting endotherm is a numerical value measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • measurement was performed using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer, Inc., and a 10 mg sample was heated from 20 ° C. to 220 ° C. at a heating rate of 10 ° C./min and held at 220 ° C. for 10 minutes. Thereafter, in the measurement of lowering the temperature to 20 ° C. at a temperature lowering rate of 10 ° C./min, the calorific value based on crystallization observed when the temperature is lowered can be obtained.
  • composition constituting the permeation side flow path member preferably contains a low crystalline ⁇ -olefin polymer, and the content thereof is 5 to 60% by weight in the composition constituting the permeation side flow path material. % Is preferred.
  • the low crystalline ⁇ -olefin polymer of the present invention is an amorphous or low crystalline ⁇ -olefin polymer.
  • the low crystalline polypropylene such as atactic polypropylene or isotactic polypropylene having low stereoregularity.
  • linear ⁇ -olefin propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octade , 1-nonadecene, 1-eicosene and the like.
  • Examples of the branched ⁇ -olefin include 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl 1-hexene, 2,2,4-trimethyl-1-pentene, etc.); (B-3) Commercially available products such as “Tuffmer” manufactured by Mitsui Chemicals, Inc. and “Tufselen” manufactured by Sumitomo Chemical Co., Ltd. Examples include propylene / olefin copolymers. In the present invention, one or more of these can be used.
  • the low crystalline ⁇ -olefin polymer (B) includes low crystalline polypropylene and propylene / olefin copolymer from the viewpoints of good compatibility with high crystalline polypropylene, versatility, and curling improvement effect of the separation membrane.
  • a polymer is more preferred.
  • the content of the low crystalline ⁇ -olefin-based polymer (B) is preferably 5 to 60% by weight with respect to the composition constituting the permeation side flow path material.
  • the content of the low crystalline ⁇ -olefin polymer is preferably 5 to 60% by weight with respect to the composition constituting the permeation side flow path material.
  • the content of the low crystalline ⁇ -olefin polymer is more preferably 10 to 55% by weight, more preferably 15 to 50% by weight, from the viewpoint of flexibility of the permeation side channel material and compressive deformation under pressure. More preferably it is.
  • the permeate-side channel material fixed to the permeate-side surface of the separation membrane main body is an additive such as a thermal fluidity improver, a filler, an antioxidant, a lubricant, etc., as long as the object of the invention is not impaired. 1 type or 2 types or more may be included.
  • thermal fluidity improver examples include synthetic waxes such as polyethylene wax, polypropylene wax, atactic polypropylene wax, Fischer-Tropsch wax; petroleum waxes such as paraffin wax and microwax; natural waxes such as carnauba wax and beeswax; rosin, Rosin resins such as hydrogenated rosin, polymerized rosin, and rosin ester; Terpene resins such as terpenes, hydrogenated terpenes, aromatic modified terpenes, and aromatic modified hydrogenated terpenes; “Imabe” manufactured by Idemitsu Kosan Examples include hydrogenated petroleum resins such as “Alcon” (trade name) manufactured by Arakawa Chemical Industries, Ltd., “Petocol”, “Petrotac” (all trade names) manufactured by Tosoh Corporation, and the like, but are not limited thereto.
  • the content can be appropriately set in order to adjust the melt viscosity of the composition constituting the permeate-side flow path material, but it may cause a decrease in pressure resistance of the permeate-side flow path material and the occurrence of bleed out on the surface of the flow path material. In consideration of prevention, it is preferably 50% by weight or less, more preferably 40% by weight or less, in the composition constituting the permeation side channel material.
  • antioxidants examples include, but are not limited to, phenolic compounds; phosphorus compounds; hindered amine compounds; sulfur compounds. Moreover, you may use these individually or in mixture of 2 or more types.
  • the content is preferably 0.001 to 1% by weight with respect to the composition constituting the permeate-side channel material from the viewpoint of suppressing thermal decomposition of the composition at the time of forming the permeate-side channel material. .
  • fatty acid amide compounds such as stearamide, oleic acid amide, erucic acid amide, ethylene bis stearic acid amide; metal soaps such as calcium stearate, zinc stearate, magnesium stearate, zinc stearate; fatty acid ester
  • a compound etc. can be illustrated, it is not limited to these. Moreover, you may use these individually or in mixture of 2 or more types.
  • fillers include, but are not limited to, inorganic compounds such as calcium carbonate, talc, alumina, silica, mica, and clay. These may be used alone or in admixture of two or more. From the viewpoint of moldability of the permeate side channel material, thickening of the composition, and wear of the processing apparatus, the content is 3 to 30% by weight with respect to the composition constituting the permeate side channel material. preferable.
  • the tensile elongation of the permeate-side channel material fixed to the permeate-side surface of the separation membrane body is 5% or more. If the tensile elongation is 5% or more, even if the separation membrane is rolled or wound on a winder, the flow channel material can be prevented from being damaged or broken, and a high-quality separation membrane can be obtained. In the element manufacturing process, handleability is improved.
  • the tensile elongation is more preferably 7% or more, still more preferably 10% or more.
  • the higher the tensile elongation the higher the energy required for fracture, which is preferable from the viewpoint of toughness. However, if the tensile elongation is excessively high, the amount of deformation under a constant stress increases, so 300% or less is preferable. 200% or less is more preferable.
  • the tensile elastic modulus of the permeate-side channel material fixed to the permeate-side surface of the separation membrane main body is 0.2 to 2.0 GPa.
  • the tensile elastic modulus is more preferably 0.25 GPa or more, and further preferably 0.30 GPa or more. The higher the tensile elastic modulus, the more the amount of compressive deformation of the channel material during the pressurizing operation can be suppressed, but it is difficult to substantially achieve 2.0 GPa or more.
  • a tricot that has been widely used in the past is a knitted fabric, and is composed of three-dimensionally intersecting yarns. That is, the tricot has a two-dimensionally continuous structure. When such a tricot is applied as a permeate-side channel material, the height of the channel is smaller than the thickness of the tricot. That is, it is a structure with many ratios which do not become a groove.
  • a protrusion 301 shown in FIG. 2 and the like is arranged on a sheet 302 having a gap. Therefore, the height (that is, the thickness) of the protrusion 301 of the present embodiment can be used as the height of the groove of the flow path, and the sheet 302 can be used as the flow path because it has a gap. Therefore, the flow resistance (the groove between the protrusions 301 and the gap in the sheet 302) is wider than when a tricot having the same thickness as the flow path material of the present embodiment is applied, so that the flow resistance is more Get smaller.
  • discontinuous protrusions 301 are fixed on one sheet 302.
  • “Discontinuous” is a state in which a plurality of flow path members are provided at intervals. That is, when one protrusion 301 is peeled from the sheet 302, a plurality of protrusions 301 separated from each other are obtained.
  • members such as nets, tricots, and films exhibit a continuous and integral shape even when the flow path is separated from the sheet 302.
  • the separation membrane 2 can suppress pressure loss when it is incorporated into the separation membrane element 100 described later.
  • the protrusions 301 are formed discontinuously only in the first direction (the width direction of the sheet 302), and in FIG. 3, the first direction (the width direction of the sheet 302) and the first It is formed discontinuously in any of the two directions (the length direction of the separation membrane).
  • the permeate-side flow path 5 is formed in the space between the adjacent protrusions 301.
  • the permeation-side channel material 31 is provided discontinuously in the first direction and is provided so as to continue from one end of the sheet 302 to the other end in the second direction. That is, when the sheet 302 is incorporated into the separation membrane element as shown in FIG. 5, the protrusions 301 are arranged so as to continue from the inner end to the outer end of the sheet 302 in the winding direction.
  • the inner side in the winding direction is the side close to the water collecting pipe 6 in the separation membrane, and the outer side in the winding direction is the side far from the water collecting pipe 6 in the separation membrane.
  • the passage material is “continuous in the second direction” means that the passage material is provided without interruption as shown in FIG. 2 and the passage material is interrupted as shown in FIG. It includes both cases where the channel material is substantially continuous.
  • the distance e between the flow path members in the second direction is 5 mm or less. Satisfy that.
  • the distance e is more preferably 1 mm or less, and further preferably 0.5 mm or less.
  • the total value of the intervals e included from the beginning to the end of the line of flow path materials arranged in the second direction is preferably 100 mm or less, more preferably 30 mm or less, and more preferably 3 mm or less. Further preferred. In the form of FIG. 2, the interval e is 0 (zero).
  • the protrusions 301 are discontinuously provided not only in the first direction but also in the second direction. That is, the protrusions 301 are provided at intervals in the length direction. However, as described above, the protrusions 301 are substantially continuous in the second direction, so that film sagging is suppressed. However, by providing the discontinuous protrusions 301 in the two directions as described above, the contact area between the flow path material and the fluid is reduced, so that the pressure loss is reduced.
  • this form is a configuration in which the permeation-side flow path 5 includes a branch point. That is, in the configuration of FIG. 3, the permeating fluid is divided by the projections 301 and the sheet 302 while flowing through the permeation side flow path 5, and can be further merged downstream.
  • the protrusions 301 are provided so as to be continuous from one end to the other end of the sheet 302 in the second direction.
  • the protrusion 301 is divided into a plurality of portions in the second direction, but the plurality of portions are provided so as to be arranged from one end to the other end of the sheet 302.
  • the passage material is “provided from one end of the sheet to the other end” means that the protrusion 301 is provided to the edge of the sheet 302 and the region where the protrusion 301 is not provided in the vicinity of the edge. Includes both forms.
  • the protrusions 301 need only be distributed in the second direction to such an extent that a passage on the transmission side can be formed, and the sheet 302 may have a portion where the protrusions 301 are not provided.
  • the protrusion 301 does not need to be provided in a portion (in other words, a contact portion) bonded to the separation membrane on the transmission side surface.
  • a region where the protrusions 301 are not disposed may be provided at some locations such as the end of the separation membrane.
  • the protrusions 301 can be distributed almost uniformly over the entire sheet 302. However, similarly to the distribution in the second direction, the protrusions 301 do not need to be provided at the bonding portion of the permeate side surface with the separation membrane. Further, for other specifications or manufacturing reasons, an area where the protrusions 301 are not arranged may be provided in some places such as the end of the sheet 302.
  • a to f indicate the following values.
  • e Distance between the protrusions in the length direction of the separation membrane 2 f: Length of the protrusion 301
  • each value is obtained by performing measurement at 30 or more locations on one separation membrane, and calculating an average value by dividing the sum of these values by the number of measurement total locations.
  • each value obtained as a result of the measurement at at least 30 locations should satisfy the range described below.
  • the length a is a distance from one end of the separation membrane 2 to the other end in the second direction (length direction of the separation membrane). When this distance is not constant, the length a can be obtained by measuring this distance at 30 or more positions in one separation membrane 2 and obtaining an average value.
  • the interval b between the protrusions 301 adjacent in the first direction corresponds to the width of the permeation side flow path 5.
  • the width of one permeation side flow path 5 is not constant in one cross section, that is, when the side surfaces of two adjacent projections 301 are not parallel, the width of one permeation side flow path 5 is within one cross section. Measure the average value of the maximum and minimum values and calculate the average value. As shown in FIG.
  • the interval b is preferably 0.05 mm or more, 0.2 mm or more, or 0.3 mm or more. Further, in terms of suppressing film sagging, the interval b is preferably 5 mm or less, 3 mm or less, 2 mm or less, or 0.8 mm or less.
  • the interval b is preferably 0.05 mm or more and 5 mm or less, and within this range, the pressure loss can be reduced while suppressing film sagging.
  • the distance b is more preferably 0.05 mm or more and 3 mm or less, 0.2 mm or more and 2 mm or less, and further preferably 0.3 mm or more and 0.8 mm or less.
  • the height c is a height difference between the protrusion and the surface of the sheet 302. As shown in FIG. 4, the height c is a difference in height between the highest portion of the protrusion 301 and the transmission side surface of the sheet 302 in a cross section perpendicular to the second direction. That is, the thickness of the portion impregnated in the base material is not considered as the height of the protrusion.
  • the height c is a value obtained by measuring the heights of 30 or more protrusions 301 and averaging them.
  • the height c of the protrusion may be obtained by observing the cross section of the flow path material in the same plane, or may be obtained by observing the cross sections of the flow path material in a plurality of planes.
  • the height c can be appropriately selected according to the use conditions and purpose of the separation membrane element, but may be set as follows, for example.
  • the smaller the height c the larger the number of membranes filled per separation membrane element. Therefore, the height c is preferably 0.8 mm or less, 0.4 mm or less, or 0.32 mm or less.
  • the height c is preferably 0.03 mm to 0.8 mm (30 ⁇ m to 800 ⁇ m), and preferably 0.05 mm to 0.4 mm. Preferably, it is 0.1 mm or more and 0.32 mm or less.
  • the difference in height between two adjacent channel materials is small. If the difference in height is large, the separation membrane is distorted during pressure filtration, so that defects may occur in the separation membrane.
  • the difference in height between two adjacent channel materials is preferably 0.1 mm or less (100 ⁇ m or less), more preferably 0.06 mm or less, and further preferably 0.04 mm or less.
  • the maximum height difference of all the protrusions 301 provided on the sheet 302 is preferably 0.25 mm or less, particularly preferably 0.1 mm or less, and further preferably 0.03 mm or less. .
  • the width d of the protrusion 301 is measured as follows. First, in one section perpendicular to the first direction (the width direction of the separation membrane), the average value of the maximum width and the minimum width of one protrusion 301 is calculated. That is, in the protrusion 301 having a thin upper part and a thick lower part as shown in FIG. 4, the width of the lower part and the upper part of the flow path material are measured, and the average value is calculated. By calculating such an average value in at least 30 cross-sections and calculating the arithmetic average thereof, the width d per film can be calculated.
  • the width d of the protrusion 301 is preferably 0.2 mm or more, and more preferably 0.3 mm or more. When the width d is 0.2 mm or more, the shape of the flow path material can be maintained even when pressure is applied to the projections 301 and the sheet 302 during operation of the separation membrane element, and the permeate-side flow path is stable. It is formed.
  • the width d is preferably 2 mm or less, and more preferably 1.5 mm or less. When the width d is 2 mm or less, a sufficient flow path on the permeate side can be secured.
  • the width d of the protrusions 301 is wider than the interval b of the protrusions 301 in the second direction, the pressure applied to the flow path material can be dispersed.
  • the protrusion 301 is formed so that its length is larger than its width. Such a long protrusion 301 is also referred to as a “wall-like object”.
  • the distance e between the protrusions 301 in the second direction is the shortest distance between the protrusions 301 adjacent in the second direction (length direction of the separation film).
  • the protrusions 301 are continuously provided from one end to the other end of the separation membrane 2 in the second direction (in the separation membrane element, from the inner end to the outer end in the winding direction). If there is, the interval e is 0 mm.
  • the interval e is preferably 5 mm or less, more preferably 1 mm or less, and further preferably 0.5 mm or less. .
  • the distance e is within the above range, the mechanical load on the film is small even when the film is dropped, and the pressure loss due to the blockage of the flow path can be relatively small.
  • interval e is 0 mm.
  • the length f of the protrusion 301 is the length of the protrusion 301 in the length direction of the separation membrane 2 (that is, the second direction).
  • the length f is obtained by measuring the length of 30 or more protrusions 301 in one separation membrane 2 and calculating an average value thereof.
  • the length f of the protrusion 301 may be equal to or less than the length a of the separation membrane.
  • the length f of the protrusion 301 is equal to the length a of the separation membrane, it means that the protrusion 301 is continuously provided from the inner end to the outer end in the winding direction of the separation membrane 2.
  • the length f is preferably 10 mm or more, more preferably 20 mm or more. Since the length f is 10 mm or more, the flow path is secured even under pressure.
  • the shape of the protrusion 301 is not particularly limited, but a shape that reduces the flow resistance of the channel and stabilizes the channel when permeated can be selected.
  • the shape of the protrusion 301 in any cross section perpendicular to the surface direction of the separation membrane may be a straight column shape, a trapezoidal shape, a curved column shape, or a combination thereof.
  • the protrusion 301 has a trapezoidal cross-sectional shape
  • the membrane that contacts the smaller side is likely to drop during pressure filtration.
  • the ratio of the length of the upper base to the length of the lower base of the flow path material is preferably 0.6 or more and 1.4 or less, and is 0.8 or more and 1.2 or less. Further preferred.
  • the shape of the protrusion 301 is preferably a straight column shape perpendicular to the later-described separation membrane surface. Further, the protrusion 301 may be formed so that the width becomes smaller at a higher part, or conversely, the protrusion 301 may be formed so that the width becomes wider at a higher part, or the height from the surface of the separation membrane. Regardless, it may be formed to have the same width. However, the upper side of the projection 301 may be rounded in the cross section of the protrusion 301 as long as the flow path material is not significantly crushed during pressure filtration.
  • the protrusion 301 can be formed of a thermoplastic resin. If the projection 301 is a thermoplastic resin, the shape of the flow path material can be freely changed so that the required separation characteristics and permeation performance conditions can be satisfied by changing the processing temperature and the type of thermoplastic resin to be selected. Can be adjusted.
  • the shape of the projection 301 in the planar direction of the separation membrane may be linear as a whole, and other shapes are, for example, curved, sawtooth, and wavy. There may be.
  • the protrusion 301 may have a broken line shape or a dot shape. From the viewpoint of reducing the flow resistance, a dot shape or a broken line shape is preferable. However, since the flow path material is interrupted, the number of places where film sagging occurs during pressure filtration increases.
  • the adjacent flow path members may be arranged substantially parallel to each other. “Arranged substantially in parallel” means, for example, that the channel material does not intersect on the separation membrane, the angle formed by the longitudinal direction of two adjacent channel materials is 0 ° or more and 30 ° or less, It includes that the angle is from 0 ° to 15 °, and that the angle is from 0 ° to 5 °.
  • the angle formed between the longitudinal direction of the protrusion 301 and the longitudinal direction of the water collecting pipe 6 is preferably 60 ° or more and 120 ° or less, more preferably 75 ° or more and 105 ° or less, and 85 ° or more and 95. More preferably, it is not more than 0 °.
  • the angle formed by the longitudinal direction of the flow path material and the longitudinal direction of the water collecting pipe is within the above range, the permeated water is efficiently collected in the water collecting pipe.
  • the separation membrane can be prevented from dropping when the separation membrane is pressurized in the separation membrane element.
  • the contact area between the separation membrane and the channel material is large, that is, the area of the channel material relative to the area of the separation membrane (projected area of the channel material with respect to the membrane surface of the separation membrane) is large.
  • the cross-sectional area of a flow path is wide. In order to ensure a large cross-sectional area of the flow path while ensuring a large contact area between the separation membrane and the flow path material perpendicular to the longitudinal direction of the flow path, The shape is preferably a concave lens.
  • the protrusion 301 may have a straight column shape having no change in width in a cross-sectional shape in a direction perpendicular to the winding direction.
  • the protrusion 301 is a trapezoidal wall-like object or elliptical column whose width changes in the cross-sectional shape in the direction perpendicular to the winding direction as long as it does not affect the separation membrane performance.
  • the shape may be an elliptical cone, a quadrangular pyramid, or a hemisphere.
  • the shape of the protrusion 301 is not limited to the shape shown in FIGS.
  • the flow path material is arranged by fixing a molten material to the sheet 302, for example, as in the hot melt method, the required separation is achieved by changing the processing temperature and the type of hot melt resin to be selected.
  • the shape of the protrusion 301 can be freely adjusted so that the conditions of the characteristics and the transmission performance can be satisfied.
  • the planar shape of the protrusion 301 is linear in the length direction.
  • the protrusion 301 can be changed to another shape as long as it is convex to the surface of the separation membrane 2 and does not impair the desired effect as the separation membrane element. That is, the shape of the channel material (projection) in the planar direction may be a curved shape, a wavy shape, or the like.
  • a plurality of flow path materials (projections) included in one separation membrane may be formed so that at least one of the width and the length is different from each other.
  • the projected area ratio of the protrusions 301 to the permeation side surface of the separation membrane is 0.03 or more and 0.85 or less, particularly in terms of reducing the flow resistance of the permeation side flow path and forming the flow path stably. Is preferably 0.15 or more and 0.85 or less, more preferably 0.2 or more and 0.75 or less, and further preferably 0.3 or more and 0.6 or less.
  • the projected area ratio is the projected area of the channel material obtained when the separation membrane and the permeation side channel material are cut out at 5 cm ⁇ 5 cm and the permeation side channel material is projected onto a plane parallel to the surface direction of the separation membrane. Is divided by the cut-out area (25 cm 2 ).
  • the water that has permeated through the separation membrane passes through the permeation side flow path 5 and is collected in the water collecting pipe 6.
  • the separation membrane water that has passed through a region far from the water collecting pipe, that is, a region in the vicinity of the outer end in the winding direction (region near the right end in FIG. 5) Then, it merges with the water that has permeated through the inner area, and goes to the water collecting pipe 6. Therefore, in the permeate side flow path, the amount of water present is smaller in the direction far from the water collecting pipe 6.
  • the length L3 in the second direction (length direction of the separation membrane) of the region R3, which is a region provided in the region where the permeation side flow channel is not formed, is the second permeation side flow channel material.
  • the ratio of the length to the length L1 is preferably 0% or more and 30% or less, more preferably 0% or more and 10% or less, and particularly preferably 0% or more and 3% or less. preferable. This ratio is called a defect ratio.
  • Region R2 is a region where a permeate-side flow path is formed.
  • FIG. 6 shows a form in which the protrusion 301 is not provided in the region R3.
  • the region R3 may be a region provided with continuous protrusions in the width direction.
  • FIG. 6 is a cross-sectional view of the end portion on the outer side in the winding direction of the permeate-side channel material cut in the length direction of the protrusion 301.
  • the protrusion 301 is fixed to the sheet 302 and extends to the front of the outer end in the winding direction of the permeate-side channel material.
  • FIG. 6 shows a form in which the protrusions 301 are continuously provided in the length direction.
  • the various forms described above are applied as the protrusions 301. It is.
  • a region where the permeate side channel material is provided is indicated by R2, and a region where the projection 301 (permeate side channel material) is not provided is indicated by R3.
  • the length of the separation membrane 2 in the MD direction is L1
  • the length of the protrusion 301 in the MD direction is L2
  • the length of the region R3 in which the protrusion 301 is not present is L3.
  • the MD direction represents the length direction of the separation membrane and the winding direction of the separation membrane.
  • the separation membrane element 100 includes the water collection pipe 6 and the separation membrane 2 wound around the water collection pipe 6 with any of the above-described configurations.
  • the separation membrane 2 is wound around the water collecting pipe 6, and is arranged so that the width direction of the separation membrane 2 is along the longitudinal direction of the water collecting pipe 6. As a result, the separation membrane 2 is disposed such that the length direction is along the winding direction.
  • the protrusions 301 are disposed discontinuously on at least the longitudinal direction of the water collecting pipe 6 on the permeation side surface 22 of the separation membrane 2. That is, the permeate-side channel 5 is formed so as to be continuous from the outer end to the inner end of the separation membrane in the winding direction. As a result, the permeated water can easily reach the central water collecting pipe 6, that is, the flow resistance is reduced, so that a large amount of fresh water can be obtained.
  • “Inside in winding direction” and “outside in winding direction” are as shown in FIG. That is, the “inner end in the winding direction” and the “outer end in the winding direction” correspond to the end closer to the water collecting pipe 6 and the far end in the separation membrane 2, respectively.
  • the flow path material does not have to reach the edge of the separation membrane, for example, in FIG. 5, the outer end of the envelope-shaped membrane (separation membrane 2) in the winding direction and the longitudinal direction of the water collection tube In the end portion of the envelope membrane (separation membrane 2), a flow path material may not be provided.
  • the separation membrane forms a membrane leaf 4 (sometimes simply referred to as “leaf” in this document).
  • the separation membrane 2 a is arranged so that the supply-side surface 21 a faces the supply-side surface 21 b of another separation membrane 2 b with a supply-side channel material (not shown) interposed therebetween.
  • a supply-side flow path is formed between the supply-side surfaces of the separation membranes facing each other.
  • the two membrane leaves 4 are overlapped so that the permeation side surface 22b of the separation membrane 2b faces the permeation side surface 22c of the separation membrane 2c of the other membrane leaf.
  • the membrane leaf 4 forms an envelope-like film.
  • the envelope membrane is a pair of separation membranes (one consisting of separation membranes 2b and 2c) arranged so that the surfaces on the permeate side facing each other face each other.
  • the envelope-shaped membrane is rectangular, and the permeate side surface is rectangular in the separation membrane so that the permeate flows into the water collecting pipe 6, and is opened only on one side in the winding direction, and on the other three sides. Is sealed. The permeate is isolated from the raw water by this envelope membrane.
  • Sealing includes a form bonded by an adhesive or hot melt, a form fused by heating or laser, and a form in which a rubber sheet is sandwiched. Sealing by adhesion is particularly preferable because it is the simplest and most effective.
  • the inner end in the winding direction is closed by folding or sealing. Since the supply side surface of the separation membrane is sealed rather than folded, bending at the end of the separation membrane hardly occurs. By suppressing the occurrence of bending in the vicinity of the crease, the generation of voids between the separation membranes and the occurrence of leaks due to the voids are suppressed when wound.
  • the recovery rate of the envelope film is obtained as follows. That is, an air leak test (air leak test) of the separation membrane element is performed in water, and the number of envelope-shaped membranes in which the leak has occurred is counted. Based on the count result, the ratio of (number of envelope films in which air leak has occurred / number of envelope films used for evaluation) is calculated as the recovery rate of the envelope film.
  • the specific air leak test method is as follows.
  • the end of the central pipe of the separation membrane element is sealed, and air is injected from the other end.
  • the injected air passes through the holes of the water collecting pipe and reaches the permeation side of the separation membrane.
  • the separation membrane is not sufficiently folded and bent near the fold, Will move through the gap.
  • the air moves to the supply side of the separation membrane, and the air reaches the water from the end (supply side) of the separation membrane element.
  • air leak can be confirmed as the generation of bubbles.
  • the separation membranes facing each other may have the same configuration or different configurations. That is, in the separation membrane element, at least one of the two permeation-side surfaces facing each other only needs to be provided with the above-described permeation-side flow passage material, so that the separation membrane provided with the permeation-side flow passage material and the permeation side Separation membranes that do not include a channel material may be alternately stacked.
  • the “separation membrane” includes a separation membrane that does not include the permeate-side channel material (for example, a membrane that has the same configuration as the separation membrane).
  • the separation membranes facing each other on the permeate side surface or the supply side surface may be two different separation membranes, or may be a single membrane folded.
  • the separation membrane 2 includes the protrusions 301.
  • a permeate-side flow path is formed inside the envelope-shaped membrane, that is, between the permeate-side surfaces of the facing separation membrane.
  • the projected area ratio of the supply-side channel material is preferably 0.03 or more and 0.50 or less, more preferably 0.10 or more and 0.40 or less, and particularly preferably 0.15 or more and 0.35 or less. . When the projected area ratio is 0.03 or more and 0.50 or less, the flow resistance can be suppressed to be relatively small.
  • the projected area ratio is the projected area of the channel material obtained when the separation membrane and the supply-side channel material are cut out at 5 cm ⁇ 5 cm and the supply-side channel material is projected onto a plane parallel to the surface direction of the separation membrane. Is divided by the cut-out area (25 cm 2 ).
  • the height of the supply-side channel material is preferably more than 0.5 mm and not more than 2.0 mm, more preferably not less than 0.6 mm and not more than 1.0 mm in consideration of the balance of each performance and operation cost as described later.
  • the shape of the supply-side channel material is not particularly limited, and may have a continuous shape or a discontinuous shape.
  • Examples of the channel material having a continuous shape include members such as a film and a net.
  • the continuous shape means that it is continuous over the entire range of the flow path material.
  • the continuous shape may include a portion where a part of the flow path material is discontinuous to such an extent that a problem such as a decrease in the amount of water produced does not occur.
  • the definition of “discontinuity” is as described for the passage-side channel material (see paragraph 0077).
  • the material of the supply side channel material is not particularly limited, and may be the same material as the separation membrane or a different material.
  • the embossing method examples include roll embossing, and the pressure and processing temperature for carrying out this can be determined as appropriate according to the melting point of the separation membrane.
  • the linear pressure is preferably 10 kg / cm or more and 60 kg / cm or less
  • the heating temperature is preferably 40 ° C. or more and 150 ° C. or less.
  • it has a porous support layer containing heat resistant resins, such as polysulfone
  • a winding speed of 1 m / min to 20 m / min is preferable.
  • the shape of the roll handle is not particularly limited, but it is important to reduce the flow resistance of the flow path and stabilize the flow path when supplying and permeating fluid to the separation membrane element. is there.
  • the difference in height of the supply side surface of the separation membrane that can be imparted by embossing can be freely adjusted by changing the pressure heat treatment conditions so as to satisfy the conditions that require separation characteristics and water permeation performance.
  • the height difference of the supply side surface of the separation membrane is too deep, the flow resistance becomes small, but when a separation membrane element is produced, the number of membrane leaves that can be filled in one separation membrane element is reduced.
  • the difference in height on the supply side surface of the separation membrane is small, the flow resistance of the flow path increases, and the separation characteristics and water permeation performance deteriorate. Therefore, the water production capacity of the separation membrane element is reduced, and the operation cost for increasing the amount of water produced is increased.
  • the difference in height on the supply side surface of the separation membrane is preferably more than 0.5 mm and preferably 2.0 mm or less, and 0.6 mm or more. 1.0 mm or less is more preferable.
  • the height difference on the supply side surface of the separation membrane can be obtained by the same method as in the case of the height difference on the separation membrane permeation side described above.
  • the groove width is preferably 0.2 mm or more and 10 mm or less, more preferably 0.5 mm or more and 3 mm or less.
  • the pitch should be appropriately designed between 1/10 and 50 times the groove width.
  • the groove width is the distance between the sinking parts on the surface where the height difference exists, and the pitch is the horizontal from the highest point of the high part to the highest part of the adjacent high part on the surface where the height difference exists. It is distance.
  • the projected area ratio of the part that becomes convex by embossing (the ratio of the projected area that is obtained when the convex part is projected onto the surface parallel to the surface direction of the separation membrane) is the same reason as in the case of the supply-side channel material Therefore, it is preferably 0.03 or more and 0.5 or less, more preferably 0.10 or more and 0.40 or less, and particularly preferably 0.15 or more and 0.35 or less.
  • the “height difference” in the surface of the separation membrane is a difference in height between the surface of the separation membrane and the apex of the flow channel material (that is, the height of the flow channel material). And the height difference between the convex portions.
  • the water collection pipe 6 (see FIGS. 8 to 10) may be configured so that permeate flows through it, and the material, shape, size, etc. are not particularly limited.
  • a cylindrical member having a side surface provided with a plurality of holes is used as the water collecting pipe 6, for example.
  • FIGS. 8 to 10 show separation membrane elements 100A, 100B, and 100C according to first to third modes.
  • FIG. 8 is an explanatory view showing the separation membrane element 100 ⁇ / b> A of the first embodiment partially disassembled, and a plurality of separation membranes 2 are wound around the water collection pipe 6.
  • the separation membrane element 100A further includes the following configuration.
  • the separation membrane element 100A includes end plates 92 with holes at both ends (that is, the first end and the second end).
  • an outer package 81 is wound around the outer peripheral surface of the wound separation membrane (hereinafter referred to as “wrapping body”).
  • the holeless end plate 91 described later does not include a hole through which raw water can pass, whereas the holed end plate 92 includes a plurality of holes through which the raw water can pass.
  • the separation membrane 2 forms an envelope membrane 11, and the protrusion 301 is arranged inside the envelope membrane 11 as described above.
  • a supply-side channel material 32 is disposed between the envelope-shaped films 11.
  • the protrusion 301 (permeation-side channel material) is shown as a dot shape, but as described above, the shape of the permeation-side channel material is not limited to this shape. .
  • the raw water 101 supplied from the first end of the separation membrane element 100A flows into the supply-side flow path through the hole of the end plate 92. In this way, the raw water 101 in contact with the supply side surface of the separation membrane 2 is separated into the permeated water 102 and the concentrated water 103 by the separation membrane 2.
  • the permeated water 102 flows into the water collecting pipe 6 through the permeate side flow path.
  • the permeated water 102 that has passed through the water collection pipe 6 flows out of the separation membrane element 100A from the second end of the separation membrane element 100A.
  • the concentrated water 103 flows out of the separation membrane element 100A from the hole of the end plate 92 provided at the second end through the supply side flow path.
  • the separation membrane element 100B includes an end plate 91 that is arranged at the first end and has no holes, and an end plate 92 that is arranged at the second end and has holes. Further, the separation membrane element 100B includes a porous member 82 that is further wound around the outermost surface of the surrounded separation membrane 2.
  • the porous member 82 a member having a plurality of holes through which raw water can pass is used. These holes provided in the porous member 82 may be referred to as raw water supply ports. As long as the porous member 82 has a plurality of holes, the material, size, thickness, rigidity and the like are not particularly limited. By adopting a member having a relatively small thickness as the porous member 82, the membrane area per unit volume of the separation membrane element can be increased.
  • the thickness of the porous member 82 is, for example, 1 mm or less, 0.5 mm or less, or 0.2 mm or less.
  • the porous member 82 may be a member having flexibility or flexibility that can be deformed so as to follow the outer peripheral shape of the wound body. More specifically, as the porous member 82, a net, a porous film, or the like can be applied. The net and the porous film may be formed in a cylindrical shape so that the wound body can be accommodated therein, or may be long and wound around the wound body.
  • the porous member 82 is disposed on the outer peripheral surface of the separation membrane element 100B. By providing the porous member 82 in this manner, holes are provided on the outer peripheral surface of the separation membrane element 100B. It can be said that the “outer peripheral surface” is a portion excluding the first end surface and the second end surface in the entire outer peripheral surface of the separation membrane element 100B. In this embodiment, the porous member 82 is disposed so as to cover almost the entire outer peripheral surface of the wound body.
  • raw water is supplied from the outer peripheral surface of the separation membrane element 100B (the outer peripheral surface of the wound body) via the porous member 82. Therefore, even if the separation membrane element 100B is repeatedly operated or the separation membrane element 100B is operated under a high pressure condition, deformation of the wound body due to the surrounding separation membrane 2 and the like being pushed out in the longitudinal direction ( It is possible to suppress so-called telescopes. Furthermore, in this embodiment, since raw
  • the raw water does not flow into the separation membrane element 100B from the surface of the first end.
  • the raw water 101 is supplied to the separation membrane 2 through the porous member 82 from the outer peripheral surface of the separation membrane element 100B.
  • the raw water 101 supplied in this way is divided into permeated water 102 and concentrated water 103 by the separation membrane.
  • the permeated water 102 passes through the water collection pipe 6 and is taken out from the second end of the separation membrane element 100B.
  • the concentrated water 103 flows out of the separation membrane element 100B through the hole of the end plate 92 with a hole at the second end.
  • the separation membrane element 100C is the same as the element of the second embodiment except that the separation membrane element 100C is provided at each of the first end and the second end and includes an end plate 92 having holes.
  • the separation membrane element 100C includes a porous member 82, like the separation membrane element 100B.
  • the raw water 101 is not only supplied from the outer peripheral surface of the separation membrane element 100C to the envelope through the hole of the porous member 82, but also the end plate 92 with a hole at the first end.
  • the separation membrane element 100 ⁇ / b> C is supplied to the winding body through the first hole.
  • the permeated water 102 and the concentrated water 103 are discharged from the second end to the outside of the separation membrane element 100C, similarly to the separation membrane element 100A of the first form.
  • the raw water is supplied not only from one end of the separation membrane element 100C (that is, the end plate 92 having a hole) but also from the outer peripheral surface of the separation membrane element 100C through the porous member 82, Deformation can be suppressed. Also in this embodiment, since the raw water is supplied from the gap between the pressure vessel and the separation membrane element, the occurrence of abnormal stagnation is suppressed.
  • the separation membrane Before or after the chemical treatment, the separation membrane may be uneven by embossing or the like, or a flow path material may be formed on the permeation side surface and / or the supply side surface of the separation membrane with a resin. Also good.
  • unevenness processing is performed on the separation membrane, a difference in height can be imparted to the supply side of the separation membrane by methods such as embossing, hydraulic forming, and calendering.
  • the embossing method examples include roll embossing, and the pressure and processing temperature for carrying out this can be determined as appropriate according to the melting point of the separation membrane.
  • the linear pressure is preferably 10 kg / cm or more and 60 kg / cm or less
  • the heating temperature is preferably 40 ° C. or more and 150 ° C. or less.
  • it has a porous support layer containing heat resistant resins, such as polysulfone
  • a winding speed of 1 m / min to 20 m / min is preferable.
  • the shape of the roll handle is not particularly limited, but it is important to reduce the pressure loss of the flow path and stabilize the flow path when supplying and permeating fluid to the separation membrane element. is there.
  • an ellipse, a circle, an ellipse, a trapezoid, a triangle, a rectangle, a square, a parallelogram, a rhombus, an indefinite shape, and the like are adopted as the shape observed from the upper surface.
  • three-dimensionally it may be formed so that the width becomes smaller as the height is higher, or conversely, it may be formed so that the width becomes wider as the height is higher, regardless of the height. They may be formed with the same width.
  • the difference in height on the supply-side surface of the separation membrane that can be imparted by embossing can be freely adjusted by changing the pressure heat treatment conditions so as to satisfy the conditions that require separation characteristics and water permeation performance.
  • the supply-side flow path is formed by fixing the supply-side flow path material to the separation membrane main body, or when the supply-side flow path material is formed by roughening the membrane, these supplies are supplied.
  • the step of forming the side channel may be regarded as one step in the separation membrane manufacturing method.
  • the separation membrane is a continuously formed member such as a net
  • the separation membrane and the supply-side flow are What is necessary is just to overlap with a road material.
  • the method of arranging the flow path material includes, for example, a process of arranging a soft material on the separation membrane and a process of curing it.
  • ultraviolet curable resin, chemical polymerization, hot melt, drying or the like is used for the arrangement of the flow path material.
  • hot melt is preferably used.
  • a step of softening a material such as resin by heat (that is, heat melting) a step of placing the softened material on the separation membrane, and curing the material by cooling.
  • a step of fixing on the separation membrane is preferably used.
  • Examples of the method for arranging the flow path material include coating, printing, spraying, and the like.
  • Examples of the equipment used include a nozzle type hot melt applicator, a spray type hot melt applicator, a flat nozzle type hot melt applicator, a roll type coater, an extrusion type coater, a printing machine, and a sprayer.
  • the membrane leaf may be formed by folding the separation membrane so that the surface on the supply side faces inward, or two separate separation membranes may be formed. It may be formed by bonding so that the surfaces on the supply side face each other.
  • the manufacturing method of the separation membrane element includes a step of sealing the inner end portion in the winding direction of the separation membrane on the surface on the supply side.
  • the two separation membranes are overlapped so that the surfaces on the supply side face each other.
  • the inner end in the winding direction of the stacked separation membranes, that is, the left end in FIG. 5 is sealed so that the permeated water can flow into the water collecting pipe 6.
  • Examples of the method of “sealing” include adhesion by an adhesive or hot melt, fusion by heating or laser, and a method of sandwiching a rubber sheet. Sealing by adhesion is particularly preferable because it is the simplest and most effective.
  • a supply-side channel material formed separately from the separation membrane may be disposed inside the overlapped separation membrane.
  • the arrangement of the supply-side flow path material can be omitted by providing a height difference in advance on the supply-side surface of the separation membrane by embossing or resin coating.
  • Either the supply-side sealing or the permeation-side sealing may be performed first, or the supply-side sealing is performed while stacking separation membranes. And the sealing of the surface on the transmission side may be performed in parallel.
  • the adhesive or hot melt at the end in the width direction is allowed to allow the adjacent separation membranes to shift in the length direction due to winding. It is preferable to complete the solidification or the like, that is, the solidification for forming an envelope-like film, after the winding is completed.
  • the adhesive used for forming the envelope film preferably has a viscosity in the range of 40 P (poise) to 150 P (poise), more preferably 50 P (poise) to 120 P (poise). If the adhesive viscosity is too high, wrinkles are likely to occur when the laminated leaves are wrapped around the water collection pipe. Wrinkles may impair the performance of the separation membrane element. Conversely, if the adhesive viscosity is too low, the adhesive may flow out of the end of the leaf and soil the device. Moreover, when an adhesive adheres to a portion other than the portion to be bonded, the performance of the separation membrane element is impaired, and the work efficiency is significantly reduced due to the processing operation of the adhesive that has flowed out.
  • the amount of adhesive applied is preferably such that the width of the portion where the adhesive is applied after the membrane leaf is wrapped around the water collection tube is 10 mm or more and 100 mm or less. As a result, the separation membrane is securely bonded, and the inflow of the raw water to the permeate side is suppressed. In addition, the effective membrane area of the separation membrane element can be secured relatively large.
  • a urethane-based adhesive is preferable, and in order to make the viscosity in a range of 40 P (poise) or more and 150 P (poise) or less, the main component isocyanate and the curing agent polyol are mixed with an isocyanate / polyol weight ratio of 1 / What mixed so that it might become 5 or more and 1 or less is preferable.
  • the viscosity of the adhesive is obtained by measuring the viscosity of a mixture in which the main agent, the curing agent alone, and the blending ratio are defined in advance with a B-type viscometer (JIS K 6833).
  • the separation membranes When a sheet exists in the sealing part, the separation membranes can be bonded to each other through the sheet by an adhesive soaked in the sheet. Moreover, when there is no sheet
  • the separation membrane When the separation membrane is wound around the water collecting pipe, the separation membrane is arranged so that the closed end of the leaf, that is, the closed portion of the envelope-shaped membrane faces the water collecting pipe.
  • the separation membrane By winding the separation membrane around the water collecting pipe in such an arrangement, the separation membrane is wound in a spiral shape.
  • a spacer such as a tricot or base material is wound around the water collection pipe, the adhesive applied to the water collection pipe will not flow easily when the separation membrane element is wrapped, leading to suppression of leakage, and the flow path around the water collection pipe Is secured stably.
  • the spacer may be wound longer than the circumference of the water collecting pipe.
  • the method of manufacturing a separation membrane element may include further winding a film, a filament, and the like around the wound body of the separation membrane formed as described above. Further steps such as edge cutting for aligning the end of the separation membrane in the longitudinal direction of the water collecting pipe, attachment of an end plate, and the like may be included.
  • the separation membrane element may be further used as a separation membrane module by being connected in series or in parallel and housed in a pressure vessel.
  • the separation membrane element and the separation membrane module described above can be combined with a pump that supplies fluid to them, a device that pretreats the fluid, and the like to form a fluid separation device.
  • a separation device for example, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the operating pressure when passing through the water to be treated is preferably 0.2 MPa or more and 5 MPa or less.
  • the salt removal rate decreases, but as the raw water temperature decreases, the membrane permeation flux also decreases.
  • the pH of the raw water is in a neutral region, even if the raw water is a high salt concentration liquid such as seawater, the generation of scales such as magnesium is suppressed, and the deterioration of the membrane is also suppressed.
  • the fluid to be treated by the separation membrane element is not particularly limited, but when used for water treatment, as raw water, seawater, brine, drainage, etc., 500 mg / L or more and 100 g / L or less TDS (Total Dissolved Solids: total dissolved solids) For example).
  • TDS indicates the total dissolved solid content, and is expressed by “mass / volume”, but 1 L may be expressed as 1 kg and may be expressed by “weight ratio”.
  • the solution filtered through a 0.45 ⁇ m filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 ° C. or higher and 40.5 ° C. or lower. Convert.
  • the thickness of the sheet and the height of the protrusions were measured with a high-precision shape measuring system KS-1100 manufactured by Keyence Corporation. Specifically, the height of the projections was analyzed for average height difference from the measurement result on the transmission side of 5 cm ⁇ 5 cm using a high precision shape measurement system KS-1100 manufactured by Keyence Corporation. Thirty points having a height difference of 10 ⁇ m or more were measured, and the value obtained by dividing the sum of the height values by the number of total measurement points (30 points) was taken as the height of the protrusion.
  • the apparent volume (cm 3 ) of the dried sample was measured, and the weight was then measured by adding pure water to the sample.
  • the value obtained by subtracting the dry weight of the sample from the weight of the sample containing water, that is, the weight of the water (g: volume of water cm 3 ) entering the voids of the substrate was calculated and divided by the apparent volume of the sample.
  • the porosity was obtained as a percentage (%).
  • Element vacuum after 15 seconds exceeds 55 kPa and not more than 65 kPa The degree of element vacuum after 15 seconds was 55 kPa or less. The above evaluation was performed on 15 elements, and the most obtained result was regarded as durability.
  • the permeation side channel material (width 1 m), that is, the sheet on which the protrusions were arranged, was wound up 100 m at an unwinding tension of 30 N and a winding tension of 30 N, and stored at room temperature for 1 week. Then, the permeation
  • the separation membrane or separation membrane element was sampled for 10 minutes after operating for 100 hours under conditions of an operating pressure of 0.7 MPa and a temperature of 25 ° C. using an aqueous NaCl solution having a concentration of 1,000 mg / L and pH 6.5 as the feed water.
  • the water permeation amount (cubic meter) per unit area of the membrane and per day was expressed as the amount of water produced (m 3 / day).
  • TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in raw water) ⁇
  • the defect rate is a numerical value obtained by dividing “the length of the region where the permeation-side flow path is not formed in the length direction of the separation membrane” by “the length of the separation membrane”.
  • Example 1 A 15.0 wt% DMF solution of polysulfone on a non-woven fabric made of polyethylene terephthalate fibers (yarn diameter: 1 dtex, thickness: about 0.09 mm, density 0.80 g / cm 3 ) at a thickness of 180 ⁇ m at room temperature (25 ° C.)
  • the porous support layer (thickness: 0.13 mm) consisting of a fiber-reinforced polysulfone support membrane is prepared by immediately immersing it in pure water and leaving it for 5 minutes and then immersing it in warm water at 80 ° C. for 1 minute. did.
  • porous support layer roll was unwound, and the polysulfone surface was coated with 1.8% by weight of m-PDA (metaphenylenediamine) and 4.5% by weight of ⁇ -caprolactam, and nitrogen was blown from the air nozzle.
  • m-PDA metalphenylenediamine
  • ⁇ -caprolactam nitrogen was blown from the air nozzle.
  • an n-decane solution at 25 ° C. containing 0.06% by weight of trimesic acid chloride was applied so that the surface was completely wetted.
  • the separation membrane thus obtained was folded and cut so that the effective area at the separation membrane element was 37.0 m 2, and the net (thickness: 0.7 mm, pitch: 5 mm ⁇ 5 mm, fiber diameter: 350 ⁇ m, Twenty-six leaves having a width of 900 mm and a leaf length of 800 mm were produced using a projected area ratio of 0.13) as a supply-side channel material.
  • protrusions were formed over the entire sheet (nonwoven fabric, thread diameter: 1 dtex, thickness: 0.02 mm, porosity 60%, thickness unevenness 0.003 mm). That is, using a gravure roll while adjusting the temperature of the backup roll to 15 ° C., polypropylene (trade name: S10CL, manufactured by Prime Polymer Co., Ltd.) was applied to the sheet to produce a permeate-side channel material. The resin temperature was 220 ° C., and the processing speed was 6.0 m / min. The pattern engraved on the surface of the gravure roll was a hemispherical dot with a diameter of 0.5 mm arranged in a staggered pattern, and the dot pitch was 1.0 mm. The distance between the strip-shaped end portions was 25 mm.
  • the shape of the obtained protrusions is such that the total of the thickness of the sheet and the height of the protrusions is 0.26 mm, the channel material width is 0.5 mm, and the adjacent channels in the first direction and the second direction.
  • the spacing between the materials was 0.4 mm and the pitch was 0.9 mm.
  • the pitch is an average value of the horizontal distances from the vertexes of the convex portions of the separation membrane to the vertexes of the neighboring convex portions, measured at 200 locations on the transmission side surface.
  • a permeate-side channel material is laminated on the permeate side surface of the obtained leaf, and is collected in an ABS (acrylonitrile-butadiene-styrene) water collecting pipe (width: 1,020 mm, diameter: 30 mm, 40 holes ⁇ straight line).
  • the film was wound in a spiral shape, and a film was further wound around the outer periphery. After fixing with tape, edge cutting, end plate attachment, and filament winding were performed to produce a separation membrane element having a diameter of 8 inches. Both end plates were perforated end plates. That is, in this example, the separation membrane element of the first form shown in FIG. 8 was produced.
  • Example 2 separation membranes were produced in the same manner as in Example 1 under conditions not specifically mentioned.
  • a separation membrane and a separation membrane element were prepared in the same manner as in Example 1 except that the protrusions were placed on the sheet while feeding nitrogen gas into the resin, and the porosity of the protrusions was set to 4%.
  • the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 1, and the unwinding property was also good. .
  • Examples 3 to 11 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Tables 1 to 3 and the protrusions were as shown in Tables 1 to 3.
  • the separation membrane element was placed in a pressure vessel and operated under the above conditions to obtain permeated water, the amount of water produced, the desalting rate, and the durability were as shown in Tables 1 to 3, and the unwinding property was also good. there were.
  • Example 12 The sheet is a non-woven fabric (thread diameter: 1 dtex, thickness: about 0.1 mm, porosity 55%), the height of the projection is 0.16 mm, and the projection is continuously arranged in the length direction of the sheet
  • the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the amount of water produced, the desalting rate, and the durability were as shown in Table 3, and the unwinding property was also good. .
  • Examples 13 to 16 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Table 4 and the protrusions were as shown in Table 4.
  • the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 4, and the unwinding property was also good. .
  • Example 17 and 18 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Table 5 and the protrusions were as shown in Table 5. The effective film area was different from that in Example 1 by the difference in the width of the band-like region.
  • the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 5, and the unwinding property was also good. .
  • Example 19 and 20 Folded and cut so that the effective area of the separation membrane is 0.5 m 2 and supplied the net (thickness: 510 ⁇ m, pitch: 2 mm ⁇ 2 mm, fiber diameter: 255 ⁇ m, projected area ratio: 0.21) And two leaves with a width of 230 mm were produced using the permeation-side channel material of Table 5. After that, a separation membrane element in which two leaves were spirally wound while being wound around an ABS water collecting pipe (width: 300 mm, outer diameter: 17 mm, number of holes: 8 ⁇ two straight lines) was prepared, and a film was placed on the outer periphery. After winding and fixing with tape, edge cutting and end plate mounting were performed to produce a 2-inch element. When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 5, and the unwinding property was also good. .
  • Example 1 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Table 6 and the protrusions were as shown in Table 6.
  • the separation membrane element was put in a pressure vessel and operated under the above conditions to obtain permeated water, the amount of fresh water was reduced due to the reduction of the effective membrane area, and the amount of fresh water, desalination rate and durability were as shown in Table 6. The unwindability was good.
  • Comparative Example 2 A separation membrane was prepared in the same manner as in Example 1. Subsequently, separation membrane elements were produced in the same manner as in Comparative Example 1 except that the protrusions were placed on the sheet while feeding nitrogen gas into the resin, and the porosity of the protrusions was set to 60%. When the separation membrane element was placed in a pressure vessel and operated under the above-mentioned conditions to obtain permeate, the projections were compressed and the flow path was reduced, resulting in a significant decrease in the amount of water produced. The salt ratio was as shown in Table 6. Moreover, when the wound body was unwound, the height of the protrusion was reduced by 5%. There was no air leak.
  • Example 3 A separation membrane was prepared in the same manner as in Example 1. Subsequently, a separation membrane element was produced in the same manner as in Comparative Example 1 except that a biaxially stretched polyester film (Toray Lumirror, thickness 0.03 mm) was used as the sheet.
  • a biaxially stretched polyester film Toray Lumirror, thickness 0.03 mm
  • the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, adhesion between the leaves was not sufficient and air leakage occurred. Further, the amount of water produced was so large that measurement was impossible, and the desalting rate was as shown in Table 6. In addition, since the porosity of the sheet was too low, the protrusions were crushed by the sheet, and thus some of the protrusions were transferred to the sheet during unwinding.
  • the separation membrane elements of Examples 1 to 20 of the present invention obtain a sufficient amount of permeated water having a high desalination rate even when operated for a long time. It can be said that it has stable separation performance.
  • the separation membrane element of the present invention can be particularly suitably used for brine or seawater desalination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a separation membrane element which can exhibit stable separation/removal performance when operated at a high pressure. The separation membrane element is equipped with: a separation membrane which has a feed-side surface and a penetrant-side surface and which has been disposed so that a portion of the penetrant-side surface faces another portion thereof to thereby form a separation membrane pair; and a penetrant-side passage material which has been disposed between the penetrant-side surface portions of the separation membrane and which comprises a sheet having pores and a plurality of projections disposed on the sheet. The projections comprise a resin, and some of the resin has been infiltrated into the sheet. Each width-direction end part of the sheet has a band-shaped region where the projections are absent and, through the band-shaped regions, the penetrant-side surface portions of the separation membrane in the separation membrane pair have been sealed to each other with an adhesive.

Description

分離膜エレメントSeparation membrane element
 本発明は、液体、気体等の流体に含まれる成分を分離するために使用される分離膜エレメントに関する。 The present invention relates to a separation membrane element used for separating components contained in a fluid such as liquid or gas.
 海水およびかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギーおよび省資源のためのプロセスとして、分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜は、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜に分類される。これらの膜は、例えば海水、かん水および有害物を含んだ水などからの飲料水の製造、工業用超純水の製造、並びに排水処理および有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。 In the technology for removing ionic substances contained in seawater, brine, etc., in recent years, the use of separation methods using separation membrane elements is expanding as a process for saving energy and resources. Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brackish water and water containing harmful substances, industrial ultrapure water, wastewater treatment and recovery of valuable materials. It is properly used depending on the separation component and separation performance.
 分離膜エレメントとしては様々な形態があるが、分離膜の一方の面に原水を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで、1個の分離膜エレメントあたりの膜面積が大きくなるように、つまり1個の分離膜エレメントあたりに得られる透過流体の量が大きくなるように形成されている。分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種の形状が提案されている。 There are various types of separation membrane elements, but they are common in that raw water is supplied to one side of the separation membrane and a permeated fluid is obtained from the other side. The separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeate fluid obtained per one separation membrane element is large. It is formed to become. As the separation membrane element, various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to applications and purposes.
 例えば、逆浸透ろ過には、スパイラル型分離膜エレメントが広く用いられる。スパイラル型分離膜エレメントは、中心管と、中心管の周囲に巻き付けられた積層体とを備える。積層体は、原水(つまり被処理水)を分離膜表面へ供給する供給側流路材、原水に含まれる成分を分離する分離膜、及び分離膜を透過し供給側流体から分離された透過側流体を中心管へと導くための透過側流路材が積層されることで形成される。スパイラル型分離膜エレメントは、原水に圧力を付与することができるので、透過流体を多く取り出すことができる点で好ましく用いられている。 For example, spiral separation membrane elements are widely used for reverse osmosis filtration. The spiral separation membrane element includes a center tube and a laminate wound around the center tube. The laminated body includes a supply-side channel material that supplies raw water (that is, water to be treated) to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a permeation side that is separated from the supply-side fluid through the separation membrane. It is formed by laminating a permeate-side channel material for guiding fluid to the central tube. The spiral separation membrane element is preferably used in that a large amount of permeated fluid can be taken out because pressure can be applied to the raw water.
 スパイラル型分離膜エレメントでは、一般的に、供給側流体の流路を形成させるために、供給側流路材として、主に高分子製のネットが使用される。また、分離膜として、積層型の分離膜が用いられる。積層型の分離膜は、供給側から透過側に積層された、ポリアミドなどの架橋高分子からなる分離機能層、ポリスルホンなどの高分子からなる多孔性樹脂層(多孔性支持層)、ポリエチレンテレフタレートなどの高分子からなる不織布の基材を備えている。また、透過側流路材としては、分離膜の落ち込みを防き、かつ透過側の流路を形成させる目的で、供給側流路材よりも間隔の細かいトリコットと呼ばれる編み物部材が使用される。 In the spiral separation membrane element, generally, a polymer net is mainly used as a supply-side channel material in order to form a supply-side fluid channel. In addition, a stacked type separation membrane is used as the separation membrane. Laminate type separation membranes are laminated from the supply side to the permeate side, a separation functional layer made of a crosslinked polymer such as polyamide, a porous resin layer (porous support layer) made of a polymer such as polysulfone, polyethylene terephthalate, etc. A non-woven substrate made of the above polymer is provided. Further, as the permeation side channel material, a knitted member called a tricot having a smaller interval than the supply side channel material is used for the purpose of preventing the separation membrane from dropping and forming the permeation side channel.
 近年、造水コストの低減への要求の高まりから、分離膜エレメントの高性能化が求められている。例えば、分離膜エレメントの分離性能の向上、および単位時間あたりの透過流体量の増大のために、各流路部材等の分離膜エレメント部材の性能向上が提案されている。 In recent years, due to the increasing demand for reducing water production costs, higher performance of separation membrane elements has been demanded. For example, in order to improve the separation performance of the separation membrane element and increase the amount of permeated fluid per unit time, it has been proposed to improve the performance of the separation membrane element member such as each flow path member.
 具体的には、特許文献1では、透過側流路材として、凹凸賦形されたシートを備える分離膜エレメントが提案されている。特許文献2では、分離膜上に配置されたベーンと称されるエラストマーから構成される流路材によって、ネットなどの供給側流路材やトリコットなどの透過側流路材を必要としない分離膜エレメントが提案されている。また、特許文献3では、糸を不織布上に配置した流路材を備えた分離膜エレメントが提案されている。 Specifically, Patent Document 1 proposes a separation membrane element including an unevenly shaped sheet as a permeate-side channel material. In Patent Document 2, a separation membrane that does not require a supply-side channel material such as a net or a permeation-side channel material such as a tricot by a channel material composed of an elastomer called a vane disposed on the separation membrane. Elements have been proposed. Patent Document 3 proposes a separation membrane element provided with a flow path material in which yarns are arranged on a nonwoven fabric.
特開2006-247453号公報JP 2006-247453 A 特表2012-518538号公報Special table 2012-518538 gazette 米国特許出願公開第2012-0261333号明細書US Patent Application Publication No. 2012-0261333
 しかし、上記した分離膜エレメントは、分離性能、特に長期間にわたり運転を行った際の安定性能の点では、十分とは言えない。
 そこで、本発明は、特に高い圧力をかけて分離膜エレメントを運転した時の分離除去性能を安定化させることのできる分離膜エレメントを提供することを目的とする。
However, the separation membrane element described above is not sufficient in terms of separation performance, particularly stability performance when operated for a long period of time.
Accordingly, an object of the present invention is to provide a separation membrane element that can stabilize the separation and removal performance when the separation membrane element is operated under a particularly high pressure.
 上記目的を達成するため、本発明の分離膜エレメントは、空隙率が20%以上90%以下のシートと、空隙率が5%以下の複数の突起物から構成される透過側流路材とを備える。 In order to achieve the above object, the separation membrane element of the present invention comprises a sheet having a porosity of 20% or more and 90% or less, and a permeation-side flow path material composed of a plurality of protrusions having a porosity of 5% or less. Prepare.
 本発明によって、高効率かつ安定した透過側流路を形成することができ、分離成分の除去性能と高い透過性能を有する高性能、高効率の分離膜エレメントを得ることができる。 According to the present invention, a high-efficiency and stable permeation side flow path can be formed, and a high-performance, high-efficiency separation membrane element having separation component removal performance and high permeation performance can be obtained.
膜リーフの一形態を示す概略構成図である。It is a schematic block diagram which shows one form of a membrane leaf. シートの長さ方向(第2方向)において連続的に設けられた突起物を備える透過側流路材を示す平面図である。It is a top view which shows the permeation | transmission side channel material provided with the protrusion continuously provided in the length direction (2nd direction) of the sheet | seat. シートの長さ方向(第2方向)において不連続的に設けられた突起物を備える透過側流路材を示す平面図である。It is a top view which shows the permeation | transmission side channel material provided with the protrusion discontinuously provided in the length direction (2nd direction) of the sheet | seat. 図2および図3の分離膜の断面図である。It is sectional drawing of the separation membrane of FIG. 2 and FIG. 分離膜エレメントの一形態を示す展開斜視図である。It is a development perspective view showing one form of a separation membrane element. 分離膜の断面模式図である。It is a cross-sectional schematic diagram of a separation membrane. 分離膜の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a separation membrane. 分離膜エレメントの第1形態を示す一部展開斜視図である。It is a partially expanded perspective view which shows the 1st form of a separation membrane element. 分離膜エレメントの第2形態を示す一部展開斜視図である。It is a partially expanded perspective view which shows the 2nd form of a separation membrane element. 分離膜エレメントの第3形態を示す一部展開斜視図である。It is a partially expanded perspective view which shows the 3rd form of a separation membrane element. 透過側流路材を膜リーフに配置する方法の一例を示す図である。It is a figure which shows an example of the method of arrange | positioning the permeation | transmission side channel material to a membrane leaf.
 以下、本発明の実施の一形態について、詳細に説明する。
 〔1.分離膜〕
 (1-1)分離膜の概要
 分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得ることができる膜である。分離膜は流路を形成するようにエンボス加工や樹脂などを配置されたものも含むことができる。また、分離膜は、流路を形成できず分離機能のみを発現するものであってもよい。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Separation membrane)
(1-1) Outline of Separation Membrane A separation membrane is a membrane that can separate components in the fluid supplied to the surface of the separation membrane and obtain a permeated fluid that has permeated the separation membrane. The separation membrane can also include a membrane in which embossing or resin is arranged so as to form a flow path. In addition, the separation membrane may be one that cannot form a flow path and expresses only a separation function.
 このような分離膜の例として、本発明の分離膜の実施形態の一例を含む膜リーフの分解斜視図を図1に示す。図1において、膜リーフ4は、複数の分離膜2a、2bを含む。分離膜2aは供給側の面21aと透過側の面22aを有し、分離膜2bは供給側の面21bと透過側の面22bを有している。重ねられた2枚の分離膜2a、2bは、一方の分離膜2aの供給側の面21aと、他方の分離膜2bの供給側の面21bとが対向するように配置される。また、さらにその上に重ねられた他の分離膜2cは、その分離膜の透過側の面22cが、その下の分離膜2bの透過側の面22bに対向するように配置される。21cは分離膜2cの供給側の面である。本書において、分離膜の「供給側の面」とは、分離膜の2つの面のうち、原水が供給される側の表面を意味する。「透過側の面」とは、その逆側で、分離膜を透過した透過流体が排出される側の表面を意味する。後述するように分離膜2が、図7に示すように、基材201、多孔性支持層202及び分離機能層203を備える場合は、一般的に、分離機能層203側の面が供給側の面21であり、基材201側の面が透過側の面22である。 As an example of such a separation membrane, an exploded perspective view of a membrane leaf including an example of an embodiment of the separation membrane of the present invention is shown in FIG. In FIG. 1, the membrane leaf 4 includes a plurality of separation membranes 2a and 2b. The separation membrane 2a has a supply-side surface 21a and a transmission-side surface 22a, and the separation membrane 2b has a supply-side surface 21b and a transmission-side surface 22b. The two separated separation membranes 2a and 2b are arranged so that the supply-side surface 21a of one separation membrane 2a and the supply-side surface 21b of the other separation membrane 2b face each other. Further, the other separation membrane 2c superimposed thereon is arranged so that the permeation side surface 22c of the separation membrane faces the permeation side surface 22b of the separation membrane 2b below it. 21c is a surface on the supply side of the separation membrane 2c. In this document, the “supply side surface” of the separation membrane means the surface on the side of the separation membrane where raw water is supplied. The “permeate side surface” means the surface on the opposite side from which the permeated fluid that has passed through the separation membrane is discharged. As will be described later, when the separation membrane 2 includes a base material 201, a porous support layer 202, and a separation function layer 203 as shown in FIG. 7, generally, the surface on the separation function layer 203 side is on the supply side. The surface 21 and the surface on the base material 201 side are the surface 22 on the transmission side.
 図7において、分離膜2は、基材201、多孔性支持層202および分離機能層203の積層体として記載されている。上述した通り、分離機能層203の外に開放された面が供給側の面21、基材201の外に開放された面が透過側の面22である。 In FIG. 7, the separation membrane 2 is described as a laminate of a base material 201, a porous support layer 202 and a separation functional layer 203. As described above, the surface opened outside the separation functional layer 203 is the supply-side surface 21, and the surface opened outside the base material 201 is the transmission-side surface 22.
 図1、図2、図3、図4、図5、図6にx軸、y軸、z軸の方向軸を示す。x軸を第1方向、y軸を第2方向と称することがある。図1に示すように、分離膜2は長方形であり、第1方向および第2方向は、分離膜2の外縁に平行である。第1方向を幅方向と称し、第2方向を長さ方向と称することがある。また図1中、第1方向(幅方向)をCDの矢印で表わし、第2方向(長さ方向)をMDの矢印で表わす。 FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 show the x-axis, y-axis, and z-axis direction axes. The x-axis may be referred to as a first direction and the y-axis may be referred to as a second direction. As shown in FIG. 1, the separation membrane 2 is rectangular, and the first direction and the second direction are parallel to the outer edge of the separation membrane 2. The first direction may be referred to as the width direction, and the second direction may be referred to as the length direction. In FIG. 1, the first direction (width direction) is represented by a CD arrow, and the second direction (length direction) is represented by an MD arrow.
 (1-2)分離膜
 <概要>
 分離膜としては、使用方法、目的等に応じた分離性能を有する膜が用いられる。分離膜は、単一層によって形成されていてもよいし、分離機能層と基材とを備える複合膜であってもよい。また、図7に示すように、複合膜においては、分離機能層203と基材201との間に、多孔性支持層202が形成されていてもよい。
(1-2) Separation membrane <Overview>
As the separation membrane, a membrane having separation performance according to the method of use, purpose and the like is used. The separation membrane may be formed of a single layer or a composite membrane including a separation functional layer and a substrate. As shown in FIG. 7, in the composite membrane, a porous support layer 202 may be formed between the separation functional layer 203 and the base material 201.
 <分離機能層>
 分離機能層の厚みは具体的な数値に限定されないが、分離性能と透過性能の点で5nm以上3000nm以下であることが好ましい。特に逆浸透膜、正浸透膜、ナノろ過膜では5nm以上300nm以下であることが好ましい。
<Separation function layer>
The thickness of the separation functional layer is not limited to a specific numerical value, but is preferably 5 nm or more and 3000 nm or less in terms of separation performance and transmission performance. In particular, in the case of a reverse osmosis membrane, a forward osmosis membrane, and a nanofiltration membrane, the thickness is preferably 5 nm or more and 300 nm or less.
 分離機能層の厚みは、通常の分離膜の膜厚測定法に準ずることができる。例えば、分離膜を樹脂により包埋し、それを切断することで超薄切片を作製し、得られた切片に染色などの処理を行う。その後、透過型電子顕微鏡により観察することで、厚みの測定が可能である。また、分離機能層がひだ構造を有する場合、多孔性支持層より上に位置するひだ構造の断面長さ方向に50nm間隔で測定し、ひだの数を20個測定し、その平均から求めることができる。 The thickness of the separation functional layer can be in accordance with a normal separation membrane thickness measurement method. For example, the separation membrane is embedded with resin, and an ultrathin section is prepared by cutting the separation membrane, and the obtained section is subjected to processing such as staining. Thereafter, the thickness can be measured by observing with a transmission electron microscope. Further, when the separation functional layer has a pleat structure, measurement can be made at intervals of 50 nm in the cross-sectional length direction of the pleat structure located above the porous support layer, the number of pleats can be measured, and the average can be obtained. it can.
 分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
 分離機能層が分離機能および支持機能の両方を有する場合、分離機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホン、またはポリスルホンを主成分として含有する層が好ましく適用される。
The separation function layer may be a layer having both a separation function and a support function, or may have only a separation function. The “separation function layer” refers to a layer having at least a separation function.
When the separation functional layer has both a separation function and a support function, a layer containing cellulose, polyvinylidene fluoride, polyether sulfone, or polysulfone as a main component is preferably applied as the separation functional layer.
 なお、本明細書において、「XがYを主成分として含有する」とは、XにおけるYの含有率が、50質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上である場合を意味する。また、Yに該当する複数の成分が存在する場合は、それら複数の成分の合計量が、上述の範囲を満たせばよい。 In this specification, “X contains Y as a main component” means that the Y content in X is 50 mass% or more, 70 mass% or more, 80 mass% or more, 90 mass% or more, or It means a case of 95% by mass or more. In addition, when there are a plurality of components corresponding to Y, the total amount of these components only needs to satisfy the above range.
 一方、多孔性支持層で支持される分離機能層としては、孔径制御が容易であり、かつ耐久性に優れるという点で架橋高分子が好ましく使用される。特に、原水中の成分の分離性能に優れるという点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなるポリアミド分離機能層、有機無機ハイブリッド機能層などが好適に用いられる。これらの分離機能層は、多孔性支持層上でモノマーを重縮合することによって形成可能である。 On the other hand, as the separation functional layer supported by the porous support layer, a crosslinked polymer is preferably used in terms of easy control of the pore diameter and excellent durability. In particular, a polyamide separation functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide, an organic-inorganic hybrid functional layer, and the like are preferably used in terms of excellent separation performance of components in raw water. These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
 例えば、分離機能層は、ポリアミドを主成分として含有することができる。このような膜は、公知の方法により、多官能アミンと多官能酸ハロゲン化物とを界面重縮合することで形成される。例えば、多孔性支持層に多官能アミン水溶液を塗布し、余分なアミン水溶液をエアーナイフなどで除去し、その後、多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布することで、ポリアミド分離機能層が得られる。 For example, the separation functional layer can contain polyamide as a main component. Such a film is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, by applying a polyfunctional amine aqueous solution to the porous support layer, removing the excess amine aqueous solution with an air knife or the like, and then applying an organic solvent solution containing a polyfunctional acid halide, the polyamide separation functional layer Is obtained.
 また、分離機能層は、Si元素などを有する有機-無機ハイブリッド構造を有してもよい。有機-無機ハイブリッド構造を有する分離機能層は、例えば、以下の化合物(A)、(B)を含有することができる:
 (A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物、ならびに
 (B)前記化合物(A)以外の化合物であってエチレン性不飽和基を有する化合物。
 具体的には、分離機能層は、化合物(A)の加水分解性基の縮合物ならびに化合物(A)および/または(B)のエチレン性不飽和基の重合物を含有してもよい。すなわち、分離機能層は、
  ・化合物(A)のみが縮合および/または重合することで形成された重合物、
  ・化合物(B)のみが重合して形成された重合物、並びに
  ・化合物(A)と化合物(B)との共重合物
のうちの少なくとも1種の重合物を含有することができる。なお、重合物には縮合物が含まれる。また、化合物(A)と化合物(B)との共重合物中で、化合物(A)は加水分解性基を介して縮合していてもよい。
Further, the separation functional layer may have an organic-inorganic hybrid structure containing Si element or the like. The separation functional layer having an organic-inorganic hybrid structure can contain, for example, the following compounds (A) and (B):
(A) a silicon compound in which a reactive group and a hydrolyzable group having an ethylenically unsaturated group are directly bonded to a silicon atom, and (B) a compound other than the compound (A) and having an ethylenically unsaturated group Compound.
Specifically, the separation functional layer may contain a condensate of the hydrolyzable group of the compound (A) and a polymer of the ethylenically unsaturated group of the compounds (A) and / or (B). That is, the separation functional layer is
A polymer formed by condensation and / or polymerization of only the compound (A),
-The polymer formed by superposing | polymerizing only a compound (B), and-At least 1 sort (s) of polymer of the copolymer of a compound (A) and a compound (B) can be contained. The polymer includes a condensate. In the copolymer of compound (A) and compound (B), compound (A) may be condensed via a hydrolyzable group.
 ハイブリッド構造は、公知の方法で形成可能である。ハイブリッド構造の形成方法の一例は次のとおりである。化合物(A)および化合物(B)を含有する反応液を多孔性支持層に塗布する。余分な反応液を除去した後、加水分解性基を縮合させるためには、加熱処理すればよい。化合物(A)および化合物(B)のエチレン性不飽和基の重合方法としては、熱処理、電磁波照射、電子線照射、プラズマ照射を行えばよい。重合速度を速める目的で分離機能層形成の際に重合開始剤、重合促進剤等を添加することができる。
 なお、いずれの分離機能層についても、使用前に、例えばアルコール含有水溶液、アルカリ水溶液によって膜の表面を親水化させてもよい。
The hybrid structure can be formed by a known method. An example of a method for forming a hybrid structure is as follows. A reaction solution containing the compound (A) and the compound (B) is applied to the porous support layer. In order to condense the hydrolyzable group after removing the excess reaction solution, heat treatment may be performed. As a polymerization method of the ethylenically unsaturated groups of the compound (A) and the compound (B), heat treatment, electromagnetic wave irradiation, electron beam irradiation, and plasma irradiation may be performed. For the purpose of increasing the polymerization rate, a polymerization initiator, a polymerization accelerator and the like can be added during the formation of the separation functional layer.
For any separation functional layer, the surface of the membrane may be hydrophilized with an alcohol-containing aqueous solution or an alkaline aqueous solution, for example, before use.
 <多孔性支持層>
 多孔性支持層は、分離機能層を支持する層であり、多孔性樹脂層とも言い換えられる。
 多孔性支持層に使用される材料やその形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合、積層したものが使用され、化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
<Porous support layer>
The porous support layer is a layer that supports the separation functional layer, and is also referred to as a porous resin layer.
Although the material used for a porous support layer and its shape are not specifically limited, For example, you may form on a board | substrate with porous resin. As the porous support layer, polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin or a mixture and laminate of them is used, and polysulfone with high chemical, mechanical and thermal stability and easy to control pore size. Is preferably used.
 多孔性支持層は、分離膜に機械的強度を与え、かつイオン等の分子サイズの小さな成分に対して分離機能層のような分離性能を有さない。多孔性支持層の有する孔のサイズおよび孔の分布は特に限定されないが、例えば、多孔性支持層は、均一で微細な孔を有してもよいし、あるいは分離機能層が形成される側の表面からもう一方の面(基材側)にかけて径が徐々に大きくなるような孔径の分布を有してもよい。また、いずれの場合でも、分離機能層が形成される側の表面で原子間力顕微鏡または電子顕微鏡などを用いて測定された細孔の投影面積円相当径は、1nm以上100nm以下であることが好ましい。特に界面重合反応性および分離機能層の保持性の点で、多孔性支持層において分離機能層が形成される側の表面における孔は、3nm以上50nm以下の投影面積円相当径を有することが好ましい。 The porous support layer gives mechanical strength to the separation membrane and does not have a separation performance like a separation functional layer for components having a small molecular size such as ions. The pore size and pore distribution of the porous support layer are not particularly limited. For example, the porous support layer may have uniform and fine pores, or the side on which the separation functional layer is formed. It may have a pore size distribution such that the diameter gradually increases from the surface to the other surface (base material side). In any case, the projected area equivalent circle diameter of the pores measured using an atomic force microscope or an electron microscope on the surface on the side where the separation functional layer is formed is 1 nm or more and 100 nm or less. preferable. Particularly in terms of interfacial polymerization reactivity and retention of the separation functional layer, the pores on the surface on the side where the separation functional layer is formed in the porous support layer preferably have a projected area equivalent circle diameter of 3 nm to 50 nm. .
 多孔性支持層の厚みは特に限定されないが、分離膜に強度を与えるため等の理由から、20μm以上500μm以下の範囲にあることが好ましく、より好ましくは30μm以上300μm以下である。 The thickness of the porous support layer is not particularly limited, but is preferably in the range of 20 μm or more and 500 μm or less, and more preferably 30 μm or more and 300 μm or less for the purpose of giving strength to the separation membrane.
 多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間力顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3kV~6kVの加速電圧で、高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S-900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真に基づいて、多孔性支持層の膜厚、表面の投影面積円相当径を測定することができる。 The form of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic force microscope. For example, when observing with a scanning electron microscope, after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation. The sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 kV to 6 kV. As the high-resolution field emission scanning electron microscope, Hitachi S-900 electron microscope can be used. Based on the obtained electron micrograph, the film thickness of the porous support layer and the projected area equivalent circle diameter of the surface can be measured.
 多孔性支持層の厚みおよび孔径は、平均値であり、多孔性支持層の厚みは、断面観察で厚み方向に直交する方向に20μm間隔で測定し、20点測定の平均値である。また、孔径は、200個の孔について測定された、各投影面積円相当径の平均値である。 The thickness and pore diameter of the porous support layer are average values, and the thickness of the porous support layer is measured at intervals of 20 μm in a direction perpendicular to the thickness direction by cross-sectional observation, and is an average value of 20 point measurements. Moreover, a hole diameter is an average value of each projected area circle equivalent diameter measured about 200 holes.
 次に、多孔性支持層の形成方法について説明する。多孔性支持層は、例えば、ポリスルホンのN,N-ジメチルホルムアミド(以降、DMFと記載)溶液を、後述する基材、例えば密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、製造することができる。 Next, a method for forming the porous support layer will be described. For example, a porous support layer is formed by casting a solution of polysulfone in N, N-dimethylformamide (hereinafter referred to as DMF) on a substrate to be described later, for example, a densely woven polyester cloth or non-woven cloth to a constant thickness. And can be produced by wet coagulation in water.
 多孔性支持層は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って形成することができる。なお、所望の形態を得るために、ポリマー濃度、溶媒の温度、貧溶媒は調整可能である。 The porous support layer is “Office of Saleen Water Research and Development Progress Report” No. 359 (1968). In addition, in order to obtain a desired form, the polymer concentration, the temperature of the solvent, and the poor solvent can be adjusted.
 例えば、所定量のポリスルホンをDMFに溶解し、所定濃度のポリスルホン樹脂溶液を調製する。次いで、このポリスルホン樹脂溶液をポリエステル布あるいは不織布からなる基材上に略一定の厚さに塗布した後、一定時間空気中で表面の溶媒を除去した後、凝固液中でポリスルホンを凝固させることによって多孔性支持層を得ることができる。 For example, a predetermined amount of polysulfone is dissolved in DMF to prepare a polysulfone resin solution having a predetermined concentration. Next, this polysulfone resin solution is applied to a substrate made of polyester cloth or nonwoven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid. A porous support layer can be obtained.
 <基材>
 分離膜の強度、寸法安定性等の観点から、分離膜は基材を有することができる。基材としては、強度、凹凸形成能および流体透過性の点で繊維状基材を用いることが好ましい。
 基材としては、長繊維不織布及び短繊維不織布のいずれも好ましく用いることができる。特に、長繊維不織布は、優れた製膜性を有するので、高分子重合体の溶液を流延した際に、その溶液が過浸透により裏抜けすること、多孔性支持層が剥離すること、さらには基材の毛羽立ち等により膜が不均一化すること、及びピンホール等の欠点が生じることを抑制できる。また、基材が熱可塑性連続フィラメントより構成される長繊維不織布からなることにより、短繊維不織布と比べて、高分子溶液流延時に繊維の毛羽立ちによって起きる膜の不均一化および膜欠点の発生を抑制することができる。さらに、分離膜は、連続製膜されるときに、製膜方向に対し張力がかけられるので、寸法安定性に優れる長繊維不織布を基材として用いることが好ましい。
<Base material>
From the viewpoint of the strength and dimensional stability of the separation membrane, the separation membrane can have a substrate. As the base material, it is preferable to use a fibrous base material in terms of strength, unevenness forming ability and fluid permeability.
As a base material, both a long fiber nonwoven fabric and a short fiber nonwoven fabric can be used preferably. In particular, since the long fiber nonwoven fabric has excellent film-forming properties, when the polymer solution is cast, the solution penetrates through the permeation, the porous support layer peels off, and Can suppress the film from becoming non-uniform due to fluffing of the substrate and the like, and the occurrence of defects such as pinholes. In addition, since the base material is made of a long-fiber nonwoven fabric composed of thermoplastic continuous filaments, compared to a short-fiber nonwoven fabric, non-uniform film formation and film defects caused by fiber fluffing during polymer solution casting can be prevented. Can be suppressed. Furthermore, since the separation membrane is tensioned in the film-forming direction when continuously formed, it is preferable to use a long-fiber nonwoven fabric excellent in dimensional stability as a base material.
 長繊維不織布は、成形性、強度の点で、多孔性支持層とは反対側の表層における繊維が、多孔性支持層側の表層の繊維よりも縦配向であることが好ましい。そのような構造によれば、強度を保つことで膜破れ等を防ぐ高い効果が実現されるだけでなく、分離膜に凹凸を付与する際の、多孔性支持層と基材とを含む積層体としての成形性も向上し、分離膜表面の凹凸形状が安定するので好ましい。 In the long-fiber non-woven fabric, the fibers in the surface layer on the side opposite to the porous support layer are preferably longitudinally oriented compared to the fibers in the surface layer on the porous support layer side in terms of moldability and strength. According to such a structure, not only a high effect of preventing membrane breakage by maintaining strength is realized, but also a laminate comprising a porous support layer and a substrate when imparting irregularities to the separation membrane The moldability is improved, and the uneven shape on the surface of the separation membrane is stabilized, which is preferable.
 より具体的には、長繊維不織布の、多孔性支持層とは反対側の表層における繊維配向度は、0°以上25°以下であることが好ましく、また、多孔性支持層側表層における繊維配向度との配向度差が10°以上90°以下であることが好ましい。 More specifically, the fiber orientation degree in the surface layer on the side opposite to the porous support layer of the long-fiber nonwoven fabric is preferably 0 ° or more and 25 ° or less, and the fiber orientation in the surface layer on the porous support layer side. The degree of orientation difference with respect to the degree is preferably 10 ° or more and 90 ° or less.
 分離膜の製造工程や分離膜エレメントの製造工程においては加熱する工程が含まれるが、加熱により多孔性支持層または分離機能層が収縮する現象が起きる。特に連続製膜において張力が付与されていない幅方向において、収縮は顕著である。収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。不織布において多孔性支持層とは反対側の表層における繊維配向度と多孔性支持層側表層における繊維配向度との差が10°以上90°以下であると、熱による幅方向の変化を抑制することもでき、好ましい。 The heating process is included in the manufacturing process of the separation membrane and the manufacturing process of the separation membrane element, but the phenomenon that the porous support layer or the separation functional layer contracts due to the heating occurs. In particular, the shrinkage is remarkable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small rate of thermal dimensional change is desired. In the nonwoven fabric, when the difference between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the porous support layer side surface layer is 10 ° or more and 90 ° or less, the change in the width direction due to heat is suppressed. Can also be preferred.
 ここで、繊維配向度とは、多孔性支持層を構成する不織布基材の繊維の向きを示す指標である。具体的には、繊維配向度とは、連続製膜を行う際の製膜方向、つまり不織布基材の長手方向と、不織布基材を構成する繊維の長手方向との間の角度の平均値である。つまり、繊維の長手方向が製膜方向と平行であれば、繊維配向度は0°である。また、繊維の長手方向が製膜方向に直角であれば、すなわち不織布基材の幅方向に平行であれば、その繊維の配向度は90°である。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。 Here, the fiber orientation degree is an index indicating the direction of the fibers of the nonwoven fabric base material constituting the porous support layer. Specifically, the fiber orientation degree is an average value of angles between the film forming direction when continuous film forming is performed, that is, the longitudinal direction of the nonwoven fabric base material and the longitudinal direction of the fibers constituting the nonwoven fabric base material. is there. That is, if the longitudinal direction of the fiber is parallel to the film forming direction, the fiber orientation degree is 0 °. If the longitudinal direction of the fiber is perpendicular to the film forming direction, that is, if it is parallel to the width direction of the nonwoven fabric substrate, the degree of orientation of the fiber is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
 繊維配向度は以下のように測定される。まず、不織布からランダムに小片サンプル10個を採取する。次に、そのサンプルの表面を走査型電子顕微鏡で100~1000倍で撮影する。撮影像の中で、各サンプルあたり10本の繊維を選び、不織布の長手方向を0°としたときの、繊維の長手方向の角度を測定する。ここで、不織布の長手方向とは、不織布製造時の“Machine direction”を指す。また、不織布の長手方向は、多孔性支持層の製膜方向および図1、図5のMD方向に一致する。図1、図5のCD方向は、不織布製造時の“Cross direction”に一致する。 The fiber orientation degree is measured as follows. First, 10 small piece samples are randomly collected from the nonwoven fabric. Next, the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 fibers are selected for each sample, and the angle of the fibers in the longitudinal direction when the longitudinal direction of the nonwoven fabric is 0 ° is measured. Here, the longitudinal direction of the nonwoven fabric refers to “Machine direction” at the time of manufacturing the nonwoven fabric. The longitudinal direction of the nonwoven fabric coincides with the film forming direction of the porous support layer and the MD direction in FIGS. The CD direction in FIGS. 1 and 5 corresponds to “Cross direction” at the time of manufacturing the nonwoven fabric.
 こうして、1枚の不織布あたり計100本の繊維について、角度の測定が行われる。こうして測定された100本の繊維について、長手方向の角度から平均値を算出する。得られた平均値の小数点以下第一位を四捨五入して得られる値が、繊維配向度である。 Thus, the angle is measured for a total of 100 fibers per nonwoven fabric. For the 100 fibers thus measured, an average value is calculated from the angle in the longitudinal direction. The value obtained by rounding off the first decimal place of the obtained average value is the fiber orientation degree.
 基材と多孔性支持層との厚みの合計は、30μm以上300μm以下の範囲内、または50μm以上250μm以下の範囲内にあるように、基材の厚みが選択されることが好ましい。 It is preferable that the thickness of the base material is selected so that the total thickness of the base material and the porous support layer is in the range of 30 μm to 300 μm, or in the range of 50 μm to 250 μm.
 (1-3)透過側流路材
 <概要>
 本発明の透過側流路材は、空隙率が20%以上90%以下のシートと空隙率が5%以下の複数の突起物から構成されており、複数の突起物はシートと一体的に形成されている。透過側流路材がこのような構成を有することで、透過側の流動抵抗を低減でき、かつ高い流路安定性を両立することができる。具体的には、シートおよび複数の突起物の空隙率が上記範囲にあることで、シートの空隙および複数の突起物によって形成される溝の流動抵抗を低減できる。また、透過側流路材の形成プロセスの都合上、突起物の配置精度が不十分で溝が閉塞するような形状になった場合においても、シートの空隙が流路となり透過水はシートを介して別の溝へ移動することができる。
(1-3) Permeation side channel material <Overview>
The permeation side channel material of the present invention is composed of a sheet having a porosity of 20% or more and 90% or less and a plurality of protrusions having a porosity of 5% or less, and the plurality of protrusions are formed integrally with the sheet. Has been. By having such a configuration for the permeation-side channel material, the permeation-side flow resistance can be reduced, and high channel stability can be achieved at the same time. Specifically, when the porosity of the sheet and the plurality of protrusions is within the above range, the flow resistance of the groove formed by the space of the sheet and the plurality of protrusions can be reduced. In addition, for the convenience of the formation process of the permeate-side channel material, even when the projection is not sufficiently arranged and the groove is closed, the gap of the sheet becomes the channel and the permeate passes through the sheet. Can move to another groove.
 本発明の透過側流路材は、図11に示すように、膜リーフ4の透過側の面22に配置される。この時、突起物が透過側の面22に接するか、またはシートが透過側の面22に接するかは、膜リーフ4の巻囲時または膜リーフ4の積層時に、異なる透過側の面22に突起物とシートが接触して、結局は同一の状態となるため特に限定されない。透過側流路材の構成の詳細は以下のとおりである。 The permeate-side channel material of the present invention is disposed on the permeate-side surface 22 of the membrane leaf 4 as shown in FIG. At this time, whether the projection touches the transmission side surface 22 or the sheet contacts the transmission side surface 22 depends on whether the membrane leaf 4 is wrapped or laminated, Since a protrusion and a sheet | seat contact and it will be in the same state after all, it will not specifically limit. The details of the configuration of the permeate-side channel material are as follows.
 <帯状端部>
 図4において、透過側流路材31におけるシート302には、その端部に突起物301が配置されていない帯状領域303が設けられている。この帯状領域303を帯状端部と称する。
 帯状端部は、シート302に突起物301が設けられていない部分である。これによって、一方の分離膜の透過側の面と他方の分離膜の透過側の面は、このような帯状領域303を介して接着される。帯状領域303を介することで、突起物によるリーフ接着剤の浸透阻害が生じず、リーフ接着剤の塗布ムラや接着不良を無くし分離膜同士の封止性を高めることができる。
<Strip end>
In FIG. 4, the sheet 302 in the permeate-side flow path member 31 is provided with a band-like region 303 where the protrusions 301 are not disposed at the end thereof. This strip region 303 is referred to as a strip end.
The band-shaped end portion is a portion where the protrusions 301 are not provided on the sheet 302. Thus, the permeation side surface of one separation membrane and the permeation side surface of the other separation membrane are bonded together through such a band-like region 303. Through the band-like region 303, the penetration of the leaf adhesive due to the protrusions does not occur, and uneven application of the leaf adhesive and poor adhesion can be eliminated and the sealing performance between the separation membranes can be improved.
 帯状端部の幅は分離膜エレメントサイズや運転圧力、透過側流路材の厚み、リーフ接着剤の塗布量に応じて決定できるが、突起物301により形成される溝幅(CD方向)より広い方がよく、特に0.25mm~70mmの範囲で適宜変更できる。この範囲であれば、シートに突起物が固着した透過側流路材を用いても良好な封止性を得ることができるとともに、リーフ接着剤による分離膜の有効膜面積(分離膜エレメントに装填した分離膜のうち、分離機能を発現する分離膜の総面積)低下を防ぐことができる。 The width of the band-shaped end portion can be determined according to the separation membrane element size, the operating pressure, the thickness of the permeate-side channel material, and the amount of leaf adhesive applied, but is wider than the groove width (CD direction) formed by the protrusion 301 It is better, and it can be appropriately changed, particularly in the range of 0.25 mm to 70 mm. Within this range, good sealing performance can be obtained even if a permeate-side channel material with protrusions fixed to the sheet is used, and the effective membrane area of the separation membrane with leaf adhesive (loaded in the separation membrane element) Among the separated membranes, it is possible to prevent a decrease in the total area of the separation membrane that exhibits the separation function.
 <透過側流路材を構成するシート>
 透過側流路材を構成するシート302は、分離膜エレメントにおいて、図11のように第2方向が巻回方向と一致するように配置されることが好ましい。つまり、図8、図9、図10の分離膜エレメントにおいて、シート302は、第1方向(分離膜の幅方向)が集水管6の長手方向に平行であり、第2方向(分離膜の長さ方向)が集水管6の長手方向に直交するように配置されることが好ましい。
<The sheet | seat which comprises a permeation | transmission side channel material>
In the separation membrane element, the sheet 302 constituting the permeate-side flow path member is preferably arranged so that the second direction coincides with the winding direction as shown in FIG. That is, in the separation membrane element of FIGS. 8, 9 and 10, the sheet 302 has a first direction (width direction of the separation membrane) parallel to the longitudinal direction of the water collecting pipe 6 and a second direction (length of the separation membrane). (Direction) is preferably arranged so as to be orthogonal to the longitudinal direction of the water collecting pipe 6.
 また、透過側流路材を構成するシートは、分離膜の透過側の面同士を接着する領域に存在する。つまり、2枚の分離膜は、透過側流路材を構成するシートを間に挟んで接着されており、その接着部分の少なくとも一部において、分離膜間に当該シートが存在することが好ましい。図11では、透過側流路材を構成するシート302の大きさと分離膜の大きさとは同一であるが、実際には、シートの方が大きくても良いし、分離膜の方が大きくてもよい。分離膜の方が大きい場合は、シートが壁となるため接着剤の広がりを抑制することができる。 Further, the sheet constituting the permeation side channel material exists in a region where the permeation side surfaces of the separation membrane are bonded to each other. That is, it is preferable that the two separation membranes are bonded to each other with the sheet constituting the permeation side flow path member interposed therebetween, and the sheet exists between the separation membranes in at least a part of the bonded portion. In FIG. 11, the size of the sheet 302 constituting the permeate-side flow path material and the size of the separation membrane are the same, but actually the sheet may be larger or the separation membrane may be larger. Good. When the separation membrane is larger, the sheet becomes a wall, so that the spread of the adhesive can be suppressed.
 (透過側流路材を構成するシートの厚み斑)
 透過側流路材を構成するシート302の厚み斑は0.03mm以下が好ましく、0.02mm以下がさらに好ましい。厚み斑が大きいほどリーフ接着剤の広がりが大きい傾向にあり、上述したような有効膜面積や封止性が低下する。なお、シートの厚み斑は市販の厚み計(例えばミツトヨ社製シックネスゲージ 品番547-401、キーエンス社製デジタルマイクロスコープ 型番VHX-1100)を用いて測定でき、例えばシート幅に対して30均等分の位置について厚みを測定し、その最大値と最小値の差を厚み斑とすることができる。
(Thickness unevenness of the sheet constituting the permeate side channel material)
The thickness unevenness of the sheet 302 constituting the permeate-side channel material is preferably 0.03 mm or less, and more preferably 0.02 mm or less. As the thickness spots are larger, the spread of the leaf adhesive tends to be larger, and the effective film area and the sealing performance as described above are lowered. The thickness unevenness of the sheet can be measured using a commercially available thickness meter (for example, Mitsutoyo Thickness Gauge Part No. 547-401, Keyence Digital Microscope Model No. VHX-1100). The thickness can be measured for the position, and the difference between the maximum value and the minimum value can be regarded as a thickness spot.
 (透過側流路材を構成するシートの空隙率)
 透過側流路材を構成するシート302の空隙率は20%以上90%以下が好ましく、45%以上80%以下が特に好ましい。ここで、空隙率とは、基材の単位体積当たりの空隙の割合をいい、所定の見かけ体積を有する基材に純水を含ませたときの重量から、基材の乾燥時の重量を差し引いた値を、基材の見かけ体積で除した値を百分率(%)で表すことで得ることができる。
(Porosity of the sheet constituting the permeate side channel material)
The porosity of the sheet 302 constituting the permeate-side channel material is preferably 20% or more and 90% or less, and particularly preferably 45% or more and 80% or less. Here, the porosity means the ratio of the voids per unit volume of the substrate, and the weight when the substrate is dried is subtracted from the weight when pure water is included in the substrate having a predetermined apparent volume. The value obtained by dividing the obtained value by the apparent volume of the substrate is expressed as a percentage (%).
 シート302の空隙率が90%を超えると、流動抵抗は低くなるものの突起物301の含浸が進みやすく裏抜けが発生してシート302の厚みが不均一化する。また、リーフ同士を接着する接着剤が広がりやすく、分離膜エレメント形成後に接着剤が塗布されていない領域、すなわち、加圧ろ過が有効に機能する領域(有効膜面積)が小さくなり、分離膜エレメントの造水量が低下する。また、シート302の空隙率が20%を下回ると、逆に突起物301や接着剤の含浸が進行し難く、突起物301がシート302から剥離して流路が形成できないことや、接着剤の含浸が不十分になり易いため、供給水が透過側流路へ流入してしまい分離性能が低下する。さらに、透過水がシート302を透過し難くなり、透過水が突起物301間の溝やシート302内の流路へ到達せず、結果的に、分離膜エレメントの造水量が大幅に低下する。 When the porosity of the sheet 302 exceeds 90%, the flow resistance is lowered, but the impregnation of the protrusions 301 is easy to proceed, and the back-through occurs, and the thickness of the sheet 302 becomes uneven. In addition, the adhesive that bonds the leaves easily spreads, and the area where the adhesive is not applied after formation of the separation membrane element, that is, the area where effective pressure filtration functions effectively (effective membrane area) is reduced. The amount of water produced is reduced. On the other hand, when the porosity of the sheet 302 is less than 20%, the impregnation of the protrusions 301 and the adhesive hardly progresses, and the protrusions 301 are peeled off from the sheet 302 and a flow path cannot be formed. Since the impregnation tends to be insufficient, the supply water flows into the permeate-side flow path and the separation performance deteriorates. Furthermore, the permeated water is difficult to permeate the sheet 302, and the permeated water does not reach the grooves between the protrusions 301 or the flow path in the sheet 302. As a result, the amount of water produced by the separation membrane element is greatly reduced.
 <透過側流路材を構成するシートの厚みH1>
 透過側流路材を構成するシートの厚みは0.2mm以下であることが好ましい。なぜなら、2枚の分離膜の透過側の面の間を封止するために、シートには接着剤が含浸することが好ましいからである。ただし、透過側流路材を構成するシートの厚みが0.2mmを超えても、シートの空隙率が80%以上であれば、分離膜間を接着剤で封止することができる。また、透過側流路材を構成するシートの厚みが0.02mm以上であることで、シートの強度を確保することができるので、シートの破損を抑制することができる。
<Thickness H1 of the sheet constituting the permeate side channel material>
It is preferable that the thickness of the sheet | seat which comprises a permeation | transmission side channel material is 0.2 mm or less. This is because the sheet is preferably impregnated with an adhesive in order to seal between the permeation side surfaces of the two separation membranes. However, even if the thickness of the sheet constituting the permeate-side channel material exceeds 0.2 mm, the separation membrane can be sealed with an adhesive as long as the porosity of the sheet is 80% or more. Moreover, since the strength of the sheet can be ensured when the thickness of the sheet constituting the permeate-side flow path material is 0.02 mm or more, damage to the sheet can be suppressed.
 特に、透過側流路材を構成するシートの厚みが0.02mm以上0.2mm以下であれば、空隙率は20%以上80%以下であることが好ましく、シートの厚みが0.02mmを超えて0.4mm以下であれば、空隙率は30%以上90%以下であることがより好ましい。 In particular, if the thickness of the sheet constituting the permeate-side channel material is 0.02 mm or more and 0.2 mm or less, the porosity is preferably 20% or more and 80% or less, and the thickness of the sheet exceeds 0.02 mm. If it is 0.4 mm or less, the porosity is more preferably 30% or more and 90% or less.
 突起物の高さc(後述する)と、シートの厚みH1との関係について説明する。突起物の高さcと、シートの厚みH1と突起物の高さcとの和H0(H0=H1+c)との比(c/H0)は、0.05以上であることが好ましい。これによって、広い流路を確保できるからである。一方で、比(c/H0)が0.7以下であることで、張力を負荷しながら、シートを巻き取った際に、突起物によるシートの破壊や傷を防ぐことができるために好ましい。これは、比(c/H0)が大きいほど突起物のシートへの負荷が大きく、かつシートの物理的耐久性が小さくなるためである。 The relationship between the height c (described later) of the protrusion and the thickness H1 of the sheet will be described. The ratio (c / H0) of the projection height c to the sum H0 (H0 = H1 + c) of the sheet thickness H1 and the projection height c is preferably 0.05 or more. This is because a wide flow path can be secured. On the other hand, it is preferable that the ratio (c / H0) is 0.7 or less because the sheet can be prevented from being broken or damaged by the protrusions when the sheet is wound while applying a tension. This is because the larger the ratio (c / H0), the greater the load on the sheet of protrusions and the lower the physical durability of the sheet.
 比(c/H0)が0.13以下である場合、シートの空隙率は30%以上90%以下であることが好ましい。また、比(c/H0)が0.13を超え(または0.15以上であって)、かつ0.7以下である場合は、シートの空隙率は20%以上かつ80%以下であることが好ましい。 When the ratio (c / H0) is 0.13 or less, the porosity of the sheet is preferably 30% or more and 90% or less. When the ratio (c / H0) exceeds 0.13 (or 0.15 or more) and is 0.7 or less, the porosity of the sheet is 20% or more and 80% or less. Is preferred.
 <突起物>
 (突起物301の空隙率)
 一方、突起物301の空隙率(段落0049参照)は5%以下であることが好ましく、2%以下がさらに好ましい。突起物301には加圧ろ過時やシートの巻取時に圧力が集中する。仮に突起物301が変形すると、流路となる複数の突起物301によって形成される溝が狭くなるので、流動抵抗が増加する。しかし、空隙率が5%以下であることで、圧縮時にも突起物が変形しにくい。
<Protrusions>
(Porosity of protrusion 301)
On the other hand, the porosity of the protrusions 301 (see paragraph 0049) is preferably 5% or less, and more preferably 2% or less. The pressure is concentrated on the protrusion 301 during pressure filtration or winding of the sheet. If the protrusion 301 is deformed, the groove formed by the plurality of protrusions 301 serving as the flow path becomes narrow, and thus the flow resistance increases. However, when the porosity is 5% or less, the protrusions are not easily deformed even during compression.
 <突起物の構成成分>
 透過側流路材を構成する材料、すなわちシートおよび突起物を構成する成分としては、具体的な物質には限定されないが、樹脂が好ましく用いられる。具体的には、耐薬品性の点で、エチレン酢酸ビニル共重合体樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィンやポリオレフィン共重合体などが好ましい。また、透過側流路材の材料として、ウレタン樹脂、エポキシ樹脂、ポリエーテルスルホン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体、ポリアセタール、ポリメチルメタクリレート、メタクリル-スチレン共重合体、酢酸セルロール、ポリカーボネート、ポリエチレンテレフタレート、ポリブタジエンテレフタレートやフッ素樹脂(三フッ化塩化エチレン、ポリフッ化ビニリデン、四フッ化エチレン、四フッ化エチレン-六フッ化プロピレン共重合、四フッ化エチレン-パーフルオロアルコキシエチレン共重合、四フッ化エチレン-エチレン共重合など)などのポリマーも選択できる。なお、これらの材料は、単独もしくは2種類以上からなる混合物として用いられる。特に、熱可塑性樹脂は成形が容易であるため、均一な形状の透過側流路材を形成することができ、シートと突起物が同素材であっても、異素材であってもよい。
<Constituent components of protrusion>
The material constituting the permeate-side channel material, that is, the component constituting the sheet and the projection is not limited to a specific substance, but a resin is preferably used. Specifically, in view of chemical resistance, ethylene vinyl acetate copolymer resin, polyolefin such as polyethylene and polypropylene, and polyolefin copolymer are preferable. In addition, the material of the permeate side channel material is urethane resin, epoxy resin, polyethersulfone, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, styrene-acrylonitrile copolymer Polymer, styrene-butadiene-acrylonitrile copolymer, polyacetal, polymethyl methacrylate, methacryl-styrene copolymer, cellulose acetate, polycarbonate, polyethylene terephthalate, polybutadiene terephthalate and fluororesin (ethylene trifluoride chloride, polyvinylidene fluoride, tetrafluoride) Ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, tetrafluoroethylene-ethylene copolymer Etc.) can also be selected polymers such as. These materials are used alone or as a mixture of two or more. In particular, since the thermoplastic resin is easy to mold, it is possible to form a permeate-side channel material having a uniform shape, and the sheet and the protrusion may be the same material or different materials.
 透過側流路材の材料として複合材も適用可能である。複合材として、母材として上述の樹脂を含有し、さらに充てん材を含有する材料が挙げられる。透過側流路材の圧縮弾性率は、母材に多孔質無機物などの充てん材を添加することで高められる。具体的にはケイ酸ナトリウム、ケイ酸カルシウム、ケイ酸マグネシウム等のアルカリ土類金属のケイ酸塩、シリカ、アルミナ、酸化チタン等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属の炭酸塩、純硅石、硅石粉、ケイソー土、ワラストナイト、セピオライト、アタパルジャイト、カオリン、クレー、ベントナイト、石膏、タルク、等などを充てん材として用いることができる。なお、充てん材の添加量は、本発明の効果を損なわない範囲であれば特に限定されない。 A composite material can also be applied as the material of the permeate side channel material. Examples of the composite material include a material containing the above-described resin as a base material and further containing a filler. The compression elastic modulus of the permeate side channel material can be increased by adding a filler such as a porous inorganic material to the base material. Specifically, alkaline earth metal silicates such as sodium silicate, calcium silicate and magnesium silicate, metal oxides such as silica, alumina and titanium oxide, and alkaline earth metals such as calcium carbonate and magnesium carbonate. Carbonate, pure meteorite, meteorite powder, caustic clay, wollastonite, sepiolite, attapulgite, kaolin, clay, bentonite, gypsum, talc, etc. can be used as fillers. In addition, the addition amount of a filler will not be specifically limited if it is a range which does not impair the effect of this invention.
<<ポリプロピレンから構成される透過側流路材>>
 また、透過側流路材が以下の構成を取ることで、耐圧性および柔軟性のバランスを両立でき、運転安定性を向上することができる。すなわち透過側流路材は高結晶性ポリプロピレンを含んでもよく、かつ下記要件(a)および(b)を満たしてもよい。
(a)高結晶性ポリプロピレンの含有量が、透過側流路材を構成する組成物中、40~95重量%である。
(b)前記流路材の融解吸熱量(ΔH)が20~70J/gである。
 この場合、高結晶性ポリプロピレンの含有量を、透過側流路材を構成する組成物中、95重量%以下とすることで、透過側流路が形成された分離膜のカールを抑制できる。それによって、分離膜の取扱性が向上し、例えば分離膜エレメントの製造工程の一つである、封筒状膜を積層する工程での通過性が格段に良くなる。高結晶性ポリプロピレンの含有量は85重量%以下であることがより好ましく、75重量%以下であることが更に好ましい。
<< Permeation side channel material composed of polypropylene >>
Moreover, when the permeation | transmission side channel material takes the following structures, the balance of a pressure resistance and a softness | flexibility can be made compatible and driving | operation stability can be improved. That is, the permeate side channel material may contain highly crystalline polypropylene and may satisfy the following requirements (a) and (b).
(A) The content of the highly crystalline polypropylene is 40 to 95% by weight in the composition constituting the permeation side channel material.
(B) The melting endotherm (ΔH) of the channel material is 20 to 70 J / g.
In this case, curling of the separation membrane in which the permeation side flow path is formed can be suppressed by setting the content of the highly crystalline polypropylene to 95% by weight or less in the composition constituting the permeation side flow path material. Thereby, the handling property of the separation membrane is improved, and the permeability in the step of laminating the envelope membrane, which is one of the manufacturing steps of the separation membrane element, is remarkably improved. The content of the highly crystalline polypropylene is more preferably 85% by weight or less, and further preferably 75% by weight or less.
 一方、高結晶性ポリプロピレンの含有量を、透過側流路材を構成する組成物中、40重量%以上とすることで、分離膜のカールが改善されるだけでなく、例えば本発明の分離膜エレメントを、2MPaを超えるような加圧条件で運転しても、透過側流路材の圧縮変形を抑制でき、その結果、分離膜エレメント性能(特に造水性能)の低下を抑制でき、安定した性能を発現できる。圧縮変形量を抑制する点から、高結晶性ポリプロピレンの含有量は、45重量%以上であることがより好ましく、50重量%であることが更に好ましい。 On the other hand, by setting the content of the high crystalline polypropylene to 40% by weight or more in the composition constituting the permeation side flow path material, not only the curling of the separation membrane is improved, but also, for example, the separation membrane of the present invention Even if the element is operated under a pressure condition exceeding 2 MPa, it is possible to suppress the compressive deformation of the permeate-side channel material, and as a result, it is possible to suppress a decrease in the separation membrane element performance (particularly water production performance) and to be stable. Performance can be expressed. From the viewpoint of suppressing the amount of compressive deformation, the content of the highly crystalline polypropylene is more preferably 45% by weight or more, and further preferably 50% by weight.
 高結晶性ポリプロピレンとは、例えばプロピレン単独重合体;プロピレンランダム共重合体;プロピレンブロック共重合体等が挙げられ、これらを単独で、または2種以上混合して用いてもよい。また高結晶性ポリプロピレンの融点は140℃以上であることが好ましく、150℃以上であることがより好ましい。なお融点は、示差走査熱量計(DSC)にて測定される値である。たとえば、試料を、セイコーインスツルメンツ社製 熱機械分析装置TMA/SS-6000等の熱分析装置を用いて、プローブ:針入プローブ、測定荷重:10g、昇温速度:5℃/分の条件で評価に供することで融点を測定することができる。 Examples of the highly crystalline polypropylene include propylene homopolymer; propylene random copolymer; propylene block copolymer, and the like. These may be used alone or in combination of two or more. The melting point of the highly crystalline polypropylene is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher. The melting point is a value measured with a differential scanning calorimeter (DSC). For example, a sample is evaluated using a thermal analyzer such as a thermomechanical analyzer TMA / SS-6000 manufactured by Seiko Instruments Inc. under the conditions of probe: penetration probe, measurement load: 10 g, temperature increase rate: 5 ° C./min. The melting point can be measured.
 更には高結晶性ポリプロピレンのメルトフローレイト(MFR)は10~2000g/10分であることが好ましい。MFRをこのような範囲とすることで、透過側流路材の溶融成形が容易となる。また溶融成形温度を低く設定することが可能となり、その結果、溶融成形時の分離膜本体の熱による損傷や分離膜性能の低下を抑制でき、さらには分離膜本体の透過側の面への固着性が良好となる。高結晶性ポリプロピレンのMFRは30~1800g/10分であることがより好ましく、50~1500g/分であることが更に好ましい。なおMFRはJIS-K7200(1999)に則って230℃、荷重2.16kgの条件下で測定した値である。 Furthermore, the melt flow rate (MFR) of the highly crystalline polypropylene is preferably 10 to 2000 g / 10 minutes. By setting the MFR in such a range, it is easy to melt-mold the permeate-side channel material. It is also possible to set the melt molding temperature low. As a result, it is possible to suppress damage to the separation membrane body due to heat and degradation of the separation membrane performance during melt molding, and to adhere to the permeate side surface of the separation membrane body. Property is improved. The MFR of the highly crystalline polypropylene is more preferably 30 to 1800 g / 10 min, and further preferably 50 to 1500 g / min. The MFR is a value measured under conditions of 230 ° C. and a load of 2.16 kg in accordance with JIS-K7200 (1999).
 透過側流路材の融解吸熱量(ΔH)は20~70J/gであるとよい。透過側流路材のΔHが20J/gより小さい場合、分離膜のカールは十分に抑制されるが、一方、透過側流路材を構成する組成物の結晶化が非常に遅くなるため、透過側流路材がべたついてしまう。その結果、ロール搬送の際、透過側流路材がロールに接着したり、ロールとの接触により透過側流路材が変形してしまう。更には、巻取機で巻き取り、その後、巻き出した場合、透過側流路材が分離膜の分離機能層側に付着してしまう等、分離膜ロールの巻き出し性が著しく悪化し、分離膜の取扱性が大きく低下する。更には加圧運転下での圧縮変形量が大きくなってしまう。 The melting endotherm (ΔH) of the permeate-side channel material is preferably 20 to 70 J / g. When ΔH of the permeate-side channel material is smaller than 20 J / g, curling of the separation membrane is sufficiently suppressed, but on the other hand, crystallization of the composition constituting the permeate-side channel material becomes very slow, The side channel material becomes sticky. As a result, at the time of roll conveyance, the permeate side channel material adheres to the roll, or the permeate side channel material is deformed by contact with the roll. Furthermore, when the film is wound up by a winder and then unwound, the permeate-side flow path material adheres to the separation functional layer side of the separation membrane, and the unwinding property of the separation membrane roll is significantly deteriorated. Membrane handling is greatly reduced. Furthermore, the amount of compressive deformation under pressure operation increases.
 一方、透過側流路材のΔHが70J/gより大きい場合、透過側流路材を構成する組成物の結晶化が速いため、透過側流路を形成する際、透過側流路材を構成する組成物の冷却、固化に伴う体積変化量が非常に大きくなり、その結果、分離膜は大きくカールしてしまう。更には、透過側流路材は非常に脆くなってしまい、ロール搬送時に透過側流路材の破壊が発生する。 On the other hand, when ΔH of the permeate side channel material is larger than 70 J / g, the composition of the permeate side channel material is rapidly crystallized. The amount of volume change accompanying the cooling and solidification of the composition is very large. As a result, the separation membrane is greatly curled. Furthermore, the permeate side channel material becomes very fragile, and the permeate side channel material is broken during roll conveyance.
 透過側流路材のΔHは、25~65J/gであることがより好ましく、30~60J/gであることが更に好ましい。なお融解吸熱量は、示差走査熱量計(DSC)にて測定される数値である。例えば、パーキンエルマー社製示差走査熱量計DSC-7型を用いて測定し、試料10mgを、昇温速度10℃/分にて20℃から220℃まで昇温し、220℃で10分間保持した後、降温速度10℃/分にて20℃まで降温させる測定において、降温した際に観測される、結晶化に基づく発熱量とすることができる。 The ΔH of the permeate-side channel material is more preferably 25 to 65 J / g, and further preferably 30 to 60 J / g. The melting endotherm is a numerical value measured with a differential scanning calorimeter (DSC). For example, measurement was performed using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer, Inc., and a 10 mg sample was heated from 20 ° C. to 220 ° C. at a heating rate of 10 ° C./min and held at 220 ° C. for 10 minutes. Thereafter, in the measurement of lowering the temperature to 20 ° C. at a temperature lowering rate of 10 ° C./min, the calorific value based on crystallization observed when the temperature is lowered can be obtained.
 さらに、透過側流路材を構成する組成物には、低結晶性α-オレフィン系ポリマーを含むことが好ましく、その含有量は、透過側流路材を構成する組成物中、5~60重量%であることが好ましい。 Further, the composition constituting the permeation side flow path member preferably contains a low crystalline α-olefin polymer, and the content thereof is 5 to 60% by weight in the composition constituting the permeation side flow path material. % Is preferred.
 本発明の低結晶性α-オレフィン系ポリマーとは、非晶性または低結晶性のα-オレフィン系ポリマーであり、例えばアタクチックポリプロピレンや立体規則性が低いアイソタクチックポリプロピレン等の低結晶性ポリプロピレン;エチレンおよび炭素数3~20のα-オレフィンからなる群から選ばれたエチレン・α-オレフィン共重合体(炭素数3~20のα-オレフィンとしては、直鎖状及び分岐状のα-オレフィンが含まれ、具体的には、直鎖状のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン等が例示され、分岐状のα-オレフィンとしては、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ヘキセン、2,2,4-トリメチル-1-ペンテン等が挙げられる);(B-3)市販品として、三井化学株式会社製「タフマー」、住友化学株式会社製「タフセレン」等のプロピレン・オレフィン共重合体等を例示できる。本発明においては、これらのうち1種または2種以上を用いることができる。なかでも低結晶性α-オレフィン系ポリマー(B)としては、高結晶性ポリプロピレンとの良好な相溶性、汎用性、分離膜のカール改善効果等の観点から、低結晶性ポリプロピレンおよびプロピレン・オレフィン共重合体がより好ましい。 The low crystalline α-olefin polymer of the present invention is an amorphous or low crystalline α-olefin polymer. For example, the low crystalline polypropylene such as atactic polypropylene or isotactic polypropylene having low stereoregularity. An ethylene / α-olefin copolymer selected from the group consisting of ethylene and an α-olefin having 3 to 20 carbon atoms (the α-olefin having 3 to 20 carbon atoms includes linear and branched α-olefins). Specifically, as the linear α-olefin, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octade , 1-nonadecene, 1-eicosene and the like. Examples of the branched α-olefin include 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl 1-hexene, 2,2,4-trimethyl-1-pentene, etc.); (B-3) Commercially available products such as “Tuffmer” manufactured by Mitsui Chemicals, Inc. and “Tufselen” manufactured by Sumitomo Chemical Co., Ltd. Examples include propylene / olefin copolymers. In the present invention, one or more of these can be used. Among them, the low crystalline α-olefin polymer (B) includes low crystalline polypropylene and propylene / olefin copolymer from the viewpoints of good compatibility with high crystalline polypropylene, versatility, and curling improvement effect of the separation membrane. A polymer is more preferred.
 本実施形態において、低結晶性α-オレフィン系ポリマー(B)の含有量は、透過側流路材を構成する組成物に対して、5~60重量%であることが好ましい。低結晶性α-オレフィン系ポリマーの含有量を5重量%以上とすることで、透過側流路材に柔軟性を付与でき、また高結晶性ポリプロピレンの結晶化速度を遅延させることができ、その結果、分離膜のカールを抑制できる。一方、低結晶性α-オレフィン系ポリマーの含有量が60重量%を超えると、分離膜のカールを大きく改善できるものの、透過側流路材の柔軟性が著しく高くなり、例えば2MPaを超えるような加圧条件で運転すると、透過側流路材の圧縮変形量が大きくなり、その結果、流路閉塞によって、分離膜エレメント性能(特に造水性能)が大きく低下する。低結晶性α-オレフィン系ポリマーの含有量は、透過側流路材の柔軟性および加圧下における圧縮変形性の点から、10~55重量%であることがより好ましく、15~50重量%であることが更に好ましい。 In the present embodiment, the content of the low crystalline α-olefin-based polymer (B) is preferably 5 to 60% by weight with respect to the composition constituting the permeation side flow path material. By setting the content of the low crystalline α-olefin polymer to 5% by weight or more, flexibility can be imparted to the permeate-side channel material, and the crystallization speed of the high crystalline polypropylene can be delayed. As a result, curling of the separation membrane can be suppressed. On the other hand, if the content of the low crystalline α-olefin polymer exceeds 60% by weight, the curl of the separation membrane can be greatly improved, but the flexibility of the permeate side channel material becomes remarkably high, for example exceeding 2 MPa. When operated under pressurized conditions, the amount of compressive deformation of the permeate-side channel material increases, and as a result, the separation membrane element performance (particularly water production performance) is greatly reduced due to channel blockage. The content of the low crystalline α-olefin polymer is more preferably 10 to 55% by weight, more preferably 15 to 50% by weight, from the viewpoint of flexibility of the permeation side channel material and compressive deformation under pressure. More preferably it is.
 また本発明において、分離膜本体の透過側の面に固着する透過側流路材には、発明の目的を損なわない範囲で、熱流動性向上剤、フィラー、酸化防止剤、滑剤等の添加剤を1種類あるいは2種類以上含んでいてもよい。 Further, in the present invention, the permeate-side channel material fixed to the permeate-side surface of the separation membrane main body is an additive such as a thermal fluidity improver, a filler, an antioxidant, a lubricant, etc., as long as the object of the invention is not impaired. 1 type or 2 types or more may be included.
 熱流動性向上剤としては、例えば、ポリエチレンワックス、ポリプロピレンワックス、アタクチックポリプロピレンワックス、フィッシャー・トロプシュワックス等の合成ワックス;パラフィンワックス、マイクロワックス等の石油ワックス;カルナウバロウ、ミツロウ等の天然ワックス;ロジン、水添ロジン、重合ロジン、ロジンエステル等のロジン系樹脂;テルペン、水素化テルペン、芳香族変性テルペン、芳香族変性水素化テルペン等のテルペン系樹脂;出光興産株式会社製「アイマーブ」(商品名)、荒川化学工業株式会社製「アルコン」(商品名)、東ソー株式会社製「ペトコール」、「ペトロタック」(いずれも商品名)等の水素化石油樹脂等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上混合して用いてもよい。これらのうち、組成物の熱流動性向上効果、高結晶性ポリプロピレンとの相溶性、加熱溶融時の組成物の耐熱分解性の点から、合成ワックス、テルペン系樹脂、水素化石油樹脂が好ましい。またその含有量は、透過側流路材を構成する組成物の溶融粘度を調整するため、適宜設定できるが、透過側流路材の耐圧性低下や流路材表面へのブリードアウトの発生を防ぐことを考慮すると、透過側流路材を構成する組成物中、50重量%以下であることが好ましく、40重量%以下であることがより好ましい。 Examples of the thermal fluidity improver include synthetic waxes such as polyethylene wax, polypropylene wax, atactic polypropylene wax, Fischer-Tropsch wax; petroleum waxes such as paraffin wax and microwax; natural waxes such as carnauba wax and beeswax; rosin, Rosin resins such as hydrogenated rosin, polymerized rosin, and rosin ester; Terpene resins such as terpenes, hydrogenated terpenes, aromatic modified terpenes, and aromatic modified hydrogenated terpenes; “Imabe” manufactured by Idemitsu Kosan Examples include hydrogenated petroleum resins such as “Alcon” (trade name) manufactured by Arakawa Chemical Industries, Ltd., “Petocol”, “Petrotac” (all trade names) manufactured by Tosoh Corporation, and the like, but are not limited thereto. Moreover, you may use these individually or in mixture of 2 or more types. Of these, synthetic waxes, terpene resins, and hydrogenated petroleum resins are preferred from the viewpoint of the effect of improving the thermal fluidity of the composition, the compatibility with highly crystalline polypropylene, and the heat decomposability of the composition during heating and melting. In addition, the content can be appropriately set in order to adjust the melt viscosity of the composition constituting the permeate-side flow path material, but it may cause a decrease in pressure resistance of the permeate-side flow path material and the occurrence of bleed out on the surface of the flow path material. In consideration of prevention, it is preferably 50% by weight or less, more preferably 40% by weight or less, in the composition constituting the permeation side channel material.
 酸化防止剤としては、フェノール系化合物;リン系化合物;ヒンダードアミン系化合物;イオウ系化合物等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上を混合して用いてもよい。透過側流路材の成形時、組成物の熱分解を抑制する点から、含有量は、透過側流路材を構成する組成物に対して、0.001~1重量%であることが好ましい。 Examples of the antioxidant include, but are not limited to, phenolic compounds; phosphorus compounds; hindered amine compounds; sulfur compounds. Moreover, you may use these individually or in mixture of 2 or more types. The content is preferably 0.001 to 1% by weight with respect to the composition constituting the permeate-side channel material from the viewpoint of suppressing thermal decomposition of the composition at the time of forming the permeate-side channel material. .
 滑剤としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド系化合物;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸亜鉛等の金属せっけん;脂肪酸エステル系化合物等を例示できるが、これらに限定されない。また、これらを単独で、また2種以上を混合して用いてもよい。 As the lubricant, fatty acid amide compounds such as stearamide, oleic acid amide, erucic acid amide, ethylene bis stearic acid amide; metal soaps such as calcium stearate, zinc stearate, magnesium stearate, zinc stearate; fatty acid ester Although a compound etc. can be illustrated, it is not limited to these. Moreover, you may use these individually or in mixture of 2 or more types.
 フィラーとしては、炭酸カルシウム、タルク、アルミナ、シリカ、マイカ、クレー等無機系化合物等を例示できるが、これらに限定されない。またこれらを単独で、また2種以上を混合して用いてもよい。透過側流路材の成形性、組成物の増粘、加工装置の摩耗の点から、含有量は、透過側流路材を構成する組成物に対して、3~30重量%であることが好ましい。 Examples of fillers include, but are not limited to, inorganic compounds such as calcium carbonate, talc, alumina, silica, mica, and clay. These may be used alone or in admixture of two or more. From the viewpoint of moldability of the permeate side channel material, thickening of the composition, and wear of the processing apparatus, the content is 3 to 30% by weight with respect to the composition constituting the permeate side channel material. preferable.
 本実施形態において、分離膜本体の透過側の面に固着する透過側流路材の引張伸度は5%以上であることが好ましい。引張伸度が5%以上である場合、分離膜をロール搬送したり、巻取機に巻き取っても、流路材の破損や破壊を抑制でき、高品質な分離膜を得ることができ、またエレメント製造工程において、取扱性が良好となる。引張伸度は7%以上であることがより好ましく、10%以上であることが更に好ましい。また、引張伸度は、高いほど破壊に要するエネルギーが高くなり、靭性の点からは好ましいが、過度に高くすると、定応力下での変形量が大きくなってしまうため、300%以下が好ましく、200%以下がより好ましい。 In this embodiment, it is preferable that the tensile elongation of the permeate-side channel material fixed to the permeate-side surface of the separation membrane body is 5% or more. If the tensile elongation is 5% or more, even if the separation membrane is rolled or wound on a winder, the flow channel material can be prevented from being damaged or broken, and a high-quality separation membrane can be obtained. In the element manufacturing process, handleability is improved. The tensile elongation is more preferably 7% or more, still more preferably 10% or more. In addition, the higher the tensile elongation, the higher the energy required for fracture, which is preferable from the viewpoint of toughness. However, if the tensile elongation is excessively high, the amount of deformation under a constant stress increases, so 300% or less is preferable. 200% or less is more preferable.
 本実施形態において、分離膜本体の透過側の面に固着する透過側流路材の引張弾性率は0.2~2.0GPaであることが好ましい。引張弾性率を0.2GPa以上とすることで、分離膜エレメントを2.0MPaを超えるような加圧条件下で運転しても、流路材の圧縮変形量を抑制でき、その結果、造水性能の低下を抑制できる。引張弾性率は、0.25GPa以上であることがより好ましく、0.30GPa以上であることが更に好ましい。引張弾性率は高ければ高いほど、加圧運転時の流路材の圧縮変形量を抑制できるが、実質的に2.0GPa以上を達成することは困難である。 In this embodiment, it is preferable that the tensile elastic modulus of the permeate-side channel material fixed to the permeate-side surface of the separation membrane main body is 0.2 to 2.0 GPa. By setting the tensile modulus to 0.2 GPa or more, even when the separation membrane element is operated under a pressure condition exceeding 2.0 MPa, the amount of compressive deformation of the flow path material can be suppressed. A decrease in performance can be suppressed. The tensile elastic modulus is more preferably 0.25 GPa or more, and further preferably 0.30 GPa or more. The higher the tensile elastic modulus, the more the amount of compressive deformation of the channel material during the pressurizing operation can be suppressed, but it is difficult to substantially achieve 2.0 GPa or more.
 <突起物の形状および配置>
 <<概要>>
 従来広く用いられているトリコットは編み物であり、立体的に交差した糸で構成されている。つまり、トリコットは、二次元的に連続した構造を有している。このようなトリコットが透過側流路材として適用された場合、流路の高さはトリコットの厚みよりも小さくなる。すなわち、溝とならない割合が多い構造である。
<Shape and arrangement of protrusions>
<< Overview >>
A tricot that has been widely used in the past is a knitted fabric, and is composed of three-dimensionally intersecting yarns. That is, the tricot has a two-dimensionally continuous structure. When such a tricot is applied as a permeate-side channel material, the height of the channel is smaller than the thickness of the tricot. That is, it is a structure with many ratios which do not become a groove.
 これに対して、本発明の構成の例として、図2等に示す突起物301が、空隙を有するシート302に配置されている。よって、本実施形態の突起物301の高さ(つまり厚み)が流路の溝の高さとして活用され、さらにシート302が空隙を有するため流路として活用できる。よって、本実施形態の流路材と同じ厚みを有するトリコットが適用された場合よりも、流路(突起物301の間の溝やシート302中の空隙)が広く存在するため、流動抵抗はより小さくなる。 On the other hand, as an example of the configuration of the present invention, a protrusion 301 shown in FIG. 2 and the like is arranged on a sheet 302 having a gap. Therefore, the height (that is, the thickness) of the protrusion 301 of the present embodiment can be used as the height of the groove of the flow path, and the sheet 302 can be used as the flow path because it has a gap. Therefore, the flow resistance (the groove between the protrusions 301 and the gap in the sheet 302) is wider than when a tricot having the same thickness as the flow path material of the present embodiment is applied, so that the flow resistance is more Get smaller.
 また、各図に示した形態では、不連続な複数の突起物301が、1つのシート302上に固着されている。「不連続」とは、複数の流路材が、間隔を置いて設けられている状態である。つまり、1枚の突起物301をシート302から剥離すると、互いに分かれた複数の突起物301が得られる。これに対して、ネット、トリコットおよびフィルム等の部材は、流路がシート302から分離されても、連続した一体の形状を示す。 Moreover, in the form shown in each drawing, a plurality of discontinuous protrusions 301 are fixed on one sheet 302. “Discontinuous” is a state in which a plurality of flow path members are provided at intervals. That is, when one protrusion 301 is peeled from the sheet 302, a plurality of protrusions 301 separated from each other are obtained. On the other hand, members such as nets, tricots, and films exhibit a continuous and integral shape even when the flow path is separated from the sheet 302.
 不連続な複数の突起物301が設けられていることで、分離膜2は、後述の分離膜エレメント100に組み込まれたときに、圧力損失を低く抑えることができる。このような構成の一例として、図2では、突起物301は第1方向(シート302の幅方向)においてのみ不連続に形成されおり、図3では第1方向(シート302の幅方向)および第2方向(分離膜の長さ方向)のいずれにおいても不連続に形成されている。 Since the plurality of discontinuous protrusions 301 are provided, the separation membrane 2 can suppress pressure loss when it is incorporated into the separation membrane element 100 described later. As an example of such a configuration, in FIG. 2, the protrusions 301 are formed discontinuously only in the first direction (the width direction of the sheet 302), and in FIG. 3, the first direction (the width direction of the sheet 302) and the first It is formed discontinuously in any of the two directions (the length direction of the separation membrane).
 図2および図3において、隣接する突起物301の間の空間に、透過側流路5が形成される。
 透過側流路材31は、図2に示す形態では、第1方向において不連続に設けられると共に、第2方向において、シート302の一端から他端まで連続するように設けられる。つまり、図5のように分離膜エレメントにシート302が組み込まれたときに、突起物301は、巻回方向におけるシート302の内側端部から外側端部まで連続するように配置される。巻回方向の内側とは、分離膜において集水管6に近い側であり、巻回方向の外側とは、分離膜において集水管6から遠い側である。
2 and 3, the permeate-side flow path 5 is formed in the space between the adjacent protrusions 301.
In the form shown in FIG. 2, the permeation-side channel material 31 is provided discontinuously in the first direction and is provided so as to continue from one end of the sheet 302 to the other end in the second direction. That is, when the sheet 302 is incorporated into the separation membrane element as shown in FIG. 5, the protrusions 301 are arranged so as to continue from the inner end to the outer end of the sheet 302 in the winding direction. The inner side in the winding direction is the side close to the water collecting pipe 6 in the separation membrane, and the outer side in the winding direction is the side far from the water collecting pipe 6 in the separation membrane.
 流路材が「第2方向において連続する」とは、図2のように流路材が途切れることなく設けられている場合と、図3のように、流路材が途切れる箇所はあるが、流路材が実質的に連続している場合の両方を包含する。「実質的に連続する」形態とは、好ましくは、図3に示すように、第2方向における流路材の間隔e(つまり流路材において途切れている部分の長さ)が5mm以下であることを満たす。特に、間隔eは、1mm以下を満たすことがより好ましく、0.5mm以下であることがさらに好ましい。また、第2方向において並ぶ一列の流路材の先頭から最後尾までに含まれる間隔eの合計値が、100mm以下であることが好ましく、30mm以下であることがより好ましく3mm以下であることがさらに好ましい。なお、図2の形態では、間隔eは0(ゼロ)である。 The passage material is “continuous in the second direction” means that the passage material is provided without interruption as shown in FIG. 2 and the passage material is interrupted as shown in FIG. It includes both cases where the channel material is substantially continuous. In the “substantially continuous” form, preferably, as shown in FIG. 3, the distance e between the flow path members in the second direction (that is, the length of the discontinuous portion in the flow path material) is 5 mm or less. Satisfy that. In particular, the distance e is more preferably 1 mm or less, and further preferably 0.5 mm or less. In addition, the total value of the intervals e included from the beginning to the end of the line of flow path materials arranged in the second direction is preferably 100 mm or less, more preferably 30 mm or less, and more preferably 3 mm or less. Further preferred. In the form of FIG. 2, the interval e is 0 (zero).
 図2のように突起物301が第2方向に途切れずに設けられている場合、加圧ろ過時に膜落ち込みが抑制される。膜落ち込みとは、膜が流路に落ち込んで流路を狭めることである。 When the protrusions 301 are provided without interruption in the second direction as shown in FIG. 2, membrane dropping is suppressed during pressure filtration. Membrane sagging is that the membrane falls into the channel and narrows the channel.
 図3では、突起物301は、第1方向だけでなく第2方向においても不連続に設けられている。つまり、突起物301は、長さ方向において間隔をおいて設けられている。ただし、上述したように、突起物301が第2方向において実質的に連続していることで、膜落ち込みが抑制される。しかしながら、このように、2つの方向において不連続な突起物301が設けられることで、流路材と流体との接触面積が小さくなるので圧力損失が小さくなる。この形態は、透過側流路5が分岐点を備える構成であるとも言い換えられる。つまり、図3の構成において、透過流体は、透過側流路5を流れながら、突起物301やシート302によって分けられ、さらに下流で合流することができる。 In FIG. 3, the protrusions 301 are discontinuously provided not only in the first direction but also in the second direction. That is, the protrusions 301 are provided at intervals in the length direction. However, as described above, the protrusions 301 are substantially continuous in the second direction, so that film sagging is suppressed. However, by providing the discontinuous protrusions 301 in the two directions as described above, the contact area between the flow path material and the fluid is reduced, so that the pressure loss is reduced. In other words, this form is a configuration in which the permeation-side flow path 5 includes a branch point. That is, in the configuration of FIG. 3, the permeating fluid is divided by the projections 301 and the sheet 302 while flowing through the permeation side flow path 5, and can be further merged downstream.
 上述したように、図2では、突起物301が、第2方向においてシート302の一端から他端まで連続するように設けられている。また、図3では第2方向において突起物301は複数の部分に分割されているが、これらの複数の部分が、シート302の一端から他端まで並ぶように設けられている。 As described above, in FIG. 2, the protrusions 301 are provided so as to be continuous from one end to the other end of the sheet 302 in the second direction. In FIG. 3, the protrusion 301 is divided into a plurality of portions in the second direction, but the plurality of portions are provided so as to be arranged from one end to the other end of the sheet 302.
 流路材が「シートの一端から他端まで設けられている」とは、突起物301がシート302の縁まで設けられている形態と、縁近傍において突起物301が設けられていない領域がある形態との両方を包含する。つまり、突起物301は、透過側の流路を形成できる程度に、第2方向に渡って分布していればよく、シート302において、突起物301が設けられない部分があってもよい。例えば、透過側の面において、分離膜と接着された部分(接触部分と言い換えられる。)には、突起物301が設けられる必要はない。また、その他の仕様上または製造上の理由により、分離膜の端部などの一部の箇所に、突起物301が配置されない領域が設けられていてもよい。 The passage material is “provided from one end of the sheet to the other end” means that the protrusion 301 is provided to the edge of the sheet 302 and the region where the protrusion 301 is not provided in the vicinity of the edge. Includes both forms. In other words, the protrusions 301 need only be distributed in the second direction to such an extent that a passage on the transmission side can be formed, and the sheet 302 may have a portion where the protrusions 301 are not provided. For example, the protrusion 301 does not need to be provided in a portion (in other words, a contact portion) bonded to the separation membrane on the transmission side surface. In addition, for other specifications or manufacturing reasons, a region where the protrusions 301 are not disposed may be provided at some locations such as the end of the separation membrane.
 第1方向においても、突起物301は、シート302の全体にわたってほぼ均等に分布することができる。ただし、第2方向における分布と同様に、透過側の面における分離膜との接着部分には、突起物301が設けられる必要はない。また、その他の仕様上または製造上の理由により、シート302の端部などの一部の箇所に、突起物301が配置されない領域が設けられていてもよい。 Also in the first direction, the protrusions 301 can be distributed almost uniformly over the entire sheet 302. However, similarly to the distribution in the second direction, the protrusions 301 do not need to be provided at the bonding portion of the permeate side surface with the separation membrane. Further, for other specifications or manufacturing reasons, an area where the protrusions 301 are not arranged may be provided in some places such as the end of the sheet 302.
 <<突起物の寸法>>
 図2~図4において、a~fは下記値を指す。
 a:分離膜2の長さ
 b:分離膜2の幅方向における突起物301の間隔
 c:突起物の高さ(突起物301とシートの透過側の面22との高低差)
 d:突起物301の幅
 e:分離膜2の長さ方向における上記突起物の間隔
 f:突起物301の長さ
<< Dimension of protrusion >>
2 to 4, a to f indicate the following values.
a: Length of the separation membrane 2 b: Distance between the projections 301 in the width direction of the separation membrane 2 c: Height of the projections (height difference between the projections 301 and the surface 22 on the transmission side of the sheet)
d: Width of the protrusion 301 e: Distance between the protrusions in the length direction of the separation membrane 2 f: Length of the protrusion 301
 値a、b、c、d、e、fの測定には、例えば、市販の形状測定システムまたはマイクロスコープなどを用いることができる。各値は、1枚の分離膜において30箇所以上で測定を行い、それらの値を総和した値を測定総箇所の数で割って平均値を算出することで求められる。このように、少なくとも30箇所における測定の結果得られる各値が、以下に記載する範囲を満たせばよい。 For measurement of the values a, b, c, d, e, f, for example, a commercially available shape measuring system or a microscope can be used. Each value is obtained by performing measurement at 30 or more locations on one separation membrane, and calculating an average value by dividing the sum of these values by the number of measurement total locations. Thus, each value obtained as a result of the measurement at at least 30 locations should satisfy the range described below.
 (分離膜の長さa)
 長さaは、第2方向(分離膜の長さ方向)における分離膜2の一端から他端までの距離である。この距離が一定でない場合、1枚の分離膜2において30箇所以上の位置でこの距離を測定し、平均値を求めることで長さaを得ることができる。
(Separation membrane length a)
The length a is a distance from one end of the separation membrane 2 to the other end in the second direction (length direction of the separation membrane). When this distance is not constant, the length a can be obtained by measuring this distance at 30 or more positions in one separation membrane 2 and obtaining an average value.
 (分離膜の幅方向における突起物301の間隔b)
 第1方向(分離膜の幅方向)において隣接する突起物301の間隔bは、透過側流路5の幅に相当する。1つの断面において1つの透過側流路5の幅が一定でない場合、つまり隣り合う2つの突起物301の側面が平行でない場合は、1つの断面内で、1つの透過側流路5の幅の最大値と最小値の平均値を測定し、その平均値を算出する。図4に示すように、第2方向に垂直な断面において、突起物301は上が細く下が太い台形状を示す場合、まず、隣接する2つの突起物301の上部間の距離と下部間の距離を測定して、その平均値を算出する。任意の30箇所以上の断面において、隣接する2つの突起物301の間隔を測定して、それぞれの断面において平均値を算出する。そして、こうして得られた平均値の相加平均値をさらに算出することで、間隔bが算出される。
(Distance b between the protrusions 301 in the width direction of the separation membrane)
The interval b between the protrusions 301 adjacent in the first direction (the width direction of the separation membrane) corresponds to the width of the permeation side flow path 5. When the width of one permeation side flow path 5 is not constant in one cross section, that is, when the side surfaces of two adjacent projections 301 are not parallel, the width of one permeation side flow path 5 is within one cross section. Measure the average value of the maximum and minimum values and calculate the average value. As shown in FIG. 4, in the cross section perpendicular to the second direction, when the protrusion 301 has a trapezoidal shape with a thin top and a thick bottom, first, the distance between the upper portions of the two adjacent protrusions 301 and the lower portion The distance is measured and the average value is calculated. The distance between two adjacent protrusions 301 is measured at any 30 or more cross sections, and an average value is calculated for each cross section. And the space | interval b is calculated by calculating further the arithmetic mean value of the average value obtained in this way.
 間隔bが大きくなるにつれて圧力損失が小さくなるものの、膜落ち込みが生じやすくなる。逆に間隔bが小さいほど膜落ち込みが生じにくくなるが、圧力損失は大きくなる。圧力損失を考慮すると、間隔bは0.05mm以上、0.2mm以上、または0.3mm以上であることが好ましい。また、膜落ち込みの抑制という面では、間隔bは5mm以下、3mm以下、2mm以下、または0.8mm以下であることが好ましい。 As the distance b increases, the pressure loss decreases, but the film falls easily. Conversely, the smaller the distance b, the less likely the film will drop, but the greater the pressure loss. Considering the pressure loss, the interval b is preferably 0.05 mm or more, 0.2 mm or more, or 0.3 mm or more. Further, in terms of suppressing film sagging, the interval b is preferably 5 mm or less, 3 mm or less, 2 mm or less, or 0.8 mm or less.
 これらの上限および下限は任意に組み合わせられる。例えば、間隔bは、0.05mm 以上5mm以下であることが好ましく、この範囲であれば、膜落ち込みを抑えながら圧力損失を小さくすることができる。間隔bはより好ましくは、0.05mm以上3mm以下であり、0.2mm以上2mm以下であり、さらに好ましくは0.3mm以上0.8mm以下である。 These upper and lower limits can be combined arbitrarily. For example, the interval b is preferably 0.05 mm or more and 5 mm or less, and within this range, the pressure loss can be reduced while suppressing film sagging. The distance b is more preferably 0.05 mm or more and 3 mm or less, 0.2 mm or more and 2 mm or less, and further preferably 0.3 mm or more and 0.8 mm or less.
 (突起物の高さc)
 高さcとは、突起物とシート302の表面との高低差である。図4に示すように、高さcは、第2方向に垂直な断面における、突起物301の最も高い部分とシート302の透過側面との高さの差である。すなわち、突起物の高さとしては、基材中に含浸している部分の厚みは考慮しない。高さcは、30箇所以上の突起物301について高さを測定し、平均して得られる値である。突起物の高さcは、同一の平面内における流路材の断面の観察によって得られてもよいし、複数の平面における流路材の断面の観察によって得られてもよい。
(Projection height c)
The height c is a height difference between the protrusion and the surface of the sheet 302. As shown in FIG. 4, the height c is a difference in height between the highest portion of the protrusion 301 and the transmission side surface of the sheet 302 in a cross section perpendicular to the second direction. That is, the thickness of the portion impregnated in the base material is not considered as the height of the protrusion. The height c is a value obtained by measuring the heights of 30 or more protrusions 301 and averaging them. The height c of the protrusion may be obtained by observing the cross section of the flow path material in the same plane, or may be obtained by observing the cross sections of the flow path material in a plurality of planes.
 高さcは、分離膜エレメントの使用条件および目的などに応じて適宜選択できるが、例えば以下のように設定されてもよい。
 高さcが大きい方が流動抵抗は小さくなる。よって、高さcは0.03mm以上、0.05mm以上または0.1mm以上であることが好ましい。その一方で、高さcが小さい方が、1つの分離膜エレメント当たりに充填される膜の数が多くなる。よって、高さcは、0.8mm以下、0.4mm以下または0.32mm以下であることが好ましい。これらの上限および下限は組み合わせ可能であり、例えば、高さcは、0.03mm以上0.8mm以下(30μm以上800μm以下)であることが好ましく、0.05mm以上0.4mm以下であることが好ましく、0.1mm以上0.32mm以下であることがさらに好ましい。
The height c can be appropriately selected according to the use conditions and purpose of the separation membrane element, but may be set as follows, for example.
The larger the height c, the smaller the flow resistance. Therefore, the height c is preferably 0.03 mm or more, 0.05 mm or more, or 0.1 mm or more. On the other hand, the smaller the height c, the larger the number of membranes filled per separation membrane element. Therefore, the height c is preferably 0.8 mm or less, 0.4 mm or less, or 0.32 mm or less. These upper and lower limits can be combined. For example, the height c is preferably 0.03 mm to 0.8 mm (30 μm to 800 μm), and preferably 0.05 mm to 0.4 mm. Preferably, it is 0.1 mm or more and 0.32 mm or less.
 また、隣り合う2つの流路材の高さの差が小さいことが好ましい。高さの差が大きいと加圧ろ過時に分離膜の歪みが生じるので、分離膜に欠陥が発生することがある。隣接する2つの流路材の高低差は、0.1mm以下(100μm以下)であることが好ましく、0.06mm以下であることがより好ましく、0.04mm以下であることがさらに好ましい。
 同様の理由から、シート302に設けられた全ての突起物301の最大高低差は0.25mm以下であることが好ましく、特に好ましくは0.1mm以下であり、さらに好ましくは0.03mm以下である。
Moreover, it is preferable that the difference in height between two adjacent channel materials is small. If the difference in height is large, the separation membrane is distorted during pressure filtration, so that defects may occur in the separation membrane. The difference in height between two adjacent channel materials is preferably 0.1 mm or less (100 μm or less), more preferably 0.06 mm or less, and further preferably 0.04 mm or less.
For the same reason, the maximum height difference of all the protrusions 301 provided on the sheet 302 is preferably 0.25 mm or less, particularly preferably 0.1 mm or less, and further preferably 0.03 mm or less. .
 (流路材の幅d)
 突起物301の幅dは、次のように測定される。まず、第1方向(分離膜の幅方向)に垂直な1つの断面において、1つの突起物301の最大幅と最小幅の平均値を算出する。つまり、図4に示すような上部が細く下部が太い突起物301においては、流路材下部の幅と上部の幅を測定し、その平均値を算出する。このような平均値を少なくとも30箇所の断面において算出し、その相加平均を算出することで、1枚の膜当たりの幅dを算出することができる。
(Width d of the channel material)
The width d of the protrusion 301 is measured as follows. First, in one section perpendicular to the first direction (the width direction of the separation membrane), the average value of the maximum width and the minimum width of one protrusion 301 is calculated. That is, in the protrusion 301 having a thin upper part and a thick lower part as shown in FIG. 4, the width of the lower part and the upper part of the flow path material are measured, and the average value is calculated. By calculating such an average value in at least 30 cross-sections and calculating the arithmetic average thereof, the width d per film can be calculated.
 突起物301の幅dは、好ましくは0.2mm以上であり、より好ましくは0.3mm以上である。幅dが0.2mm以上であることで、分離膜エレメントの運転時に突起物301やシート302に圧力がかかっても、流路材の形状を保持することができ透過側流路が安定的に形成される。幅dは、好ましくは2mm以下であり、より好ましくは1.5mm以下である。幅dが2mm以下であることで、透過側の流路を十分確保することができる。 The width d of the protrusion 301 is preferably 0.2 mm or more, and more preferably 0.3 mm or more. When the width d is 0.2 mm or more, the shape of the flow path material can be maintained even when pressure is applied to the projections 301 and the sheet 302 during operation of the separation membrane element, and the permeate-side flow path is stable. It is formed. The width d is preferably 2 mm or less, and more preferably 1.5 mm or less. When the width d is 2 mm or less, a sufficient flow path on the permeate side can be secured.
 突起物301の幅dが第2方向での突起物301の間隔bよりも広いことで、流路材にかかる圧力を分散することができる。
 突起物301は、その長さがその幅よりも大きくなるように形成されている。このように長い突起物301は「壁状物」とも称される。
Since the width d of the protrusions 301 is wider than the interval b of the protrusions 301 in the second direction, the pressure applied to the flow path material can be dispersed.
The protrusion 301 is formed so that its length is larger than its width. Such a long protrusion 301 is also referred to as a “wall-like object”.
 (分離膜の長さ方向における突起物の間隔e)
 第2方向(分離膜の長さ方向)における突起物301の間隔eは、第2方向(分離膜の長さ方向)において隣り合う突起物301間の最短距離である。図2に示すように、突起物301が第2方向において分離膜2の一端から他端まで(分離膜エレメント内では、巻回方向の内側端部から外側端部まで)連続して設けられている場合、間隔eは0mmである。また、図3に示すように、突起物301が第2方向において途切れている場合、間隔eは、好ましくは5mm以下であり、より好ましくは1mm以下であり、さらに好ましくは0.5mm以下である。間隔eが上記範囲内であることで、膜落ち込みが生じても膜への機械的負荷が小さく、流路閉塞による圧力損失を比較的小さくすることができる。なお、間隔eの下限は、0mmである。
(Protrusion spacing e in the length direction of the separation membrane)
The distance e between the protrusions 301 in the second direction (length direction of the separation membrane) is the shortest distance between the protrusions 301 adjacent in the second direction (length direction of the separation film). As shown in FIG. 2, the protrusions 301 are continuously provided from one end to the other end of the separation membrane 2 in the second direction (in the separation membrane element, from the inner end to the outer end in the winding direction). If there is, the interval e is 0 mm. Moreover, as shown in FIG. 3, when the protrusion 301 is interrupted in the second direction, the interval e is preferably 5 mm or less, more preferably 1 mm or less, and further preferably 0.5 mm or less. . When the distance e is within the above range, the mechanical load on the film is small even when the film is dropped, and the pressure loss due to the blockage of the flow path can be relatively small. In addition, the minimum of the space | interval e is 0 mm.
 (突起物の長さf)
 突起物301の長さfは、分離膜2の長さ方向(つまり第2方向)における突起物301の長さである。長さfは、1枚の分離膜2内で、30個以上の突起物301の長さを測定し、その平均値を算出することで求められる。突起物301の長さfは、分離膜の長さa以下であればよい。突起物301の長さfが分離膜の長さaと同等のときは、突起物301が分離膜2の巻回方向内側端部から外側端部へ連続的に設けられていることを指す。長さfは、好ましくは10mm以上であり、より好ましくは20mm以上である。長さfが10mm以上であることで、圧力下でも流路が確保される。
(Projection length f)
The length f of the protrusion 301 is the length of the protrusion 301 in the length direction of the separation membrane 2 (that is, the second direction). The length f is obtained by measuring the length of 30 or more protrusions 301 in one separation membrane 2 and calculating an average value thereof. The length f of the protrusion 301 may be equal to or less than the length a of the separation membrane. When the length f of the protrusion 301 is equal to the length a of the separation membrane, it means that the protrusion 301 is continuously provided from the inner end to the outer end in the winding direction of the separation membrane 2. The length f is preferably 10 mm or more, more preferably 20 mm or more. Since the length f is 10 mm or more, the flow path is secured even under pressure.
 (突起物の形状)
 突起物301の形状は特に限定されないが、流路の流動抵抗を少なくし、透過させた際の流路を安定化させるような形状が選択され得る。これらの点で、分離膜の面方向に垂直ないずれかの断面において、突起物301の形状は、直柱状や台形状、曲柱状、あるいはそれらの組み合わせでもよい。
(Shape of protrusion)
The shape of the protrusion 301 is not particularly limited, but a shape that reduces the flow resistance of the channel and stabilizes the channel when permeated can be selected. In these respects, the shape of the protrusion 301 in any cross section perpendicular to the surface direction of the separation membrane may be a straight column shape, a trapezoidal shape, a curved column shape, or a combination thereof.
 突起物301の断面形状が台形の場合、上底の長さと下底の長さとの差が大きすぎると、小さい方に接する膜で加圧ろ過時の膜落込みが生じやすくなる。例えば、流路材の上底の方が下底よりも短い場合、その間の流路においては、上部の幅は下部の幅よりも広い。よって、上の膜が下に向かって落ち込みやすい。そこで、このような落ち込みを抑制するために、流路材の下底の長さに対する上底の長さの比率は0.6以上1.4以下が好ましく、0.8以上1.2以下がさらに好ましい。 When the protrusion 301 has a trapezoidal cross-sectional shape, if the difference between the length of the upper base and the length of the lower base is too large, the membrane that contacts the smaller side is likely to drop during pressure filtration. For example, when the upper base of the channel material is shorter than the lower base, the upper width of the channel between them is wider than the lower width. Therefore, the upper film tends to drop downward. Therefore, in order to suppress such a drop, the ratio of the length of the upper base to the length of the lower base of the flow path material is preferably 0.6 or more and 1.4 or less, and is 0.8 or more and 1.2 or less. Further preferred.
 突起物301の形状は、流動抵抗を低減する観点から、後述の分離膜面に対して垂直な直柱状であることが好ましい。また、突起物301は、高い箇所ほど幅が小さくなるように形成されていてもよいし、逆に高い箇所ほど幅が広くなるように形成されていてもよいし、分離膜表面からの高さによらず、同じ幅を有するように形成されていてもよい。
 ただし、加圧ろ過時の流路材潰れが著しくない範囲であれば、突起物301の断面において、その上辺が丸みを帯びていても良い。
From the viewpoint of reducing flow resistance, the shape of the protrusion 301 is preferably a straight column shape perpendicular to the later-described separation membrane surface. Further, the protrusion 301 may be formed so that the width becomes smaller at a higher part, or conversely, the protrusion 301 may be formed so that the width becomes wider at a higher part, or the height from the surface of the separation membrane. Regardless, it may be formed to have the same width.
However, the upper side of the projection 301 may be rounded in the cross section of the protrusion 301 as long as the flow path material is not significantly crushed during pressure filtration.
 突起物301は熱可塑性樹脂で形成可能である。突起物301が熱可塑性樹脂であれば、処理温度および選択する熱可塑性樹脂の種類を変更することで、要求される分離特性や透過性能の条件を満足できるように自由に流路材の形状を調整することができる。 The protrusion 301 can be formed of a thermoplastic resin. If the projection 301 is a thermoplastic resin, the shape of the flow path material can be freely changed so that the required separation characteristics and permeation performance conditions can be satisfied by changing the processing temperature and the type of thermoplastic resin to be selected. Can be adjusted.
 また、突起物301の分離膜の平面方向における形状は、図2および図3に示すように、全体として直線状であってもよく、その他の形状として、例えば曲線状、鋸歯状、波線状であってもよい。また、これらの形状において、突起物301は破線状やドット状であってもよい。流動抵抗を低減する観点からドット状や破線状が好ましいが、流路材が途切れるために加圧ろ過時の膜落ち込みが発生する箇所が多くなるため、用途に応じて適宜設定すれば良い。 Further, as shown in FIGS. 2 and 3, the shape of the projection 301 in the planar direction of the separation membrane may be linear as a whole, and other shapes are, for example, curved, sawtooth, and wavy. There may be. Moreover, in these shapes, the protrusion 301 may have a broken line shape or a dot shape. From the viewpoint of reducing the flow resistance, a dot shape or a broken line shape is preferable. However, since the flow path material is interrupted, the number of places where film sagging occurs during pressure filtration increases.
 また、突起物301のシート302の平面方向における形状が直線状である場合、隣り合う流路材は、互いに略平行に配置されていてもよい。「略平行に配置される」とは、例えば、流路材が分離膜上で交差しないこと、隣り合う2つの流路材の長手方向のなす角度が0°以上30°以下であること、上記角度が0°以上15°以下であること、及び上記角度が0°以上5°以下であること等を包含する。 Further, when the shape of the projection 301 in the planar direction of the sheet 302 is a straight line, the adjacent flow path members may be arranged substantially parallel to each other. “Arranged substantially in parallel” means, for example, that the channel material does not intersect on the separation membrane, the angle formed by the longitudinal direction of two adjacent channel materials is 0 ° or more and 30 ° or less, It includes that the angle is from 0 ° to 15 °, and that the angle is from 0 ° to 5 °.
 また、突起物301の長手方向と集水管6の長手方向との成す角度は、60°以上120°以下であることが好ましく、75°以上105°以下であることがより好ましく、85°以上95°以下であることがさらに好ましい。流路材の長手方向と集水管の長手方向との成す角度が上記範囲であることで、透過水が効率良く集水管に集められる。 The angle formed between the longitudinal direction of the protrusion 301 and the longitudinal direction of the water collecting pipe 6 is preferably 60 ° or more and 120 ° or less, more preferably 75 ° or more and 105 ° or less, and 85 ° or more and 95. More preferably, it is not more than 0 °. When the angle formed by the longitudinal direction of the flow path material and the longitudinal direction of the water collecting pipe is within the above range, the permeated water is efficiently collected in the water collecting pipe.
 流路を安定して形成するには、分離膜エレメントにおいて分離膜が加圧されたときの分離膜の落ち込みを抑制できることが好ましい。そのためには、分離膜と流路材との接触面積が大きいこと、つまり分離膜の面積に対する流路材の面積(分離膜の膜面に対する流路材の投影面積)が大きいことが好ましい。一方で、圧力損失を低減させるには、流路の断面積が広いことが好ましい。流路の断面としては、流路の長手方向に対して垂直な分離膜と流路材との接触面積を大きく確保しつつ、かつ流路の断面積を広く確保するには、流路の断面形状は凹レンズ状であることが好ましい。また、突起物301は、巻回方向に垂直な方向での断面形状において、幅に変化のない直柱状であってもよい。また、分離膜性能に影響を与えない範囲内であれば、突起物301は、巻回方向に垂直な方向での断面形状において、幅に変化があるような台形状の壁状物、楕円柱、楕円錐、四角錐あるいは半球のような形状であってもよい。 In order to form the flow path stably, it is preferable that the separation membrane can be prevented from dropping when the separation membrane is pressurized in the separation membrane element. For this purpose, it is preferable that the contact area between the separation membrane and the channel material is large, that is, the area of the channel material relative to the area of the separation membrane (projected area of the channel material with respect to the membrane surface of the separation membrane) is large. On the other hand, in order to reduce pressure loss, it is preferable that the cross-sectional area of a flow path is wide. In order to ensure a large cross-sectional area of the flow path while ensuring a large contact area between the separation membrane and the flow path material perpendicular to the longitudinal direction of the flow path, The shape is preferably a concave lens. Further, the protrusion 301 may have a straight column shape having no change in width in a cross-sectional shape in a direction perpendicular to the winding direction. In addition, the protrusion 301 is a trapezoidal wall-like object or elliptical column whose width changes in the cross-sectional shape in the direction perpendicular to the winding direction as long as it does not affect the separation membrane performance. The shape may be an elliptical cone, a quadrangular pyramid, or a hemisphere.
 突起物301の形状は、図2、図3、図4に示す形状に限定されるものではない。シート302に、例えばホットメルト法のように、溶融した材料を固着させることで流路材を配置する場合は、処理温度や選択するホットメルト用樹脂の種類を変更することで、要求される分離特性および透過性能の条件を満足できるように、突起物301の形状を自由に調整することができる。 The shape of the protrusion 301 is not limited to the shape shown in FIGS. When the flow path material is arranged by fixing a molten material to the sheet 302, for example, as in the hot melt method, the required separation is achieved by changing the processing temperature and the type of hot melt resin to be selected. The shape of the protrusion 301 can be freely adjusted so that the conditions of the characteristics and the transmission performance can be satisfied.
 図2では、突起物301の平面形状は、長さ方向において直線状である。ただし、突起物301は、分離膜2の表面に対して凸であり、かつ分離膜エレメントとしての所望の効果が損なわれない範囲であれば、他の形状に変更可能である。すなわち、流路材(突起物)の平面方向における形状は、曲線状および波線状等であってもよい。また、1つの分離膜に含まれる複数の流路材(突起物)が、幅および長さの少なくとも一方が互いに異なるように形成されていてもよい。 In FIG. 2, the planar shape of the protrusion 301 is linear in the length direction. However, the protrusion 301 can be changed to another shape as long as it is convex to the surface of the separation membrane 2 and does not impair the desired effect as the separation membrane element. That is, the shape of the channel material (projection) in the planar direction may be a curved shape, a wavy shape, or the like. A plurality of flow path materials (projections) included in one separation membrane may be formed so that at least one of the width and the length is different from each other.
 (投影面積比)
 分離膜の透過側の面に対する突起物301の投影面積比は、特に透過側流路の流動抵抗を低減し、流路を安定に形成させる点では、0.03以上0.85以下であることが好ましく、0.15以上0.85以下であることがより好ましく、0.2以上0.75以下であることがさらに好ましく、0.3以上0.6以下であることがさらに好ましい。なお、投影面積比とは、分離膜と透過側流路材を5cm×5cmで切り出し、透過側流路材を分離膜の面方向に平行な平面に投影した時に得られる流路材の投影面積を、切り出し面積(25cm)で割った値である。
(Projected area ratio)
The projected area ratio of the protrusions 301 to the permeation side surface of the separation membrane is 0.03 or more and 0.85 or less, particularly in terms of reducing the flow resistance of the permeation side flow path and forming the flow path stably. Is preferably 0.15 or more and 0.85 or less, more preferably 0.2 or more and 0.75 or less, and further preferably 0.3 or more and 0.6 or less. The projected area ratio is the projected area of the channel material obtained when the separation membrane and the permeation side channel material are cut out at 5 cm × 5 cm and the permeation side channel material is projected onto a plane parallel to the surface direction of the separation membrane. Is divided by the cut-out area (25 cm 2 ).
 (欠点率)
 図5に示すように、分離膜を透過した水は透過側流路5を通過して集水管6に集められる。分離膜において、集水管から遠い領域、つまり巻回方向外側の端部近傍の領域(図5における右側端部に近い領域)を透過した水は、集水管6に向かう間に、巻回方向において、より内側の領域を透過した水と合流し、集水管6へ向かう。よって、透過側流路においては、集水管6から遠い方が、存在する水量が少ない。
(Defect rate)
As shown in FIG. 5, the water that has permeated through the separation membrane passes through the permeation side flow path 5 and is collected in the water collecting pipe 6. In the separation membrane, water that has passed through a region far from the water collecting pipe, that is, a region in the vicinity of the outer end in the winding direction (region near the right end in FIG. 5) Then, it merges with the water that has permeated through the inner area, and goes to the water collecting pipe 6. Therefore, in the permeate side flow path, the amount of water present is smaller in the direction far from the water collecting pipe 6.
 そのため、巻回方向外側の端部近傍の領域において、透過側流路材が存在せず、その領域での流動抵抗が高くなっても、分離膜エレメント全体の造水量に与える影響は軽微である。同様の理由で、巻回方向外側の端部近傍の領域において、流路材の形成精度が低く、流路材を形成する樹脂が第1方向(分離膜の幅方向)において連続して塗布されていても、分離膜エレメントとしての造水量に与える影響は小さい。この領域において、分離膜の面方向(x-y平面)において、流路材を形成する樹脂が隙間無く塗布されている場合も同様である。 Therefore, there is no permeation-side flow path material in the region near the end on the outer side in the winding direction, and even if the flow resistance in that region becomes high, the influence on the water production amount of the entire separation membrane element is slight. . For the same reason, the formation accuracy of the flow path material is low in the region near the end on the outer side in the winding direction, and the resin forming the flow path material is continuously applied in the first direction (the width direction of the separation membrane). However, the influence on the amount of fresh water as a separation membrane element is small. In this region, the same applies to the case where the resin forming the flow path material is applied without any gap in the surface direction (xy plane) of the separation membrane.
 よって、図6に示すように、透過側流路材の巻回方向外側の端部から突起物301の巻回方向外側の端部までの距離、つまり、分離膜2の巻回方向外側端部に設けられた領域であって、透過側流路が形成されていない領域である、領域R3の第2方向(分離膜の長さ方向)における長さL3が、透過側流路材の第2方向における長さL1(上述の“a”に相当する。)に対して占める割合は、0%以上30%以下が好ましく、0%以上10%以下がさらに好ましく、0%以上3%以下が特に好ましい。この割合を欠点率と称する。領域R2は透過側流路が形成されている領域である。 Therefore, as shown in FIG. 6, the distance from the outer end in the winding direction of the permeate channel material to the outer end in the winding direction of the projection 301, that is, the outer end in the winding direction of the separation membrane 2. The length L3 in the second direction (length direction of the separation membrane) of the region R3, which is a region provided in the region where the permeation side flow channel is not formed, is the second permeation side flow channel material. The ratio of the length to the length L1 (corresponding to “a” described above) is preferably 0% or more and 30% or less, more preferably 0% or more and 10% or less, and particularly preferably 0% or more and 3% or less. preferable. This ratio is called a defect ratio. Region R2 is a region where a permeate-side flow path is formed.
 欠点率は、図6では、(L3/L1)×100(%)で表される。
 なお、図6では説明の便宜上、領域R3に突起物301が設けられていない形態を示している。ただし、領域R3は、幅方向に連続な突起物が設けられた領域であってもよい。
The defect rate is represented by (L3 / L1) × 100 (%) in FIG.
For convenience of explanation, FIG. 6 shows a form in which the protrusion 301 is not provided in the region R3. However, the region R3 may be a region provided with continuous protrusions in the width direction.
 図6は、透過側流路材の巻回方向外側の端部を、突起物301の長さ方向に切断した断面図である。図6において、シート302に突起物301が固着し、透過側流路材の巻回方向外側端部の手前まで延在している。なお、図6では説明の便宜上、突起物301が長さ方向に連続に設けられている形態を示しているが、突起物301として上述の種々の形態が適用されることは、すでに述べたとおりである。 FIG. 6 is a cross-sectional view of the end portion on the outer side in the winding direction of the permeate-side channel material cut in the length direction of the protrusion 301. In FIG. 6, the protrusion 301 is fixed to the sheet 302 and extends to the front of the outer end in the winding direction of the permeate-side channel material. For convenience of explanation, FIG. 6 shows a form in which the protrusions 301 are continuously provided in the length direction. However, as described above, the various forms described above are applied as the protrusions 301. It is.
 図6において、透過側流路材が設けられている領域をR2、突起物301(透過側流路材)が設けられていない領域をR3で示している。また分離膜2のMD方向の長さをL1、突起物301のMD方向の長さ(すなわち領域R2の長さ)をL2、突起物301が存在しない領域R3のMD方向の長さをL3で示している。ここでMD方向は、分離膜の長さ方向および分離膜の巻回方向を表す。 In FIG. 6, a region where the permeate side channel material is provided is indicated by R2, and a region where the projection 301 (permeate side channel material) is not provided is indicated by R3. The length of the separation membrane 2 in the MD direction is L1, the length of the protrusion 301 in the MD direction (that is, the length of the region R2) is L2, and the length of the region R3 in which the protrusion 301 is not present is L3. Show. Here, the MD direction represents the length direction of the separation membrane and the winding direction of the separation membrane.
 〔2.分離膜エレメント〕
 (2-1)概要
 図5に示すように、分離膜エレメント100は、集水管6と、上述したいずれかの構成を備えて集水管6の周囲に巻回された分離膜2を備える。
[2. Separation membrane element)
(2-1) Overview As shown in FIG. 5, the separation membrane element 100 includes the water collection pipe 6 and the separation membrane 2 wound around the water collection pipe 6 with any of the above-described configurations.
 (2-2)分離膜
 <概要>
 図5に示すように、分離膜2は、集水管6の周囲に巻回されており、分離膜2の幅方向が集水管6の長手方向に沿うように配置される。その結果、分離膜2は、長さ方向が巻回方向に沿うように配置される。
(2-2) Separation membrane <Overview>
As shown in FIG. 5, the separation membrane 2 is wound around the water collecting pipe 6, and is arranged so that the width direction of the separation membrane 2 is along the longitudinal direction of the water collecting pipe 6. As a result, the separation membrane 2 is disposed such that the length direction is along the winding direction.
 よって、図5に示すように、突起物301は、分離膜2の透過側の面22において、少なくとも集水管6の長手方向に対して不連続状に配置される。つまり、透過側流路5は、巻回方向において分離膜の外側端部から内側端部まで連続するように形成される。その結果、透過水が中心の集水管6へ到達し易く、すなわち流動抵抗が小さくなるので、大きな造水量が得られる。 Therefore, as shown in FIG. 5, the protrusions 301 are disposed discontinuously on at least the longitudinal direction of the water collecting pipe 6 on the permeation side surface 22 of the separation membrane 2. That is, the permeate-side channel 5 is formed so as to be continuous from the outer end to the inner end of the separation membrane in the winding direction. As a result, the permeated water can easily reach the central water collecting pipe 6, that is, the flow resistance is reduced, so that a large amount of fresh water can be obtained.
 「巻回方向の内側」及び「巻回方向の外側」は、図5に示す通りである。つまり、「巻回方向の内側端部」及び「巻回方向の外側端部」とはそれぞれ、分離膜2において集水管6に近い方の端部、及び遠い方の端部に該当する。 “Inside in winding direction” and “outside in winding direction” are as shown in FIG. That is, the “inner end in the winding direction” and the “outer end in the winding direction” correspond to the end closer to the water collecting pipe 6 and the far end in the separation membrane 2, respectively.
 上述したように、流路材は分離膜の縁まで達していなくてもよいので、例えば、図5において、巻回方向における封筒状膜(分離膜2)の外側端部、及び集水管長手方向における封筒状膜(分離膜2)の端部では、流路材が設けられていなくてもよい。 As described above, since the flow path material does not have to reach the edge of the separation membrane, for example, in FIG. 5, the outer end of the envelope-shaped membrane (separation membrane 2) in the winding direction and the longitudinal direction of the water collection tube In the end portion of the envelope membrane (separation membrane 2), a flow path material may not be provided.
 <膜リーフおよび封筒状膜>
 図1に示すように、分離膜は、膜リーフ4(本書において、単に「リーフ」と称することがある。)を形成する。リーフ4において分離膜2aは、供給側の面21aが、図示しない供給側流路材を挟んで他の分離膜2bの供給側の面21bと対向するように、配置される。膜リーフ4において、互いに向かい合う分離膜の供給側の面の間には供給側流路が形成される。
<Membrane leaf and envelope membrane>
As shown in FIG. 1, the separation membrane forms a membrane leaf 4 (sometimes simply referred to as “leaf” in this document). In the leaf 4, the separation membrane 2 a is arranged so that the supply-side surface 21 a faces the supply-side surface 21 b of another separation membrane 2 b with a supply-side channel material (not shown) interposed therebetween. In the membrane leaf 4, a supply-side flow path is formed between the supply-side surfaces of the separation membranes facing each other.
 さらに、図1に示すように、2枚の膜リーフ4が重ねられることで、分離膜2bの透過側の面22bに他の膜リーフの分離膜2cの透過側の面22cとが対向するように配置されることで、膜リーフ4は封筒状膜を形成する。封筒状膜は、向かい合う透過側の面が対向するように配置された2枚1組(分離膜2bと2cからなるもの)の分離膜である。封筒状膜は長方形状であり、透過水が集水管6に流れるように、透過側の面の間が分離膜の長方形状において、巻回方向内側の一辺のみにおいて開放され、他の三辺においては封止される。透過水はこの封筒状膜によって原水から隔離される。 Further, as shown in FIG. 1, the two membrane leaves 4 are overlapped so that the permeation side surface 22b of the separation membrane 2b faces the permeation side surface 22c of the separation membrane 2c of the other membrane leaf. The membrane leaf 4 forms an envelope-like film. The envelope membrane is a pair of separation membranes (one consisting of separation membranes 2b and 2c) arranged so that the surfaces on the permeate side facing each other face each other. The envelope-shaped membrane is rectangular, and the permeate side surface is rectangular in the separation membrane so that the permeate flows into the water collecting pipe 6, and is opened only on one side in the winding direction, and on the other three sides. Is sealed. The permeate is isolated from the raw water by this envelope membrane.
 封止としては、接着剤またはホットメルトなどにより接着されている形態、加熱またはレーザなどにより融着されている形態、およびゴム製シートが挟みこまれている形態が挙げられる。接着による封止は、最も簡便で効果が高いために特に好ましい。 Sealing includes a form bonded by an adhesive or hot melt, a form fused by heating or laser, and a form in which a rubber sheet is sandwiched. Sealing by adhesion is particularly preferable because it is the simplest and most effective.
 また、分離膜の供給側の面において、巻回方向における内側端部は、折りたたみ又は封止により閉じられている。分離膜の供給側面が、折り畳まれているのではなく封止されていることで、分離膜の端部における撓みが発生しにくい。折り目近傍での撓みの発生が抑制されることで、巻囲したときに分離膜間での空隙の発生およびこの空隙によるリークの発生が抑制される。 Also, on the surface on the supply side of the separation membrane, the inner end in the winding direction is closed by folding or sealing. Since the supply side surface of the separation membrane is sealed rather than folded, bending at the end of the separation membrane hardly occurs. By suppressing the occurrence of bending in the vicinity of the crease, the generation of voids between the separation membranes and the occurrence of leaks due to the voids are suppressed when wound.
 こうしてリークの発生が抑制されることで、封筒状膜の回収率が向上する。封筒状膜の回収率は、次のように求められる。すなわち、水中で分離膜エレメントのエアリークテスト(air leak test)を行って、リークが発生した封筒状膜数をカウントする。そのカウント結果に基づいて、(エアリークが発生した封筒状膜の数/評価に供した封筒状膜の数)の比率を、封筒状膜の回収率として算出する。 Thus, by suppressing the occurrence of leaks, the recovery rate of the envelope film is improved. The recovery rate of the envelope film is obtained as follows. That is, an air leak test (air leak test) of the separation membrane element is performed in water, and the number of envelope-shaped membranes in which the leak has occurred is counted. Based on the count result, the ratio of (number of envelope films in which air leak has occurred / number of envelope films used for evaluation) is calculated as the recovery rate of the envelope film.
 具体的なエアリークテストの方法は、以下のとおりである。分離膜エレメントの中心パイプの端部を封止し、もう一方の端部から空気を注入する。注入された空気は集水管の孔を通過して分離膜の透過側に到達するが、上記のように分離膜の折りたたみが不十分で折り目近傍で撓みが生じたりして空隙が存在すると、空気がその空隙を移動してしまう。その結果、分離膜の供給側へ空気が移動し、分離膜エレメントの端部(供給側)から水中に空気が到達する。このようにエアリークを気泡の発生として確認することができる。 The specific air leak test method is as follows. The end of the central pipe of the separation membrane element is sealed, and air is injected from the other end. The injected air passes through the holes of the water collecting pipe and reaches the permeation side of the separation membrane. However, as described above, if the separation membrane is not sufficiently folded and bent near the fold, Will move through the gap. As a result, the air moves to the supply side of the separation membrane, and the air reaches the water from the end (supply side) of the separation membrane element. Thus, air leak can be confirmed as the generation of bubbles.
 折り畳みによって膜リーフを形成する場合、リーフが長いほど(つまり元の分離膜が長いほど)分離膜の折りたたみに要する時間は長い。しかし、分離膜の供給側面を、折り畳みでなく封止することで、リーフが長くても製造時間の増大を抑制することができる。 When the membrane leaf is formed by folding, the longer the leaf (that is, the longer the original separation membrane), the longer the time required for folding the separation membrane. However, by sealing the supply side surface of the separation membrane instead of folding, an increase in manufacturing time can be suppressed even if the leaf is long.
 なお、膜リーフおよび封筒状膜において、互いに対向する分離膜(図1における分離膜2bおよび2c)は、同じ構成を備えてもよいし、異なる構成を備えてもよい。すなわち、分離膜エレメントにおいて、向かい合う2枚の透過側の面のうち、少なくとも一方に上述の透過側流路材が設けられていればよいので、透過側流路材を備える分離膜と、透過側流路材を備えない分離膜とが交互に重ねられていてもよい。ただし、説明の便宜上、分離膜エレメントおよびそれに関係する説明においては、「分離膜」は、透過側流路材を備えない分離膜(たとえば分離膜と同じ構成を備える膜)を含む。 In the membrane leaf and the envelope membrane, the separation membranes facing each other ( separation membranes 2b and 2c in FIG. 1) may have the same configuration or different configurations. That is, in the separation membrane element, at least one of the two permeation-side surfaces facing each other only needs to be provided with the above-described permeation-side flow passage material, so that the separation membrane provided with the permeation-side flow passage material and the permeation side Separation membranes that do not include a channel material may be alternately stacked. However, for convenience of explanation, in the separation membrane element and the explanation related thereto, the “separation membrane” includes a separation membrane that does not include the permeate-side channel material (for example, a membrane that has the same configuration as the separation membrane).
 透過側の面において、または供給側の面において、互いに対向する分離膜は、2枚の異なる分離膜であってもよいし、1枚の膜が折りたたまれたものであってもよい。 The separation membranes facing each other on the permeate side surface or the supply side surface may be two different separation membranes, or may be a single membrane folded.
 (2-3)透過側流路
 上述したように、分離膜2は突起物301を備えている。突起物301によって、封筒状膜の内側、つまり向かい合う分離膜の透過側の面の間には、透過側流路が形成される。
(2-3) Permeate-side flow path As described above, the separation membrane 2 includes the protrusions 301. By the protrusion 301, a permeate-side flow path is formed inside the envelope-shaped membrane, that is, between the permeate-side surfaces of the facing separation membrane.
 (2-4)供給側流路
 (流路材)
 分離膜エレメント100は、向かい合う分離膜の供給側の面の間に、分離膜2に対する投影面積比が0を超えて1未満となる供給側流路材(図8および図9の番号32参照)を備える。供給側流路材の投影面積比は0.03以上0.50以下であることが好ましく、さらに好ましくは0.10以上0.40以下、特に好ましくは、0.15以上0.35以下である。投影面積比が0.03以上0.50以下であることで、流動抵抗が比較的小さく抑えられる。なお、投影面積比とは、分離膜と供給側流路材を5cm×5cmで切り出し、供給側流路材を分離膜の面方向に平行な平面に投影した時に得られる流路材の投影面積を、切り出し面積(25cm)で割った値である。
(2-4) Supply side channel (Channel material)
In the separation membrane element 100, the supply-side flow path material in which the projected area ratio with respect to the separation membrane 2 exceeds 0 and is less than 1 between the surfaces on the supply side of the facing separation membrane (see reference numeral 32 in FIGS. 8 and 9). Is provided. The projected area ratio of the supply-side channel material is preferably 0.03 or more and 0.50 or less, more preferably 0.10 or more and 0.40 or less, and particularly preferably 0.15 or more and 0.35 or less. . When the projected area ratio is 0.03 or more and 0.50 or less, the flow resistance can be suppressed to be relatively small. The projected area ratio is the projected area of the channel material obtained when the separation membrane and the supply-side channel material are cut out at 5 cm × 5 cm and the supply-side channel material is projected onto a plane parallel to the surface direction of the separation membrane. Is divided by the cut-out area (25 cm 2 ).
 供給側流路材の高さは、後述するように各性能のバランスや運転コストを考慮すると0.5mmを超えて2.0mm以下が好ましく、0.6mm以上1.0mm以下がさらに好ましい。 The height of the supply-side channel material is preferably more than 0.5 mm and not more than 2.0 mm, more preferably not less than 0.6 mm and not more than 1.0 mm in consideration of the balance of each performance and operation cost as described later.
 供給側流路材の形状は特に限定されず、連続形状を有していてもよいし、不連続な形状を有していてもよい。連続形状を有する流路材としては、フィルムおよびネットといった部材が挙げられる。ここで、連続形状とは、実質的に流路材の全範囲において連続であることを意味する。連続形状には、造水量が低下するなどの不具合が生じない程度に、流路材の一部が不連続となる箇所が含まれていても良い。また、「不連続」の定義については、透過側の流路材について説明したとおりである(段落0077参照)。なお、供給側流路材の材料は特に限定されず、分離膜と同素材であっても異素材であっても良い。 The shape of the supply-side channel material is not particularly limited, and may have a continuous shape or a discontinuous shape. Examples of the channel material having a continuous shape include members such as a film and a net. Here, the continuous shape means that it is continuous over the entire range of the flow path material. The continuous shape may include a portion where a part of the flow path material is discontinuous to such an extent that a problem such as a decrease in the amount of water produced does not occur. The definition of “discontinuity” is as described for the passage-side channel material (see paragraph 0077). The material of the supply side channel material is not particularly limited, and may be the same material as the separation membrane or a different material.
 (凹凸加工)
 また、分離膜の供給側の面に供給側流路材を配置する代わりに、エンボス成形、水圧成形、カレンダ加工といった方法で分離膜の供給側に高低差を付与することができる。
(Concavity and convexity processing)
Further, instead of disposing the supply-side channel material on the supply-side surface of the separation membrane, a difference in height can be imparted to the supply side of the separation membrane by methods such as embossing, hydraulic forming, and calendering.
 エンボス成形法としては、例えばロールエンボス加工などが挙げられ、これを実施する際の圧力や処理温度は、分離膜の融点に応じて適宜決定することができる。例えば分離膜がエポキシ樹脂を含む多孔性支持層を有する場合では、線圧10kg/cm以上60kg/cm以下であることが好ましく、加熱温度40℃以上150℃以下が好ましい。また、ポリスルホン等の耐熱性樹脂を含む多孔性支持層を有する場合、線圧10kg/cm以上70kg/cm以下であることが好ましく、ロール加熱温度70℃以上160℃以下が好ましい。ロールエンボス加工ならばいずれの場合も巻き取り速度1m/分以上20m/分以下が好ましい。 Examples of the embossing method include roll embossing, and the pressure and processing temperature for carrying out this can be determined as appropriate according to the melting point of the separation membrane. For example, when the separation membrane has a porous support layer containing an epoxy resin, the linear pressure is preferably 10 kg / cm or more and 60 kg / cm or less, and the heating temperature is preferably 40 ° C. or more and 150 ° C. or less. Moreover, when it has a porous support layer containing heat resistant resins, such as polysulfone, it is preferable that it is 10 kg / cm or more and 70 kg / cm or less of linear pressure, and 70 to 160 degreeC of roll heating temperature is preferable. In any case of roll embossing, a winding speed of 1 m / min to 20 m / min is preferable.
 エンボス加工を施す場合、ロールの柄の形状は特に限定されないが、流路の流動抵抗を少なくし、かつ分離膜エレメントに流体を供給、透過させた際の流路を安定化させることが重要である。これらの点で、表面上部から観察した形では、楕円、円、長円、台形、三角形、長方形、正方形、平行四辺形、菱形、不定形があり、立体的には表面上部からの形をそのまま表面方向に賦形したもの、広がる形で賦形したもの、狭める形で賦形したものが用いられる。 When embossing is performed, the shape of the roll handle is not particularly limited, but it is important to reduce the flow resistance of the flow path and stabilize the flow path when supplying and permeating fluid to the separation membrane element. is there. In these respects, there are ellipses, circles, ellipses, trapezoids, triangles, rectangles, squares, parallelograms, rhombuses, and irregular shapes in the shape observed from the upper surface. Those formed in the surface direction, those formed in a widened form, and those formed in a narrowed form are used.
 エンボス加工によって付与できる分離膜の供給側表面の高低差は、分離特性や水透過性能が要求される条件を満足するように加圧熱処理条件を変更することで自由に調整することができる。しかしながら、分離膜の供給側表面の高低差が深すぎると流動抵抗が小さくなるが、分離膜エレメントを作製した場合に、1つの分離膜エレメントに充填できる膜リーフ数が少なくなる。分離膜の供給側表面の高低差が小さいと流路の流動抵抗が大きくなり、分離特性や水透過性能が低下してしまう。そのため、分離膜エレメントの造水能力が低下し、造水量を増加させるための運転コストが高くなる。 The difference in height of the supply side surface of the separation membrane that can be imparted by embossing can be freely adjusted by changing the pressure heat treatment conditions so as to satisfy the conditions that require separation characteristics and water permeation performance. However, if the height difference of the supply side surface of the separation membrane is too deep, the flow resistance becomes small, but when a separation membrane element is produced, the number of membrane leaves that can be filled in one separation membrane element is reduced. If the difference in height on the supply side surface of the separation membrane is small, the flow resistance of the flow path increases, and the separation characteristics and water permeation performance deteriorate. Therefore, the water production capacity of the separation membrane element is reduced, and the operation cost for increasing the amount of water produced is increased.
 従って、上述した各性能のバランスや運転コストを考慮すると、分離膜においては、分離膜の供給側表面の高低差は、好ましくは0.5mmを超えて2.0mm以下が好ましく、0.6mm以上1.0mm以下がさらに好ましい。 Therefore, in consideration of the balance of each performance and the operating cost described above, in the separation membrane, the difference in height on the supply side surface of the separation membrane is preferably more than 0.5 mm and preferably 2.0 mm or less, and 0.6 mm or more. 1.0 mm or less is more preferable.
 分離膜の供給側表面の高低差は、上述した分離膜透過側の高低差の場合と同手法で求めることができる。 The height difference on the supply side surface of the separation membrane can be obtained by the same method as in the case of the height difference on the separation membrane permeation side described above.
 溝幅(供給側流路材の間隔)は好ましくは0.2mm以上10mm以下であり、より好ましくは0.5mm以上3mm以下である。 The groove width (interval of the supply side channel material) is preferably 0.2 mm or more and 10 mm or less, more preferably 0.5 mm or more and 3 mm or less.
 ピッチは、溝幅の10分の1倍以上50倍以下の間で適宜設計すると良い。溝幅とは高低差が存在する表面で沈下している部位の間隔であり、ピッチとは、高低差が存在する表面における高い箇所の最も高いところから近接する高い箇所の最も高い箇所までの水平距離のことである。 The pitch should be appropriately designed between 1/10 and 50 times the groove width. The groove width is the distance between the sinking parts on the surface where the height difference exists, and the pitch is the horizontal from the highest point of the high part to the highest part of the adjacent high part on the surface where the height difference exists. It is distance.
 エンボス加工によって凸となる部分の投影面積比(凸となる部分を分離膜の面方向に平行な面に投影した時に得られる投影面積の比率)は、供給側流路材の場合と同様の理由から、0.03以上0.5以下であることが好ましく、さらに好ましくは0.10以上0.40以下、特に好ましくは、0.15以上0.35以下である。 The projected area ratio of the part that becomes convex by embossing (the ratio of the projected area that is obtained when the convex part is projected onto the surface parallel to the surface direction of the separation membrane) is the same reason as in the case of the supply-side channel material Therefore, it is preferably 0.03 or more and 0.5 or less, more preferably 0.10 or more and 0.40 or less, and particularly preferably 0.15 or more and 0.35 or less.
 分離膜の面における「高低差」とは、分離膜の表面と流路材の頂点との高低差(つまり流路材の高さ)であり、分離膜が凹凸加工されている場合は、凹部と凸部との高低差である。 The “height difference” in the surface of the separation membrane is a difference in height between the surface of the separation membrane and the apex of the flow channel material (that is, the height of the flow channel material). And the height difference between the convex portions.
 (2-5)集水管
 集水管6(図8ないし10参照)は、その中を透過水が流れるように構成されていればよく、材質、形状、大きさ等は特に限定されない。集水管6としては、例えば、複数の孔が設けられた側面を有する円筒状の部材が用いられる。
(2-5) Water Collection Pipe The water collection pipe 6 (see FIGS. 8 to 10) may be configured so that permeate flows through it, and the material, shape, size, etc. are not particularly limited. As the water collecting pipe 6, for example, a cylindrical member having a side surface provided with a plurality of holes is used.
 (2-6)第1形態
 より具体的な形態として、図8ないし図10に、第1ないし第3の形態の分離膜エレメント100A、100B、100Cを示す。図8は、第1形態の分離膜エレメント100Aを部分的に分解して示す説明図であり、集水管6の周りに、複数枚の分離膜2が巻回されている。また、分離膜エレメント100Aは、上述した構成に加えて、さらに以下の構成を備える。
(2-6) First Mode As more specific modes, FIGS. 8 to 10 show separation membrane elements 100A, 100B, and 100C according to first to third modes. FIG. 8 is an explanatory view showing the separation membrane element 100 </ b> A of the first embodiment partially disassembled, and a plurality of separation membranes 2 are wound around the water collection pipe 6. In addition to the above-described configuration, the separation membrane element 100A further includes the following configuration.
 すなわち、分離膜エレメント100Aは、その両端に孔付端板92を両端(すなわち第1端および第2端)に備える。また、分離膜エレメント100Aにおいて、巻囲された分離膜(以下、「巻囲体」と称する。)の外周面には、外装体81が巻囲されている。
 なお、後述の孔無し端板91は原水が通過可能な孔を備えていないのに対して、孔付端板92は、原水を通過させることができる複数の孔を備える。
That is, the separation membrane element 100A includes end plates 92 with holes at both ends (that is, the first end and the second end). In the separation membrane element 100A, an outer package 81 is wound around the outer peripheral surface of the wound separation membrane (hereinafter referred to as “wrapping body”).
The holeless end plate 91 described later does not include a hole through which raw water can pass, whereas the holed end plate 92 includes a plurality of holes through which the raw water can pass.
 また、分離膜2は、封筒状膜11を形成しており、封筒状膜11の内側には、上述したとおり、突起物301が配置されている。封筒状膜11の間には、供給側流路材32が配置されている。 Further, the separation membrane 2 forms an envelope membrane 11, and the protrusion 301 is arranged inside the envelope membrane 11 as described above. A supply-side channel material 32 is disposed between the envelope-shaped films 11.
 なお、便宜上、図8、図9、図10では、突起物301(透過側流路材)はドット形状として示されるが、上述したように透過側流路材の形状は、この形状に限定されない。 For convenience, in FIG. 8, FIG. 9, and FIG. 10, the protrusion 301 (permeation-side channel material) is shown as a dot shape, but as described above, the shape of the permeation-side channel material is not limited to this shape. .
 次に、分離膜エレメント100Aを用いた水処理について説明する。分離膜エレメント100Aの第1端から供給された原水101は、端板92の孔を通って、供給側流路に流入する。こうして、分離膜2の供給側の面に接触した原水101は、分離膜2によって、透過水102と濃縮水103とに分離される。透過水102は、透過側流路を経て、集水管6に流入する。集水管6を通った透過水102は、分離膜エレメント100Aの第2端から分離膜エレメント100Aの外へと流出する。濃縮水103は、供給側流路を通って、第2端に設けられた端板92の孔から分離膜エレメント100Aの外部へ流出する。 Next, water treatment using the separation membrane element 100A will be described. The raw water 101 supplied from the first end of the separation membrane element 100A flows into the supply-side flow path through the hole of the end plate 92. In this way, the raw water 101 in contact with the supply side surface of the separation membrane 2 is separated into the permeated water 102 and the concentrated water 103 by the separation membrane 2. The permeated water 102 flows into the water collecting pipe 6 through the permeate side flow path. The permeated water 102 that has passed through the water collection pipe 6 flows out of the separation membrane element 100A from the second end of the separation membrane element 100A. The concentrated water 103 flows out of the separation membrane element 100A from the hole of the end plate 92 provided at the second end through the supply side flow path.
 (2-7)第2形態
 図9を参照して、本実施形態の分離膜エレメント100Bについて説明する。なお、既に説明した構成要素については、同符号を付してその説明を省略する。
(2-7) Second Embodiment With reference to FIG. 9, the separation membrane element 100B of the present embodiment will be described. In addition, about the component already demonstrated, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 分離膜エレメント100Bは、第1端に配置され、かつ孔を有さない端板91と、第2端に配置され、かつ孔を有する端板92とを備える。また、分離膜エレメント100Bは、巻囲された分離膜2の最外面にさらに巻き付けられた多孔性部材82を備える。 The separation membrane element 100B includes an end plate 91 that is arranged at the first end and has no holes, and an end plate 92 that is arranged at the second end and has holes. Further, the separation membrane element 100B includes a porous member 82 that is further wound around the outermost surface of the surrounded separation membrane 2.
 多孔性部材82としては、原水を通過させることができる複数の孔を有する部材が用いられる。多孔性部材82に設けられたこれらの孔は、原水の供給口と言い換えられてもよい。多孔性部材82は、複数の孔を有していれば、その材質、大きさ、厚み、剛性等は、特に限定されるものではない。多孔性部材82として、比較的小さい厚みを有する部材を採用することで、分離膜エレメントの単位体積当たりの膜面積を増大させることができる。 As the porous member 82, a member having a plurality of holes through which raw water can pass is used. These holes provided in the porous member 82 may be referred to as raw water supply ports. As long as the porous member 82 has a plurality of holes, the material, size, thickness, rigidity and the like are not particularly limited. By adopting a member having a relatively small thickness as the porous member 82, the membrane area per unit volume of the separation membrane element can be increased.
 多孔性部材82の厚みは、例えば1mm以下、0.5mm以下、又は0.2mm以下である。また、多孔性部材82は、巻囲体の外周形状に沿うように変形することができる、柔軟性又は可撓性を有する部材であってもよい。より具体的には、多孔性部材82として、ネット、多孔性フィルム等が適用可能である。ネット及び多孔性フィルムは、巻囲体を内部に収容できるように筒状に形成されていてもよいし、長尺状であって、巻囲体の周囲に巻き付けられていてもよい。 The thickness of the porous member 82 is, for example, 1 mm or less, 0.5 mm or less, or 0.2 mm or less. Further, the porous member 82 may be a member having flexibility or flexibility that can be deformed so as to follow the outer peripheral shape of the wound body. More specifically, as the porous member 82, a net, a porous film, or the like can be applied. The net and the porous film may be formed in a cylindrical shape so that the wound body can be accommodated therein, or may be long and wound around the wound body.
 多孔性部材82は、分離膜エレメント100Bの外周面に配置される。多孔性部材82がこのように設けられることで、孔が分離膜エレメント100Bの外周面に設けられる。「外周面」とは、特に、分離膜エレメント100Bの外周面全体のうち、上述の第1端の面及び第2端の面を除く部分であるとも言える。本実施形態では、多孔性部材82は、巻囲体の外周面のほぼ全体を覆うように配置される。 The porous member 82 is disposed on the outer peripheral surface of the separation membrane element 100B. By providing the porous member 82 in this manner, holes are provided on the outer peripheral surface of the separation membrane element 100B. It can be said that the “outer peripheral surface” is a portion excluding the first end surface and the second end surface in the entire outer peripheral surface of the separation membrane element 100B. In this embodiment, the porous member 82 is disposed so as to cover almost the entire outer peripheral surface of the wound body.
 本実施形態によると、分離膜エレメント100Bの外周面(巻囲体の外周面)から多孔性部材82を介して原水が供給される。よって、分離膜エレメント100Bが繰り返し運転されても、又は分離膜エレメント100Bが高圧条件下で運転されても、巻囲された分離膜2等が長手方向に押し出されることによる巻囲体の変形(いわゆるテレスコープ)の抑制が可能である。さらに本実施形態では、原水が圧力容器(図示しない)と分離膜エレメントの間の隙間から供給されるので、原水の異常な滞留の発生が抑制される。 According to the present embodiment, raw water is supplied from the outer peripheral surface of the separation membrane element 100B (the outer peripheral surface of the wound body) via the porous member 82. Therefore, even if the separation membrane element 100B is repeatedly operated or the separation membrane element 100B is operated under a high pressure condition, deformation of the wound body due to the surrounding separation membrane 2 and the like being pushed out in the longitudinal direction ( It is possible to suppress so-called telescopes. Furthermore, in this embodiment, since raw | natural water is supplied from the clearance gap between a pressure vessel (not shown) and a separation membrane element, generation | occurrence | production of the abnormal stagnation of raw | natural water is suppressed.
 分離膜エレメント100Bにおいては、第1端の端板が孔無し端板91なので、第1端の面からは、分離膜エレメント100B内に原水は流入しない。原水101は、分離膜2に対して、分離膜エレメント100Bの外周面から、多孔性部材82を介して供給される。こうして供給された原水101は、分離膜によって透過水102と濃縮水103に分けられる。透過水102は、集水管6を通って、分離膜エレメント100Bの第2端から取り出される。濃縮水103は、第2端の孔付端板92の孔を通って、分離膜エレメント100B外に流出する。 In the separation membrane element 100B, since the end plate at the first end is the end plate 91 without holes, the raw water does not flow into the separation membrane element 100B from the surface of the first end. The raw water 101 is supplied to the separation membrane 2 through the porous member 82 from the outer peripheral surface of the separation membrane element 100B. The raw water 101 supplied in this way is divided into permeated water 102 and concentrated water 103 by the separation membrane. The permeated water 102 passes through the water collection pipe 6 and is taken out from the second end of the separation membrane element 100B. The concentrated water 103 flows out of the separation membrane element 100B through the hole of the end plate 92 with a hole at the second end.
 (2-8)第3形態
 図10を参照して、本実施形態の分離膜エレメント100Cについて説明する。なお、既に説明した構成要素については、同符号を付してその説明を省略する。
(2-8) Third Embodiment With reference to FIG. 10, the separation membrane element 100C of the present embodiment will be described. In addition, about the component already demonstrated, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 分離膜エレメント100Cは、第1端および第2端にそれぞれ配置され、孔を有する端板92を備える以外は、第2形態のエレメントと同一である。また、分離膜エレメント100Cは、分離膜エレメント100Bと同様に、多孔性部材82を備える。 The separation membrane element 100C is the same as the element of the second embodiment except that the separation membrane element 100C is provided at each of the first end and the second end and includes an end plate 92 having holes. In addition, the separation membrane element 100C includes a porous member 82, like the separation membrane element 100B.
 この構成により、本実施形態では、原水101は、多孔性部材82の孔を通って分離膜エレメント100Cの外周面から巻囲体に供給されるだけでなく、第1端の孔付端板92の孔を通って、分離膜エレメント100Cの第1端から巻囲体に供給される。透過水102及び濃縮水103は、第1形態の分離膜エレメント100Aと同様に、第2端から分離膜エレメント100Cの外部に排出される。 With this configuration, in this embodiment, the raw water 101 is not only supplied from the outer peripheral surface of the separation membrane element 100C to the envelope through the hole of the porous member 82, but also the end plate 92 with a hole at the first end. The separation membrane element 100 </ b> C is supplied to the winding body through the first hole. The permeated water 102 and the concentrated water 103 are discharged from the second end to the outside of the separation membrane element 100C, similarly to the separation membrane element 100A of the first form.
 分離膜エレメント100Cの一端(つまり孔を有する端板92)だけでなく、分離膜エレメント100Cの外周面からも多孔性部材82を介して巻囲体に原水が供給されるので、巻囲体の変形の抑制が可能である。また、本形態においても、原水が圧力容器と分離膜エレメントの間の隙間から供給されるので、異常な滞留の発生が抑制される。 Since the raw water is supplied not only from one end of the separation membrane element 100C (that is, the end plate 92 having a hole) but also from the outer peripheral surface of the separation membrane element 100C through the porous member 82, Deformation can be suppressed. Also in this embodiment, since the raw water is supplied from the gap between the pressure vessel and the separation membrane element, the occurrence of abnormal stagnation is suppressed.
 〔3.分離膜エレメントの製造方法〕
 分離膜エレメントの製造方法における各工程について、以下に説明する。
 (3-1)分離膜の製造および後加工
 分離膜の製造方法については上述したが、簡単にまとめると以下のとおりである。
 良溶媒に樹脂を溶解し、得られた樹脂溶液を基材にキャストして純水中に浸漬して多孔性支持層と基材を複合させる。その後、上述したように、多孔性支持層上に分離機能層を形成する。さらに、必要に応じて分離性能、透過性能を高めるべく、塩素、酸、アルカリ、亜硝酸などの化学処理を施し、さらにモノマー等を洗浄し分離膜の連続シートを作製する。
[3. Method for manufacturing separation membrane element]
Each process in the manufacturing method of a separation membrane element is demonstrated below.
(3-1) Production of Separation Membrane and Post-Processing The production method of the separation membrane has been described above.
The resin is dissolved in a good solvent, and the resulting resin solution is cast on a substrate and immersed in pure water to combine the porous support layer and the substrate. Thereafter, as described above, a separation functional layer is formed on the porous support layer. Furthermore, chemical treatment with chlorine, acid, alkali, nitrous acid or the like is performed to improve separation performance and permeation performance as necessary, and the monomer is washed to produce a continuous sheet of separation membrane.
 なお、化学処理の前または後で、エンボス等によって分離膜に凹凸を形成してもよいし、樹脂によって分離膜の透過側の面および/または供給側の面に、流路材を形成してもよい。
 分離膜に凹凸加工を施す場合は、エンボス成形、水圧成形、カレンダ加工といった方法で分離膜の供給側に高低差を付与することもできる。
Before or after the chemical treatment, the separation membrane may be uneven by embossing or the like, or a flow path material may be formed on the permeation side surface and / or the supply side surface of the separation membrane with a resin. Also good.
When unevenness processing is performed on the separation membrane, a difference in height can be imparted to the supply side of the separation membrane by methods such as embossing, hydraulic forming, and calendering.
 エンボス成形法としては、例えばロールエンボス加工などが挙げられ、これを実施する際の圧力や処理温度は、分離膜の融点に応じて適宜決定することができる。例えば分離膜がエポキシ樹脂を含む多孔性支持層を有する場合では、線圧10kg/cm以上60kg/cm以下であることが好ましく、加熱温度40℃以上150℃以下が好ましい。また、ポリスルホン等の耐熱性樹脂を含む多孔性支持層を有する場合、線圧10kg/cm以上70kg/cm以下であることが好ましく、ロール加熱温度70℃以上160℃以下が好ましい。ロールエンボス加工ならばいずれの場合も巻き取り速度1m/分以上20m/分以下が好ましい。 Examples of the embossing method include roll embossing, and the pressure and processing temperature for carrying out this can be determined as appropriate according to the melting point of the separation membrane. For example, when the separation membrane has a porous support layer containing an epoxy resin, the linear pressure is preferably 10 kg / cm or more and 60 kg / cm or less, and the heating temperature is preferably 40 ° C. or more and 150 ° C. or less. Moreover, when it has a porous support layer containing heat resistant resins, such as polysulfone, it is preferable that it is 10 kg / cm or more and 70 kg / cm or less of linear pressure, and 70 to 160 degreeC of roll heating temperature is preferable. In any case of roll embossing, a winding speed of 1 m / min to 20 m / min is preferable.
 エンボス加工を施す場合、ロールの柄の形状は特に限定されないが、流路の圧力損失を少なくし、かつ分離膜エレメントに流体を供給、透過させた際の流路を安定化させることが重要である。これらの点で、表面上部から観察した形では、楕円、円、長円、台形、三角形、長方形、正方形、平行四辺形、菱形、不定形等が採用される。また、立体的には高さの高い箇所ほど幅が小さくなるように形成されていてもよいし、逆に高い箇所ほど幅が広くなるように形成されていてもよいし、高さによらず同じ幅で形成されていてもよい。
 エンボス加工によって付与できる分離膜の供給側表面の高低差は、分離特性や水透過性能が要求される条件を満足するように加圧熱処理条件を変更することで自由に調整することができる。
When embossing is performed, the shape of the roll handle is not particularly limited, but it is important to reduce the pressure loss of the flow path and stabilize the flow path when supplying and permeating fluid to the separation membrane element. is there. In these respects, an ellipse, a circle, an ellipse, a trapezoid, a triangle, a rectangle, a square, a parallelogram, a rhombus, an indefinite shape, and the like are adopted as the shape observed from the upper surface. In addition, three-dimensionally, it may be formed so that the width becomes smaller as the height is higher, or conversely, it may be formed so that the width becomes wider as the height is higher, regardless of the height. They may be formed with the same width.
The difference in height on the supply-side surface of the separation membrane that can be imparted by embossing can be freely adjusted by changing the pressure heat treatment conditions so as to satisfy the conditions that require separation characteristics and water permeation performance.
 なお、以上に述べたように、供給側流路の形成が、供給側流路材を分離膜本体に固着することで行われる場合、または膜を凹凸加工することで行われる場合は、これら供給側流路の形成工程が分離膜の製造方法における一工程と見なされてもよい。 As described above, when the supply-side flow path is formed by fixing the supply-side flow path material to the separation membrane main body, or when the supply-side flow path material is formed by roughening the membrane, these supplies are supplied. The step of forming the side channel may be regarded as one step in the separation membrane manufacturing method.
 供給側流路がネット等の連続的に形成された部材である場合は、分離膜本体に透過側流路材が配置されることで分離膜が製造された後、この分離膜と供給側流路材とを重ね合わせればよい。 When the supply-side flow path is a continuously formed member such as a net, after the separation membrane is manufactured by arranging the permeation-side flow path material in the separation membrane body, the separation membrane and the supply-side flow are What is necessary is just to overlap with a road material.
 流路材を配置する方法は、例えば、柔らかな材料を分離膜上に配置する工程と、それを硬化する工程とを備える。具体的には、流路材の配置には、紫外線硬化樹脂、化学重合、ホットメルト、乾燥等が利用される。特に、ホットメルトは好ましく用いられ、具体的には、熱により樹脂等の材料を軟化する(つまり熱溶融する)工程、軟化した材料を分離膜上に配置する工程、この材料を冷却により硬化することで分離膜上に固着させる工程を含む。 The method of arranging the flow path material includes, for example, a process of arranging a soft material on the separation membrane and a process of curing it. Specifically, ultraviolet curable resin, chemical polymerization, hot melt, drying or the like is used for the arrangement of the flow path material. In particular, hot melt is preferably used. Specifically, a step of softening a material such as resin by heat (that is, heat melting), a step of placing the softened material on the separation membrane, and curing the material by cooling. A step of fixing on the separation membrane.
 流路材を配置する方法としては、例えば、塗布、印刷、噴霧等が挙げられる。また、使用される機材としては、ノズル型のホットメルトアプリケーター、スプレー型のホットメルトアプリケーター、フラットノズル型のホットメルトアプリケーター、ロール型コーター、押出型コーター、印刷機、噴霧器などが挙げられる。 Examples of the method for arranging the flow path material include coating, printing, spraying, and the like. Examples of the equipment used include a nozzle type hot melt applicator, a spray type hot melt applicator, a flat nozzle type hot melt applicator, a roll type coater, an extrusion type coater, a printing machine, and a sprayer.
 (3-2)膜リーフの形成
 膜リーフは、上述したように、供給側の面が内側を向くように分離膜を折りたたむことで形成されてもよいし、別々の2枚の分離膜を、供給側の面が向かい合うように貼り合わせることで形成されてもよい。
(3-2) Formation of membrane leaf As described above, the membrane leaf may be formed by folding the separation membrane so that the surface on the supply side faces inward, or two separate separation membranes may be formed. It may be formed by bonding so that the surfaces on the supply side face each other.
 分離膜エレメントの製造方法は、分離膜の巻回方向における内側端部を、供給側の面において封止する工程を備えることが好ましい。封止する工程においては、2枚の分離膜を、互いの供給側の面が向かい合うように重ねる。さらに、重ねられた分離膜の巻回方向における内側端部、つまり図5における左側端部を、透過水が集水管6に流入可能なように封止する。 It is preferable that the manufacturing method of the separation membrane element includes a step of sealing the inner end portion in the winding direction of the separation membrane on the surface on the supply side. In the sealing step, the two separation membranes are overlapped so that the surfaces on the supply side face each other. Further, the inner end in the winding direction of the stacked separation membranes, that is, the left end in FIG. 5 is sealed so that the permeated water can flow into the water collecting pipe 6.
 「封止」する方法としては、接着剤またはホットメルトなどによる接着、加熱またはレーザなどによる融着、およびゴム製シートを挟みこむ方法が挙げられる。接着による封止は、最も簡便で効果が高いために特に好ましい。 Examples of the method of “sealing” include adhesion by an adhesive or hot melt, fusion by heating or laser, and a method of sandwiching a rubber sheet. Sealing by adhesion is particularly preferable because it is the simplest and most effective.
 このとき、重ねられた分離膜の内側に、分離膜とは別に形成された供給側流路材を配置してもよい。上述したように、エンボスまたは樹脂塗布等によって分離膜の供給側の面にあらかじめ高低差を設けることで、供給側流路材の配置を省略することもできる。 At this time, a supply-side channel material formed separately from the separation membrane may be disposed inside the overlapped separation membrane. As described above, the arrangement of the supply-side flow path material can be omitted by providing a height difference in advance on the supply-side surface of the separation membrane by embossing or resin coating.
 供給側の面の封止と透過側の面の封止(封筒状膜の形成)とは、どちらかが先に行われてもよいし、分離膜を重ねながら、供給側の面の封止と透過側の面の封止とを並行して行ってもよい。ただし、巻回時における分離膜でのシワの発生を抑制するためには、隣り合う分離膜が巻回によって長さ方向にずれることを許容するように、幅方向端部における接着剤またはホットメルトの固化等、つまり封筒状膜を形成するための固化等を、巻回の終了後に完了させることが好ましい。 Either the supply-side sealing or the permeation-side sealing (envelope-like membrane formation) may be performed first, or the supply-side sealing is performed while stacking separation membranes. And the sealing of the surface on the transmission side may be performed in parallel. However, in order to suppress the generation of wrinkles in the separation membrane during winding, the adhesive or hot melt at the end in the width direction is allowed to allow the adjacent separation membranes to shift in the length direction due to winding. It is preferable to complete the solidification or the like, that is, the solidification for forming an envelope-like film, after the winding is completed.
 (3-3)封筒状膜の形成
 1枚の分離膜を透過側面が内側を向くように折り畳んで、かつ対向する分離膜の間に上述の突起物を備えるシートを挟んで、貼り合わせることで、または2枚の分離膜を透過側面が内側を向くように重ねて、かつ一枚の分離膜ともう一枚の分離膜の間に上述の突起物を備えるシートを挟んで貼り合わせることで、封筒状膜を形成することができる。長方形状の封筒状膜においては、長さ方向の一端のみが開口するように、他の3辺を封止する。封止は、接着剤またはホットメルト等による接着、熱またはレーザによる融着等により実行できる。
 このとき、封止されている部分では、分離膜の間にシートが存在してもよいし、シートは分離膜の封止部分より内側に配置されていてもよい。
(3-3) Formation of an envelope-like membrane A sheet of separation membrane is folded so that the permeation side faces inward, and a sheet having the above-mentioned protrusions is sandwiched between the opposing separation membranes, and bonded together. Or by laminating two separation membranes so that the permeation side faces inward and sandwiching a sheet comprising the above-mentioned protrusions between one separation membrane and another separation membrane, An envelope-like film can be formed. In the rectangular envelope film, the other three sides are sealed so that only one end in the length direction is opened. Sealing can be performed by bonding with an adhesive or hot melt, or by fusion with heat or laser.
At this time, in the sealed part, a sheet may exist between the separation membranes, or the sheet may be arranged inside the sealing part of the separation membrane.
 封筒状膜の形成に用いられる接着剤は、粘度が40P(ポアズ)以上150P(ポアズ) 以下の範囲内であることが好ましく、さらに50P(ポアズ)以上120P(ポアズ)以下がより好ましい。接着剤粘度が高すぎる場合には、積層したリーフを集水管に巻囲するときに、しわが発生し易くなる。しわは、分離膜エレメントの性能を損なうことがある。逆に、接着剤粘度が低すぎる場合には、リーフの端部から接着剤が流出して装置を汚すことがある。また、接着すべき部分以外に接着剤が付着すると、分離膜エレメントの性能が損なわれると共に、流出した接着剤の処理作業により作業効率が著しく低下する。 The adhesive used for forming the envelope film preferably has a viscosity in the range of 40 P (poise) to 150 P (poise), more preferably 50 P (poise) to 120 P (poise). If the adhesive viscosity is too high, wrinkles are likely to occur when the laminated leaves are wrapped around the water collection pipe. Wrinkles may impair the performance of the separation membrane element. Conversely, if the adhesive viscosity is too low, the adhesive may flow out of the end of the leaf and soil the device. Moreover, when an adhesive adheres to a portion other than the portion to be bonded, the performance of the separation membrane element is impaired, and the work efficiency is significantly reduced due to the processing operation of the adhesive that has flowed out.
 接着剤の塗布量は、膜リーフを集水管に巻囲した後に、接着剤が塗布される部分の幅が10mm以上100mm以下であるような量であることが好ましい。これによって、分離膜が確実に接着されるので、原水の透過側への流入が抑制される。また、分離膜エレメントの有効膜面積も比較的大きく確保することができる。 The amount of adhesive applied is preferably such that the width of the portion where the adhesive is applied after the membrane leaf is wrapped around the water collection tube is 10 mm or more and 100 mm or less. As a result, the separation membrane is securely bonded, and the inflow of the raw water to the permeate side is suppressed. In addition, the effective membrane area of the separation membrane element can be secured relatively large.
 接着剤としてはウレタン系接着剤が好ましく、粘度を40P(ポアズ)以上150P(ポアズ)以下の範囲とするには、主剤のイソシアネートと硬化剤のポリオールとを、イソシアネート/ポリオールの重量比率が1/5以上1以下となるように混合したものが好ましい。接着剤の粘度は、予め主剤、硬化剤単体、及び配合割合を規定した混合物の粘度をB型粘度計(JIS K 6833)で測定したものである。 As the adhesive, a urethane-based adhesive is preferable, and in order to make the viscosity in a range of 40 P (poise) or more and 150 P (poise) or less, the main component isocyanate and the curing agent polyol are mixed with an isocyanate / polyol weight ratio of 1 / What mixed so that it might become 5 or more and 1 or less is preferable. The viscosity of the adhesive is obtained by measuring the viscosity of a mixture in which the main agent, the curing agent alone, and the blending ratio are defined in advance with a B-type viscometer (JIS K 6833).
 封止部分にシートが存在する場合、シート内に染みこんだ接着剤によって、シートを介して分離膜同士が接着することができる。また、封止部分にはシートがない場合は、分離膜は直接貼り合わされる。 When a sheet exists in the sealing part, the separation membranes can be bonded to each other through the sheet by an adhesive soaked in the sheet. Moreover, when there is no sheet | seat in a sealing part, a separation membrane is bonded together directly.
 (3-4)分離膜の巻回
 分離膜エレメントの製造には、従来のエレメント製作装置を用いることができる。また、エレメント作製方法としては、参考文献(特公昭44-14216号公報、特公平4-11928号公報、特開平11-226366号公報)に記載される方法を用いることができる。詳細は以下の通りである。
(3-4) Separation membrane winding A conventional element manufacturing apparatus can be used to manufacture the separation membrane element. In addition, as an element manufacturing method, methods described in reference documents (Japanese Patent Publication No. 44-14216, Japanese Patent Publication No. 4-11928, Japanese Patent Application Laid-Open No. 11-226366) can be used. Details are as follows.
 集水管の周囲に分離膜を巻回するときは、分離膜を、リーフの閉じられた端部、つまり封筒状膜の閉口部分が集水管を向くように配置する。このような配置で集水管の周囲に分離膜を巻きつけることで、分離膜をスパイラル状に巻回する。 When the separation membrane is wound around the water collecting pipe, the separation membrane is arranged so that the closed end of the leaf, that is, the closed portion of the envelope-shaped membrane faces the water collecting pipe. By winding the separation membrane around the water collecting pipe in such an arrangement, the separation membrane is wound in a spiral shape.
 集水管にトリコットや基材のようなスペーサーを巻回しておくと、分離膜エレメント巻囲時に集水管へ塗布した接着剤が流動し難く、リークの抑制につながり、さらには集水管周辺の流路が安定に確保される。なお、スペーサーは集水管の円周より長く巻回しておけばよい。 If a spacer such as a tricot or base material is wound around the water collection pipe, the adhesive applied to the water collection pipe will not flow easily when the separation membrane element is wrapped, leading to suppression of leakage, and the flow path around the water collection pipe Is secured stably. The spacer may be wound longer than the circumference of the water collecting pipe.
 (3-5)その他の工程
 分離膜エレメントの製造方法は、上述のように形成された分離膜の巻回体の外側に、フィルムおよびフィラメント等をさらに巻きつけることを含んでいてもよいし、集水管の長手方向における分離膜の端を切りそろえるエッジカット、端板の取り付け等のさらなる工程を含んでいてもよい。
(3-5) Other steps The method of manufacturing a separation membrane element may include further winding a film, a filament, and the like around the wound body of the separation membrane formed as described above. Further steps such as edge cutting for aligning the end of the separation membrane in the longitudinal direction of the water collecting pipe, attachment of an end plate, and the like may be included.
 〔4.分離膜エレメントの利用〕
 分離膜エレメントは、さらに、直列または並列に接続して圧力容器に収納されることで、分離膜モジュールとして使用されてもよい。
[4. (Use of separation membrane element)
The separation membrane element may be further used as a separation membrane module by being connected in series or in parallel and housed in a pressure vessel.
 また、上記の分離膜エレメント、分離膜モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、例えば原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。 Also, the separation membrane element and the separation membrane module described above can be combined with a pump that supplies fluid to them, a device that pretreats the fluid, and the like to form a fluid separation device. By using this separation device, for example, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
 流体分離装置の操作圧力は高い方が除去率は向上するが、運転に必要なエネルギーも増加すること、また、分離膜エレメントの供給流路、透過流路の保持性を考慮すると、膜モジュールに被処理水を透過する際の操作圧力は、0.2MPa以上5MPa以下が好ましい。原水温度が高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5℃以上45℃以下が好ましい。また、原水のpHが中性領域にある場合、原水が海水などの高塩濃度の液体であっても、マグネシウムなどのスケールの発生が抑制され、また、膜の劣化も抑制される。 The higher the operating pressure of the fluid separator, the higher the removal rate, but the energy required for operation also increases, and considering the retention of the separation membrane element supply channel and permeation channel, the membrane module The operating pressure when passing through the water to be treated is preferably 0.2 MPa or more and 5 MPa or less. As the raw water temperature increases, the salt removal rate decreases, but as the raw water temperature decreases, the membrane permeation flux also decreases. Moreover, when the pH of the raw water is in a neutral region, even if the raw water is a high salt concentration liquid such as seawater, the generation of scales such as magnesium is suppressed, and the deterioration of the membrane is also suppressed.
 分離膜エレメントによって処理される流体は特に限定されないが、水処理に使用する場合、原水としては、海水、かん水、排水等の500mg/L以上100g/L以下のTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」で表されるが、1Lを1kgと見なして「重量比」で表されることもある。定義によれば、0.45μmのフィルターで濾過した溶液を39.5℃以上40.5℃以下の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。 The fluid to be treated by the separation membrane element is not particularly limited, but when used for water treatment, as raw water, seawater, brine, drainage, etc., 500 mg / L or more and 100 g / L or less TDS (Total Dissolved Solids: total dissolved solids) For example). In general, TDS indicates the total dissolved solid content, and is expressed by “mass / volume”, but 1 L may be expressed as 1 kg and may be expressed by “weight ratio”. According to the definition, the solution filtered through a 0.45 μm filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 ° C. or higher and 40.5 ° C. or lower. Convert.
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 (シートの厚みおよび突起物の高さ)
 シートの厚みと突起物の高さはキーエンス社製高精度形状測定システムKS-1100で測定した。具体的には、突起物の高さは、キーエンス社製高精度形状測定システムKS-1100を用い、5cm×5cmの透過側の測定結果から平均の高低差を解析した。10μm以上の高低差のある30箇所を測定し、各高さの値を総和した値を測定総箇所(30箇所)の数で割って求めた値を突起物の高さとした。
(Sheet thickness and protrusion height)
The thickness of the sheet and the height of the protrusions were measured with a high-precision shape measuring system KS-1100 manufactured by Keyence Corporation. Specifically, the height of the projections was analyzed for average height difference from the measurement result on the transmission side of 5 cm × 5 cm using a high precision shape measurement system KS-1100 manufactured by Keyence Corporation. Thirty points having a height difference of 10 μm or more were measured, and the value obtained by dividing the sum of the height values by the number of total measurement points (30 points) was taken as the height of the protrusion.
 (透過側流路材のピッチおよび間隔、幅、長さ)
 キーエンス社製高精度形状測定システムKS-1100を用い、分離膜の透過側における流路材の頂点から、隣の流路材の頂点までの水平距離を200箇所について測定し、その平均値をピッチとして算出した。
 また、間隔b、e、幅d、長さfについては、ピッチを測定した写真において、上述の方法で測定した(図2および図3参照)。
(Pitch and spacing, width, length of permeate side channel material)
Using a high-precision shape measurement system KS-1100 manufactured by Keyence Corporation, the horizontal distance from the apex of the channel material on the permeate side of the separation membrane to the apex of the adjacent channel material was measured at 200 locations, and the average value was pitched Calculated as
Further, the distances b, e, width d, and length f were measured by the above-described method in the photograph in which the pitch was measured (see FIGS. 2 and 3).
 (空隙率)
 乾燥したサンプルの見かけ体積(cm)を測定し、続いてそのサンプルに純水を含ませて重量を測定した。水を含んだサンプル重量からサンプルの乾燥時の重量を差し引いた値、つまり基材の空隙に入り込んだ水の重量(g:すなわち水の体積cm)を算出し、サンプルの見かけ体積で除した百分率(%)として、空隙率を得た。
(Porosity)
The apparent volume (cm 3 ) of the dried sample was measured, and the weight was then measured by adding pure water to the sample. The value obtained by subtracting the dry weight of the sample from the weight of the sample containing water, that is, the weight of the water (g: volume of water cm 3 ) entering the voids of the substrate was calculated and divided by the apparent volume of the sample. The porosity was obtained as a percentage (%).
 (シートの厚み斑)
 シートに突起物が固着した透過側流路材について、CD方向にサンプルカットした。キーエンス社製デジタルマイクロスコープ VHX1100を用いて、シート幅に対して30均等分の位置について、倍率50倍でシート厚みを測定し、その最大値と最小値の差を厚み斑とした。
(Thickness unevenness of the sheet)
About the permeation | transmission side channel material with which the protrusion adhered to the sheet | seat, the sample cut was carried out to CD direction. Using a digital microscope VHX1100 manufactured by Keyence Co., Ltd., the sheet thickness was measured at a magnification of 50 times at a position equivalent to 30 sheets with respect to the sheet width, and the difference between the maximum value and the minimum value was defined as thickness unevenness.
 (透過側流路材の帯状端部の幅)
 透過側流路材の幅方向(CD方向)における2つの帯状端部について、シートの端部から突起物までの距離を、キーエンス社製デジタルマイクロスコープ VHX1100を用いて倍率50倍で測定していき、距離が最も短いものから10番目に短いものまでの平均値をそれぞれ算出し、さらにその平均値を帯状端部の幅とした。
 帯状端部の幅=(1方の帯状端部の幅の平均値+他方の帯状端部の幅の平均値)/2
(Width of band-shaped end of permeate side channel material)
Measure the distance from the end of the sheet to the protrusions at two magnifications in the width direction (CD direction) of the permeate-side channel material using a Keyence digital microscope VHX1100 at a magnification of 50 times. The average value from the shortest distance to the tenth shortest distance was calculated, and the average value was defined as the width of the belt-shaped end.
Width of band-shaped end = (average value of width of one band-shaped end + average value of width of other band-shaped end) / 2
 (耐久性)
 分離膜エレメント内に残存した水を大方除き、集水管の一端から真空ポンプを用いて-100kPaの圧力で真空吸引を行った。真空度90kPa(すなわち、圧力―90kPa)になった段階で、真空ポンプと分離膜エレメントとをつなぐ配管に設けられたコックを閉じてエレメント内部の圧力を保持した。その後、下記基準によって、エレメントのシール性を評価した。15秒後のエレメント真空度が高いものほどシール性が高いことになり、本発明では優、良、可を合格とした。
優:15秒後のエレメント真空度が75kPaを超えて90kPa以下
良:15秒後のエレメント真空度が65kPaを超えて75kPa以下
可:15秒後のエレメント真空度が55kPaを超えて65kPa以下
不可:15秒後のエレメント真空度が55kPa以下
 上記の評価はエレメント15本について実施し、最も多く得られた結果を耐久性とした。
(durability)
Most of the water remaining in the separation membrane element was removed, and vacuum suction was performed from one end of the water collecting tube at a pressure of −100 kPa using a vacuum pump. When the degree of vacuum reached 90 kPa (that is, pressure -90 kPa), the cock provided in the pipe connecting the vacuum pump and the separation membrane element was closed to maintain the pressure inside the element. Thereafter, the sealing property of the element was evaluated according to the following criteria. The higher the element vacuum after 15 seconds, the higher the sealing performance. In the present invention, “good”, “good”, and “good” were accepted.
Excellent: Element vacuum after 15 seconds exceeds 75 kPa and less than 90 kPa Good: Element vacuum after 15 seconds exceeds 65 kPa and less than 75 kPa Possible: Element vacuum after 15 seconds exceeds 55 kPa and not more than 65 kPa: The degree of element vacuum after 15 seconds was 55 kPa or less. The above evaluation was performed on 15 elements, and the most obtained result was regarded as durability.
 (巻回体の巻出性)
 透過側流路材(幅1m)、すなわち突起物を配置したシートを巻出張力30N、巻取張力30Nで100m巻き取り、室温で1週間保管した。その後、透過側流路材を巻き出し、突起物の対面するシートへの付着の確認や突起物の高さ変化を測定した。
(Unwindability of wound body)
The permeation side channel material (width 1 m), that is, the sheet on which the protrusions were arranged, was wound up 100 m at an unwinding tension of 30 N and a winding tension of 30 N, and stored at room temperature for 1 week. Then, the permeation | transmission side flow path material was unwound, confirmation of the adhesion to the sheet | seat which a protrusion faces, and the height change of a protrusion were measured.
 (造水量)
 分離膜または分離膜エレメントについて、供給水として、濃度1,000mg/L、pH6.5のNaCL水溶液を用い、運転圧力0.7MPa、温度25℃の条件下で100時間運転した後に10分間のサンプリングを行い、膜の単位面積あたり、かつ1日あたりの透水量(立方メートル)を造水量(m/日)として表した。
(Water production)
The separation membrane or separation membrane element was sampled for 10 minutes after operating for 100 hours under conditions of an operating pressure of 0.7 MPa and a temperature of 25 ° C. using an aqueous NaCl solution having a concentration of 1,000 mg / L and pH 6.5 as the feed water. The water permeation amount (cubic meter) per unit area of the membrane and per day was expressed as the amount of water produced (m 3 / day).
 (脱塩率(TDS除去率))
 造水量の測定における10分間の運転で用いた原水およびサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式からTDS除去率を算出した。
TDS除去率(%)=100×{1-(透過水中のTDS濃度/原水中のTDS濃度)}
(Desalination rate (TDS removal rate))
For the raw water and the sampled permeate used in the operation for 10 minutes in measuring the amount of water produced, the TDS concentration was determined by conductivity measurement, and the TDS removal rate was calculated from the following formula.
TDS removal rate (%) = 100 × {1− (TDS concentration in permeated water / TDS concentration in raw water)}
 (欠点率)
 欠点率は、「分離膜の長さ方向において透過側流路が形成されていない領域の長さ」を「分離膜の長さ」で除した数値である。
(Defect rate)
The defect rate is a numerical value obtained by dividing “the length of the region where the permeation-side flow path is not formed in the length direction of the separation membrane” by “the length of the separation membrane”.
 (実施例1)
 ポリエチレンテレフタレート繊維からなる不織布(糸径:1デシテックス、厚み:約0.09mm、密度0.80g/cm)上にポリスルホンの15.0重量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚さ0.13mm)を作製した。
Example 1
A 15.0 wt% DMF solution of polysulfone on a non-woven fabric made of polyethylene terephthalate fibers (yarn diameter: 1 dtex, thickness: about 0.09 mm, density 0.80 g / cm 3 ) at a thickness of 180 μm at room temperature (25 ° C.) The porous support layer (thickness: 0.13 mm) consisting of a fiber-reinforced polysulfone support membrane is prepared by immediately immersing it in pure water and leaving it for 5 minutes and then immersing it in warm water at 80 ° C. for 1 minute. did.
 その後、多孔性支持層ロールを巻き出し、ポリスルホン表面に、m-PDA(メタフェニレンジアミン)の1.8重量%、ε-カプロラクタム4.5重量%水溶液中を塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06重量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布した。 Thereafter, the porous support layer roll was unwound, and the polysulfone surface was coated with 1.8% by weight of m-PDA (metaphenylenediamine) and 4.5% by weight of ε-caprolactam, and nitrogen was blown from the air nozzle. After removing the excess aqueous solution from the surface of the support membrane, an n-decane solution at 25 ° C. containing 0.06% by weight of trimesic acid chloride was applied so that the surface was completely wetted.
 その後、膜から余分な溶液をエアーブローで除去し、50℃の熱水で洗浄して、5%のグリセリン水溶液に1分浸漬した後、100℃の熱風オーブンで30秒間処理し、半乾燥状態の分離膜ロールを得た。 After that, the excess solution is removed from the membrane by air blow, washed with hot water at 50 ° C., immersed in a 5% glycerin aqueous solution for 1 minute, treated in a hot air oven at 100 ° C. for 30 seconds, and semi-dried. A separation membrane roll was obtained.
 このように得られた分離膜を、分離膜エレメントでの有効面積が37.0mとなるように折り畳み断裁加工し、ネット(厚み:0.7mm、ピッチ:5mm×5mm、繊維径:350μm、投影面積比:0.13)を供給側流路材として幅900mmかつリーフ長800mmで26枚のリーフを作製した。 The separation membrane thus obtained was folded and cut so that the effective area at the separation membrane element was 37.0 m 2, and the net (thickness: 0.7 mm, pitch: 5 mm × 5 mm, fiber diameter: 350 μm, Twenty-six leaves having a width of 900 mm and a leaf length of 800 mm were produced using a projected area ratio of 0.13) as a supply-side channel material.
 一方で、突起物をシート(不織布、糸径:1デシテックス、厚み:0.02mm、空隙率60%、厚み斑0.003mm)全体に渡って形成した。すなわち、バックアップロールを15℃に温度調節しながら、グラビアロールを用いて、ポリプロピレン(商品名:S10CL、プライムポリマー社製)を、シートに塗布して透過側流路材を作製した。樹脂温度は220℃であり、加工速度は6.0m/分であった。グラビアロールの表面に彫刻されたパターンは、千鳥型に並んだ直径0.5mmの半球型のドットであり、ドットのピッチは1.0mmであった。帯状端部の距離は25mmであった。 On the other hand, protrusions were formed over the entire sheet (nonwoven fabric, thread diameter: 1 dtex, thickness: 0.02 mm, porosity 60%, thickness unevenness 0.003 mm). That is, using a gravure roll while adjusting the temperature of the backup roll to 15 ° C., polypropylene (trade name: S10CL, manufactured by Prime Polymer Co., Ltd.) was applied to the sheet to produce a permeate-side channel material. The resin temperature was 220 ° C., and the processing speed was 6.0 m / min. The pattern engraved on the surface of the gravure roll was a hemispherical dot with a diameter of 0.5 mm arranged in a staggered pattern, and the dot pitch was 1.0 mm. The distance between the strip-shaped end portions was 25 mm.
 得られた突起物の形状は、シートの厚みと突起物の高さの合計が0.26mmであり、流路材幅が0.5mmであり、第1方向および第2方向において隣接する流路材の間隔が0.4mmであり、ピッチが0.9mmであった。ここで、ピッチとは、透過側の面において、200箇所で計測された、分離膜の凸部の頂点から近接する凸部の頂点までの水平距離の平均値である。 The shape of the obtained protrusions is such that the total of the thickness of the sheet and the height of the protrusions is 0.26 mm, the channel material width is 0.5 mm, and the adjacent channels in the first direction and the second direction. The spacing between the materials was 0.4 mm and the pitch was 0.9 mm. Here, the pitch is an average value of the horizontal distances from the vertexes of the convex portions of the separation membrane to the vertexes of the neighboring convex portions, measured at 200 locations on the transmission side surface.
 得られたリーフの透過側面に透過側流路材を積層し、ABS(アクリロニトリル-ブタジエン-スチレン)製集水管(幅:1,020mm、径:30mm、孔数40個×直線状1列)にスパイラル状に巻き付け、外周にさらにフィルムを巻き付けた。テープで固定した後に、エッジカット、端板の取り付けおよびフィラメントワインディングを行うことで、直径が8インチの分離膜エレメントを作製した。なお、端板は両方とも孔付き端板であった。つまり、本実施例では、図8に示す第1形態の分離膜エレメントを作製した。 A permeate-side channel material is laminated on the permeate side surface of the obtained leaf, and is collected in an ABS (acrylonitrile-butadiene-styrene) water collecting pipe (width: 1,020 mm, diameter: 30 mm, 40 holes × straight line). The film was wound in a spiral shape, and a film was further wound around the outer periphery. After fixing with tape, edge cutting, end plate attachment, and filament winding were performed to produce a separation membrane element having a diameter of 8 inches. Both end plates were perforated end plates. That is, in this example, the separation membrane element of the first form shown in FIG. 8 was produced.
 分離膜エレメントを圧力容器に入れて、濃度1,000mg/L、pH6.5のNaCL水溶液を用い、運転圧力0.7MPa運転温度25℃、pH6.5で運転(回収率15%)したところ、造水量および脱塩率、耐久性は表1の通りであり、巻出性も良好であった。 When the separation membrane element was placed in a pressure vessel and operated using an aqueous NaCl solution having a concentration of 1,000 mg / L and pH 6.5, and operating at an operating pressure of 0.7 MPa, an operating temperature of 25 ° C., and a pH of 6.5 (recovery rate of 15%), The amount of water produced, the desalting rate, and the durability were as shown in Table 1, and the unwinding property was also good.
 (実施例2)
 以下、特に言及しない条件については、実施例1と同様にして分離膜を作製した。
 樹脂に窒素ガスを送り込みながら突起物をシートに配置し、突起物の空隙率を4%とした以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、耐久性は表1の通りであり、巻出性も良好であった。
(Example 2)
Hereinafter, separation membranes were produced in the same manner as in Example 1 under conditions not specifically mentioned.
A separation membrane and a separation membrane element were prepared in the same manner as in Example 1 except that the protrusions were placed on the sheet while feeding nitrogen gas into the resin, and the porosity of the protrusions was set to 4%.
When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 1, and the unwinding property was also good. .
 (実施例3~11)
 シートを表1~3の通りの不織布とし、突起物を表1~3の通りにした以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、耐久性は表1~3の通りであり、巻出性も良好であった。
(Examples 3 to 11)
A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Tables 1 to 3 and the protrusions were as shown in Tables 1 to 3.
When the separation membrane element was placed in a pressure vessel and operated under the above conditions to obtain permeated water, the amount of water produced, the desalting rate, and the durability were as shown in Tables 1 to 3, and the unwinding property was also good. there were.
 (実施例12)
 シートを不織布(糸径:1デシテックス、厚み:約0.1mm、空隙率55%)とし、突起物の高さを0.16mmとし、突起物をシートの長さ方向に連続的に配置した以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、耐久性は表3の通りであり、巻出性も良好であった。
Example 12
The sheet is a non-woven fabric (thread diameter: 1 dtex, thickness: about 0.1 mm, porosity 55%), the height of the projection is 0.16 mm, and the projection is continuously arranged in the length direction of the sheet Were prepared in the same manner as in Example 1 to prepare a separation membrane and a separation membrane element.
When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the amount of water produced, the desalting rate, and the durability were as shown in Table 3, and the unwinding property was also good. .
 (実施例13~16)
 シートを表4の通りの不織布とし、突起物を表4の通りとした以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、耐久性は表4の通りであり、巻出性も良好であった。
(Examples 13 to 16)
A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Table 4 and the protrusions were as shown in Table 4. When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 4, and the unwinding property was also good. .
 (実施例17、18)
 シートを表5の通りの不織布とし、突起物を表5の通りとした以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。なお、実施例1とは帯状領域の幅の差の分だけ有効膜面積は異なった。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、耐久性は表5の通りであり、巻出性も良好であった。
(Examples 17 and 18)
A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Table 5 and the protrusions were as shown in Table 5. The effective film area was different from that in Example 1 by the difference in the width of the band-like region.
When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 5, and the unwinding property was also good. .
 (実施例19、20)
 分離膜の有効面積が0.5mとなるように折り畳み断裁加工し、ネット(厚み:510μm、ピッチ:2mm×2mm、繊維径:255μm、投影面積比:0.21)を供給側流路材とし、表5の透過側流路材を用いて幅230mmで2枚のリーフを作製した。
 その後、ABS製集水管(幅:300mm、外径:17mm、孔数8個×直線状2列)に巻き付けながら2枚のリーフをスパイラル状に巻き付けた分離膜エレメントを作製し、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけを行い、2インチエレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、耐久性は表5の通りであり、巻出性も良好であった。
(Examples 19 and 20)
Folded and cut so that the effective area of the separation membrane is 0.5 m 2 and supplied the net (thickness: 510 μm, pitch: 2 mm × 2 mm, fiber diameter: 255 μm, projected area ratio: 0.21) And two leaves with a width of 230 mm were produced using the permeation-side channel material of Table 5.
After that, a separation membrane element in which two leaves were spirally wound while being wound around an ABS water collecting pipe (width: 300 mm, outer diameter: 17 mm, number of holes: 8 × two straight lines) was prepared, and a film was placed on the outer periphery. After winding and fixing with tape, edge cutting and end plate mounting were performed to produce a 2-inch element.
When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, the water production amount, the desalting rate, and the durability were as shown in Table 5, and the unwinding property was also good. .
 (比較例1)
 シートを表6の通りの不織布とし、突起物を表6の通りとした以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、有効膜面積の低下により造水量は低下し、造水量、脱塩率および耐久性は表6の通りであり、巻出性は良好であった。
(Comparative Example 1)
A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Table 6 and the protrusions were as shown in Table 6.
When the separation membrane element was put in a pressure vessel and operated under the above conditions to obtain permeated water, the amount of fresh water was reduced due to the reduction of the effective membrane area, and the amount of fresh water, desalination rate and durability were as shown in Table 6. The unwindability was good.
 (比較例2)
 実施例1と同様にして、分離膜を作製した。続いて、樹脂に窒素ガスを送り込みながら突起物をシートに配置し、突起物の空隙率を60%とした以外は全て比較例1と同様にして、分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、突起物が圧縮して流路が縮小してしまい、造水量は著しく低下し、造水量および脱塩率は表6の通りであった。また、巻回体を巻き出したところ、突起物の高さが5%小さくなっていた。なお、エアリークはなかった。
(Comparative Example 2)
A separation membrane was prepared in the same manner as in Example 1. Subsequently, separation membrane elements were produced in the same manner as in Comparative Example 1 except that the protrusions were placed on the sheet while feeding nitrogen gas into the resin, and the porosity of the protrusions was set to 60%.
When the separation membrane element was placed in a pressure vessel and operated under the above-mentioned conditions to obtain permeate, the projections were compressed and the flow path was reduced, resulting in a significant decrease in the amount of water produced. The salt ratio was as shown in Table 6. Moreover, when the wound body was unwound, the height of the protrusion was reduced by 5%. There was no air leak.
 (比較例3)
 実施例1と同様にして、分離膜を作製した。続いて、シートとして二軸延伸ポリエステルフィルム(東レ製ルミラー、厚み0.03mm)を使用したことした以外は全て比較例1と同様にして、分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、リーフ間の接着が十分でなくエアリークが生じた。また、造水量は測定が不可能なほど多く、脱塩率は表6の通りであった。また、シートの空隙率が低すぎるため突起物がシートに押しつぶされていたため、巻出しの際に一部の突起物がシートに転写していた。
(Comparative Example 3)
A separation membrane was prepared in the same manner as in Example 1. Subsequently, a separation membrane element was produced in the same manner as in Comparative Example 1 except that a biaxially stretched polyester film (Toray Lumirror, thickness 0.03 mm) was used as the sheet.
When the separation membrane element was put in a pressure vessel and operated under the above-mentioned conditions to obtain permeated water, adhesion between the leaves was not sufficient and air leakage occurred. Further, the amount of water produced was so large that measurement was impossible, and the desalting rate was as shown in Table 6. In addition, since the porosity of the sheet was too low, the protrusions were crushed by the sheet, and thus some of the protrusions were transferred to the sheet during unwinding.
 表1ないし表5に示す結果から明らかなように、本発明の実施例1ないし20の分離膜エレメントは、長時間にわたり運転しても、高い脱塩率を有する充分な量の透過水を得ることができ、優れた分離性能を安定して備えていると言える。 As is clear from the results shown in Tables 1 to 5, the separation membrane elements of Examples 1 to 20 of the present invention obtain a sufficient amount of permeated water having a high desalination rate even when operated for a long time. It can be said that it has stable separation performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001







Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002







Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003







Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004







Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005







Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の分離膜エレメントは、特に、かん水や海水の脱塩に好適に用いることができる。 The separation membrane element of the present invention can be particularly suitably used for brine or seawater desalination.
   1 分離膜
  11 封筒状膜
   2 分離膜
   2a 分離膜
   2b 分離膜
   2c 分離膜
  21 供給側の面
  21a 供給側の面
  21b 供給側の面
  21c 供給側の面
  22 透過側の面
  22a 透過側の面
  22b 透過側の面
  22c 透過側の面
 201 基材
 202 多孔性支持層
 203 分離機能層
  31 透過側流路材
  32 供給側流路材
 301 突起物
 302 シート
303 帯状領域
   4 膜リーフ
   5 透過側流路
   6 集水管
   7 分離膜
  71 供給側の面
  72 透過側の面
  81 外装体
  82 多孔性部材
  91 端板(孔無)
  92 端板(孔有)
 100 分離膜エレメント
   a 分離膜(リーフ)長さ
   b 透過側流路材の幅方向間隔
   c 透過側流路材の高低差
   d 透過側流路材の幅
   e 透過側流路材の長さ方向の間隔
   f 透過側流路材の長さ
  R2 分離膜において巻回方向内側から外側に並んだ透過側流路材の先頭から最後尾までを含む領域
  R3 分離膜の巻回方向外側端部において透過側流路材が設けられていない領域
  L1 分離膜全体の長さ(上記長さa)
  L2 領域R2の長さ
  L3 領域R3の長さ
100A 分離膜エレメント(第1形態)
100B 分離膜エレメント(第2形態)
100C 分離膜エレメント(第3形態)
 101 原水
 102 透過水
 103 濃縮水
DESCRIPTION OF SYMBOLS 1 Separation membrane 11 Envelope-shaped membrane 2 Separation membrane 2a Separation membrane 2b Separation membrane 2c Separation membrane 21 Supply side surface 21a Supply side surface 21b Supply side surface 21c Supply side surface 22 Permeation side surface 22a Permeation side surface 22b Permeation side surface 22c Permeation side surface 201 Base material 202 Porous support layer 203 Separation functional layer 31 Permeation side flow path material 32 Supply side flow path material 301 Protrusion 302 Sheet 303 Band-like region 4 Membrane leaf 5 Permeation side flow path 6 Water collecting pipe 7 Separation membrane 71 Supply side surface 72 Permeation side surface 81 Exterior body 82 Porous member 91 End plate (no hole)
92 End plate (with holes)
100 Separation Membrane Element a Separation Membrane (Leaf) Length b Permeation-side Channel Material Width Distance c Permeation-side Channel Material Height d Permeation-side Channel Material Width e Permeation-side Channel Material Length Interval f Length of permeate side channel material R2 Region including from the beginning to the end of permeate side channel material arranged from the inner side to the outer side in the winding direction in the separation membrane R3 Permeate side at the outer end in the winding direction of the separation membrane Region where no flow path material is provided L1 Total length of separation membrane (length a)
L2 Length of region R2 L3 Length of region R3 100A Separation membrane element (first form)
100B separation membrane element (second form)
100C separation membrane element (third form)
101 Raw water 102 Permeated water 103 Concentrated water

Claims (10)

  1.  供給側の面および透過側の面を有し、透過側の面同士が向かい合うように配置されることで分離膜対を形成する分離膜と、
     前記分離膜の前記透過側の面の間に設けられ、空隙を有するシートと、前記シート上に設けられた複数の突起物とを有する透過側流路材と、を備え、
     前記突起物は樹脂を含有し、前記樹脂の一部が前記シートに含浸しており、
     前記シートの幅方向の両側端部に、前記突起物が設けられていない帯状領域が設けられており、
     前記分離膜対において、分離膜の透過側の面の間は、前記帯状領域を介して、接着剤によって封止されている
     分離膜エレメント。
    A separation membrane having a supply-side surface and a permeation-side surface and forming a separation membrane pair by being arranged so that the permeation-side surfaces face each other;
    A permeation-side flow path member provided between the permeation-side surfaces of the separation membrane and having a gap and a plurality of protrusions provided on the sheet;
    The protrusion contains a resin, and a part of the resin is impregnated in the sheet,
    A band-like region not provided with the protrusions is provided at both end portions in the width direction of the sheet,
    In the separation membrane pair, a separation membrane element is sealed between the permeation side surfaces of the separation membrane with an adhesive via the band-like region.
  2.  前記帯状領域の幅が、前記シートの幅方向における前記複数の突起物の間隔よりも広い請求項1に記載の分離膜エレメント。 2. The separation membrane element according to claim 1, wherein a width of the belt-like region is wider than an interval between the plurality of protrusions in the width direction of the sheet.
  3.  前記帯状領域の幅が0.25mm以上70mm以下である請求項1または2に記載の分離膜エレメント。 The separation membrane element according to claim 1 or 2, wherein a width of the belt-like region is 0.25 mm or more and 70 mm or less.
  4.  前記シートの厚みが0.03mm以下である請求項1~3のいずれかに記載の分離膜エレメント。 The separation membrane element according to any one of claims 1 to 3, wherein the sheet has a thickness of 0.03 mm or less.
  5.  前記シートの厚みは0.3mm以上0.4mm以下であり、前記シートの空隙率は30%以上である請求項1~4のいずれかに記載の分離膜エレメント。 The separation membrane element according to any one of claims 1 to 4, wherein the thickness of the sheet is 0.3 mm or more and 0.4 mm or less, and the porosity of the sheet is 30% or more.
  6.  前記シートの厚みは0.02mm以上0.25mm以下であり、かつ前記シートの空隙率は90%以下である請求項1~5のいずれかに記載の分離膜エレメント。 The separation membrane element according to any one of claims 1 to 5, wherein the thickness of the sheet is 0.02 mm or more and 0.25 mm or less, and the porosity of the sheet is 90% or less.
  7.  前記突起物の高さcと、前記シートの厚みH1および前記突起物の高さcの和H0(H0=H1+c)との比(c/H0)が0.05以上0.7以下である請求項1~6のいずれかに記載の分離膜エレメント。 The ratio (c / H0) of the height c of the protrusions to the sum H0 of the sheet thickness H1 and the height c of the protrusions (H0 = H1 + c) is 0.05 to 0.7. Item 7. The separation membrane element according to any one of Items 1 to 6.
  8.  前記突起物の高さcと、前記シートの厚みH1および前記突起物の高さcとの和H0(H0=H1+c)との比(c/H0)が0.05以上0.13以下かつ、前記シートの空隙率が30%以上90%以下である請求項7に記載の分離膜エレメント。 The ratio (c / H0) of the height c of the projections to the sum H0 of the sheet thickness H1 and the height c of the projections (H0 = H1 + c) is 0.05 to 0.13, and The separation membrane element according to claim 7, wherein the porosity of the sheet is 30% or more and 90% or less.
  9.  前記突起物の高さcと、前記シートの厚みH1および前記突起物の高さcとの和H0(H0=H1+c)との比(c/H0)が0.13を超えて0.7以下かつ、前記シートの空隙率が20%以上80%以下である 請求項7に記載の分離膜エレメント。 The ratio (c / H0) of the height c of the projections to the sum H0 (H0 = H1 + c) of the thickness H1 of the sheet and the height c of the projections exceeds 0.13 and is 0.7 or less. The separation membrane element according to claim 7, wherein the porosity of the sheet is 20% or more and 80% or less.
  10.  前記突起物は、前記集水管の長手方向に対して垂直方向に連続している 請求項1~9のいずれかに記載の分離膜エレメント。 The separation membrane element according to any one of claims 1 to 9, wherein the protrusion is continuous in a direction perpendicular to a longitudinal direction of the water collecting pipe.
PCT/JP2014/070039 2013-07-30 2014-07-30 Separation membrane element WO2015016253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536810A JPWO2015016253A1 (en) 2013-07-30 2014-07-30 Separation membrane element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013157779 2013-07-30
JP2013-157779 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016253A1 true WO2015016253A1 (en) 2015-02-05

Family

ID=52431783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070039 WO2015016253A1 (en) 2013-07-30 2014-07-30 Separation membrane element

Country Status (2)

Country Link
JP (1) JPWO2015016253A1 (en)
WO (1) WO2015016253A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147195A (en) * 2014-02-07 2015-08-20 日東電工株式会社 Spiral type separation membrane element
WO2018056090A1 (en) * 2016-09-21 2018-03-29 東レ株式会社 Separation membrane element and operation method therefor
US10471391B2 (en) 2016-11-19 2019-11-12 Aqua Membranes, Inc. Flow directing devices for spiral-wound elements
US11083997B2 (en) 2017-04-20 2021-08-10 Aqua Membranes Inc. Non-nesting, non-deforming patterns for spiral-wound elements
US11090612B2 (en) 2017-04-12 2021-08-17 Aqua Membranes Inc. Graded spacers for filtration wound elements
US11376552B2 (en) 2016-09-20 2022-07-05 Aqua Membranes Inc. Permeate flow paterns
US11633700B2 (en) 2020-04-07 2023-04-25 Aqua Membranes Inc. Independent spacers and methods
US11745143B2 (en) 2017-04-20 2023-09-05 Aqua Membranes, Inc. Mixing-promoting spacer patterns for spiral-wound elements
US11745144B2 (en) 2017-10-13 2023-09-05 Aqua Membranes Inc. Bridge support and reduced feed spacers for spiral-wound elements
US11813335B2 (en) 2017-02-08 2023-11-14 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261333A1 (en) * 2011-04-13 2012-10-18 Shane James Moran Filter element for fluid filtration system
JP2013000674A (en) * 2011-06-17 2013-01-07 Yuasa Membrane System:Kk Spiral type filtration module, and liquid treatment method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120261333A1 (en) * 2011-04-13 2012-10-18 Shane James Moran Filter element for fluid filtration system
JP2013000674A (en) * 2011-06-17 2013-01-07 Yuasa Membrane System:Kk Spiral type filtration module, and liquid treatment method using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147195A (en) * 2014-02-07 2015-08-20 日東電工株式会社 Spiral type separation membrane element
US11376552B2 (en) 2016-09-20 2022-07-05 Aqua Membranes Inc. Permeate flow paterns
US11511233B2 (en) 2016-09-21 2022-11-29 Toray Industries, Inc. Separation membrane element and operation method therefor
JPWO2018056090A1 (en) * 2016-09-21 2019-07-04 東レ株式会社 Separation membrane element and method of operating the same
KR20190049744A (en) * 2016-09-21 2019-05-09 도레이 카부시키가이샤 Membrane element and its operating method
KR102326947B1 (en) * 2016-09-21 2021-11-15 도레이 카부시키가이샤 Separator element and its operation method
CN109715275B (en) * 2016-09-21 2021-12-31 东丽株式会社 Separation membrane element and method for operating same
CN109715275A (en) * 2016-09-21 2019-05-03 东丽株式会社 Separating film element and its method of operation
WO2018056090A1 (en) * 2016-09-21 2018-03-29 東レ株式会社 Separation membrane element and operation method therefor
US10471391B2 (en) 2016-11-19 2019-11-12 Aqua Membranes, Inc. Flow directing devices for spiral-wound elements
US11040311B2 (en) 2016-11-19 2021-06-22 Aqua Membranes Inc. Interference patterns for spiral wound elements
US11813335B2 (en) 2017-02-08 2023-11-14 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11090612B2 (en) 2017-04-12 2021-08-17 Aqua Membranes Inc. Graded spacers for filtration wound elements
US11612862B2 (en) 2017-04-12 2023-03-28 Aqua Membranes Inc. Graded spacers in spiral wound elements
US11083997B2 (en) 2017-04-20 2021-08-10 Aqua Membranes Inc. Non-nesting, non-deforming patterns for spiral-wound elements
US11745143B2 (en) 2017-04-20 2023-09-05 Aqua Membranes, Inc. Mixing-promoting spacer patterns for spiral-wound elements
US11896933B2 (en) 2017-04-20 2024-02-13 Aqua Membranes Inc. Non-nesting, non-deforming patterns for spiral-wound elements
US11745144B2 (en) 2017-10-13 2023-09-05 Aqua Membranes Inc. Bridge support and reduced feed spacers for spiral-wound elements
US11633700B2 (en) 2020-04-07 2023-04-25 Aqua Membranes Inc. Independent spacers and methods

Also Published As

Publication number Publication date
JPWO2015016253A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6136269B2 (en) Separation membrane element for water treatment
WO2015016253A1 (en) Separation membrane element
JP6485044B2 (en) Separation membrane element
WO2013047746A1 (en) Separation membrane, separation membrane element, and production method for separation membrane
JP6111668B2 (en) Separation membrane element and method for producing separation membrane element
JP6634828B2 (en) Separation membrane element
JP5888439B2 (en) Separation membrane, sheet channel material and separation membrane element
JP6206185B2 (en) Separation membrane and separation membrane element
JP6179403B2 (en) Separation membrane and separation membrane element
JP6489011B2 (en) Separation membrane, sheet channel material and separation membrane element
JP2015071159A (en) Separation membrane element
JP2014064973A (en) Separation membrane and separation membrane element
JP2015006661A (en) Separation membrane element
JP2015142894A (en) separation membrane element
JP2016068081A (en) Separation membrane element
JP2014193460A (en) Separation membrane and separation membrane element
JP2017029912A (en) Separation membrane element
JP2015091574A (en) Separation film element
JP2015085322A (en) Separation membrane element
JP2017013056A (en) Separation membrane element
JP2017013055A (en) Separation membrane element
JP2015127051A (en) Separation membrane element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014536810

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831737

Country of ref document: EP

Kind code of ref document: A1