JP6809989B2 - Airtight terminal and its manufacturing method - Google Patents

Airtight terminal and its manufacturing method Download PDF

Info

Publication number
JP6809989B2
JP6809989B2 JP2017120070A JP2017120070A JP6809989B2 JP 6809989 B2 JP6809989 B2 JP 6809989B2 JP 2017120070 A JP2017120070 A JP 2017120070A JP 2017120070 A JP2017120070 A JP 2017120070A JP 6809989 B2 JP6809989 B2 JP 6809989B2
Authority
JP
Japan
Prior art keywords
airtight terminal
pipe
pipe lead
outer ring
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017120070A
Other languages
Japanese (ja)
Other versions
JP2019003910A (en
Inventor
山本 英文
英文 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott Japan Corp
Original Assignee
Schott Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Japan Corp filed Critical Schott Japan Corp
Priority to JP2017120070A priority Critical patent/JP6809989B2/en
Publication of JP2019003910A publication Critical patent/JP2019003910A/en
Application granted granted Critical
Publication of JP6809989B2 publication Critical patent/JP6809989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Description

本発明は大電力用途に使用でき、かつ高い気密信頼性を有する気密端子及びその製造方法に関する。 The present invention relates to an airtight terminal that can be used for high power applications and has high airtightness reliability, and a method for manufacturing the same.

気密端子は、金属外環または金属外環の挿通孔に絶縁材を介してリードを気密に封着したもので、気密容器内に収容された電気機器や素子に電流を供給したり、電気機器や素子から信号を外部に導出したりする場合に用いられる。特に金属外環とリードを絶縁ガラスで封着するGTMS(Glass−to−Metal−Seal)タイプの気密端子は、整合封止型と圧縮封止型の2種類に大別される。信頼性の高い気密封止を確立するには、外環およびリードの金属材と絶縁ガラスの熱膨張係数を適正に選択することが重要となる。封止用の絶縁ガラスは、金属外環とリードの素材、要求温度プロファイルおよびその熱膨張係数によって決定されている。 整合封止の場合、金属材と絶縁ガラスの熱膨張係数が可能な限り一致するように封止素材を選定する。一方、圧縮封止は、金属外環が絶縁ガラスおよびリードを圧縮するように意図的に異なる熱膨張係数の金属材と絶縁ガラスの材料が選択されている。 An airtight terminal is a metal outer ring or an insertion hole of a metal outer ring in which a lead is airtightly sealed via an insulating material, and a current is supplied to an electric device or element housed in the airtight container, or an electric device is used. It is used when a signal is derived from an element or an element to the outside. In particular, the GTMS (Glass-to-Metal-Seal) type airtight terminal that seals the metal outer ring and the lead with insulating glass is roughly classified into two types, a matching sealing type and a compression sealing type. In order to establish a highly reliable airtight seal, it is important to properly select the coefficient of thermal expansion of the metal material of the outer ring and reed and the insulating glass. The insulating glass for sealing is determined by the material of the metal outer ring and lead, the required temperature profile and its coefficient of thermal expansion. In the case of matched sealing, the sealing material is selected so that the coefficients of thermal expansion of the metal material and the insulating glass match as much as possible. On the other hand, for compression sealing, a metal material and an insulating glass material having intentionally different coefficients of thermal expansion are selected so that the metal outer ring compresses the insulating glass and the reed.

従来の気密端子は高い気密信頼性ならびに電気絶縁性を確保するため、整合封止型気密端子においては、金属外環およびリード材に広い温度範囲でガラス材と熱膨張係数が一致しているコバール合金(Fe54%、Ni28%、Co18%)を使用して、両者をホウケイ酸ガラスからなる絶縁ガラスで封着し、圧縮封止型気密端子においては、使用温度範囲においてガラスに同心円状の圧縮応力が加わるように、炭素鋼またはステンレス鋼などの鋼製の金属外環と、鉄ニッケル合金(Fe50%、Ni50%)や鉄クロム合金(Fe72%、Cr28%)などの鉄合金のリード材を使用して、両者をソーダバリウムガラスからなる絶縁ガラスで封着していた。 In order to ensure high airtightness reliability and electrical insulation of conventional airtight terminals, Kovar has the same thermal expansion coefficient as the glass material over a wide temperature range for the metal outer ring and lead material in the matching sealing type airtight terminal. Using an alloy (Fe 54%, Ni 28%, Co 18%), both are sealed with insulating glass made of borosilicate glass, and in the compression-sealed airtight terminal, the compressive stress concentric with the glass in the operating temperature range. Uses a metal outer ring made of steel such as carbon steel or stainless steel, and a lead material of an iron alloy such as an iron-nickel alloy (Fe50%, Ni50%) or an iron-chromium alloy (Fe72%, Cr28%). Then, both were sealed with insulating glass made of sodabarium glass.

特開昭61−260560号公報Japanese Unexamined Patent Publication No. 61-260560 実開平02−039472号公報Jikkenhei 02-039472 Gazette

近年、パワー・デバイスや2次電池などの所謂ハイレート電力デバイス用に気密端子の大電力対応が求められるようになっている。リード材に鉄合金などの高抵抗金属を使用した従来の気密端子は、過大な負荷をかけるとリード材の自己発熱により絶縁ガラスが溶融し気密性が確保できなくなり、ついにはリード材が抜け落ちるなどの危険があった。気密端子のリード材を、従来の鉄合金から銅やアルミニウム合金などの低抵抗金属に変更できれば大電力への対応や省電力化など電気エネルギーの効率利用の観点からより好ましいが、封止に利用する絶縁ガラスは概して低熱膨張係数材料のため、銀、銅、アルミニウムや銀合金、銅合金、アルミニウム合金などの低抵抗金属をリード材に用いると整合封止は原理上使用できない。さらに、圧縮封止においても、上記例示の低抵抗金属は熱膨張係数が鋼材などの鉄合金に比べてより大きく、これをリード材に用いると絶縁ガラスに適切な圧縮応力を加えることができず、気密性の確保が難しくなるという課題があった。また、金属外環とリード材をともに銀、銅、アルミニウムやその合金などの高熱膨張係数材料に変更すると絶縁ガラスに加わる圧縮応力が大きくなりすぎ、ガラス割れが生じたりするので使用することが難しくなる。 In recent years, there has been a demand for high power support for airtight terminals for so-called high-rate power devices such as power devices and secondary batteries. With conventional airtight terminals that use high-resistance metals such as iron alloys for the reed material, when an excessive load is applied, the insulating glass melts due to the self-heating of the reed material and airtightness cannot be ensured, and the reed material eventually falls off. There was a danger of. If the lead material of the airtight terminal can be changed from the conventional iron alloy to a low resistance metal such as copper or aluminum alloy, it is more preferable from the viewpoint of efficient use of electric energy such as support for high power and power saving, but it is used for sealing. Since the insulating glass is generally a material having a low thermal expansion coefficient, if a low resistance metal such as silver, copper, aluminum, a silver alloy, a copper alloy, or an aluminum alloy is used as a lead material, matching sealing cannot be used in principle. Further, even in compression sealing, the low-resistance metal illustrated above has a larger coefficient of thermal expansion than iron alloys such as steel, and when this is used as a reed material, an appropriate compressive stress cannot be applied to the insulating glass. There was a problem that it became difficult to secure airtightness. Also, if both the metal outer ring and the lead material are changed to a material with a high coefficient of thermal expansion such as silver, copper, aluminum or an alloy thereof, the compressive stress applied to the insulating glass becomes too large and glass breakage occurs, making it difficult to use. Become.

従来、銅芯リードを使った気密端子には、特許文献1に示されるような銅芯の表面を合金鋼で被覆した複合リード材を用いた気密端子がある。しかしながら、特許文献1の気密端子のリード材は、銅のインナコア表面に合金鋼のアウタジャケットを固着被覆してある。このためリードの電気抵抗を小さくするためには、なるべく銅のインナコア径は大径のものであるほど好ましい。しかし、従来の銅芯複合リードは、アウタジャケットにインナコアを挿入した母線材を伸線加工し、順次縮径させることで両界面の気密が確保できるまで圧着して製造する必要があった。しかしながら伸線工程に掛けることができる線径の大きさには限界があり、かつ母線材径よりも縮径されてしまうため、大線径の複合リードを製造することが難しいという欠点があった。 Conventionally, an airtight terminal using a copper core lead includes an airtight terminal using a composite lead material in which the surface of the copper core is coated with alloy steel as shown in Patent Document 1. However, the lead material for the airtight terminal of Patent Document 1 has an alloy steel outer jacket fixedly coated on the surface of the copper inner core. Therefore, in order to reduce the electrical resistance of the reed, it is preferable that the inner core diameter of copper is as large as possible. However, the conventional copper core composite lead needs to be manufactured by drawing a bus having an inner core inserted in an outer jacket and sequentially reducing the diameter so that airtightness at both interfaces can be ensured. However, there is a limit to the size of the wire diameter that can be applied to the wire drawing process, and the diameter is reduced compared to the bus diameter, so there is a drawback that it is difficult to manufacture a composite lead with a large wire diameter. ..

一方、パイプリードを使用した気密端子には、従来、特許文献2に示されるように、リチウム電池等の非水型電池に用いられる気密端子として、ステンレス鋼の金属外環の筒状部にガラスを介して鉄クロム合金製のパイプリードを気密に封着するとともに、パイプリードにニッケル製の導出リードを挿通し、パイプリードと導出リードとを接続固着封止した電池ケース用気密端子がある。しかし、この考案は、電池内の短絡などで発生したガスにより電池内圧が異常上昇した際に、封止ガラスがガス抜きの安全弁を兼ねるように設計されており、気密信頼性の向上を目論んだものではなく、むしろパイプリードと絶縁ガラスのシール面が破壊されることを前提にした構成となっている。また、気密端子に用いる金属材の熱膨張係数値も互いに近い値に整合するように設計されており、金属外環とパイプリードに近い熱膨張係数を有するニッケル材を導出リードに使用しているので、導出リード材の電気抵抗を犠牲にした構成となっている。このため、気密端子の導出リードに熱膨張係数が大きい銀、銅、アルミニウムや該元素を主成分とする合金などの低抵抗金属を使用するための手段については、何ら記載されておらず上述の課題を解決するものではなかった。 On the other hand, as an airtight terminal using a pipe lead, as shown in Patent Document 2, as an airtight terminal used for a non-aqueous battery such as a lithium battery, glass is formed on a tubular portion of a metal outer ring of stainless steel. There is an airtight terminal for a battery case in which a pipe lead made of an iron-chromium alloy is hermetically sealed through a pipe lead, and a nickel lead-out lead is inserted into the pipe lead to connect and seal the pipe lead and the lead-out lead. However, this device is designed so that the sealing glass also serves as a safety valve for venting gas when the internal pressure of the battery rises abnormally due to gas generated due to a short circuit in the battery, etc., with the aim of improving airtightness and reliability. Rather, the configuration is based on the premise that the sealing surface between the pipe lead and the insulating glass will be destroyed. In addition, the coefficient of thermal expansion of the metal material used for the airtight terminal is also designed to match the values close to each other, and a nickel material having a coefficient of thermal expansion close to that of the metal outer ring and the pipe lead is used for the lead. Therefore, the configuration is such that the electrical resistance of the lead lead material is sacrificed. Therefore, no means for using a low resistance metal such as silver, copper, aluminum having a large coefficient of thermal expansion or an alloy containing the element as a main component for the lead lead of the airtight terminal is described. It did not solve the problem.

本発明の目的は、大電力用途に使用できかつ高い気密信頼性を有する気密端子及びその製造方法を提供することにある。 An object of the present invention is to provide an airtight terminal that can be used for high power applications and has high airtightness reliability, and a method for manufacturing the same.

本発明によれば、(1)金属外環と、この金属外環に挿通するパイプリードと、金属外環の内径とパイプリードの外径との間に装着するガラス・タブレットとを用意する準備工程と、(2)金属外環にパイプリードを挿通すると共に、金属外環の内径とパイプリードの外径との間にガラス・タブレットを装着して端子に仮組みする組立工程と、(3)仮組した端子を炉中に通してガラス・タブレットを軟化させ、金属外環の内壁とパイプリードの外径とを気密にガラス封着する封着工程と、(4)封着工程により、金属外環とガラス封着したパイプリードの内径に、回転する低抵抗金属の芯材を接触させながら挿入することでパイプリードの内径壁面と芯材の円周壁面とを固溶拡散接合する回転挿入接合工程と、からなる気密端子の製造方法が提供される。本発明の気密端子の製造方法によると、パイプリードと芯材とはロウ材を介在せずに互いに直に固溶拡散接合される。 According to the present invention, (1) preparation for preparing a metal outer ring, a pipe lead inserted through the metal outer ring, and a glass tablet to be mounted between the inner diameter of the metal outer ring and the outer diameter of the pipe lead. The process, (2) the pipe lead is inserted into the metal outer ring, and the assembly process in which a glass tablet is attached between the inner diameter of the metal outer ring and the outer diameter of the pipe lead and temporarily assembled to the terminal, and (3). ) By passing the temporarily assembled terminals through the furnace to soften the glass tablet and airtightly sealing the inner wall of the metal outer ring and the outer diameter of the pipe lead with glass, and (4) the sealing process. Rotation that solid-dissolves and diffusifies the inner diameter wall surface of the pipe lead and the circumferential wall surface of the core material by inserting the rotating low-resistance metal core material into the inner diameter of the metal outer ring and the glass-sealed pipe lead while contacting them. A method of manufacturing an airtight terminal comprising an insertion joining step and an airtight terminal is provided. According to the method for manufacturing an airtight terminal of the present invention, the pipe lead and the core material are directly solid-solved-diffused bonded to each other without interposing a brazing material.

本発明の第二の観点によれば、前記気密端子の製造方法により製造され、金属外環と、金属外環に挿通したパイプリードと、金属外環の内壁とパイプリードの外径とを気密に封着する絶縁ガラスと、パイプリードの内径と気密に固溶拡散接合された低電気抵抗金属の芯材とを備えた気密端子が提供される。 According to the second aspect of the present invention, the metal outer ring, the pipe lead inserted through the metal outer ring, the inner wall of the metal outer ring, and the outer diameter of the pipe lead are airtight, which is manufactured by the method for manufacturing the airtight terminal. An airtight terminal is provided which includes an insulating glass to be sealed to the pipe lead and a core material of a low electric resistance metal which is airtightly solid-dissolved and diffusion-bonded to the inner diameter of the pipe lead.

本発明に係る気密端子の製造方法は、回転挿入接合工程により、芯材とパイプリードの表面のみ摩擦させながら室温で回転させながら圧入するため、芯材全体が熱膨張することなく固溶拡散接合を完了することができる。従って、電気抵抗値が小さく熱膨張率が大きいアルミニウム材を用いながら絶縁ガラスに過度の応力負荷が加わることなく、芯材とパイプリードを気密接合でき絶縁ガラスの割れを防止する。しかも、芯材がパイプリードをわずかに押し広げながら圧入させることができるため、絶縁ガラスに適度なコンプレッションをパイプリードの封着後に芯材側から掛けることができるという従来にない利点もある。さらにリード母材を伸線加工する必要が無いので、直接目的の線径に仕上げることができリードの大径化が容易である。 In the method for manufacturing an airtight terminal according to the present invention, since only the surface of the core material and the pipe lead are rubbed and press-fitted while rotating at room temperature by the rotary insertion joining step, the entire core material is solid-dissolved and diffusion-bonded without thermal expansion. Can be completed. Therefore, while using an aluminum material having a small electric resistance value and a large coefficient of thermal expansion, the core material and the pipe lead can be airtightly joined without applying an excessive stress load to the insulating glass, and the insulating glass is prevented from cracking. Moreover, since the core material can press-fit the pipe reed while slightly expanding it, there is an unprecedented advantage that appropriate compression can be applied to the insulating glass from the core material side after the pipe reed is sealed. Further, since it is not necessary to wire the lead base material, the wire diameter can be directly finished to the desired diameter, and the diameter of the reed can be easily increased.

本発明に係る気密端子の製造方法10を示したフロー図である。It is a flow chart which showed the manufacturing method 10 of the airtight terminal which concerns on this invention. 本発明に係る気密端子20の平面図を示す。The plan view of the airtight terminal 20 which concerns on this invention is shown. 本発明に係る気密端子20の正面部分断面図を示す。The front partial sectional view of the airtight terminal 20 which concerns on this invention is shown. 本発明に係る気密端子30の正面部分断面図を示す。The front partial sectional view of the airtight terminal 30 which concerns on this invention is shown. 本発明に係る気密端子40の正面部分断面図を示す。なお、気密端子30および気密端子40の平面図は図2と共通のため省略する。The front partial sectional view of the airtight terminal 40 which concerns on this invention is shown. The plan view of the airtight terminal 30 and the airtight terminal 40 is omitted because it is common to FIG.

本発明の気密端子の製造方法10は、図1のフロー図に示すように(1)鉄または鉄合金の金属外環と、この金属外環に挿通する鉄または鉄合金のパイプリードと、金属外環の内径とパイプリードの外径との間に装着するガラス・タブレットとを用意する準備工程11と、(2)金属外環にパイプリードを挿通すると共に、金属外環の内径とパイプリードの外径との間にガラス・タブレットを装着して端子に仮組みする組立工程12と、(3)仮組した端子を炉中に通してガラス・タブレットを軟化させ、金属外環の内壁とパイプリードの外径とを気密にガラス封着する封着工程13と、(4)封着工程13により、金属外環とガラス封着したパイプリードの内径に、回転させた低電気抵抗金属の芯材、例えばアルミニウムまたはアルミニウム合金の芯材を接触させながら挿入することでパイプリードの内径壁面と芯材の円周壁面とを固溶拡散接合する回転挿入接合工程14と、からなる。 As shown in the flow chart of FIG. 1, the method 10 for manufacturing an airtight terminal of the present invention includes (1) a metal outer ring of iron or iron alloy, a pipe lead of iron or iron alloy inserted through the metal outer ring, and a metal. Preparation step 11 to prepare a glass tablet to be mounted between the inner diameter of the outer ring and the outer diameter of the pipe lead, and (2) the pipe lead is inserted into the metal outer ring, and the inner diameter of the metal outer ring and the pipe lead. The assembly process 12 in which the glass tablet is attached to the outer diameter of the metal tablet and temporarily assembled to the terminal, and (3) the temporarily assembled terminal is passed through the furnace to soften the glass tablet and the inner wall of the metal outer ring. A low electric resistance metal rotated to the inner diameter of the metal outer ring and the glass-sealed pipe lead by the sealing step 13 in which the outer diameter of the pipe lead is airtightly sealed with glass and (4) the sealing step 13 It comprises a rotary insertion joining step 14 in which the inner diameter wall surface of the pipe lead and the circumferential wall surface of the core material are solid-dissolved and diffusively joined by inserting the core material, for example, the core material of aluminum or an aluminum alloy while contacting them.

本発明の気密端子の製造方法10は、回転挿入接合工程14により、芯材とパイプリードの表面のみを接触させ摩擦させながら室温で圧入するため、芯材全体が熱膨張することなく、界面の固体拡散によって接合を完了することができる。従って、電気抵抗値が小さく熱膨張率が大きいアルミニウム材を用いながら絶縁ガラスに過度の応力負荷が加わることなく絶縁ガラスの割れを防止でき、芯材とパイプリードとを気密に接合できる。しかも、芯材がパイプリードをわずかに押し広げながら圧入させることができるため、絶縁ガラスに適度なコンプレッションをパイプリードの封着後に掛けることができるという利点がある。また、リード母材を伸線加工する必要が無く、直接目的の線径に仕上げることができるのでリードの大径化が容易となる。 In the method 10 for manufacturing an airtight terminal of the present invention, in the rotary insertion joining step 14, only the surface of the core material and the pipe lead are brought into contact with each other and press-fitted at room temperature while being rubbed, so that the entire core material does not thermally expand and the interface surface Bonding can be completed by solid diffusion. Therefore, it is possible to prevent the insulating glass from cracking without applying an excessive stress load to the insulating glass while using an aluminum material having a small electric resistance value and a large coefficient of thermal expansion, and the core material and the pipe lead can be airtightly joined. Moreover, since the core material can press-fit the pipe reed while slightly expanding it, there is an advantage that an appropriate compression can be applied to the insulating glass after the pipe reed is sealed. Further, it is not necessary to wire the lead base material, and the wire diameter can be directly finished to the desired value, so that the diameter of the reed can be easily increased.

気密端子の製造方法10の回転挿入接合工程14の作業温度は、固溶拡散を促進させる目的で芯材の溶融温度未満に加熱してもよい。アルミニウムの芯材を用いた場合は、660℃未満の温度まで加熱でき、例えば300℃に加熱した端子に芯材を回転挿入させて接合してもよい。 The working temperature of the rotary insertion joining step 14 of the method 10 for manufacturing the airtight terminal may be heated to a temperature lower than the melting temperature of the core material for the purpose of promoting solid solution diffusion. When an aluminum core material is used, it can be heated to a temperature of less than 660 ° C., for example, the core material may be rotationally inserted into a terminal heated to 300 ° C. for joining.

本発明の気密端子の製造方法10において、使用するパイプリードまたは芯材は、全通同径のものを用いても、所望部位で径が異なっているもの(すなわち、パイプリードに縮径部を有するか、あるいは芯材に大径部を有する)を用いてもよい。パイプリードの内径と芯材の外径は、少なくとも界面円周の所望部位において360°周回した表面が途切れることなく固溶拡散接合されていれば、気密端子の気密性を確保することができるので、パイプリードは、パイプ内径全体すなわちパイプ内を全通して芯材を固溶拡散接合しても、パイプリードの一部に設けた縮径部で芯材に接触させて接触面同士を固溶拡散接合させるか、または芯材の一部に設けた大径部でパイプリードに接触させて接触面同士を固溶拡散接合させてもよい。 In the method 10 for manufacturing an airtight terminal of the present invention, even if the pipe leads or core materials used are all the same diameter, those having different diameters at desired parts (that is, the pipe leads have a reduced diameter portion). (Has a large diameter portion in the core material) may be used. As for the inner diameter of the pipe lead and the outer diameter of the core material, the airtightness of the airtight terminal can be ensured as long as the surface around 360 ° at least at the desired portion of the interface circumference is solid-dissolved and diffusion-bonded without interruption. In the pipe lead, even if the core material is solid-dissolved and diffused through the entire inner diameter of the pipe, that is, the inside of the pipe, the contact surfaces are solid-dissolved by contacting the core material with a reduced diameter portion provided in a part of the pipe lead. Diffusion bonding may be performed, or the contact surfaces may be solid-dissolved and diffusion-bonded by contacting the pipe leads with a large-diameter portion provided in a part of the core material.

本発明の気密端子20は、上述の製造方法10により製造されたものであり、図2および図3に示すように、鉄または鉄合金の金属外環21と、金属外環21に挿通した鉄または鉄合金のパイプリード22と、金属外環21の内壁とパイプリード22の外径とを気密に封着する絶縁ガラス23と、パイプリード22の内径と気密に固溶拡散接合された低電気抵抗金属の芯材24とを備える。パイプリード22の内径と芯材24の外径は、少なくとも界面円周の一部において360°周回した表面が固溶拡散接合されていれば、気密端子の気密性を確保することができるので、パイプリード22の内径と芯材24の外径との界面は、全体を固溶拡散接合しても、一部の円周表面を固溶拡散接合しても何れでもよい。例えば、図4に示す気密端子30ようにパイプリード32に縮径部35を設け、縮径部35の内径面を芯材34と固溶拡散接合した形態に変形してもよい。またこれと逆に、図5に示す気密端子40ように芯材44に大径部46を設け、大径部46の外径面をパイプリード42と固溶拡散接合した形態に変形してもよい。図示しないが、縮径部35および大径部46は、パイプリード封着面の外側(パイプリード外径がガラス封着されていない部位)に設けてもよい。 The airtight terminal 20 of the present invention is manufactured by the above-mentioned manufacturing method 10, and as shown in FIGS. 2 and 3, the metal outer ring 21 of iron or an iron alloy and the iron inserted through the metal outer ring 21. Alternatively, the iron alloy pipe lead 22, the insulating glass 23 that airtightly seals the inner wall of the metal outer ring 21 and the outer diameter of the pipe lead 22, and the low electricity that is airtightly solid-dissolved and diffusion-bonded to the inner diameter of the pipe lead 22. A core material 24 made of a resistive metal is provided. As for the inner diameter of the pipe lead 22 and the outer diameter of the core material 24, the airtightness of the airtight terminal can be ensured if the surface around 360 ° at least in a part of the interface circumference is solid solution diffusion bonded. The interface between the inner diameter of the pipe lead 22 and the outer diameter of the core material 24 may be a solid solution diffusion bond as a whole or a solid solution diffusion bond on a part of the circumferential surface. For example, the pipe lead 32 may be provided with a reduced diameter portion 35 as in the airtight terminal 30 shown in FIG. 4, and the inner diameter surface of the reduced diameter portion 35 may be deformed into a form in which the core material 34 is solid-solved and diffused. On the contrary, even if the core material 44 is provided with the large diameter portion 46 as in the airtight terminal 40 shown in FIG. 5, and the outer diameter surface of the large diameter portion 46 is deformed into a solid solution diffusion bonded form with the pipe lead 42. Good. Although not shown, the reduced diameter portion 35 and the large diameter portion 46 may be provided on the outside of the pipe lead sealing surface (the portion where the pipe lead outer diameter is not glass-sealed).

本発明の実施形態において、金属外環は、鉄または鉄合金であれば何れの材料を用いてもよく特に限定されないが、例えば冷間圧延鋼(JIS SS400相当)、オーステナイト系ステンレス鋼SUS304、42アロイ(Fe58%,Ni42%)などが好適に利用できる。同様にパイプリードは、鉄または鉄合金であれば何れの材料を用いてもよく特に限定されないが、例えばコバール合金(Fe54%,Ni28%,Co18%)、鉄ニッケル合金(Fe50%,Ni50%)などが好適に利用できる。また、ガラス・タブレットまたは絶縁ガラスは、金属封着できるガラスであれば何れの材料を用いてもよく特に限定されないが、例えばボロンシリケートガラス、ソーダバリウムガラスなどが好適に利用できる。芯材は、低電気抵抗金属のアルミニウムまたはアルミニウム合金からなる。 In the embodiment of the present invention, the metal outer ring may be any material as long as it is iron or an iron alloy, and is not particularly limited. For example, cold rolled steel (equivalent to JIS SS400), austenitic stainless steel SUS304, 42. Alloys (Fe 58%, Ni 42%) and the like can be preferably used. Similarly, the pipe lead may be any material as long as it is iron or an iron alloy, and is not particularly limited. For example, a Kovar alloy (Fe 54%, Ni 28%, Co 18%), an iron nickel alloy (Fe 50%, Ni 50%). Etc. can be preferably used. Further, the glass / tablet or the insulating glass may be any material as long as it can be metal-sealed, and is not particularly limited, but for example, boron silicate glass, soda barium glass and the like can be preferably used. The core material is made of aluminum or an aluminum alloy, which is a low electrical resistance metal.

さらに上記発明の実施形態において、少なくともパイプリードの内径に補助拡散層を施すと好ましい。鉄または鉄合金のパイプリードにアルミニウムを拡散させると、脆い金属間化合物のAl−Fe,Al−Feが生成することがあるが、予めパイプリードに補助拡散層(例えばニッケルめっき)を施して置くことで、補助拡散層を構成する元素と芯材を構成する低電気抵抗金属とが化合し、より強靭な金属間化合物(例えば、ニッケルめっきのときはAl−Ni金属間化合物)とすることができる。 Further, in the embodiment of the above invention, it is preferable to provide an auxiliary diffusion layer at least on the inner diameter of the pipe lead. When aluminum is diffused into a pipe lead of iron or an iron alloy, brittle metal-to-metal compounds Al 3- Fe and Al 5- Fe 2 may be formed, but an auxiliary diffusion layer (for example, nickel plating) is previously provided on the pipe lead. By applying it, the elements that make up the auxiliary diffusion layer and the low electrical resistance metal that makes up the core material combine to form a tougher intermetallic compound (for example, an Al-Ni intermetallic compound in the case of nickel plating). can do.

本発明に係る実施例1の製造方法10は、図1に示すように(1)冷間圧延鋼(JIS SS400相当)の金属外環と、この金属外環に挿通する鉄ニッケル合金(Fe50%,Ni50%)のパイプリードと、金属外環の内径とパイプリードの外径との間に装着するソーダバリウムガラスのガラス・タブレットとを用意する準備工程11と、(2)金属外環にパイプリードを挿通すると共に、金属外環の内径とパイプリードの外径との間にガラス・タブレットを装着してカーボン製耐熱治具に端子を仮組みする組立工程12と、(3)仮組した端子を950℃に調温した炉中に通しガラス・タブレットを軟化流動させて、金属外環の内壁とパイプリードの外径とを気密にガラス封着する封着工程13と、(4)封着工程の後、室温に冷却した金属外環とガラス封着したパイプリードからなる端子のパイプリード部を固定し、パイプリードの内径に、高速回転させたアルミニウムの長尺線からなる芯材をパイプリードの内径面に接触させながら、パイプリードに挿入してパイプリードの内径面と芯材の外径面とを固相で直に固溶拡散接合した後、余剰の芯材をリード端から切り離してパイプリードと芯材の接合体を形成させる回転挿入接合工程14とで構成される。回転挿入接合工程14において芯材端部の切り離し操作は、パイプリードに接合した芯材の長さに余剰が生じるときに実施するが、芯材の長さが目的の寸法範囲にある場合には実施しなくてよい。これにより、一本の長尺線からなる芯材を、順次切断しながら複数のパイプリードに連続して回転挿入させて行くことができる。回転挿入接合工程14は作業温度300℃で行うこともできる。 As shown in FIG. 1, the manufacturing method 10 of Example 1 according to the present invention comprises (1) a metal outer ring of cold-rolled steel (equivalent to JIS SS400) and an iron-nickel alloy (Fe50%) inserted through the metal outer ring. , Ni 50%) and a sodabarium glass glass tablet to be mounted between the inner diameter of the metal outer ring and the outer diameter of the pipe lead 11. Preparation step 11 and (2) Pipe to the metal outer ring Assembling step 12 in which the lead is inserted, a glass tablet is attached between the inner diameter of the metal outer ring and the outer diameter of the pipe lead, and the terminal is temporarily assembled to the carbon heat-resistant jig, and (3) temporarily assembled. Sealing step 13 and (4) sealing in which the inner wall of the metal outer ring and the outer diameter of the pipe lead are airtightly sealed by passing the terminal through a furnace whose temperature has been adjusted to 950 ° C to soften and flow the glass tablet. After the landing process, the pipe lead part of the terminal consisting of a metal outer ring cooled to room temperature and a glass-sealed pipe lead is fixed, and a core material made of a long aluminum wire rotated at high speed is attached to the inner diameter of the pipe lead. While in contact with the inner diameter surface of the pipe lead, insert it into the pipe lead and directly melt-diffuse bond the inner diameter surface of the pipe lead and the outer diameter surface of the core material in a solid phase, and then attach the excess core material from the lead end. It is composed of a rotary insertion joining step 14 of separating and forming a joint body of a pipe lead and a core material. In the rotary insertion joining step 14, the operation of separating the end of the core material is performed when there is a surplus in the length of the core material joined to the pipe lead, but when the length of the core material is within the target dimensional range. It does not have to be carried out. As a result, the core material made of one long wire can be continuously rotationally inserted into a plurality of pipe leads while being sequentially cut. The rotary insertion joining step 14 can also be performed at a working temperature of 300 ° C.

本発明に係る実施例2の気密端子20は、前記製造方法により製造されたものであり、図2および図3に示すように冷間圧延鋼(JIS SS400相当)の金属外環21と、金属外環21に挿通した鉄ニッケル合金(Fe50%,Ni50%)の表面に補助拡散層のニッケルめっきを施したパイプリード22と、金属外環21の内壁とパイプリード22の外径とを気密封着したソーダバリウムガラスの絶縁ガラス23と、パイプリード22の内径全面を固溶拡散接合したアルミニウムの芯材24とを備える。図示しないが実施例2において、気密端子20の芯材34は、ニッケルめっきの補助拡散層を間に挟んでパイプリード22と接合されている。この気密端子20は、図4に示す変形例1の気密端子30ようにパイプリード32に縮径部35を設け、縮径部35の内径面を芯材34と固溶拡散接合してもよい。またこれと逆に、図5に示す変形例2の気密端子40ように芯材44に大径部46を設け、大径部46の外径面をパイプリード42と固溶拡散接合してもよい。 The airtight terminal 20 of Example 2 according to the present invention is manufactured by the above-mentioned manufacturing method, and as shown in FIGS. 2 and 3, the metal outer ring 21 of cold-rolled steel (corresponding to JIS SS400) and the metal The pipe lead 22 in which the surface of the iron-nickel alloy (Fe50%, Ni50%) inserted through the outer ring 21 is nickel-plated with an auxiliary diffusion layer, and the inner wall of the metal outer ring 21 and the outer diameter of the pipe lead 22 are air-sealed. An insulating glass 23 made of sodabarium glass and an aluminum core material 24 in which the entire inner diameter of the pipe lead 22 is solid-dissolved and diffusion-bonded are provided. Although not shown, in the second embodiment, the core material 34 of the airtight terminal 20 is joined to the pipe lead 22 with a nickel-plated auxiliary diffusion layer sandwiched between them. The airtight terminal 20 may be provided with a reduced diameter portion 35 on the pipe lead 32 as in the airtight terminal 30 of the first modification shown in FIG. 4, and the inner diameter surface of the reduced diameter portion 35 may be solid solution diffusion bonded to the core material 34. .. On the contrary, even if the core material 44 is provided with the large diameter portion 46 as in the airtight terminal 40 of the modified example 2 shown in FIG. 5, and the outer diameter surface of the large diameter portion 46 is solid solution diffusion bonded to the pipe lead 42. Good.

本発明は、高電圧・高電流に耐久し、高絶縁性が要求される気密端子に利用できる。 The present invention can be used for an airtight terminal that is durable against high voltage and high current and requires high insulation.

10・・・気密端子の製造方法、
11・・・準備工程、
12・・・組立工程、
13・・・封着工程、
14・・・回転挿入接合工程、
20,30,40・・・気密端子、
21,31,41・・・金属外環、
22,32,42・・・パイプリード、
23,33,43・・・絶縁ガラス、
24,34,44・・・芯材、
35・・・縮径部、
46・・・大径部。
10 ... Manufacturing method of airtight terminal,
11 ... Preparation process,
12 ... Assembly process,
13 ... Sealing process,
14 ... Rotational insertion joining process,
20, 30, 40 ... Airtight terminals,
21, 31, 41 ... Metal outer ring,
22, 32, 42 ... Pipe lead,
23, 33, 43 ... Insulated glass,
24, 34, 44 ... Core material,
35 ... Reduced diameter part,
46 ... Large diameter part.

Claims (14)

(1)金属外環と、この金属外環に挿通するパイプリードと、前記金属外環の内径と前記パイプリードの外径との間に装着するガラス・タブレットとを用意する準備工程と、
(2)前記金属外環に前記パイプリードを挿通すると共に、前記金属外環の内径と前記パイプリードの外径との間に前記ガラス・タブレットを装着して端子に仮組みする組立工程と、
(3)仮組した前記端子を炉中に通して前記ガラス・タブレットを軟化させ、前記金属外環の内壁と前記パイプリードの外径とを気密にガラス封着する封着工程と、
(4)前記封着工程により、前記金属外環とガラス封着した前記パイプリードの内径に、回転する低電気抵抗金属の芯材を接触させながら挿入することで前記パイプリードの内径壁面と前記芯材の円周壁面とを固溶拡散接合する回転挿入接合工程と、
からなる気密端子の製造方法。
(1) A preparatory step of preparing a metal outer ring, a pipe reed to be inserted through the metal outer ring, and a glass tablet to be mounted between the inner diameter of the metal outer ring and the outer diameter of the pipe reed.
(2) An assembly step in which the pipe lead is inserted through the metal outer ring, and the glass tablet is mounted between the inner diameter of the metal outer ring and the outer diameter of the pipe lead and temporarily assembled to the terminal.
(3) A sealing step in which the temporarily assembled terminal is passed through a furnace to soften the glass tablet, and the inner wall of the metal outer ring and the outer diameter of the pipe reed are hermetically sealed in glass.
(4) The inner diameter wall surface of the pipe lead and the inner diameter wall surface of the pipe lead are inserted by inserting the core material of a rotating low electric resistance metal into the inner diameter of the pipe lead glass-sealed with the metal outer ring by the sealing step. A rotary insertion joining process for solid solution diffusion joining with the circumferential wall surface of the core material,
A method of manufacturing an airtight terminal consisting of.
前記芯材が前記パイプリードを押し広げながら圧入させることで、前記パイプリードの封着後に前記ガラスにコンプレッションを掛けることを特徴とする請求項1に記載の気密端子の製造方法。
The method for manufacturing an airtight terminal according to claim 1, wherein the core material press-fits the pipe lead while expanding the pipe lead to apply compression to the glass after the pipe lead is sealed.
前記パイプリードの内径と芯材の外径は、少なくとも界面円周の所望部位において360°周回した表面が途切れることなく固溶拡散接合したことを特徴とする請求項1または請求項2に記載の気密端子の製造方法。 The first or second aspect of the present invention, wherein the inner diameter of the pipe lead and the outer diameter of the core material are solid solution diffusion bonded without interruption on the surface that is orbited by 360 ° at least at a desired portion of the interface circumference. Manufacturing method of airtight terminal. 前記回転挿入接合工程は、余剰の芯材をリード端から切り離す操作をさらに有したことを特徴とする請求項1ないし請求項3の何れか1つに記載の気密端子の製造方法。 The method for manufacturing an airtight terminal according to any one of claims 1 to 3, wherein the rotary insertion joining step further includes an operation of separating the excess core material from the lead end. 前記低電気抵抗金属は、アルミニウムまたはアルミニウム合金であることを特徴とする請求項1ないし請求項4の何れか1つに記載の気密端子の製造方法。 The method for manufacturing an airtight terminal according to any one of claims 1 to 4, wherein the low electric resistance metal is aluminum or an aluminum alloy. 前記パイプリードは、少なくともパイプリードの内径に補助拡散層を施したことを特徴とする請求項1ないし請求項5の何れか1つに記載の気密端子の製造方法。 The method for manufacturing an airtight terminal according to any one of claims 1 to 5, wherein the pipe reed is provided with an auxiliary diffusion layer at least on the inner diameter of the pipe reed. 前記補助拡散層は、ニッケルめっきからなることを特徴とする請求項6に記載の気密端子の製造方法。 The method for manufacturing an airtight terminal according to claim 6, wherein the auxiliary diffusion layer is made of nickel plating. 前記回転挿入接合工程は、作業温度が芯材の溶融温度未満であることを特徴とする請求項1ないし請求項7の何れか1つに記載の気密端子の製造方法。 The method for manufacturing an airtight terminal according to any one of claims 1 to 7, wherein the rotary insertion joining step is characterized in that the working temperature is lower than the melting temperature of the core material. 金属外環と、前記金属外環に挿通したパイプリードと、前記金属外環の内壁と前記パイプリードの外径とを気密に封着する絶縁ガラスと、前記パイプリードの内径と気密に固溶拡散接合した低電気抵抗金属の芯材とを備えた気密端子。 The metal outer ring, the pipe lead inserted through the metal outer ring, the insulating glass that airtightly seals the inner wall of the metal outer ring and the outer diameter of the pipe lead, and the inner diameter of the pipe lead are airtightly melted. An airtight terminal with a diffusion-bonded low electrical resistance metal core. 前記低電気抵抗金属は、アルミニウムまたはアルミニウム合金であることを特徴とする請求項9に記載の気密端子。 The airtight terminal according to claim 9, wherein the low electric resistance metal is aluminum or an aluminum alloy. 前記パイプリードは、少なくとも前記パイプリード内径と前記芯材との間に補助拡散層を有することを特徴とする請求項9または請求項10に記載の気密端子。 The airtight terminal according to claim 9 or 10, wherein the pipe lead has at least an auxiliary diffusion layer between the inner diameter of the pipe lead and the core material. 前記補助拡散層は、ニッケルめっきからなることを特徴とする請求項11に記載の気密端子。 The airtight terminal according to claim 11, wherein the auxiliary diffusion layer is made of nickel plating. 前記パイプリードは、縮径部を有し、この縮径部の内径を前記芯材と固溶拡散接合した請求項9ないし請求項12の何れか1つに記載の気密端子。 The airtight terminal according to any one of claims 9 to 12, wherein the pipe lead has a reduced diameter portion, and the inner diameter of the reduced diameter portion is solid solution diffusion bonded to the core material. 前記芯材は、大径部を有し、この大径部の外径を前記パイプリードと固溶拡散接合した請求項9ないし請求項12の何れか1つに記載の気密端子。
The airtight terminal according to any one of claims 9 to 12, wherein the core material has a large diameter portion, and the outer diameter of the large diameter portion is solid solution diffusion bonded to the pipe lead.
JP2017120070A 2017-06-20 2017-06-20 Airtight terminal and its manufacturing method Active JP6809989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120070A JP6809989B2 (en) 2017-06-20 2017-06-20 Airtight terminal and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120070A JP6809989B2 (en) 2017-06-20 2017-06-20 Airtight terminal and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019003910A JP2019003910A (en) 2019-01-10
JP6809989B2 true JP6809989B2 (en) 2021-01-06

Family

ID=65007922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120070A Active JP6809989B2 (en) 2017-06-20 2017-06-20 Airtight terminal and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6809989B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192847A (en) * 1984-10-12 1986-05-10 ヤマハ株式会社 Decorative material
JP4601939B2 (en) * 2003-10-31 2010-12-22 株式会社東芝 Airtight connection structure of electron tube
JP5212207B2 (en) * 2009-03-23 2013-06-19 トヨタ自動車株式会社 Aluminum alloy composite
JP6029140B2 (en) * 2013-02-25 2016-11-24 エヌイーシー ショット コンポーネンツ株式会社 Compression sealed airtight terminal

Also Published As

Publication number Publication date
JP2019003910A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6585229B2 (en) High voltage hermetic terminal
JP6029140B2 (en) Compression sealed airtight terminal
JP5583905B2 (en) Method for manufacturing electrical leadthrough and electrical leadthrough manufactured by the method
JP6352557B1 (en) Sensor element and method of manufacturing sensor element
CN106679835A (en) Armored thermocouple sensor
CN102361522A (en) Variable section end head unwarming armored heater and preparation method thereof
JP2012506988A (en) Glow plug with improved seal, heater probe assembly therefor and method of construction thereof
JPWO2015163112A1 (en) Manufacturing method of ceramic heater type glow plug and ceramic heater type glow plug
JP6809989B2 (en) Airtight terminal and its manufacturing method
JP6245716B2 (en) Manufacturing method of ceramic heater type glow plug and ceramic heater type glow plug
JP6433878B2 (en) Airtight terminal
JP2015064928A (en) Airtight terminal
CN109623061B (en) Anode brazing structure
CN104576975B (en) Seal assembly and its manufacture method for battery and the battery with it
US3953757A (en) Solder sealed light bulb
JP6456278B2 (en) Spark plug
US3147361A (en) Vacuum tight joint and method of making such joint
CN213242896U (en) High-temperature-resistant bidirectional pressure-bearing sealing plug
WO2021015049A1 (en) Hermetic terminal
TW201713012A (en) Metal bonding wire, manufacturing method for same, transformer and rotating machine having same, and die
CN205764339U (en) Glass capsulation adapter welding heat radiation positioning tool
US1273758A (en) Leading-in conductor.
JP6674815B2 (en) Method for manufacturing double-sealed terminal header
US4196309A (en) Semiconductor device subassembly and manufacture thereof
JP2021022557A (en) Hermetic terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201210

R150 Certificate of patent or registration of utility model

Ref document number: 6809989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250