JP6808971B2 - How to calibrate ultrasonic flaw detection - Google Patents

How to calibrate ultrasonic flaw detection Download PDF

Info

Publication number
JP6808971B2
JP6808971B2 JP2016099171A JP2016099171A JP6808971B2 JP 6808971 B2 JP6808971 B2 JP 6808971B2 JP 2016099171 A JP2016099171 A JP 2016099171A JP 2016099171 A JP2016099171 A JP 2016099171A JP 6808971 B2 JP6808971 B2 JP 6808971B2
Authority
JP
Japan
Prior art keywords
calibrator
calibration value
defect
ultrasonic
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016099171A
Other languages
Japanese (ja)
Other versions
JP2017207345A (en
Inventor
森 大輔
大輔 森
光宏 伊藤
光宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2016099171A priority Critical patent/JP6808971B2/en
Publication of JP2017207345A publication Critical patent/JP2017207345A/en
Application granted granted Critical
Publication of JP6808971B2 publication Critical patent/JP6808971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は超音波探傷の較正方法に関し、特に、欠陥の大きさを当該欠陥の深さに応じて較正できるようにした較正方法に関するものである。 The present invention relates to a method for calibrating ultrasonic flaw detection, and more particularly to a calibration method capable of calibrating the size of a defect according to the depth of the defect.

超音波探傷器で被探傷材内の欠陥の有無を正確に検出するためには、反射波中に含まれる欠陥信号のレベルを、被探傷材内での超音波の減衰を考慮して較正する必要がある。そこで、例えば特許文献1では、欠陥信号に対する受信ゲインを当該欠陥の被探傷材内での深さ(受信時間)に応じて変化させるようにした超音波探傷器が開示されている。 In order for an ultrasonic flaw detector to accurately detect the presence or absence of defects in the flawed material, the level of the defect signal contained in the reflected wave is calibrated in consideration of the attenuation of ultrasonic waves in the flawed material. There is a need. Therefore, for example, Patent Document 1 discloses an ultrasonic flaw detector in which the reception gain for a defect signal is changed according to the depth (reception time) of the defect in the flawed material.

実開昭49−148988Akira Jinkai 49-148988

ところで、超音波探傷器の超音波受発振器から出力される超音波は実際には三次元的な広がりのある球面波であり、収束波であるか発散波であるかによっても被探傷材内の深さでの超音波強度が変化するとともに、面積的な拡がりのある欠陥の各部からの超音波強度も異なってくることから、欠陥の有無のみならずその大きさ(投影面積)についても較正をしないと欠陥につての正確な情報は入手できない。 By the way, the ultrasonic wave output from the ultrasonic receiver oscillator of the ultrasonic flaw detector is actually a spherical wave having a three-dimensional spread, and it depends on whether it is a convergent wave or a divergent wave in the flawed material. As the ultrasonic intensity at the depth changes, the ultrasonic intensity from each part of the defect with an area spread also changes, so calibrate not only the presence or absence of the defect but also its size (projected area). Otherwise, accurate information about the defect will not be available.

そこで、本発明はこのような要請に鑑みたもので、被探傷材の欠陥の深さに関係なくその有無と大きさを正確に把握可能とした超音波探傷の較正方法を提供することを目的とする。 Therefore, in view of such a request, it is an object of the present invention to provide an ultrasonic flaw detection calibration method capable of accurately grasping the presence / absence and size of a defect of a flawed material regardless of the depth of the defect. And.

上記目的を達成するために、本第1発明では、表面から異なる深さにそれぞれ所定径の円形のモデル欠陥(11〜14)を形成した、被探傷材と同材質の較正体(1)を用意し、超音波受発振手段(2)によって少なくとも前記モデル欠陥(11〜14)を形成した範囲の較正体(1)表面に向けて超音波を発振するとともに超音波の反射波を受振し、受振された反射波中の欠陥信号の強度を較正体(1)表面からの深さに応じて較正するための第1較正値を得るとともに、較正された欠陥信号強度が所定値以上となる領域の直径をさらに較正体表面からの深さに応じて較正するための第2較正値を得る。 In order to achieve the above object, in the first invention, a calibrator (1) made of the same material as the material to be detected is provided with circular model defects (11 to 14) having predetermined diameters formed at different depths from the surface. Prepared, ultrasonic waves are oscillated toward the surface of the calibrator (1) in the range in which at least the model defects (11 to 14) are formed by the ultrasonic wave receiving and oscillating means (2), and the reflected waves of the ultrasonic waves are received. A region in which the intensity of the defect signal in the received reflected wave is calibrated (1), the first calibration value for calibrating according to the depth from the surface is obtained, and the calibrated defect signal intensity is equal to or higher than a predetermined value. A second calibration value is obtained to further calibrate the diameter of the calibrator according to the depth from the surface of the calibrator.

本第1発明によれば、第1較正値によって被探傷材の欠陥の有無をその深さに関係なく確実に知ることができるとともに、第2較正値によって被探傷材の欠陥の大きさをその深さに関係なく正確に知ることができる。また、第1較正値および第2較正値を簡易に得ることができる。 According to the first invention, the presence or absence of defects in the flawed material can be reliably known by the first calibration value regardless of the depth thereof, and the size of the defects in the flawed material can be determined by the second calibration value. It can be known accurately regardless of the depth. Moreover, the first calibration value and the second calibration value can be easily obtained.

本第2発明では、前記第1較正値および前記第2較正値をそれぞれ、多項式(F(x)、G(x))による補間曲線で求める。 In the second invention , the first calibration value and the second calibration value are obtained by interpolation curves using polynomials (F (x) and G (x), respectively).

本第2発明によれば、第1較正値および第2較正値を正確に求めることができる。 According to the second invention , the first calibration value and the second calibration value can be accurately obtained.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。 The reference numerals in parentheses indicate the correspondence with the specific means described in the embodiments described later for reference.

以上のように、本発明の超音波探傷の較正方法によれば、被探傷材の欠陥の深さに関係なくその有無と大きさを正確に把握することが可能である。 As described above, according to the ultrasonic flaw detection calibration method of the present invention, it is possible to accurately grasp the presence / absence and size of defects of the flawed material regardless of the depth of the defects.

本発明の一実施形態を示す、較正体の平面図である。It is a top view of the calibrator which shows one Embodiment of this invention. 較正体の垂直断面図である。It is a vertical sectional view of a calibrator. 各モデル欠陥から得られる反射波の強度を濃淡分布で示した図である。It is the figure which showed the intensity of the reflected wave obtained from each model defect by the shading distribution. 図3の濃淡分布の中心部強度を較正体表面からの深さに応じてプロットしたグラフである。It is a graph which plotted the intensity at the center of the shading distribution of FIG. 3 according to the depth from the surface of a calibrator. 図3における各モデル欠陥の濃淡分布を較正した後の濃度分布を示す図である。It is a figure which shows the density distribution after calibrating the shading distribution of each model defect in FIG. 図5の濃度分布を二値化した図である。It is a figure which binarized the concentration distribution of FIG. 図6の白色領域の直径を較正体表面からの深さに応じてプロットしたグラフである。6 is a graph in which the diameter of the white region in FIG. 6 is plotted according to the depth from the surface of the calibrator.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。 It should be noted that the embodiments described below are merely examples, and various design improvements made by those skilled in the art within the scope of the present invention are also included in the scope of the present invention.

以下、本発明の較正方法について具体的に説明する。図1には本発明方法に使用する較正体1の平面図を示し、図2にはその断面図を示す。較正体1は被探傷材と同一材料で成形された直方体で、裏面は複数段に抉られている。そして、各段面には平面視で長方形の裏面の中央線Cに沿って、表面からそれぞれL1,L2,L3、L4の距離の面上に、同形の、本実施形態では円形平底穴がモデル欠陥11,12,13,14として形成されている。なお、距離L1,L2,L3、L4の一例はそれぞれ14mm、20mm、26mm、32.5mmであり、平底穴の直径の一例は0.5mmである。 Hereinafter, the calibration method of the present invention will be specifically described. FIG. 1 shows a plan view of the calibrator 1 used in the method of the present invention, and FIG. 2 shows a cross-sectional view thereof. The calibrator 1 is a rectangular parallelepiped formed of the same material as the flawed material, and its back surface is scooped out in a plurality of stages. Then, on each step surface, along the center line C of the back surface of the rectangle in a plan view, on the surface at a distance of L1, L2, L3, L4 from the front surface, respectively, a circular flat bottom hole of the same shape is modeled in this embodiment. It is formed as defects 11, 12, 13, and 14. Examples of distances L1, L2, L3, and L4 are 14 mm, 20 mm, 26 mm, and 32.5 mm, respectively, and an example of the diameter of the flat bottom hole is 0.5 mm.

較正体1の表面上方に超音波受発振器2を位置させ、これより較正体1の表面に向けて、当該表面から距離L2の面に焦点を有する収束型超音波を出力する。そして、超音波受発振器2を、較正体1の表面に対して一定高さを保ちつつ適当なピッチ(例えば0.1mm)で表面全面に対し往復走査する。 The ultrasonic wave receiving oscillator 2 is positioned above the surface of the calibrator 1, and a convergent ultrasonic wave having a focus on a surface at a distance L2 from the surface is output toward the surface of the calibrator 1. Then, the ultrasonic wave receiving oscillator 2 is reciprocally scanned over the entire surface at an appropriate pitch (for example, 0.1 mm) while maintaining a constant height with respect to the surface of the calibrator 1.

以上の構成で超音波受発振器2から超音波を発振しつつ反射波を受振し、モデル欠陥11〜14の各領域から得られる受信信号を、その強度に応じた濃淡の分布で表すと図3に示すようなものとなる。 With the above configuration, the received signal obtained from each region of model defects 11 to 14 by receiving the reflected wave while oscillating the ultrasonic wave from the ultrasonic wave receiving oscillator 2 is represented by the distribution of shading according to the intensity of FIG. It becomes as shown in.

図4は、横軸に較正体1の表面からの深さをとり、縦軸にモデル欠陥11〜14の各領域からの反射波の濃淡分布の中心部の信号強度(ここが最も信号強度が高い)をとったものである。これより、サンプル数をn(本実施形態では4)として、(n−1)の次数で各モデル欠陥11〜14の中心部信号強度を連ねる多項式の補間曲線F(x)(図4の破線)を求める。 In FIG. 4, the horizontal axis is the depth from the surface of the calibrator 1, and the vertical axis is the signal strength at the center of the shading distribution of the reflected waves from each region of the model defects 11 to 14 (this is the signal strength most). It is expensive). From this, the number of samples is n (4 in this embodiment), and the interpolation curve F (x) of the polynomial that connects the central signal intensities of the model defects 11 to 14 with the degree of (n-1) (broken line in FIG. 4). ).

超音波の焦点である、較正体1の表面からL2の距離の面にあるモデル欠陥12からの反射波の中心部信号強度を100%として、上記補間曲線F(x)を使用することによって、較正体1の任意の深さにあるモデル欠陥からの反射波の中心部信号強度を100%に換算するための較正値(第1較正値)を得ることができる。このような較正値によって、実際の被探傷材中に生じた欠陥からの反射波により得られる受信信号の強度を較正すれば、欠陥の有無の判定を当該欠陥の深さに影響されることなく適正に行うことができる。 By using the interpolation curve F (x) with the central signal intensity of the reflected wave from the model defect 12 on the surface of the calibrator 1 at a distance of L2, which is the focal point of the ultrasonic wave, as 100%. A calibration value (first calibration value) for converting the central signal strength of the reflected wave from the model defect at an arbitrary depth of the calibrator 1 to 100% can be obtained. By calibrating the intensity of the received signal obtained by the reflected wave from the defect generated in the actual flaw-examined material by such a calibration value, the determination of the presence or absence of the defect is not affected by the depth of the defect. It can be done properly.

本実施形態ではさらに、各モデル欠陥11〜14からの受信信号強度を較正して得られた濃淡分布(図5)に対して、その中心部の信号強度に対し強度が例えば−6dB以内の所定領域を、欠陥の大きさとして二値化によって抽出する。抽出された領域を図6に白色で示す。 Further, in the present embodiment, with respect to the shading distribution (FIG. 5) obtained by calibrating the received signal intensities from each model defect 11 to 14, the intensity is determined to be within, for example, -6 dB with respect to the signal intensity at the center thereof. Regions are extracted by binarization as defect size. The extracted region is shown in white in FIG.

図7は、横軸に較正体1の表面からの深さをとり、縦軸に各モデル欠陥11〜14の白色領域の直径(二値化直径)をとったものである。そこでこれより、サンプル数をn(本実施形態では4)として、(n−1)の次数で各モデル欠陥11〜14の直径値を連ねる多項式の補間曲線G(x)(図7の破線)を求める。 In FIG. 7, the horizontal axis represents the depth from the surface of the calibrator 1, and the vertical axis represents the diameter (binarized diameter) of the white region of each model defect 11-14. Therefore, from this, the number of samples is set to n (4 in this embodiment), and the interpolation curve G (x) of the polynomial in which the diameter values of the model defects 11 to 14 are connected by the degree of (n-1) (broken line in FIG. 7). Ask for.

上記補間曲線G(x)を使用することによって、較正体1の任意の深さにあるモデル欠陥の直径を、実際のモデル欠陥の直径(本実施形態では0.5mm)に換算する較正値(第2較正値)を得ることができる。そして、このような較正値によって、実際の被探傷材中に生じた欠陥からの反射波に応じた受信信号の、濃淡分布の大きさを較正することによって、欠陥の大きさ(投影面積)を当該欠陥の深さに影響されることなく正確に知ることができる。 By using the interpolation curve G (x), a calibration value (0.5 mm in this embodiment) for converting the diameter of the model defect at an arbitrary depth of the calibrator 1 into the actual diameter of the model defect (0.5 mm in the present embodiment). Second calibration value) can be obtained. Then, by using such a calibration value, the size of the defect (projected area) is determined by calibrating the size of the shading distribution of the received signal according to the reflected wave from the defect generated in the actual flaw-detected material. It can be known accurately without being affected by the depth of the defect.

1…較正体、11,12,13,14…モデル欠陥、2…超音波受発振器。 1 ... calibrator, 11, 12, 13, 14 ... model defect, 2 ... ultrasonic receiver oscillator.

Claims (2)

表面から異なる深さにそれぞれ所定径の円形のモデル欠陥を形成した、被探傷材と同材質の較正体を用意し、超音波受発振手段によって少なくとも前記モデル欠陥を形成した範囲の較正体表面に向けて超音波を発振するとともに超音波の反射波を受振し、受振された反射波中の欠陥信号の強度を較正体表面からの深さに応じて較正するための第1較正値を得るとともに、較正された欠陥信号強度が所定値以上となる領域の直径をさらに較正体表面からの深さに応じて較正するための第2較正値を得ることを特徴とする超音波探傷の較正方法。 Prepare a calibrator made of the same material as the material to be detected, in which circular model defects of predetermined diameters are formed at different depths from the surface, and on the surface of the calibrator at least in the range where the model defects are formed by ultrasonic receiving and oscillating means. Along with oscillating ultrasonic waves toward the ground, the reflected waves of the ultrasonic waves are received, and a first calibration value for calibrating the intensity of the defect signal in the received reflected waves according to the depth from the surface of the calibrator is obtained. A method for calibrating ultrasonic flaw detection, which comprises obtaining a second calibration value for further calibrating the diameter of a region where the calibrated defect signal strength is equal to or higher than a predetermined value according to the depth from the surface of the calibrator. 前記第1較正値および前記第2較正値をそれぞれ、多項式による補間曲線で求める請求項1に記載の超音波探傷の較正方法。 The method for calibrating ultrasonic flaw detection according to claim 1 , wherein the first calibration value and the second calibration value are obtained by interpolation curves using polynomials, respectively.
JP2016099171A 2016-05-18 2016-05-18 How to calibrate ultrasonic flaw detection Active JP6808971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099171A JP6808971B2 (en) 2016-05-18 2016-05-18 How to calibrate ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099171A JP6808971B2 (en) 2016-05-18 2016-05-18 How to calibrate ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JP2017207345A JP2017207345A (en) 2017-11-24
JP6808971B2 true JP6808971B2 (en) 2021-01-06

Family

ID=60416525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099171A Active JP6808971B2 (en) 2016-05-18 2016-05-18 How to calibrate ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JP6808971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263665B1 (en) 2017-01-24 2018-01-17 住友化学株式会社 Pseudo-defect sample and manufacturing method thereof, adjustment method of ultrasonic flaw detection measurement conditions, target material inspection method, and sputtering target manufacturing method
CN109696484B (en) * 2018-03-12 2023-12-12 中电华创电力技术研究有限公司 Phased array ultrasonic flaw detection calibration test block for turbine blade root
CN109374747B (en) * 2018-12-25 2021-09-07 广州广电计量检测股份有限公司 Detection method and device for vibration flaw detector

Also Published As

Publication number Publication date
JP2017207345A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6906569B2 (en) Non-ground point filtering methods, devices, storage media, and programs in point clouds
JP6808971B2 (en) How to calibrate ultrasonic flaw detection
US9140672B2 (en) Calibration block and method
CN110402388A (en) Inspection system, control method and storage medium
US11249053B2 (en) Ultrasonic inspection configuration with beam overlap verification
US20180172830A1 (en) Distance image processing device, distance image processing method, distance image processing program, and recording medium
CN108226304A (en) A kind of ultrasound phase-control front scan sensitivity computational methods based on measurement model
JP2004279144A (en) Ultrasonic inspection method and device
CN109682891B (en) Method for judging defect detection property of small-diameter pipe by simulation assistance
CN109239691A (en) Laser radar and laser radar control method
JP2010078364A (en) Radar apparatus
CN105640497A (en) Signal processing method, acoustic wave processing apparatus, and recording medium
CN110268259A (en) Defect detecting device, defect inspection method and program
JP5750989B2 (en) Ultrasonic flaw detection method for round bars
JP4826950B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5876745B2 (en) Method for evaluating the degree of corrosion of steel pipe columns
JP5507751B1 (en) Ultrasonic inspection equipment
JP6815360B2 (en) Ultrasonic inspection equipment and ultrasonic inspection method
JP6761780B2 (en) Defect evaluation method
JP2018510352A (en) Tool for calibration of ultrasonic inspection equipment
JP2016090272A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP3868443B2 (en) Ultrasonic inspection method of metal material and manufacturing method of steel pipe
JP2015163853A (en) ultrasonic flaw detection method and ultrasonic flaw detector
CN220795129U (en) Verification test block for phased array ultrasonic full focusing mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6808971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150