JP6807166B2 - Spray products - Google Patents

Spray products Download PDF

Info

Publication number
JP6807166B2
JP6807166B2 JP2016095526A JP2016095526A JP6807166B2 JP 6807166 B2 JP6807166 B2 JP 6807166B2 JP 2016095526 A JP2016095526 A JP 2016095526A JP 2016095526 A JP2016095526 A JP 2016095526A JP 6807166 B2 JP6807166 B2 JP 6807166B2
Authority
JP
Japan
Prior art keywords
absorber
spray
volume
liquefied gas
air permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016095526A
Other languages
Japanese (ja)
Other versions
JP2017203505A (en
Inventor
裕文 中村
裕文 中村
利文 畑中
利文 畑中
芳克 灰山
芳克 灰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NKK Co Ltd
Original Assignee
NKK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Co Ltd filed Critical NKK Co Ltd
Priority to JP2016095526A priority Critical patent/JP6807166B2/en
Publication of JP2017203505A publication Critical patent/JP2017203505A/en
Application granted granted Critical
Publication of JP6807166B2 publication Critical patent/JP6807166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、スプレー缶に液化ガスと、液化ガスを吸収保持する吸収体を充填したスプレー製品に関する。 The present invention relates to a spray product in which a spray can is filled with a liquefied gas and an absorber that absorbs and retains the liquefied gas.

噴射口を設けたスプレー缶内に、液化ガスが充填されたスプレー製品には、例えば、除塵用の噴射剤を充填したダストブロワや、液化燃料を充填したトーチバーナ等がある。液化ガスを用いるこれらスプレー製品は、その構造上、倒立状態で連続使用された場合に、噴射口から液化ガスが漏れ出すことがある。その対策として、従来から、スプレー缶内に保液用の吸収体を収容して、液化ガスを吸収保持させている。このような吸収体としては、木材パルプや古紙等を粉砕したセルロース繊維を主体とするものや、発泡ウレタンやウレタンフォームを成形したものが知られている。 Spray products filled with liquefied gas in a spray can provided with an injection port include, for example, a dust blower filled with an injection agent for dust removal, a torch burner filled with liquefied fuel, and the like. Due to the structure of these spray products that use liquefied gas, liquefied gas may leak from the injection port when used continuously in an inverted state. As a countermeasure, conventionally, a liquid retaining absorber is housed in a spray can to absorb and hold liquefied gas. As such an absorber, one mainly composed of cellulose fiber obtained by crushing wood pulp or used paper, or one formed by molding urethane foam or urethane foam is known.

近年、ダストブロワの噴射剤として、ジメチルエーテル(すなわち、DME)が用いられている。トーチバーナ等においても、液化燃料としてDMEや液化石油ガス(すなわち、LPG)が用いられる。このような液化ガスを用いたスプレー製品において、使用時の安全性を向上することが求められている。 In recent years, dimethyl ether (that is, DME) has been used as a propellant for dust blowers. DME and liquefied petroleum gas (that is, LPG) are also used as liquefied fuel in torch burners and the like. Spray products using such liquefied gas are required to improve safety during use.

特許文献1には、スプレー缶用の吸収体として、粉砕したセルロース繊維集合体から構成され、繊維長0.35mm以下の微細セルロース繊維を45%以上含有する吸収体が提案されている。この吸収体は、セルロース繊維を機械的または化学的な手段で粉砕した微小な繊維を含むもので、吸収性能、保液性に優れている。また、特許文献2には、スプレー缶内の噴射口側の空間と、ブロック状に圧縮成形した繊維集合体からなる吸収体の間に、通気性蓋状部材を配設することが開示されている。通気性蓋状部材は、吸収体の表面をシールして、噴射口側の空間を確保し、吸収体を構成する繊維が飛散するのを防止する。 Patent Document 1 proposes an absorber composed of crushed cellulose fiber aggregates and containing 45% or more of fine cellulose fibers having a fiber length of 0.35 mm or less as an absorber for a spray can. This absorber contains fine fibers obtained by crushing cellulose fibers by mechanical or chemical means, and is excellent in absorption performance and liquid retention. Further, Patent Document 2 discloses that a breathable lid-like member is arranged between a space on the injection port side in a spray can and an absorber made of a fiber aggregate formed by compression molding in a block shape. There is. The breathable lid-like member seals the surface of the absorber to secure a space on the injection port side and prevent the fibers constituting the absorber from scattering.

特開2008−180377号公報Japanese Unexamined Patent Publication No. 2008-180377 特開2010−112400号公報JP-A-2010-112400

しかしながら、特許文献1の吸収体は、多量の微細セルロース繊維を使用するために、その含有量が多くなると取扱いが容易でないばかりか、原料繊維の粉砕、粉砕繊維の成形、スプレー缶への充填等、製造に多数の工程を要する。また、木材パルプや古紙といった原料の違いによって、粉砕繊維の物性が異なり、粉砕繊維を集合させた吸収体の保液性に差が生じることが判明した。特許文献2の吸収体のように、粉砕繊維の圧縮成形体を用いる場合も、原料繊維や圧縮成形方法、スプレー缶への充填方法によって、保液性が変化する。 However, since the absorber of Patent Document 1 uses a large amount of fine cellulose fibers, not only is it not easy to handle when the content is large, but also crushing of raw material fibers, molding of crushed fibers, filling into a spray can, etc. , Manufacture requires many steps. It was also found that the physical properties of the crushed fibers differ depending on the raw materials such as wood pulp and used paper, and the liquid retention property of the absorber in which the crushed fibers are aggregated differs. Even when a compression molded product of crushed fibers is used as in the absorber of Patent Document 2, the liquid retention property changes depending on the raw material fibers, the compression molding method, and the filling method in the spray can.

これに対し、一般には、吸収体となる繊維の充填量を増大させて保液性を高めることが考えられるが、吸収体内の保液可能な空間容積が減少する。また、液漏れを確実に防止するには、吸収体内の空間容積より十分に少ない液化ガスを充填すればよいが、必要な液化ガスの充填量を確保できないおそれがある。あるいは、吸収体内の空間容積を増大させるために、吸収体やスプレー缶のサイズが大きくなる。しかも、所望の特性を有する吸収体を安定して製造するには、原料繊維や製造条件が一定になるように工程管理する必要があり、原料コストや製造コストが増加して生産性が低下する。 On the other hand, in general, it is conceivable to increase the filling amount of the fiber serving as the absorber to improve the liquid retention property, but the space volume in which the liquid can be retained in the absorber decreases. Further, in order to surely prevent liquid leakage, it is sufficient to fill the liquefied gas sufficiently smaller than the space volume in the absorbing body, but there is a possibility that the required filling amount of the liquefied gas cannot be secured. Alternatively, the size of the absorber or spray can is increased in order to increase the space volume in the absorber. Moreover, in order to stably produce an absorber having desired characteristics, it is necessary to control the process so that the raw material fibers and the manufacturing conditions are constant, and the raw material cost and the manufacturing cost increase and the productivity decreases. ..

一方で、粉砕繊維を集合させた吸収体の内部に液化ガスが保持されるメカニズム、倒立使用時等に液漏れが生じるメカニズムは、必ずしも判明してはいない。例えば、吸収体となる繊維の充填量が十分多く、保管状態で必要な保液性が得られても、噴射口の開放時に、液化状態のガスが漏れ出すことがあった。
本発明は、かかる課題に鑑みてなされたものであり、繊維集合体からなる吸収体を用いて、十分な量の液化ガスを保液可能であると共に、倒立状態で噴射しても液漏れを確実に防止でき、安全性及び生産性に優れるスプレー製品を提供しようとするものである。
On the other hand, the mechanism by which the liquefied gas is retained inside the absorber in which the crushed fibers are aggregated and the mechanism by which liquid leakage occurs during inverted use are not always known. For example, even if the amount of fibers to be the absorber is sufficiently large and the liquid retention property required in the storage state is obtained, the liquefied gas may leak out when the injection port is opened.
The present invention has been made in view of the above problems, and a sufficient amount of liquefied gas can be retained by using an absorber made of a fiber aggregate, and liquid leakage can occur even if sprayed in an inverted state. It is an attempt to provide a spray product that can be reliably prevented and has excellent safety and productivity.

本発明の一態様は、頭部側に噴射口を備えるスプレー缶と、該スプレー缶内に充填される液化ガス及び保液用の吸収体と、上記吸収体と上記噴射口の間に形成され気化ガスが集合する空間部と、を備えるスプレー製品であって、
上記吸収体は、粉砕されたセルロース繊維からなる繊維集合体を主体として構成され、該繊維集合体の繊維間に、上記液化ガスが保持される空隙が形成されており、
上記セルロース繊維は、木材パルプ及び古紙パルプのうちの少なくとも一方を含み、
上記液化ガスの容積は、上記スプレー缶の全容積の50%を超え、かつその全量が上記繊維集合体の上記空隙内に保持されており、
上記空間部の容積は、上記スプレー缶の全容積の4%以上であり、
上記スプレー缶内において、保液状態の上記吸収体を挟んで隔てられる上記頭部側と底部側との間の通気路の状態を示す通気性を、上記底部側から上記スプレー缶の内部に調圧された圧縮空気を供給可能な空気供給管路と、上記空気供給管路に配設された流量計とを備える通気性測定器を用いて、上記吸収体の上記底部側から上記頭部側へ向けて、1.5kPaの空気圧をかけたときに上記流量計で測定される空気流量で表し、該通気性が、大気圧に換算して1L/分以上である、スプレー製品にある。
One aspect of the present invention is formed between a spray can having an injection port on the head side, an absorber for liquefied gas and liquid retention filled in the spray can, and the absorber and the injection port. A spray product that has a space where vaporized gas collects.
The absorber is mainly composed of fiber aggregates made of crushed cellulose fibers, and voids in which the liquefied gas is held are formed between the fibers of the fiber aggregates.
The cellulose fiber contains at least one of wood pulp and waste paper pulp.
The volume of the liquefied gas exceeds 50% of the total volume of the spray can, and the total amount is held in the voids of the fiber aggregate.
The volume of the space portion is 4% or more of the total volume of the spray can.
In the spray can, the air permeability indicating the state of the ventilation path between the head side and the bottom side separated by the absorbent body in the liquid retention state is adjusted from the bottom side to the inside of the spray can. Using an air permeability measuring instrument including an air supply pipeline capable of supplying compressed compressed air and a flow meter arranged in the air supply pipeline, the absorber is used from the bottom side to the head side. A spray product has an air flow rate measured by the flow meter when an air pressure of 1.5 kPa is applied toward the spray product, and the air permeability is 1 L / min or more in terms of atmospheric pressure.

上記スプレー製品において、吸収体となる繊維集合体は、粉砕繊維間に形成される無数の空隙内に、表面張力又はファンデルワールス力により液化ガスを物理的に保持する。スプレー缶は、噴射口側に全容積の4%以上の空間部を有して、噴射に十分な量の気化ガスを集合させることができる。また、全容積の50%以上の液化ガスが、吸収体の空隙に保持されるように、吸収体を構成することにより、製品に十分な量の液化ガスを保液することができる。 In the spray product, the fiber aggregate serving as an absorber physically holds the liquefied gas in the innumerable voids formed between the pulverized fibers by surface tension or van der Waals force. The spray can has a space of 4% or more of the total volume on the injection port side, and can collect a sufficient amount of vaporized gas for injection. Further, by configuring the absorber so that 50% or more of the total volume of the liquefied gas is held in the voids of the absorber, a sufficient amount of the liquefied gas can be retained in the product.

さらに、吸収体は、その底部側と頭部側との間の通気性が、大気圧換算で1L/分以上の空気流量となるようにして、気化ガスの発生時の放出経路を確保している。ここで、従来のスプレー製品において液漏れが生じるメカニズムは、次にように推測される。吸収体が保液状態にあるとき、噴射口が開放されると、スプレー缶内の圧力が低下することにより、吸収体に保持されていた液化ガスが気化する。このとき、吸収体の表面付近からの気化が主体となり、保液した吸収体内部は殆どガスを通さないので、底部付近で発生した気化ガスが噴射口側へ抜けることができないと、頭部側よりも底部側の圧力が大きくなりやすい。そのため、底部付近の気化ガスがピストンのように働き、内部の液化ガスが押し出されることになる。 Further, the absorber ensures an air flow rate of 1 L / min or more in terms of atmospheric pressure between the bottom side and the head side to secure a release path when vaporized gas is generated. There is. Here, the mechanism by which liquid leakage occurs in conventional spray products is presumed as follows. When the injection port is opened while the absorber is in the liquid retention state, the pressure inside the spray can is reduced, so that the liquefied gas held in the absorber is vaporized. At this time, vaporization from the vicinity of the surface of the absorber is the main component, and the inside of the absorber that retains the liquid hardly allows gas to pass through. Therefore, if the vaporized gas generated near the bottom cannot escape to the injection port side, the head side The pressure on the bottom side tends to be higher than that. Therefore, the vaporized gas near the bottom acts like a piston, and the liquefied gas inside is pushed out.

これに対し、本発明のスプレー製品は、吸収体が十分な量の液化ガスを保持してスプレー缶に充填されていても、吸収体の底部側で発生した気化ガスの放出経路を有することで、気化ガスが噴射口側の空間部に速やかに集合する。その結果、底部側と頭部側の圧力差が直ちに解消される。
したがって、上記スプレー製品が倒立噴射されても、噴射口側の空間部に気化ガスの供給が継続され、液化ガスが吸収体から漏れ出すのが抑制されるので、安全に噴射を継続することが可能となる。また、このような吸収体は、原料繊維が制限されず、多量の微細セルロース繊維を使用する必要がないので、生産性が向上する。よって、安全性及び生産性に優れたスプレー製品を得ることができる。
On the other hand, the spray product of the present invention has a release path for the vaporized gas generated on the bottom side of the absorber even if the absorber holds a sufficient amount of liquefied gas and is filled in the spray can. , The vaporized gas quickly collects in the space on the injection port side. As a result, the pressure difference between the bottom side and the head side is immediately eliminated.
Therefore, even if the spray product is invertedly injected, the vaporized gas is continuously supplied to the space on the injection port side, and the liquefied gas is suppressed from leaking from the absorber, so that the injection can be safely continued. It will be possible. Further, in such an absorber, the raw material fiber is not limited and it is not necessary to use a large amount of fine cellulose fiber, so that the productivity is improved. Therefore, a spray product having excellent safety and productivity can be obtained.

実施形態1における、スプレー製品を適用したダストブロワの全体構成図。FIG. 6 is an overall configuration diagram of a dust blower to which a spray product is applied according to the first embodiment. 実施形態1における、ダストブロワの構成例であり、スプレー缶の正立状態の断面図。FIG. 5 is a configuration example of a dust blower according to the first embodiment, and is a cross-sectional view of a spray can in an upright state. 実施形態1における、ダストブロワの構成例であり、スプレー缶の倒立状態の断面図。FIG. 5 is a configuration example of a dust blower according to the first embodiment, and is a cross-sectional view of an inverted state of a spray can. スプレー缶の形状例を示す概略断面図。Schematic cross-sectional view showing a shape example of a spray can. スプレー缶の形状例を示す要部拡大断面図。An enlarged cross-sectional view of a main part showing a shape example of a spray can. 吸収体を構成する繊維集合体の密度と保液圧の関係を示す図。The figure which shows the relationship between the density and the liquid retention pressure of the fiber aggregate which constitutes an absorber. 実施形態2における、ダストブロワの構成例であり、スプレー缶の正立状態の断面図。FIG. 2 is a configuration example of a dust blower according to a second embodiment, and is a cross-sectional view of a spray can in an upright state. 実施形態2における、ダストブロワの構成例であり、スプレー缶の倒立状態の断面図。FIG. 2 is a configuration example of a dust blower according to a second embodiment, and is a cross-sectional view of an inverted state of a spray can. 実施例3における、吸収体の密度と見掛け容積、空隙容積、液化ガス残留容積及び液化ガス噴射容積との関係を示す図。The figure which shows the relationship between the density of the absorber and the apparent volume, the void volume, the liquefied gas residual volume and the liquefied gas injection volume in Example 3. FIG.

(実施形態1)
スプレー製品の実施形態1について、図面を参照しながら説明する。
図1、図2において、本形態のスプレー製品は、噴射口11を備えるスプレー缶1と、その内部に充填される液化ガスG及び保液用の吸収体2と、吸収体2と噴射口11の間に形成され気化ガスが集合する所定容積の空間部3と、を備えている。吸収体2は、スプレー缶1内に、後述する所定の通気性を有して収納されており、その内部に所定容積の液化ガスGを保持している。スプレー缶1は、噴射口11が設けられる側(すなわち、図の上側)を、頭部H側、その反対側(すなわち、図の下側)を、底部B側とし、図の上下方向を軸方向としている。一般に、スプレー製品を使用する際には、図1に示すように、スプレー缶1の頭部H側に、噴射口11を開閉するための噴射部1aが取り付けられる。
(Embodiment 1)
The first embodiment of the spray product will be described with reference to the drawings.
In FIGS. 1 and 2, the spray product of this embodiment includes a spray can 1 provided with an injection port 11, an absorber 2 for liquefied gas G and liquid retention filled therein, an absorber 2 and an injection port 11. It is provided with a space portion 3 having a predetermined volume formed between the two and where the vaporized gas collects. The absorber 2 is housed in the spray can 1 with a predetermined air permeability, which will be described later, and holds a predetermined volume of liquefied gas G inside the absorber 2. In the spray can 1, the side where the injection port 11 is provided (that is, the upper side in the figure) is the head H side, and the opposite side (that is, the lower side in the figure) is the bottom B side, and the vertical direction in the figure is the axis. The direction. Generally, when a spray product is used, as shown in FIG. 1, an injection portion 1a for opening and closing the injection port 11 is attached to the head H side of the spray can 1.

スプレー製品は、例えば、除塵用のダストブロワや、着火用のトーチバーナ等に用いられる。ダストブロワは、吸収体2に、液化ガスGを主体とする噴射剤を保持し、噴射剤の気化ガスを対象物に噴霧することにより、塵埃等を吹き飛ばす製品である。トーチバーナは、吸収体2に、液化ガスGからなる液化燃料を保持し、噴射口11を開放して燃料ガスを噴出させ、図示しない着火装置を用いて火炎を形成する製品である。 The spray product is used, for example, in a dust blower for dust removal, a torch burner for ignition, and the like. The dust blower is a product in which a propellant mainly composed of liquefied gas G is held in the absorber 2 and the vaporized gas of the propellant is sprayed onto an object to blow off dust and the like. The torch burner is a product in which a liquefied fuel composed of a liquefied gas G is held in an absorber 2, an injection port 11 is opened to eject a fuel gas, and a flame is formed by using an ignition device (not shown).

液化ガスGは、スプレー製品の用途に応じて選択することができる。例えば、可燃性液化ガスであるジメチルエーテル(すなわち、DME)や、液化石油ガス(すなわち、LPG)は、噴射剤及び液化燃料のいずれにも適しており、広い用途に用いられる。これら以外の可燃性液化ガス又は不燃性液化ガスを用いることもできる。これら液化ガスは、用途に応じて、単独で又は複数を組み合わせて使用され、また、液化ガス以外の圧縮ガスを添加することもできる。例えば、DMEは、オゾン層破壊係数が0、地球温暖化係数が1以下と極めて小さく、環境負荷の小さい噴射剤として有用であり、さらに、難燃性の炭酸ガスを添加し噴射圧力を高めた混合液化ガスとすることができる。このとき、混合液化ガス中の炭酸ガスの混合量は、任意に選択することができ、例えば、重量比率で、30%以下、好適には、0.1重量%〜5重量%の範囲とすることが好ましい。 The liquefied gas G can be selected according to the application of the spray product. For example, dimethyl ether (ie, DME), which is a flammable liquefied gas, and liquefied petroleum gas (ie, LPG) are suitable for both propellants and liquefied fuels, and are used in a wide range of applications. Combustible liquefied gas or nonflammable liquefied gas other than these can also be used. These liquefied gases may be used alone or in combination of two or more, depending on the intended use, and a compressed gas other than the liquefied gas may be added. For example, DME has an extremely small ozone layer depletion potential of 0 and a global warming potential of 1 or less, and is useful as an propellant having a small environmental load. Further, flame-retardant carbon dioxide gas is added to increase the jet pressure. It can be a mixed liquefied gas. At this time, the mixing amount of carbon dioxide gas in the mixed liquefied gas can be arbitrarily selected. For example, the weight ratio is 30% or less, preferably 0.1% by weight to 5% by weight. Is preferable.

以下、代表的なスプレー製品として、ダストブロワへ適用した例を、具体的に説明する。図2において、スプレー缶1の内部には、保液用の吸収体2が充填され、この吸収体2に、噴射剤となる液化ガスGが吸収保持されている。金属製のスプレー缶1は、両端が閉鎖する中空筒状体であり、一定径の胴部を挟んでその両側に、頭部H及び底部Bを有している。頭部Hには、頂面中央に噴射口11が開口する噴射ノズル12が配置され、頂面から、胴部側へ向けて拡径するテーパ状となっている。頭部Hは、噴射口11を備える頂面この頭部Hに、図1に示す噴射部1aが固定され、噴射レバー1bを押すことにより噴射ノズル12のバルブ機構が作動する。これにより、噴射ノズル12が開放されると、噴射口11に接続される頭部H側の噴射口1cから、液化ガスGから気化したガスが噴射される。 Hereinafter, an example of application to a dust blower as a typical spray product will be specifically described. In FIG. 2, the inside of the spray can 1 is filled with an absorber 2 for retaining liquid, and the liquefied gas G serving as a propellant is absorbed and held in the absorber 2. The metal spray can 1 is a hollow tubular body whose both ends are closed, and has a head portion H and a bottom portion B on both sides of a body portion having a constant diameter. An injection nozzle 12 having an injection port 11 opening in the center of the top surface is arranged on the head H, and has a tapered shape that expands in diameter from the top surface toward the body side. The head H is a top surface provided with an injection port 11. An injection portion 1a shown in FIG. 1 is fixed to the head H, and the valve mechanism of the injection nozzle 12 operates by pushing the injection lever 1b. As a result, when the injection nozzle 12 is opened, the vaporized gas from the liquefied gas G is injected from the injection port 1c on the head H side connected to the injection port 11.

吸収体2は、スプレー缶1の胴部形状に沿う概略円柱状のブロック体であり、その外径は缶内径と同等か僅かに小さい。吸収体2の高さは、ここでは、スプレー缶1の胴部よりも低く、胴部内に位置する吸収体2の頭部H側端面と、これに対向する噴射口11との間に、空間部3が形成されている。吸収体2は、粉砕されたセルロース繊維からなる繊維集合体を主体として構成され、繊維集合体の繊維間に形成される空隙に、液化ガスGが保持される。好適には、吸収体2となる繊維集合体の外表面を、通気性を有するシート材からなる表皮層21で被覆することができ、本形態では、繊維集合体の外表面の全体が表皮層21で覆われた構成となっている。 The absorber 2 is a substantially columnar block body that follows the shape of the body of the spray can 1, and its outer diameter is equal to or slightly smaller than the inner diameter of the can. Here, the height of the absorber 2 is lower than that of the body of the spray can 1, and there is a space between the end surface of the absorber 2 on the head H side located in the body and the injection port 11 facing the head H side. Part 3 is formed. The absorber 2 is mainly composed of fiber aggregates made of crushed cellulose fibers, and the liquefied gas G is held in the voids formed between the fibers of the fiber aggregates. Preferably, the outer surface of the fiber aggregate to be the absorber 2 can be coated with the skin layer 21 made of a breathable sheet material, and in this embodiment, the entire outer surface of the fiber aggregate is the skin layer. It has a structure covered with 21.

吸収体2の原料となるセルロース繊維としては、針葉樹、広葉樹の漂白化学パルプ又は未漂白化学パルプ、溶解パルプ、古紙パルプ、さらにはコットン等、任意の原料からなるセルロース繊維が挙げられる。これらセルロース繊維を、公知の乾式又は湿式の粉砕装置、解繊装置等を用いて機械的に粉砕処理することで、粉砕されたセルロース繊維とすることができる。機械的な手段の他に、化学的な手段、あるいはその両方の手段を用いて、粉砕処理することもできる。セルロース繊維を粉砕することで、表面積の大きな微小な繊維とすることができ、保液性が向上する。また、セルロース繊維に類似した合成繊維を併用することもできる。 Examples of the cellulose fiber as a raw material of the absorber 2 include cellulose fiber made of an arbitrary raw material such as bleached chemical pulp or unbleached chemical pulp of coniferous tree and hardwood, dissolved pulp, waste paper pulp, and cotton. These cellulose fibers can be pulverized by mechanically pulverizing them using a known dry or wet pulverizer, defibrator, or the like. In addition to mechanical means, chemical means, or both, can be used for pulverization. By crushing the cellulose fiber, it can be made into a fine fiber having a large surface area, and the liquid retention property is improved. In addition, synthetic fibers similar to cellulose fibers can also be used in combination.

なお、一般に、パルプ等を粉砕処理して得られる微小な繊維状粉体(以下、適宜、紙粉と称する)は、水分を含んでいる。例えば、通常状態の室内における紙粉には、5〜8%程度の水分が含まれており、解繊装置にて処理されたり缶から取り出されたりした紙粉は、水分がやや低め(例えば、水分約6%程度)となる。 In general, fine fibrous powder (hereinafter, appropriately referred to as paper powder) obtained by pulverizing pulp or the like contains water. For example, paper powder in a normal indoor state contains about 5 to 8% of water, and paper powder processed by a defibrator or taken out of a can has a slightly lower water content (for example,). Moisture is about 6%).

表皮層21には、吸収体2の液吸収性を妨げないように、通気性を有する紙や不織布等からなるシート材が使用される。また、例えば、不織布製のシートを袋状としたものに、繊維集合体を充填して開口部を閉じることで、全外表面が表皮層21で被覆された吸収体2とすることもできる。袋径は、特に制限されないが、好ましくは、スプレー缶1の内径と同等以下とするとよい。繊維集合体の外表面が表皮層21で拘束されることで、スプレー缶1内の充填性や通気性が良好となり、図3のように倒立状態としても液化ガスGが漏れ出すことを抑制する効果が高い。 For the skin layer 21, a sheet material made of breathable paper, non-woven fabric, or the like is used so as not to interfere with the liquid absorption of the absorber 2. Further, for example, by filling a bag-shaped non-woven fabric sheet with a fiber aggregate and closing the opening, the absorber 2 whose entire outer surface is covered with the skin layer 21 can be obtained. The bag diameter is not particularly limited, but is preferably equal to or less than the inner diameter of the spray can 1. By restraining the outer surface of the fiber aggregate with the skin layer 21, the filling property and air permeability in the spray can 1 are improved, and the leakage of the liquefied gas G is suppressed even in the inverted state as shown in FIG. Highly effective.

本形態のスプレー製品は、スプレー缶1の容積に応じた量の液化ガスGを、吸収体2の内部に保持する。液化ガスGは、吸収体2の内部に形成される無数の空隙に、表面張力又はファンデルワールス力等の物理的な力により保持されると考えられ、吸収体2を構成するセルロース繊維との化学的な親和性は低い。このため、吸収体2に保持可能な液化ガスGの容積は、吸収体2の空隙の全容積(すなわち、空隙容積)が上限となる。また、一般には、繊維集合体を構成する繊維や紙粉の実容積が一定であるとき、スプレー缶1に占める吸収体2の容積が大きいほど、空隙容積が大きくなり、保持可能な液化ガスGの容積も大きくなる。 The spray product of this embodiment holds an amount of liquefied gas G corresponding to the volume of the spray can 1 inside the absorber 2. It is considered that the liquefied gas G is held in the innumerable voids formed inside the absorber 2 by a physical force such as surface tension or van der Waals force, and is combined with the cellulose fibers constituting the absorber 2. It has a low chemical affinity. Therefore, the volume of the liquefied gas G that can be held in the absorber 2 is limited to the total volume of the voids of the absorber 2 (that is, the void volume). Further, in general, when the actual volume of the fibers and paper dust constituting the fiber aggregate is constant, the larger the volume of the absorber 2 in the spray can 1, the larger the void volume, and the liquefied gas G that can be held. The volume of is also large.

具体的には、充填される液化ガスGの容積は、スプレー缶1の全容積の50%を超える量とし、かつその全量が吸収体2の空隙に保持される。液化ガスGの充填量が、缶容積の50%以下であると、スプレー製品として要求される充填量を満足することができない。一般的な液化ガスGの充填量は、用途によっても異なるが、例えば、市販のダストブロワでは、缶容積の53%〜59%の範囲のものが多く、好適には、57%ないしそれ以上であるとよい。トーチバーナへの適用例では、充填量がより多く、例えば、缶容積の68%〜75%程度の範囲にある。充填量がさらに多くなると、液化ガスGを保持するために吸収体2の全体の容積が大きくなり、噴射口11側に、気化ガスが集合する十分な空間を確保することが難しくなる。したがって、好適には、最大で缶容積の87%程度とするのがよく、それ以下の範囲で、用途や吸収体2の保液性能に応じた十分な量となるように、適宜設定するとよい。 Specifically, the volume of the liquefied gas G to be filled is set to an amount exceeding 50% of the total volume of the spray can 1, and the total volume is held in the voids of the absorber 2. If the filling amount of the liquefied gas G is 50% or less of the can volume, the filling amount required for a spray product cannot be satisfied. The filling amount of general liquefied gas G varies depending on the application, but for example, most commercially available dust blowers are in the range of 53% to 59% of the can volume, and preferably 57% or more. It is good. In the application example to the torch burner, the filling amount is larger, for example, in the range of about 68% to 75% of the can volume. When the filling amount is further increased, the total volume of the absorber 2 becomes large in order to hold the liquefied gas G, and it becomes difficult to secure a sufficient space on the injection port 11 side for the vaporized gas to collect. Therefore, preferably, it is preferably about 87% of the can volume at the maximum, and it is preferable to appropriately set the amount in a range less than that so as to be a sufficient amount according to the application and the liquid retention performance of the absorber 2. ..

吸収体2の頭部H側において、噴射口11との間に形成される空間部3の容積は、スプレー缶1の全容積の4%以上とする。これにより、噴射口1cに接続される噴射ノズル12(例えば、図1及び図2参照)と吸収体2との干渉を回避しつつ、気化ガスが集合する十分な空間を確保することが可能になる。このとき、吸収体2の容積は、スプレー缶1の全容積の96%以下となり、液化ガスGの最大容積(すなわち、缶容積の87%)を保液可能である。一般には、吸収体2の容積が、例えば、缶容積の80%前後、すなわち、空間部3の容積が、缶容積の20%前後となるように設定することができる。 The volume of the space 3 formed between the absorber 2 and the injection port 11 on the head H side of the absorber 2 is 4% or more of the total volume of the spray can 1. As a result, it is possible to secure a sufficient space for the vaporized gas to collect while avoiding interference between the injection nozzle 12 (see, for example, FIGS. 1 and 2) connected to the injection port 1c and the absorber 2. Become. At this time, the volume of the absorber 2 is 96% or less of the total volume of the spray can 1, and the maximum volume of the liquefied gas G (that is, 87% of the can volume) can be retained. In general, the volume of the absorber 2 can be set to be, for example, about 80% of the can volume, that is, the volume of the space portion 3 can be set to be about 20% of the can volume.

図4に示すように、一般的に使用されるスプレー缶1として、容積の異なる2種類の缶C1(例えば、全容積:590ml)と缶C2(例えば、全容積:660ml)とがある。これら缶C1と缶C2とは、胴部の容積が異なっており(例えば、缶C1:550ml、缶C2:620ml)、それ以外の缶径(例えば、実内径:65.5mm)や、頭部Hの容積(例えば、40ml)は同じである。このとき、図5に拡大して示すように、噴射口11はバルブ構造を有して、ノズル12の端部が空間部3内に延出している。そのため、空間部3は、少なくともテーパ状の頭部Hの容積の3/4(例えば、30ml)前後ないしそれ以上とするのがよく、ノズル12の端部と吸収体2とが接触して液漏れが生じるのを避けることができる。この容積は、上記缶C1に対しては、例えば、全容積の5%程度であり、上記缶C2に対しては、例えば、全容積の4.5%程度となる。 As shown in FIG. 4, as a commonly used spray can 1, there are two types of cans C1 (for example, total volume: 590 ml) and cans C2 (for example, total volume: 660 ml) having different volumes. These cans C1 and C2 have different body volumes (for example, can C1: 550 ml, can C2: 620 ml), other can diameters (for example, actual inner diameter: 65.5 mm), and head. The volume of H (eg, 40 ml) is the same. At this time, as shown enlarged in FIG. 5, the injection port 11 has a valve structure, and the end portion of the nozzle 12 extends into the space portion 3. Therefore, the space portion 3 should be at least about 3/4 (for example, 30 ml) or more of the volume of the tapered head H, and the end portion of the nozzle 12 and the absorber 2 come into contact with each other to make the liquid Leakage can be avoided. This volume is, for example, about 5% of the total volume for the can C1 and, for example, about 4.5% of the total volume for the can C2.

スプレー缶1の全容積のうち、空間部3を除く容積は、空隙容積を含む吸収体2の見掛け容積と等しく、この吸収体2の見掛け容積から、空隙容積を除いた容積が、吸収体2を構成するセルロース繊維が占める実容積となる(すなわち、下記式1)。
式1:空隙容積=吸収体2の見掛け容積−吸収体2を構成する繊維の実容積
前述したように、空隙容積が大きいほど、保液可能な液化ガスGの容積は大きくなり、また、空隙容積を超える量の液化ガスGを保持することはできないから、スプレー製品に要求される液化ガスGの容積に応じた空隙容積となるように、吸収体2の見掛け容積と繊維の実容積を決定する必要がある。
Of the total volume of the spray can 1, the volume excluding the space 3 is equal to the apparent volume of the absorber 2 including the void volume, and the volume excluding the void volume from the apparent volume of the absorber 2 is the absorber 2. It is the actual volume occupied by the cellulose fibers constituting the above (that is, the following formula 1).
Equation 1: Void volume = Apparent volume of absorber 2-Actual volume of fibers constituting the absorber 2 As described above, the larger the void volume, the larger the volume of the liquefied gas G that can retain the liquid, and the voids. Since it is not possible to hold an amount of liquefied gas G that exceeds the volume, the apparent volume of the absorber 2 and the actual volume of the fiber are determined so that the void volume corresponds to the volume of the liquefied gas G required for the spray product. There is a need to.

図4において、例えば、吸収体2を構成する繊維の実容積が70mlであり、見掛け容積が胴部の容積と等しいとき、保持可能な液化ガスGの最大量は、上記缶C1については、480mlであり(すなわち、550ml−70ml;全容積の約81%)、上記缶C2については550ml(すなわち、620ml−70ml;全容積の約83%)となる。吸収体2の見掛け容積がより大きく、吸収体2を構成する繊維の実容積がより小さければ、より多くの液化ガスGを保持させることができる。例えば、上記缶C2について、吸収体2の見掛け容積が最大で(すなわち、全容積の96%)、吸収体2を構成する繊維の実容積が60mlであるとき(すなわち、全容積の9%)、空隙容積は、スプレー缶1の全容積の87%となる。 In FIG. 4, for example, when the actual volume of the fibers constituting the absorber 2 is 70 ml and the apparent volume is equal to the volume of the body portion, the maximum amount of liquefied gas G that can be held is 480 ml for the can C1. (That is, 550 ml-70 ml; about 81% of the total volume), and for the can C2 it is 550 ml (ie, 620 ml-70 ml; about 83% of the total volume). If the apparent volume of the absorber 2 is larger and the actual volume of the fibers constituting the absorber 2 is smaller, more liquefied gas G can be retained. For example, for the can C2, when the apparent volume of the absorber 2 is the maximum (that is, 96% of the total volume) and the actual volume of the fibers constituting the absorber 2 is 60 ml (that is, 9% of the total volume). The void volume is 87% of the total volume of the spray can 1.

ここで、吸収体2は、充填される液化ガスGに対して同等以上の空隙容積を有していることが望ましい。通常は、吸収体2の空隙容積に対する液化ガスGの充填比率が、70%以上、好ましくは、74%〜100%の範囲となるように構成される。一般に、液化ガスGの充填比率が低くなるほど、吸収体2の保液力は高くなり、保液していない空隙を有することで、液漏れしにくくなるが、液化ガスGの容積に対して吸収体2が大きくなりやすく効率が悪い。充填比率を70%以上とすることで、必要な量の液化ガスGを吸収体2に効率よく保持しつつ、液漏れを抑制することができる。より好ましくは、保液性能のより高い吸収体2を用いて、液化ガスGの充填比率(すなわち、液化ガスGの容積/空隙容積)が、80%〜100%となるように構成するとよい。 Here, it is desirable that the absorber 2 has a void volume equal to or larger than that of the liquefied gas G to be filled. Usually, the filling ratio of the liquefied gas G to the void volume of the absorber 2 is set to be in the range of 70% or more, preferably 74% to 100%. In general, the lower the filling ratio of the liquefied gas G, the higher the liquid retention capacity of the absorber 2, and the presence of non-retaining voids makes it difficult for the liquid to leak, but it is absorbed with respect to the volume of the liquefied gas G. Body 2 tends to grow and is inefficient. By setting the filling ratio to 70% or more, it is possible to suppress liquid leakage while efficiently retaining the required amount of liquefied gas G in the absorber 2. More preferably, it is preferable to use the absorber 2 having higher liquid retention performance so that the filling ratio of the liquefied gas G (that is, the volume of the liquefied gas G / the void volume) is 80% to 100%.

吸収体2の保液性能が十分高ければ、必要な量の液化ガスGと同等容積の空隙があればよく、充填比率は100%となる。ただし、吸収体2内の空隙容積が同じであっても、個々の空隙に液化ガスGを保持する力(すなわち、保液力)は、空隙の大きさや空隙を構成する繊維種その他によって変化する。そのため、吸収体2の内部に保持可能な液化ガスGの容積(すなわち、飽和保液容積)は、吸収体2の保液力によって異なる。例えば、微細な無数の空隙からなる吸収体に対して、より大きな空隙を多く有する吸収体2の方が、液漏れが生じやすい。後者では、充填比率が上昇すると、より大きな空隙に液化ガスが保持されていくと推測され、保液力が低下するために、充填比率を100%まで上げることができない。
したがって、具体的には、吸収体2の保液力を考慮して、吸収体2への液化ガスGの充填量、空隙容積に対する充填比率を決定することになる。飽和保液容積については、詳細を後述する。
If the liquid retention performance of the absorber 2 is sufficiently high, it is sufficient that there are voids having the same volume as the required amount of the liquefied gas G, and the filling ratio is 100%. However, even if the void volume in the absorber 2 is the same, the force for holding the liquefied gas G in each void (that is, the liquid retention force) changes depending on the size of the void, the fiber type constituting the void, and the like. .. Therefore, the volume of the liquefied gas G that can be held inside the absorber 2 (that is, the saturated liquid retention volume) differs depending on the liquid retention capacity of the absorber 2. For example, the absorber 2 having many larger voids is more likely to leak than the absorber composed of innumerable fine voids. In the latter case, it is presumed that as the filling ratio increases, the liquefied gas is retained in the larger voids, and the liquid retention capacity decreases, so that the filling ratio cannot be increased to 100%.
Therefore, specifically, the filling amount of the liquefied gas G in the absorber 2 and the filling ratio with respect to the void volume are determined in consideration of the liquid holding capacity of the absorber 2. The saturated liquid retention volume will be described in detail later.

このような吸収体2は、スプレー缶1内に、頭部H側の空間部3と底部B側とを隔てるように、かつ、空間部3と底部Bとの間の通気性を保った状態で収納される。ここでは、通気性を、スプレー缶1内において、液化ガスGを保持する吸収体2を挟んで、底部B側から頭部H側へ向けて、1.5kPaの空気圧をかけたときの空気流量として表す。そして、この通気性を、大気圧に換算した空気流量が、1L/分以上となるように設定する。吸収体2に保持される液化ガスGの充填比率が高くなると、吸収体2そのものの保液性能にかかわらず、スプレー缶1内における通気性に起因して液漏れが生じることがある。これに対して、保液された吸収体2の一端面側に、一般的な保液力に相当する一定の空気圧を加え、他端側へ通過する流量を測定することで、スプレー製品の通気性を評価することが可能となる。 Such an absorber 2 is in a state in which the space portion 3 on the head H side and the bottom portion B side are separated from each other in the spray can 1 and the air permeability between the space portion 3 and the bottom portion B is maintained. It is stored in. Here, the air flow rate when an air pressure of 1.5 kPa is applied from the bottom B side to the head H side with the absorber 2 holding the liquefied gas G sandwiched in the spray can 1 for air permeability. Expressed as. Then, this air permeability is set so that the air flow rate converted to atmospheric pressure is 1 L / min or more. When the filling ratio of the liquefied gas G held in the absorber 2 becomes high, liquid leakage may occur due to the air permeability in the spray can 1 regardless of the liquid retention performance of the absorber 2 itself. On the other hand, a constant air pressure corresponding to a general liquid retention force is applied to one end surface side of the liquid retention absorber 2 and the flow rate passing to the other end side is measured to ventilate the spray product. It becomes possible to evaluate the sex.

通気性は、スプレー缶1内における吸収体2の周囲の通気路、つまり、吸収体2の至る所から気化し底部B側の表面や外周表面に出てきた気化ガスが、頭部H側の空間部3へ集合するための放出経路の状態を示している。したがって、スプレー缶1内で発生する気化ガスの代わりに、空気を用いる方法で、吸収体2の周囲の通気性を知ることができる。具体的には、吸収体2が内部に液化ガスGを十分保持できる圧力(すなわち、保液圧)が、通常、1kPa〜3kPa程度であることから、その下限に近い値として、1.5kPaの空気圧を加える。このときに、頭部H側へ通過する空気流量が1L/分以上、好適には、2L/分以上であれば、倒立状態での液漏れが生じず、吸収体2の周囲の通気性は良好と判断できる。そして、スプレー缶1において、底部B側の気化ガスが、吸収体2の周囲を通過して速やかに空間部3へ集合し、噴射を液漏れなく継続可能となる。 The air permeability is such that the vaporized gas around the absorber 2 in the spray can 1, that is, the vaporized gas vaporized from all over the absorber 2 and emerged on the surface on the bottom B side or the outer peripheral surface is on the head H side. The state of the release path for gathering in the space 3 is shown. Therefore, the air permeability around the absorber 2 can be known by a method of using air instead of the vaporized gas generated in the spray can 1. Specifically, since the pressure at which the absorber 2 can sufficiently hold the liquefied gas G inside (that is, the liquid holding pressure) is usually about 1 kPa to 3 kPa, the value close to the lower limit is 1.5 kPa. Apply air pressure. At this time, if the flow rate of air passing to the head H side is 1 L / min or more, preferably 2 L / min or more, liquid leakage does not occur in the inverted state, and the air permeability around the absorber 2 is high. It can be judged to be good. Then, in the spray can 1, the vaporized gas on the bottom B side passes around the absorber 2 and quickly gathers in the space 3, so that the injection can be continued without liquid leakage.

なお、保液圧は、例えば、吸収体2に所定量の液化ガスGを充填した状態で、その一端面側から空気を吹き込んだときに、他端面側から液化ガスGが滲み出す空気圧から算出することができる。このとき、得られる空気圧には、液化ガスGの重量分が加算されているので、これを圧力に換算して引くと、転倒させた時に相当する保液圧となる。また、液化ガスGの代わりに、吸収体2に保持されて同等の性質を示す液体、例えばエタノール等を充填して測定を大気圧で行うこともでき、装置を簡略にできる。図6は、エタノールを用いて測定した保液圧と、吸収体2を構成する繊維集合体の密度との関係を示しており、密度に比例して、保液圧が上昇している。 The liquid retention pressure is calculated from, for example, the air pressure at which the liquefied gas G exudes from the other end surface side when air is blown from one end surface side thereof in a state where the absorber 2 is filled with a predetermined amount of liquefied gas G. can do. At this time, since the weight of the liquefied gas G is added to the obtained air pressure, when this is converted into a pressure and subtracted, the liquid holding pressure corresponding to the case of overturning is obtained. Further, instead of the liquefied gas G, a liquid held in the absorber 2 and exhibiting the same properties, such as ethanol, can be filled and the measurement can be performed at atmospheric pressure, so that the apparatus can be simplified. FIG. 6 shows the relationship between the liquid retention pressure measured using ethanol and the density of the fiber aggregates constituting the absorber 2, and the liquid retention pressure increases in proportion to the density.

一方、スプレー缶1内において、吸収体2の保液性能が十分高く、充填された液化ガスGの全量が吸収体2に保持された状態であっても、倒立使用時に、液漏れが生じる場合があることが判明した。これは、吸収体2がスプレー缶1内に密に充填されて、頭部H側へ通過する空気流量が1L/分に満たない場合であり、放出経路が十分に確保されないために、底部B側で発生した気化ガスの圧力が頭部H側より高まることに起因する。つまり、液化ガスGが吸収体2の空隙容積に対して高い割合で保持された状態で、スプレー缶1を転倒させて噴射口11を開放すると、まず空間部3に近い側で液化ガスGが気化し、直ぐに吸収体2の全体から気化ガスが発生し始める。このとき、頭部H側へ通過する気化ガス流量が僅かであると、底部B側の圧力が頭部H側よりも高くなる。この圧力差が吸収体2の保液力を超えると、内部の液化ガスGが空間部3へ押し出され、液漏れに至ると推測される。 On the other hand, in the spray can 1, even if the liquid retention performance of the absorber 2 is sufficiently high and the entire amount of the filled liquefied gas G is held by the absorber 2, liquid leakage occurs during inverted use. It turned out that there is. This is a case where the absorber 2 is densely filled in the spray can 1 and the air flow rate passing to the head H side is less than 1 L / min, and the discharge path is not sufficiently secured, so that the bottom B This is because the pressure of the vaporized gas generated on the side is higher than that on the H side of the head. That is, when the spray can 1 is overturned to open the injection port 11 in a state where the liquefied gas G is held at a high ratio with respect to the void volume of the absorber 2, the liquefied gas G is first generated on the side close to the space portion 3. After vaporization, vaporized gas begins to be generated from the entire absorber 2 immediately. At this time, if the flow rate of the vaporized gas passing to the head H side is small, the pressure on the bottom B side becomes higher than that on the head H side. When this pressure difference exceeds the liquid retention capacity of the absorber 2, it is presumed that the liquefied gas G inside is pushed out into the space 3 and leads to liquid leakage.

このように、倒立噴射時の液漏れは、底部B側−頭部H側のガス圧差と、吸収体2の保液力のバランスが崩れた時に生じる。ガス圧差は、通気性とガス放出流量とで決まり、通気性が大きいほど、ガス圧差は小さくなる。また、噴射口11からのガス放出流量が比較的少ない場合(例えば、トーチバーナ:2〜4L/分程度)に比べて、ガス放出流量がより多い場合(例えば、ダストブロワ:50L/分程度)には、圧力差が大きくなりやすい。そのため、通気性の寄与が大きくなるが、上記下限値以上の通気性が確保されていれば、底部B側の圧力は十分低下する。 As described above, the liquid leakage at the time of inverted injection occurs when the balance between the gas pressure difference between the bottom B side and the head H side and the liquid retention force of the absorber 2 is lost. The gas pressure difference is determined by the air permeability and the outgassing flow rate, and the larger the air permeability, the smaller the gas pressure difference. Further, when the gas discharge flow rate is larger (for example, dust blower: about 50 L / min) than when the gas discharge flow rate from the injection port 11 is relatively small (for example, torch burner: about 2 to 4 L / min). , The pressure difference tends to be large. Therefore, the contribution of air permeability is large, but if the air permeability of the above lower limit value or more is secured, the pressure on the bottom B side is sufficiently reduced.

ただし、想定されるガス放出流量よりも高い通気性を有する必要はなく、好適には、頭部H側へ通過する空気流量が50L/分を上限値として、それ以下の範囲となっていればよい。通気性が大きくなっても、液漏れに対する効果はあまり変わらず、むしろ吸収体2とスプレー缶1との隙間が大きくなって吸収体2が動きやすくなり、あるいは空隙容積が縮小しやすい。そのため、より好適には、頭部H側へ通過する空気流量を30L/分以下として、放出経路を確保する十分な効果が得られるように適宜設定するとよい。
ガス放出流量が比較的少ない用途では、液漏れのおそれは小さくなるが、通気性を上記範囲とすることで、安全性をより高めることができる。
However, it is not necessary to have a higher air permeability than the expected outgassing flow rate, and preferably, the air flow rate passing to the head H side is within the upper limit of 50 L / min. Good. Even if the air permeability is increased, the effect on liquid leakage does not change so much, but rather the gap between the absorber 2 and the spray can 1 is increased so that the absorber 2 can move easily or the void volume tends to be reduced. Therefore, more preferably, the air flow rate passing to the head H side may be set to 30 L / min or less, and appropriately set so as to obtain a sufficient effect of securing the discharge path.
In applications where the outgassing flow rate is relatively small, the risk of liquid leakage is small, but safety can be further improved by setting the air permeability within the above range.

好適には、吸収体2の通気性に加えて、吸収体2の保液力を高めることで、液化ガスGの充填比率が大きくなっても、倒立噴射時の液漏れを抑制する効果が高い。吸収体2の保液力は、一般的には、個々の空隙が微細で数が多く、均一に分布しているほど良好となる。逆に、個々の空隙が大きく、数が少ない場合には、表面張力やファンデルワールス力が働きにくく、空隙内に液化ガスGを保持する力が弱くなる。空隙容積が一定の条件で、液化ガスGの保持力を強くするには、下記式2で表される吸収体2の密度が高いほどよく、主にセルロース繊維の重量が増え、吸収体2の見掛け容積も増すことになる。
式2:吸収体2の密度=吸収体2の重量/吸収体2の見掛け容積
ただし、吸収体2の重量は、表皮層21の重量を除く。
Preferably, by increasing the liquid retention capacity of the absorber 2 in addition to the air permeability of the absorber 2, even if the filling ratio of the liquefied gas G is increased, the effect of suppressing liquid leakage at the time of inverted injection is high. .. In general, the liquid retention capacity of the absorber 2 becomes better as the individual voids are fine and numerous and uniformly distributed. On the contrary, when the individual voids are large and the number is small, the surface tension and the van der Waals force are difficult to work, and the force for holding the liquefied gas G in the voids is weakened. In order to increase the holding power of the liquefied gas G under the condition that the void volume is constant, the higher the density of the absorber 2 represented by the following formula 2, the better, and the weight of the cellulose fiber mainly increases, so that the absorber 2 has a higher density. The apparent volume will also increase.
Formula 2: Density of absorber 2 = weight of absorber 2 / apparent volume of absorber 2 However, the weight of absorber 2 excludes the weight of the epidermis layer 21.

具体的には、吸収体2の密度が、0.12g/cm3〜0.22g/cm3の範囲にあるとよい。密度が0.12g/cm3(例えば、図6より保液圧1kPa程度)以上のとき、通常の充填量の液化ガスGに対して、これを保持する微細な空隙の数が増加することで、表面張力やファンデルワールス力が働きやすくなる。ただし、一定容積のスプレー缶1における吸収体2の容積増大には限界があり、密度が高くなると、吸収体2を構成する繊維の実容積が増加する分、空隙容積が低下することになる。そのため、通常は、密度が0.22g/cm3(例えば、図6より保液圧3kPa程度)以下の範囲で設定し、所定量の液化ガスGを充填可能な空隙容積が得られるようにするとよい。好ましくは、吸収体2の密度が、0.13g/cm3〜0.21g/cm3(例えば、図6より保液圧1.2kPa〜2.7kPa程度)の範囲とするとよく、高い保液力が得られ、空隙容積を十分大きくすることができる。 Specifically, the density of the absorbent body 2, may be in the range of 0.12g / cm 3 ~0.22g / cm 3 . When the density is 0.12 g / cm 3 (for example, the liquid retention pressure is about 1 kPa from FIG. 6) or more, the number of fine voids that hold the liquefied gas G increases with respect to the normal filling amount of the liquefied gas G. , Surface tension and van der Waals force become easier to work. However, there is a limit to the increase in the volume of the absorber 2 in the spray can 1 having a constant volume, and when the density is increased, the void volume decreases by the amount that the actual volume of the fibers constituting the absorber 2 increases. Therefore, normally, the density is set in the range of 0.22 g / cm 3 (for example, the liquid retention pressure of about 3 kPa from FIG. 6) or less so that a void volume capable of filling a predetermined amount of liquefied gas G can be obtained. Good. Preferably, the density of the absorber 2 is in the range of 0.13 g / cm 3 to 0.21 g / cm 3 (for example, the liquid retention pressure is about 1.2 kPa to 2.7 kPa according to FIG. 6), and the liquid retention is high. Force is obtained and the void volume can be made sufficiently large.

また、吸収体2の保液力を測る指標として、下記式3で表される飽和容積比率(単位:%)を用いることができる。
式3:飽和容積比率=(飽和保液容積/空隙容積)×100
ここで、飽和保液容積は、吸収体2に充填可能な液化ガスGの最大容積であり、スプレー缶1内に吸収体2を収容した状態で、液化ガスGを飽和するまで充填し、増加重量と比重から算出することができる。上記した保液圧の測定と同様に、液化ガスGの代わりに、エタノール等の同等の液体を用いることもできる。
Further, as an index for measuring the liquid retention capacity of the absorber 2, the saturated floor area ratio (unit:%) represented by the following formula 3 can be used.
Equation 3: Saturated volume ratio = (saturated liquid retention volume / void volume) x 100
Here, the saturated liquid retention volume is the maximum volume of the liquefied gas G that can be filled in the absorber 2, and the liquefied gas G is filled and increased while the absorber 2 is housed in the spray can 1. It can be calculated from the weight and specific gravity. Similar to the above-mentioned measurement of the liquid retention pressure, an equivalent liquid such as ethanol can be used instead of the liquefied gas G.

飽和容積比率は、吸収体2の空隙容積と一般的な保液力で決まる。吸収体2の保液力が高いほど、飽和保液容積は大きくなり、空隙容積に対して液化ガスGをより多く充填できる。保液力が十分強ければ、飽和保液容積と空隙容積はほぼ等しくなり、飽和容積比率は100%に近くなる。好ましくは、飽和容積比率が、80%以上、より好ましくは、90%〜100%であるとよい。飽和容積比率を超えて液化ガスGを充填すると、スプレー缶1内において、液化ガスGが漏れ出すことになるので、予め、飽和容積比率を算出しておき、その範囲内で、上記した液化ガスGの充填比率を選択するのがよい。 The saturated volume ratio is determined by the void volume of the absorber 2 and the general liquid retention capacity. The higher the liquid retention capacity of the absorber 2, the larger the saturated liquid retention volume, and the more liquefied gas G can be filled with respect to the void volume. If the liquid holding power is sufficiently strong, the saturated liquid holding volume and the void volume become almost equal, and the saturated volume ratio becomes close to 100%. Preferably, the saturated floor area ratio is 80% or more, more preferably 90% to 100%. If the liquefied gas G is filled in excess of the saturated floor area ratio, the liquefied gas G will leak out in the spray can 1. Therefore, the saturated floor area ratio is calculated in advance, and the above-mentioned liquefied gas is within the range. It is better to select the filling ratio of G.

また、吸収体2の保液力に影響する因子として、吸収体2を構成する繊維集合体の嵩高さが挙げられる。吸収体2には、内部に液化ガスGを保持した状態で、吸収体2の見掛け容積を維持するための構造強度が要求され、構造強度を保つには、吸収体2を構成する繊維集合体の量がある程度必要となる。ただし、繊維集合体の量が多すぎると、見掛け容積に占める空隙容積が減少する。繊維集合体を増量することなく、見掛け容積を維持する構造強度を保つには、セルロースを主体とする繊維の量と、繊維の長さ・太さ・弾力性等で決まる、嵩高さの調整が有効であり、適度な嵩高さがあることが望ましい。 Further, as a factor that affects the liquid retention capacity of the absorber 2, the bulkiness of the fiber aggregate constituting the absorber 2 can be mentioned. The absorber 2 is required to have a structural strength for maintaining the apparent volume of the absorber 2 while holding the liquefied gas G inside, and in order to maintain the structural strength, the fiber aggregate constituting the absorber 2 is required. A certain amount of is required. However, if the amount of fiber aggregate is too large, the void volume in the apparent volume decreases. In order to maintain the structural strength that maintains the apparent volume without increasing the amount of fiber aggregates, it is necessary to adjust the bulkiness, which is determined by the amount of cellulose-based fibers and the length, thickness, elasticity, etc. of the fibers. It is desirable that it is effective and has an appropriate bulk.

吸収体2となる繊維集合体の嵩高さは、スプレー缶1と同等の円筒体に繊維集合体を充填し、繰り返し加圧後の嵩高さを測定することで、数値化することができる。この測定法では、一定量の繊維集合体(例えば、50.0g)を、表皮層21となる不織布製の袋に充填して、スプレー缶1に相当する円筒体(例えば、内径63mm)に入れ、ピストン(例えば、重さ1.0〜1.1kg)を、吸収体2上に自然落下させる。これを繰り返し(例えば、吸収体2の上部から約5cmの高さから10回落下)、ピストンを乗せた加圧の状態で、吸収体2の高さを測定すればよい。
この測定法では、一般的な嵩高性試験による初期嵩高さよりも、吸収体2としての性能を適正に判断できる。吸収体2は、未使用品でも、使用後にスプレー缶1から取り出したもの揉み解して測定してもよい。
The bulkiness of the fiber aggregate to be the absorber 2 can be quantified by filling a cylindrical body equivalent to the spray can 1 with the fiber aggregate and measuring the bulkiness after repeated pressurization. In this measurement method, a certain amount of fiber aggregate (for example, 50.0 g) is filled in a non-woven fabric bag to be the skin layer 21 and placed in a cylindrical body (for example, inner diameter 63 mm) corresponding to the spray can 1. , A piston (for example, a weight of 1.0 to 1.1 kg) is naturally dropped onto the absorber 2. This may be repeated (for example, dropped 10 times from a height of about 5 cm from the upper part of the absorber 2), and the height of the absorber 2 may be measured in a pressurized state on which the piston is placed.
In this measuring method, the performance as the absorber 2 can be more appropriately judged than the initial bulkiness by a general bulkiness test. The absorber 2 may be an unused product or may be measured by kneading the one taken out from the spray can 1 after use.

繊維集合体の嵩高さが大きいと、吸収体2の復元力が高くなり所望の空隙容積を確保しやすくなる。一方で、繊維集合体の嵩高さが大きいとは、同質の繊維であれば繊維長が長くなり、繊維の数が減って微細な空隙と数がやや減少することで、保液力はやや低くなると推測される。そのため、保液力を高めるには、繊維集合体の嵩高さの上限が150mm以下であるとよい。また、嵩高さが小さくなると保液力は高まるが、所望の空隙容積とするための繊維集合体の重量が多くなる。そのため、繊維集合体の嵩高さの下限は110mm以上であるとよい。好ましくは、嵩高さが120mm〜140mmの範囲にあるのがよい。 When the bulkiness of the fiber aggregate is large, the restoring force of the absorber 2 becomes high, and it becomes easy to secure a desired void volume. On the other hand, the fact that the bulkiness of the fiber aggregate is large means that if the fibers are of the same quality, the fiber length becomes long, the number of fibers decreases, and the number of fine voids and the number of fibers decreases slightly, so that the liquid retention capacity is slightly low. It is presumed to be. Therefore, in order to increase the liquid retention capacity, the upper limit of the bulkiness of the fiber aggregate is preferably 150 mm or less. Further, when the bulkiness is reduced, the liquid retention capacity is increased, but the weight of the fiber aggregate for obtaining a desired void volume is increased. Therefore, the lower limit of the bulkiness of the fiber aggregate is preferably 110 mm or more. Preferably, the bulkiness is in the range of 120 mm to 140 mm.

繊維集合体の嵩高さは、繊維原料や繊維長によって異なり、吸収体2が所望の構造強度と保液力を有するように、適宜選択することができる。繊維集合体の嵩高さを所望の範囲とするために、繊維の解繊度合や繊維種の異なるセルロース繊維を複数組み合わせてもよい。例えば、漂白クラフトパルプ(すなわち、BKP)の解繊紙粉に、この解繊紙粉をさらに微細化したBKP微粉を混合した混合紙粉や、新聞古紙の解繊紙粉にBKP微粉を混合した混合紙粉を用いることができる。 The bulkiness of the fiber aggregate varies depending on the fiber raw material and the fiber length, and can be appropriately selected so that the absorber 2 has a desired structural strength and liquid retention capacity. In order to keep the bulkiness of the fiber aggregate in a desired range, a plurality of cellulose fibers having different degrees of defibration and fiber types may be combined. For example, mixed paper powder obtained by mixing bleached kraft pulp (that is, BKP) defibrated paper powder with BKP fine powder obtained by further refining this defibrated paper powder, or BKP fine powder mixed with defibrated paper powder of used newspaper. Mixed paper powder can be used.

また、これら解繊紙粉や混合紙粉からなる繊維集合体に、嵩高さ調整用の粉末添加剤を添加して、吸収体2を構成することもできる。このような粉末添加剤としては、炭酸カルシウム、滑石、白土、炭酸カルシウム等の各種填料、澱粉類、微小繊維状セルロース、珪藻土等の粉末が挙げられ、嵩高さの大きいセルロース繊維と混合使用することで、嵩高さを下げることができる。 Further, the absorber 2 can also be formed by adding a powder additive for adjusting the bulk to the fiber aggregate composed of these defibrated paper powder and mixed paper powder. Examples of such powder additives include various fillers such as calcium carbonate, talc, white clay, and calcium carbonate, and powders such as starches, fine fibrous cellulose, and diatomaceous soil, which are mixed and used with bulky cellulose fibers. Therefore, the bulkiness can be reduced.

嵩高さ調整用の粉末添加剤の添加量は、繊維集合体の重量に対して、0〜30%程度とするのがよく、0〜25%の範囲にあるとより好ましい。澱粉類、微小繊維状セルロースは、食用又は食品添加物としても使用可能であり、取扱時の作業環境に悪影響を与えないので好適である。炭酸カルシウムはpHを上げる作用があるので、吸収体2に水分が含まれるときに、スプレー缶1内で錆が発生するのを防止する効果がある。 The amount of the powder additive for adjusting the bulkiness is preferably about 0 to 30% with respect to the weight of the fiber aggregate, and more preferably in the range of 0 to 25%. Starches and fine fibrous celluloses are suitable because they can be used as edible or food additives and do not adversely affect the working environment during handling. Since calcium carbonate has an effect of raising pH, it has an effect of preventing rust from being generated in the spray can 1 when the absorber 2 contains water.

繊維集合体を形成するための繊維の集積方法は、特に制限されず、粉砕されたセルロース繊維を、直接スプレー缶1に充填しても、あるいは、予めスプレー缶1に対応する形状の繊維集合体として、スプレー缶1に充填してもよい。繊維集合体は、例えば、公知の圧縮成形機を用いて、縦方向又は横方向(すなわち、スプレー缶1の軸方向又は径方向)に圧縮したブロック状の成形体としてもよく、さらに表皮層21となる不織布製のシートで被覆するか、不織布製の袋に収容して、吸収体2としてもよい。 The method for accumulating fibers for forming the fiber aggregate is not particularly limited, and the crushed cellulose fibers may be directly filled in the spray can 1 or the fiber aggregate having a shape corresponding to the spray can 1 in advance. As a result, the spray can 1 may be filled. The fiber aggregate may be, for example, a block-shaped molded body compressed in the vertical direction or the horizontal direction (that is, the axial direction or the radial direction of the spray can 1) using a known compression molding machine, and further, the skin layer 21. It may be covered with a non-woven fabric sheet or stored in a non-woven fabric bag to form the absorber 2.

(実施形態2)
図7、図8に示すように、表皮層21となる不織布製のシート上に、セルロース繊維を堆積させて所定厚のシート材とし、これを円柱状に巻いて吸収体2とすることもできる。より厚いシート材を二つ折りにしたものを、円柱状に整えて吸収体2としてもよい。また、セルロース繊維に熱融着性繊維やバインダを添加配合してもよく、成形形状の保持が容易になる。このように、全表面が表皮層21で被覆されていない吸収体2について、空間部3との間に、通気性を有する蓋状のフィルタ部材4を配置することもできる。
(Embodiment 2)
As shown in FIGS. 7 and 8, cellulose fibers may be deposited on a non-woven fabric sheet to be the skin layer 21 to form a sheet material having a predetermined thickness, which may be wound into a columnar shape to form an absorber 2. .. A thicker sheet material folded in half may be arranged into a columnar shape to form the absorber 2. Further, a heat-sealing fiber or a binder may be added to the cellulose fiber, and the molded shape can be easily maintained. In this way, with respect to the absorber 2 whose entire surface is not covered with the skin layer 21, a lid-shaped filter member 4 having air permeability can be arranged between the absorber 2 and the space portion 3.

フィルタ部材4は、例えば、スプレー缶1の内径よりもやや大径に成形された一定厚さの円盤状多孔質体からなる。好適には、通気性の繊維集合体である不織布シートを用い、所定厚さとなるように積層してフィルタ部材4とすることができる。不織布を構成する繊維には、合成繊維、天然繊維、無機繊維、再生繊維等のいずれも好適に使用することができる。これにより、空間部3に面する吸収体2の表面が表皮層21で覆われていない場合でも、その表面を通気可能に保護し、吸収体2の変位や繊維の飛散を規制して、液漏れ防止効果を高めることができる。 The filter member 4 is made of, for example, a disk-shaped porous body having a constant thickness formed to have a diameter slightly larger than the inner diameter of the spray can 1. Preferably, a non-woven fabric sheet, which is a breathable fiber aggregate, can be used and laminated to a predetermined thickness to form the filter member 4. As the fibers constituting the non-woven fabric, any of synthetic fibers, natural fibers, inorganic fibers, regenerated fibers and the like can be preferably used. As a result, even if the surface of the absorber 2 facing the space 3 is not covered with the skin layer 21, the surface is protected so as to be breathable, the displacement of the absorber 2 and the scattering of fibers are regulated, and the liquid is liquid. The leak prevention effect can be enhanced.

このとき、通気性を上記範囲とすることで、同様の効果が得られる。また、通気性を調整するために、吸収体2の外周に通気部材5を設けることもできる。通気部材5は、スプレー缶1内において、吸収体2の外周面の少なくとも一部に接して配置され、スプレー缶1の軸方向及び径方向に通気路を形成する。この通気路は、噴射時に気化ガスの放出経路となり、吸収体2の底部B側と頭部H側の圧力差を軽減して液漏れを防止する。通気部材5は、例えば、短冊形状のマイクロフルート段ボール板の厚み方向に多数の細い穴を貫通加工したものや、厚手の不織布シートからなり、吸収体2の外周の複数個所に、均等配置される。 At this time, the same effect can be obtained by setting the air permeability within the above range. Further, in order to adjust the air permeability, a ventilation member 5 may be provided on the outer periphery of the absorber 2. The ventilation member 5 is arranged in the spray can 1 in contact with at least a part of the outer peripheral surface of the absorber 2, and forms a ventilation path in the axial direction and the radial direction of the spray can 1. This ventilation path serves as a release path for vaporized gas at the time of injection, and reduces the pressure difference between the bottom B side and the head H side of the absorber 2 to prevent liquid leakage. The ventilation member 5 is made of, for example, a strip-shaped microflute corrugated cardboard plate having a large number of small holes penetrated in the thickness direction or a thick non-woven fabric sheet, and is evenly arranged at a plurality of locations on the outer periphery of the absorber 2. ..

吸収体2を充填する際にスプレー缶1の内壁面に密接させると、吸収体2の変位が抑制されるが、繊維集合体の嵩密度が大きいと、吸収体2の缶内応力(すなわち、反発力)が大きくなって、通気性が低下しやすくなる。特に、吸収体2への液化ガスGの充填比率が大きいと、液漏れが生じるおそれが高くなるが、そのような場合に、通気部材5を、適度に配置することで、所望の通気性を得ることができる。あるいは、吸収体2の外径をスプレー缶1の内径と同等とし、その断面形状を、僅かに偏平な円形とすると、吸収体2をスプレー缶1の内壁面に密接させながら、通気性を高めることができる。吸収体2の偏平率は、例えば、0.12以下、好ましくは0.10以下とするのがよい。 When the absorber 2 is filled, if it is brought into close contact with the inner wall surface of the spray can 1, the displacement of the absorber 2 is suppressed, but if the bulk density of the fiber aggregate is large, the stress inside the can of the absorber 2 (that is, that is, The repulsive force) becomes large, and the air permeability tends to decrease. In particular, if the filling ratio of the liquefied gas G into the absorber 2 is large, there is a high possibility that liquid leakage will occur. In such a case, by appropriately arranging the ventilation member 5, the desired ventilation can be obtained. Obtainable. Alternatively, if the outer diameter of the absorber 2 is equal to the inner diameter of the spray can 1 and the cross-sectional shape thereof is a slightly flat circular shape, the absorber 2 is brought into close contact with the inner wall surface of the spray can 1 to improve air permeability. be able to. The flatness of the absorber 2 is, for example, 0.12 or less, preferably 0.10 or less.

上記実施形態1のように、吸収体2の全表面を表皮層21で被覆した構成において、外周に通気部材5を配置してもよい。また、空間部3との間に蓋状部材4を介設した構成とすることも、もちろんできる。 As in the first embodiment, in the configuration in which the entire surface of the absorber 2 is covered with the skin layer 21, the ventilation member 5 may be arranged on the outer periphery. Further, of course, the lid-like member 4 may be interposed between the space portion 3 and the space portion 3.

(実施例1)
以下に示す方法で、種々の吸収体2と液化ガスGをスプレー缶1に充填したスプレー製品を作製し、通気性の評価を行った。液化ガスGは、DMEに5重量%以下の炭酸ガスを混合した混合液化ガスであり、350mlの液化ガスGを、吸収体2をスプレー缶1に挿入後に充填して、ダストブロワ用のスプレー製品とした。
吸収体2には、表1に示すように、嵩高さを調整した2種類を用いた。原料となるセルロース繊維としては、漂白クラフトパルプ(すなわち、BKP)の解繊紙粉と、新聞古紙の解繊紙粉を用い、BKP解繊紙粉/BKP微粉≒8/2の混合紙粉(すなわち、BKP系;嵩高さ125mm)と、新聞古紙解繊紙粉/BKP微粉≒7/3の混合紙粉(すなわち、古紙系;嵩高さ132mm)からなる繊維集合体とした。
(Example 1)
A spray product in which various absorbers 2 and liquefied gas G were filled in a spray can 1 was prepared by the method shown below, and the air permeability was evaluated. The liquefied gas G is a mixed liquefied gas in which 5% by weight or less of carbon dioxide gas is mixed with DME, and 350 ml of the liquefied gas G is filled after inserting the absorber 2 into the spray can 1 to form a spray product for a dust blower. did.
As shown in Table 1, two types of absorbers 2 having adjusted bulkiness were used. As the raw material cellulose fiber, bleached kraft pulp (that is, BKP) defibrated paper powder and used newspaper defibrated paper powder are used, and BKP defibrated paper powder / BKP fine powder ≈ 8/2 mixed paper powder ( That is, a fiber aggregate composed of BKP-based; bulky 125 mm) and mixed paper powder of newspaper waste paper krafted paper powder / BKP fine powder ≈7/3 (that is, waste paper-based; bulky 132 mm) was prepared.

これら2種類の繊維集合体のそれぞれについて、セルロース繊維の重量を、70g、85g、93gに変更し、内径65.5mmのスプレー缶1(例えば、上記図4の缶C1又は缶C2)に、所定の挿入深度となるように挿入充填した。吸収体2は、成形せずにスプレー缶1に直接充填したもの(すなわち、サンプル1、2)に対して、さらに、吸収体2の表皮層21の形成の有無や圧縮成形の有無、成形方法を変更したものを用意し、サンプル3〜サンプル15とした。挿入深度は、スプレー缶1の底部B側から挿入した吸収体2の、底部Bからの高さが、25mm又は45mmとなるようにし、底蓋を巻締め後、缶口から棒で押して吸収体2を缶底に密着させた。 For each of these two types of fiber aggregates, the weights of the cellulose fibers were changed to 70 g, 85 g, and 93 g, and the spray can 1 having an inner diameter of 65.5 mm (for example, can C1 or can C2 in FIG. 4) was designated. It was inserted and filled so as to have the insertion depth of. The absorber 2 is obtained by directly filling the spray can 1 without molding (that is, samples 1 and 2), and further, whether or not the skin layer 21 of the absorber 2 is formed, whether or not compression molding is performed, and a molding method. Was prepared and used as Sample 3 to Sample 15. The insertion depth is set so that the height of the absorber 2 inserted from the bottom B side of the spray can 1 is 25 mm or 45 mm from the bottom B, the bottom lid is wrapped, and then the absorber is pushed from the can mouth with a rod. 2 was brought into close contact with the bottom of the can.

吸収体2となる繊維集合体の嵩高さは、以下の測定法に基づいて測定した。
(嵩高さ測定法)
繊維集合体50.0gを、表皮層21となる直径66〜70mmの不織布製の袋(例えば、PP/PE複合繊維、20g/m2、ガゼット加工、深さ245mm)に押し入れ、封をして吸収体2とする。スプレー缶1に略相当する内径63mm、高さ約230mmの透明なプラスチック製の円筒体を、テーブル上に立て、吸収体2を挿入して、底部に大きな隙間ができないように整える。円筒体内に、円柱状のピストン(例えば、重さ1.0〜1.1kg、直径60mm、高さ約260mm)を挿入して、吸収体2の上方約5cmの高さから自然落下させ、これを10回繰り返す。ピストンを乗せた加圧の状態で、吸収体2の高さ(すなわち、テーブル上面からピストン底面までの高さ)を、mm単位で測定する。測定後、吸収体2を取出して揉み解し、再度挿入して同じことを行う。これを合計5回繰り返し、その中心値(単位mm)を繊維集合体の「嵩高さ」とする。
The bulkiness of the fiber aggregate to be the absorber 2 was measured based on the following measuring method.
(Bulk measurement method)
50.0 g of the fiber aggregate is pushed into a non-woven fabric bag having a diameter of 66 to 70 mm (for example, PP / PE composite fiber, 20 g / m 2 , gusseted, depth 245 mm) to be the skin layer 21, and sealed. Let it be absorber 2. A transparent plastic cylinder having an inner diameter of 63 mm and a height of about 230 mm, which is substantially equivalent to the spray can 1, is erected on a table, and the absorber 2 is inserted to prepare so that a large gap is not formed at the bottom. A cylindrical piston (for example, weight 1.0 to 1.1 kg, diameter 60 mm, height about 260 mm) is inserted into the cylindrical body and naturally dropped from a height of about 5 cm above the absorber 2. Is repeated 10 times. The height of the absorber 2 (that is, the height from the top surface of the table to the bottom surface of the piston) is measured in mm units in a state of pressurization on which the piston is placed. After the measurement, the absorber 2 is taken out, kneaded, inserted again, and the same is performed. This is repeated 5 times in total, and the center value (unit: mm) is defined as the “bulk” of the fiber aggregate.

吸収体2は、具体的には、スプレー缶1の内径より細い長めのパイプに、繊維集合体となる混合紙粉を充填し、予めスプレー缶1に挿入可能な長さまで軸方向に圧縮した成形体として、スプレー缶1に直接充填したもの(すなわち、縦圧縮;サンプル3、4)、さらに、短冊状のマイクロフルート段ボール板からなる通気部材5を、スプレー缶1の内壁の3箇所に等間隔で配置してから、サンプル3、4の吸収体2を挿入して一体化させたもの(すなわち、サンプル5、6)を用意した。
通気部材5となるマイクロフルート段ボール板は、厚み2.5mm、幅20mm、高さ168mmであり、高さ方向に並列する複数の中空部と、板厚方向の多数の貫通穴を有して、スプレー缶1の軸方向及び径方向に通気性を持たせている。
Specifically, the absorber 2 is formed by filling a long pipe smaller than the inner diameter of the spray can 1 with mixed paper powder as a fiber aggregate and compressing it in the axial direction to a length that can be inserted into the spray can 1 in advance. As a body, a spray can 1 is directly filled (that is, vertical compression; samples 3 and 4), and ventilation members 5 made of strip-shaped microflute corrugated cardboard are placed at three locations on the inner wall of the spray can 1 at equal intervals. After arranging in, the absorbers 2 of the samples 3 and 4 were inserted and integrated (that is, the samples 5 and 6) were prepared.
The microflute corrugated cardboard plate serving as the ventilation member 5 has a thickness of 2.5 mm, a width of 20 mm, and a height of 168 mm, and has a plurality of hollow portions parallel in the height direction and a large number of through holes in the plate thickness direction. Breathability is provided in the axial direction and the radial direction of the spray can 1.

また、スプレー缶1の肩部分(すなわち胴部と頭部Hの境界部)に、円盤状のフィルタ部材4を押し入れた後、紙粉マットを円柱状に巻いた吸収体2を挿入したもの(すなわち、サンプル7)、さらに、不織布シートからなる通気部材5を、スプレー缶1の内壁の3箇所に等間隔で配置してから、サンプル7の吸収体2を挿入して一体化させたもの(すなわち、サンプル8)を用意した。
紙粉マットは、表皮層21となる通気性シート上に、混合紙粉を厚めに堆積して適度に圧縮させたものであり、表皮層21が最外表面となるように巻いて、層間に隙間がない円柱状の吸収体2とした。通気性シートとしては、PE/PP複合繊維からなる20g/m2の不織布シートを用い、通気部材5となる不織布シートは、上記通気性シートを積層して、幅15mm、高さ170mmの短冊状としたものを用いた。
Further, after the disk-shaped filter member 4 is pushed into the shoulder portion (that is, the boundary portion between the body portion and the head portion H) of the spray can 1, the absorber 2 in which the paper dust mat is wound in a columnar shape is inserted ( That is, the sample 7) and the ventilation member 5 made of a non-woven fabric sheet are arranged at three positions on the inner wall of the spray can 1 at equal intervals, and then the absorber 2 of the sample 7 is inserted and integrated (sample 7). That is, sample 8) was prepared.
The paper dust mat is obtained by thickly depositing mixed paper powder on a breathable sheet to be the skin layer 21 and appropriately compressing it, and winding the paper dust mat so that the skin layer 21 is the outermost surface between layers. A columnar absorber 2 having no gap was used. As the breathable sheet, a 20 g / m 2 non-woven fabric sheet made of PE / PP composite fiber is used, and the non-woven fabric sheet to be the ventilation member 5 is a strip shape having a width of 15 mm and a height of 170 mm by laminating the above-mentioned breathable sheets. Was used.

また、表皮層21となる通気性の袋に、混合紙粉を適度に圧縮してから充填して、吸収体2としたもの(すなわち、サンプル9、10)、この通気性の袋に、上記サンプル3、4の縦圧縮した混合紙粉を充填して、吸収体2としたもの(すなわち、サンプル11、12)、さらには、縦圧縮主体の混合紙粉を充填して、吸収体2としたもの(すなわち、サンプル13、14)、直方体形状に成形した混合紙粉を充填して、吸収体2としたもの(すなわち、サンプル15)を用意した。 Further, a breathable bag to be the skin layer 21 is filled with mixed paper powder after being appropriately compressed to form an absorber 2 (that is, samples 9 and 10), and the breathable bag is filled with the above. Samples 3 and 4 were filled with the vertically compressed mixed paper powder to form the absorber 2 (that is, samples 11 and 12), and further filled with the vertically compressed mixed paper powder to form the absorber 2. (That is, samples 13 and 14) and mixed paper powder formed into a rectangular shape were filled into the absorber 2 (that is, sample 15).

通気性の袋は、PE/PP複合繊維からなる不織布シートを、袋状にしたもので(すなわち、20g/m2、厚さ約0.1mm、袋径66mm、深さ245mm、重量1.4g、ガゼット加工)、紙粉充填後に開口部を閉じて、表皮層21で覆われた吸収体2とした。横圧縮主体のものでは、まず、スプレー缶1の長さより短めの型枠で、混合紙粉を、缶内径より細く横圧縮成形した後、缶内径より細いパイプに押し出し適度に縦圧縮して、上記通気性の袋に入れた。縦圧縮主体のものでは、まず、スプレー缶1の長さより十分に長い型枠で、混合紙粉を、缶内径より細く横圧縮した後に、缶内径より細いパイプに押し出して縦圧縮成形し、上記通気性の袋に入れた。直方体形状のものは、混合紙粉を、上記通気性の袋に入れ、長方形断面で一辺が缶内径より小さい型枠で横圧縮した後に、縦圧縮した。 The breathable bag is a bag-shaped non-woven fabric sheet made of PE / PP composite fiber (that is, 20 g / m 2 , thickness about 0.1 mm, bag diameter 66 mm, depth 245 mm, weight 1.4 g). , Gazette processing), and after filling with paper dust, the opening was closed to obtain an absorber 2 covered with a skin layer 21. In the case of the one mainly composed of horizontal compression, first, in a mold shorter than the length of the spray can 1, the mixed paper powder is horizontally compressed and molded to be thinner than the inner diameter of the can, and then extruded into a pipe thinner than the inner diameter of the can and appropriately vertically compressed. Placed in the above breathable bag. In the case of the one mainly composed of vertical compression, first, in a mold sufficiently longer than the length of the spray can 1, the mixed paper dust is laterally compressed to be thinner than the inner diameter of the can, and then extruded into a pipe thinner than the inner diameter of the can to be vertically compressed and molded. Placed in a breathable bag. For the rectangular parallelepiped shape, the mixed paper powder was placed in the above-mentioned breathable bag, horizontally compressed with a mold having a rectangular cross section and one side smaller than the inner diameter of the can, and then vertically compressed.

サンプル1〜15について、以下の方法で、ブロー試験を行って、スプレー製品の倒立使用時の液漏れに対する効果を調べた。各サンプルのスプレー缶1には、気化ガスのみ放出される場合の噴射流量が大気圧で約50L/分になるバルブを装着した。ブロー試験に先立ち、液化ガスGを充填したスプレー缶1を1日放置後、25℃のチャンバ内で3時間保った。このスプレー缶1を倒立させた後、直ちに噴射口11を開いて、ガスのブローを開始し、30秒間ブローを継続した。この間に、噴射されるガスに液が混じらなければ、良:○と判定し、液が混じれば、不可:×と判定した。結果を、表1に示す。 Samples 1 to 15 were blow-tested by the following method to examine the effect of the spray product on liquid leakage during inverted use. The spray can 1 of each sample was equipped with a valve at which the injection flow rate when only the vaporized gas was released was about 50 L / min at atmospheric pressure. Prior to the blow test, the spray can 1 filled with the liquefied gas G was left for 1 day and then kept in a chamber at 25 ° C. for 3 hours. Immediately after the spray can 1 was inverted, the injection port 11 was opened, gas blowing was started, and blowing was continued for 30 seconds. During this period, if the injected gas was not mixed with the liquid, it was judged as good: ○, and if it was mixed with the liquid, it was judged as not possible: ×. The results are shown in Table 1.

また、ブロー試験後に、以下に示すように、通気性測定器を用いた通気性試験を行い、各サンプルの通気性と液漏れとの関係を調べた。
(通気性試験)
通気性測定器は、スプレー缶1の内部に空気を送り込むための金属筒状容器に、圧縮空気の取入口と空気流量制御装置を備える空気供給管路を接続して構成される。金属筒状容器は、φ15mmの穴を開けた外径90mmのシリコンゴム板を水平に張った上端面が、スプレー缶1の載置面となり、スプレー缶1の底部Bに密着するように、スプレー缶1を固定するための装置が付設される。空気供給管路には、取入口と金属筒状容器との間に、低圧用空気レギュレータ、低流量質量流量計、低圧用空気圧力センサが順に配設されて、空気流量制御装置を構成し、所定の空気圧となるように、圧縮空気を供給可能としている。
In addition, after the blow test, as shown below, a breathability test was conducted using a breathability measuring device to investigate the relationship between the breathability of each sample and liquid leakage.
(Breathability test)
The air permeability measuring instrument is configured by connecting an intake of compressed air and an air supply pipeline provided with an air flow rate control device to a metal tubular container for sending air into the spray can 1. In the metal tubular container, the upper end surface of a silicon rubber plate having an outer diameter of 90 mm with a hole of φ15 mm is horizontally stretched to serve as a mounting surface for the spray can 1, and the spray can is sprayed so as to be in close contact with the bottom B of the spray can 1. A device for fixing the can 1 is attached. In the air supply pipeline, a low-pressure air regulator, a low-flow mass flow meter, and a low-pressure air pressure sensor are arranged in this order between the intake and the metal tubular container to form an air flow control device. Compressed air can be supplied so that the air pressure becomes a predetermined value.

スプレー製品は、吸収体2が収容されるスプレー缶1の頭部H側に穴を開けて、内部の液化ガスGを全てブローし、1日以上放置した。その後、空気抵抗をなくすために頭部Hを切除し、底部Bにφ5mm〜8mmの穴を2つ開けて、通気性測定器にセットし、載置面となるシリコンゴム板と密着させた。このとき、吸収体2が保液した状態での通気性を、大気圧で測定可能とするために、液化ガスGの代わりにDMEと同等の液体としてエタノールを350ml充填した。
通気性測定器の取入口に圧搾空気配管を接続し、低圧用空気圧力センサで検出される圧力が、所定の流量判定圧力となるように、低圧用空気レギュレータを用いて調圧した。また、そのときに低流量質量流量計で測定される空気流量を、吸収体2を介して底部B側から頭部H側へ抜ける空気流量、すなわち通気性とした。結果を表1に併記する。
In the spray product, a hole was made in the head H side of the spray can 1 in which the absorber 2 was housed, all the liquefied gas G inside was blown, and the spray product was left for 1 day or more. After that, the head H was excised in order to eliminate air resistance, two holes having a diameter of 5 mm to 8 mm were made in the bottom B, and the head H was set in a breathability measuring instrument and brought into close contact with a silicon rubber plate to be a mounting surface. At this time, in order to make it possible to measure the air permeability of the absorber 2 in a liquid-retaining state at atmospheric pressure, 350 ml of ethanol was filled as a liquid equivalent to DME instead of the liquefied gas G.
A compressed air pipe was connected to the intake of the air permeability measuring instrument, and the pressure was adjusted using a low pressure air regulator so that the pressure detected by the low pressure air pressure sensor became a predetermined flow rate determination pressure. Further, the air flow rate measured by the low flow rate mass flow meter at that time was defined as the air flow rate passing from the bottom B side to the head H side via the absorber 2, that is, air permeability. The results are also shown in Table 1.

流量判定圧力は、実際に缶内で発生する圧力付近であって、吸収体2の保液圧付近である1.5kPaに設定した。この保液圧を知るために、通気性試験に先立ち、全ブロー後のスプレー缶1の底部Bを切って、吸収体2の缶内抵抗を測定した。これを、ガス圧に換算することにより、液漏れが生じる場合の多くが、圧力1.5〜3.5kPaの範囲にあることが判明し、その下限値を流量判定圧力に採用した。 The flow rate determination pressure was set to 1.5 kPa, which is near the pressure actually generated in the can and is near the liquid retention pressure of the absorber 2. In order to know the liquid retention pressure, prior to the air permeability test, the bottom B of the spray can 1 after the total blow was cut and the resistance in the can of the absorber 2 was measured. By converting this into gas pressure, it was found that in most cases where liquid leakage occurred, the pressure was in the range of 1.5 to 3.5 kPa, and the lower limit was adopted as the flow rate determination pressure.

なお、通気性試験の前に、吸収体2の軸方向長を測定し、見掛け容積から空隙容積を算出したところ、全ての吸収体2で、挿入深度が25mmのものは、空隙容積が420ml〜470ml、挿入深度が45mmのものは、空隙容積が400ml〜420mlの範囲にあった(すなわち、充填比率74%〜87.5%)。また、全ての吸収体2で、密度は、0.14g/cm3〜0.17g/cm3の範囲にあった。 Before the air permeability test, the axial length of the absorber 2 was measured and the void volume was calculated from the apparent volume. As a result, all the absorbers 2 having an insertion depth of 25 mm had a void volume of 420 ml or more. Those with 470 ml and an insertion depth of 45 mm had void volumes in the range of 400 ml to 420 ml (ie, filling ratios of 74% to 87.5%). Further, in all of the absorber 2, and the density was in the range of 0.14g / cm 3 ~0.17g / cm 3 .

Figure 0006807166
Figure 0006807166

表1の結果から、吸収体2となる混合紙粉量や成形方法、表皮層21の有無によらず、通気性が1.0L/分以上のサンプルでは、液漏れが生じなかった。また、同等の混合紙粉量では繊維集合体の嵩高さが小さい方が、同等の嵩高さでは混合紙粉量が少ない方が、通気性が高くなる傾向があり、前者は保液力の向上に、後者は空隙容積の増加に影響しているものと推測される。 From the results in Table 1, no liquid leakage occurred in the sample having a breathability of 1.0 L / min or more regardless of the amount of mixed paper dust as the absorber 2, the molding method, and the presence or absence of the skin layer 21. In addition, the smaller the bulkiness of the fiber aggregate with the same amount of mixed paper dust, and the smaller the amount of mixed paper powder with the same bulkiness, the higher the air permeability tends to be, and the former tends to improve the liquid retention capacity. In addition, the latter is presumed to affect the increase in void volume.

また、予め成形することで、通気性が向上しており、横圧縮のサンプル13、14より、縦圧縮のサンプル11、12の方が、その効果が高い。さらに、表皮層21や通気部材5を設けることで、通気性が向上しており、表皮層21となる通気性の袋を用いたサンプル9〜15は、用いないサンプル1〜4より通気性が高く、通気部材5を配置したサンプル5、6、8は、用いないサンプル3、4、7より通気性が高い。このように、混合紙粉量や成形方法、繊維集合体の嵩高さや、表皮層21の有無を、適宜組み合わせることにより、所望の通気性を実現できる。 Further, the air permeability is improved by molding in advance, and the effect of the vertically compressed samples 11 and 12 is higher than that of the horizontally compressed samples 13 and 14. Further, the air permeability is improved by providing the skin layer 21 and the ventilation member 5, and the samples 9 to 15 using the breathable bag serving as the skin layer 21 are more breathable than the samples 1 to 4 not used. Samples 5, 6 and 8 which are high and have the ventilation member 5 arranged have higher ventilation than the samples 3, 4 and 7 which are not used. As described above, the desired air permeability can be realized by appropriately combining the amount of mixed paper dust, the molding method, the bulkiness of the fiber aggregate, and the presence or absence of the skin layer 21.

(実施例2)
実施例1のサンプル5、6、8〜15について、液化ガスGとして、DME/炭酸ガスの混合液化ガスに代えて、400mlのプロパンとブタンの混合液化ガス(プロパン/ブタン≒4/6)を充填して、トーチバーナ用のスプレー製品とした。これらサンプルに対し、トーチバーナ用のブロー試験を行って、スプレー製品の倒立使用時の液漏れに対する効果を調べた。各サンプルのスプレー缶1には、気化ガスのみ放出される場合の噴射流量が大気圧で約3L/分になるバーナを装着した。
(Example 2)
For samples 5, 6, 8 to 15 of Example 1, as the liquefied gas G, 400 ml of a mixed liquefied gas of propane and butane (propane / butane ≈ 4/6) was used instead of the mixed liquefied gas of DME / carbon dioxide gas. It was filled to make a spray product for torch burners. Blow tests for torch burners were performed on these samples to investigate their effect on liquid leakage during inverted use of spray products. The spray can 1 of each sample was equipped with a burner having an injection flow rate of about 3 L / min at atmospheric pressure when only vaporized gas was released.

ブロー試験に先立ち、液化ガスGを充填したスプレー缶1を1日放置後、35℃のチャンバ内で3時間保った。スプレー缶1にバーナを装着し、着火して直ちにスプレー缶1を倒立させて、燃焼状態を60秒間観察した。異常燃焼がなければ、良:○と判定し、液漏れや異常燃焼のおそれがある場合は燃焼を止めて、不可:×と判定した。結果を、表2に示す。また、実施例1と同様にして、通気性試験を行い、結果を表2に併記した。 Prior to the blow test, the spray can 1 filled with the liquefied gas G was left for 1 day and then kept in a chamber at 35 ° C. for 3 hours. A burner was attached to the spray can 1, and immediately after ignition, the spray can 1 was inverted and the combustion state was observed for 60 seconds. If there was no abnormal combustion, it was judged as good: ○, and if there was a risk of liquid leakage or abnormal combustion, combustion was stopped and it was judged as impossible: ×. The results are shown in Table 2. In addition, the air permeability test was performed in the same manner as in Example 1, and the results are also shown in Table 2.

何れのサンプル5、6、8〜15についても、異常燃焼は見られなかった。また、通気性は、1L/分より十分大きく、良好な結果が得られた。これら実施例1、2より、スプレー缶1内において所定の通気性を有していれば、吸収体2の空隙容積に対して高い充填比率で液化ガスGを保持していても、液漏れすることがなく、安全性を確保できることがわかる。 No abnormal combustion was observed in any of the samples 5, 6, 8 to 15. Moreover, the air permeability was sufficiently larger than 1 L / min, and good results were obtained. From Examples 1 and 2, if the spray can 1 has a predetermined air permeability, the liquid leaks even if the liquefied gas G is held at a high filling ratio with respect to the void volume of the absorber 2. It can be seen that safety can be ensured without any problems.

Figure 0006807166
Figure 0006807166

(実施例3)
実施例1のサンプル14と同様に、表皮層21となる通気性の袋に、古紙系の混合紙粉を縦圧縮してから充填して吸収体2とした構成のスプレー製品について、吸収体2の見掛け容積を略一定とし、密度を変更して保液力との関係を調べた。新聞古紙解繊紙粉/BKP微粉≒8/2の混合紙粉(すなわち、嵩高さ140mm)を、40g〜130gの範囲で用いて繊維集合体とした以外は、同様の方法で、ダストブロワ用のスプレー製品を作製した。
(Example 3)
Similar to the sample 14 of Example 1, a spray product having a structure in which a breathable bag to be the skin layer 21 is vertically compressed and then filled with waste paper-based mixed paper powder to form an absorber 2 is provided as an absorber 2. The apparent volume of the paper was kept substantially constant, and the density was changed to investigate the relationship with the liquid retention capacity. Newspaper waste paper defibrated paper powder / BKP fine powder ≒ 8/2 mixed paper powder (that is, bulkiness 140 mm) was used in the range of 40 g to 130 g to form a fiber aggregate, but the same method was used for dust blowers. A spray product was made.

得られたスプレー製品に対し、液化ガスGとして、350mlのDME/炭酸ガス≒99/1を充填し、同様のブロー試験を行った。このとき、倒立した状態で気化ガスのみが噴射される場合には、直ちに噴射を停止した。液が混じって噴射される場合には、液が完全に出なくなる時点を終末点として、噴射を停止した。スプレー缶1を秤量して容積換算し、液化ガスGの残留容積と液化ガスGの噴射容積を算出した。次いで、液化ガスを完全に放出後に、スプレー缶1の頭部Hを切り取って、吸収体2の長さを計測し、吸収体の外径を63mmとして、見掛け容積を算出した。さらに、見掛け容積から、使用した混合紙粉の実容積を減算して、空隙容積を算出した。結果を図9に示す。 The obtained spray product was filled with 350 ml of DME / carbon dioxide gas ≈99 / 1 as liquefied gas G, and the same blow test was performed. At this time, if only the vaporized gas was injected in the inverted state, the injection was immediately stopped. When the liquids were mixed and jetted, the injection was stopped with the end point when the liquids completely stopped coming out. The spray can 1 was weighed and converted into a volume, and the residual volume of the liquefied gas G and the injection volume of the liquefied gas G were calculated. Next, after the liquefied gas was completely released, the head H of the spray can 1 was cut off, the length of the absorber 2 was measured, and the outer diameter of the absorber was set to 63 mm, and the apparent volume was calculated. Further, the void volume was calculated by subtracting the actual volume of the mixed paper dust used from the apparent volume. The results are shown in FIG.

図8に明らかなように、吸収体2の見掛け容積が略一定(例えば約450ml〜500ml)となるようにして、混合紙粉量を増加していくと、吸収体2の密度が大きくなるにつれて空隙容積が徐々に小さくなるが、液化ガスの残留容積は大きくなってピークを迎えた後に徐々に減少していく。密度が0.1g/cm3を超えると、空隙容積に対する残留容積の割合が急増して、液化ガスGの噴射容積が0となり、液漏れが生じなくなる。液化ガスGの残留容積は、密度が0.17g/cm3を超えると徐々に低下し、0.22g/cm3前後で300ml超にほぼ収束する。 As is clear from FIG. 8, when the apparent volume of the absorber 2 is made substantially constant (for example, about 450 ml to 500 ml) and the amount of mixed paper dust is increased, as the density of the absorber 2 increases. The void volume gradually decreases, but the residual volume of the liquefied gas increases and gradually decreases after reaching a peak. When the density exceeds 0.1 g / cm 3 , the ratio of the residual volume to the void volume rapidly increases, the injection volume of the liquefied gas G becomes 0, and liquid leakage does not occur. The residual volume of the liquefied gas G gradually decreases when the density exceeds 0.17 g / cm 3 , and almost converges to more than 300 ml at around 0.22 g / cm 3 .

液化ガスGの残留容積は、吸収体2が保持可能な容積、つまり飽和保液容積に相当し、スプレー缶1の全容積590mlに対して50%を超える液化ガスGを液漏れなく保持できることがわかる。また、見掛け容積に対し空隙容積をより大きくして、より多い液化ガスGを液漏れなく保持するには、密度が0.12g/cm3〜0.22g/cm3の範囲にあることが好ましいことがわかる。 The residual volume of the liquefied gas G corresponds to the volume that can be held by the absorber 2, that is, the saturated liquid holding volume, and can hold more than 50% of the liquefied gas G with respect to the total volume of 590 ml of the spray can 1 without leakage. Understand. Also, the larger the void volume to the apparent volume, the hold without leaking the liquid with higher liquid gas G is preferably a density in the range of 0.12g / cm 3 ~0.22g / cm 3 You can see that.

(実施例4)
実施例1のサンプル12〜13と同様に、表皮層21となる通気性の袋に、BKP系又は古紙系の混合紙粉を、圧縮してから充填して吸収体2としたスプレー製品について、混合紙粉の量や配合、嵩高さ等を変更して、空隙容積や通気性に与える影響を調べた。サンプル16〜22の各種条件と、ブロー試験、通気性試験の結果を、表3〜表6に示す。
また、通気性試験に引き続いて、以下に示す試験法で、飽和保液容積を測定し、空隙容積に対する比率、すなわち、上記式3で表される飽和容積比率を、表3〜表6に併記した。このとき、通気性試験と同様に、液化ガスGの代わりに大気圧でのエタノール飽和保液容積を算出した。
(Example 4)
Similar to Samples 12 to 13 of Example 1, a spray product obtained by compressing and then filling a breathable bag to be the skin layer 21 with BKP-based or waste paper-based mixed paper powder to form an absorber 2 The effect on the void volume and air permeability was investigated by changing the amount, composition, bulkiness, etc. of the mixed paper powder. Tables 3 to 6 show the various conditions of the samples 16 to 22, and the results of the blow test and the air permeability test.
Further, following the air permeability test, the saturated liquid retention volume is measured by the test method shown below, and the ratio to the void volume, that is, the saturated volume ratio represented by the above formula 3 is also shown in Tables 3 to 6. did. At this time, as in the air permeability test, the ethanol saturated liquid holding volume at atmospheric pressure was calculated instead of the liquefied gas G.

(飽和保液容積試験法)
スプレー製品は、吸収体2が収容されるスプレー缶1の頭部H側に穴を開けて、内部の液化ガスGを全てブローし、1日以上放置した。その後、頭部Hを切除し、底部Bにφ5mm〜8mmの穴を2つ開けて、液化ガスGの代わりにDMEと同等の液体としてエタノールを飽和するまで保液させた。詳しくは、スプレー缶1を倒立させて、缶底からエタノールを液が漏れるまで注ぎ、さらに、スプレー缶1を正立させて、同様にエタノールを注いだ後、乾燥しないように3時間放置した。その後、スプレー缶1を倒立させて余分な液が垂れ落ちなくなるまで約20分間放置し、秤量した。このエタノール飽和状態のスプレー缶1の重量からエタノールを保液させる前のスプレー缶1の重量を減算して得られる、保液されたエタノールの重量と比重から飽和保液容積を求めた。
(Saturated liquid retention volume test method)
In the spray product, a hole was made in the head H side of the spray can 1 in which the absorber 2 was housed, all the liquefied gas G inside was blown, and the spray product was left for 1 day or more. Then, the head H was excised, two holes having a diameter of 5 mm to 8 mm were made in the bottom B, and the solution was retained until ethanol was saturated as a liquid equivalent to DME instead of the liquefied gas G. Specifically, the spray can 1 was inverted, ethanol was poured from the bottom of the can until the liquid leaked, the spray can 1 was upright, ethanol was poured in the same manner, and the mixture was left for 3 hours so as not to dry. Then, the spray can 1 was turned upside down and left for about 20 minutes until the excess liquid did not drip, and weighed. The saturated liquid retention volume was obtained from the weight and specific gravity of the retained ethanol obtained by subtracting the weight of the spray can 1 before retaining the ethanol from the weight of the spray can 1 in the saturated ethanol state.

さらに、スプレー缶1内における吸収体2の缶内応力を知るため、下記に示す方法で吸収体2の反発力を測定し、表3〜表6に併記した。また、スプレー缶1内における吸収体2の直径や偏平率を測定し、表中に併せて示した。
(反発力試験法)
スプレー製品は、内部の液化ガスGを全てブローした後、スプレー缶1の底部Bを切り取って、吸収体2を取り出した。この吸収体2の側面に幅20mmの平板材を、径方向を横切るように当接させて、下向きに押し、長径がスプレー缶1の内径の約91%(例えば、缶内径65.5mmでは、60.0mm)となるまで圧縮するのに要する力を、電子天秤上で測定した。
Further, in order to know the stress in the can of the absorber 2 in the spray can 1, the repulsive force of the absorber 2 was measured by the method shown below, and they are also shown in Tables 3 to 6. In addition, the diameter and flatness of the absorber 2 in the spray can 1 were measured and shown in the table.
(Repulsive force test method)
In the spray product, after blowing all the liquefied gas G inside, the bottom B of the spray can 1 was cut off to take out the absorber 2. A flat plate material having a width of 20 mm is brought into contact with the side surface of the absorber 2 so as to cross the radial direction and pushed downward so that the major axis is about 91% of the inner diameter of the spray can 1 (for example, when the inner diameter of the can is 65.5 mm). The force required to compress until 60.0 mm) was measured on an electronic balance.

サンプル16は、嵩高さ127mmのBKP紙粉50g〜115gを用い、サンプル11と同様に縦圧縮してから通気性の袋に充填して、吸収体2とした。吸収体2の密度は、0.115g/cm3〜0.221g/cm3の範囲にあり、密度の増加に伴い、空隙容積及び飽和保液容積が増加している。特に、吸収体2の密度が、0.12g/cm3以上のサンプルでは、400ml以上の空隙容積に対する飽和容積比率が90%を超え、充填比率が80%〜85%前後の所望量の液化ガスGを、高い保液力で保持できる。吸収体2の密度が0.12g/cm3より低い場合には、保液力がやや低下するが、飽和保液容積の範囲で液化ガスGを充填することで、必要な量の液化ガスGを保持可能である。 As the sample 16, 50 g to 115 g of BKP paper powder having a bulkiness of 127 mm was used, and the sample 16 was vertically compressed in the same manner as the sample 11 and then filled in a breathable bag to obtain an absorber 2. Density of the absorbent body 2 is in the range of 0.115g / cm 3 ~0.221g / cm 3 , with the increase of density, void volume, and a saturated liquid retention volume is increasing. In particular, in a sample having a density of the absorber 2 of 0.12 g / cm 3 or more, a desired amount of liquefied gas having a saturated volume ratio of more than 90% and a filling ratio of about 80% to 85% with respect to a void volume of 400 ml or more. G can be held with high liquid retention power. When the density of the absorber 2 is lower than 0.12 g / cm 3 , the liquid retention capacity is slightly reduced, but by filling the liquefied gas G within the saturated liquid retention volume, the required amount of the liquefied gas G is added. Can be retained.

ただし、吸収体2の密度が高くなると通気性が低下しやすくなり、密度が0.221g/cm3で通気性が0.6L/分のサンプルでは、飽和保液容積が十分大きくても、ブロー試験での液漏れが観察された。通気性が1L/分以上のサンプルでは、液漏れは生じなかった。 However, as the density of the absorber 2 becomes higher, the air permeability tends to decrease, and in the sample having a density of 0.221 g / cm 3 and an air permeability of 0.6 L / min, even if the saturated liquid holding volume is sufficiently large, the blow is blown. Leakage was observed in the test. No liquid leakage occurred in the sample having a breathability of 1 L / min or more.

サンプル17は、BKP紙粉にBKP微粉を混合して、繊維集合体の嵩高さが85mm〜154mmの範囲となるようにした混合紙粉85gを用い、サンプル11と同様に縦圧縮してから通気性の袋に充填して、吸収体2とした。嵩高さが増加するのに伴い、吸収体2の見掛け容積及び空隙容積が増加しており、特に、嵩高さが115mm〜146mmのものでは、空隙容積が400ml以上であり、飽和容積比率が94%以上と高い保液力を示す。嵩高さが85mmと低いものでは、見掛け容積の低下により空隙容積が340mlと小さくなるが、密度が大きく飽和容積比率も高くなるため、空隙容積に対する充填比率を下げることで、必要な量の液化ガスGを保持可能である。 For sample 17, 85 g of mixed paper powder obtained by mixing BKP fine powder with BKP paper powder so that the bulkiness of the fiber aggregate is in the range of 85 mm to 154 mm is used, and the sample 17 is vertically compressed and then ventilated in the same manner as the sample 11. It was filled in a sex bag to obtain absorber 2. As the bulkiness increases, the apparent volume and the void volume of the absorber 2 increase. In particular, those having a bulkiness of 115 mm to 146 mm have a void volume of 400 ml or more and a saturation volume ratio of 94%. The above and high liquid retention capacity are shown. When the bulkiness is as low as 85 mm, the void volume becomes as small as 340 ml due to the decrease in apparent volume, but since the density is high and the saturated volume ratio is also high, the required amount of liquefied gas is reduced by reducing the filling ratio to the void volume. G can be retained.

ただし、嵩高さが大きくなると通気性が低下しやすくなり、嵩高さが154mmで通気性が0.5L/分のサンプルでは、飽和保液容積が十分大きくても、ブロー試験での液漏れが観察された。通気性が2L/分以上のサンプルでは、液漏れは生じなかった。 However, as the bulk increases, the air permeability tends to decrease, and in a sample with a bulk height of 154 mm and an air permeability of 0.5 L / min, liquid leakage is observed in the blow test even if the saturated liquid retention volume is sufficiently large. Was done. No liquid leakage occurred in the sample having a breathability of 2 L / min or more.

サンプル18は、BKP紙粉にBKP微粉を混合して、繊維集合体の嵩高さが110mm〜150mmの範囲となるようにした混合紙粉60g〜70gを用い、サンプル11と同様に縦圧縮してから通気性の袋に充填して、吸収体2とした。嵩高さが適度に高い繊維集合体を用いて、吸収体2の密度が、0.122g/cm3〜0.138g/cm3と比較的低い範囲となるようにすると、空隙容積が422ml〜438mlと大きくなり、飽和容積比率は84%〜94%と高い保液力を示す。通気性も、1.5L/分以上と良好であり、いずれのサンプルも液漏れは生じなかった。 For sample 18, 60 g to 70 g of mixed paper powder obtained by mixing BKP fine powder with BKP paper powder so that the bulkiness of the fiber aggregate is in the range of 110 mm to 150 mm is used, and the sample 18 is vertically compressed in the same manner as the sample 11. Was filled into a breathable bag to form absorber 2. Using bulkiness is moderately high fiber aggregate, the density of the absorbent body 2, when such a relatively low range and 0.122g / cm 3 ~0.138g / cm 3 , the void volume of 422ml~438ml The saturated volume ratio is 84% to 94%, showing a high liquid retention capacity. The air permeability was also good at 1.5 L / min or more, and no liquid leakage occurred in any of the samples.

サンプル19は、新聞古紙紙粉にBKP微粉を混合して、繊維集合体の嵩高さが134mmとなるようにした混合紙粉85g〜95gを用い、サンプル14と同様に横圧縮してから通気性の袋に充填して、吸収体2とした。嵩高さが適度に高い繊維集合体を用いて、吸収体2の密度が、0.177g/cm3〜0.205g/cm3と比較的高い範囲となるようにすると、空隙容積が319ml〜412mlとやや小さくなる。そのため、飽和容積比率が99%と高くなり、充填比率を84%以上と十分大きくすることができる。 For sample 19, 85 g to 95 g of mixed paper powder obtained by mixing BKP fine powder with used newspaper paper powder so that the bulkiness of the fiber aggregate is 134 mm is used, and the sample 19 is laterally compressed in the same manner as the sample 14 and then breathable. Was filled in the bag to prepare the absorber 2. When the density of the absorber 2 is set to a relatively high range of 0.177 g / cm 3 to 0.205 g / cm 3 by using a fiber aggregate having a moderately high bulk, the void volume is 319 ml to 412 ml. It gets a little smaller. Therefore, the saturated floor area ratio is as high as 99%, and the filling ratio can be sufficiently increased as 84% or more.

ただし、充填比率が80%以上と大きい場合には、スプレー缶1への吸収体2の挿入時の変形や缶内での反発力によって、保液力が低下するおそれがある。そのため、偏平率が0.12とやや大きいサンプルでは、反発力を1.6kgとやや小さくして、挿入時のスプレー缶1との干渉を抑制し、反発力が3.1kgとやや大きいサンプルでは、偏平率を0.09とやや小さくしている。このように、偏平率と反発力の両方が大きくならないようにすると、良好な保液力と通気性が保持され、液漏れを生じない。 However, when the filling ratio is as large as 80% or more, the liquid retention capacity may decrease due to deformation when the absorber 2 is inserted into the spray can 1 or repulsive force in the can. Therefore, in the sample with a slightly large flatness of 0.12, the repulsive force is slightly reduced to 1.6 kg to suppress the interference with the spray can 1 at the time of insertion, and in the sample with a slightly large repulsive force of 3.1 kg. , The flatness is slightly reduced to 0.09. When both the flatness and the repulsive force are not increased in this way, good liquid retention and air permeability are maintained, and liquid leakage does not occur.

サンプル20は、嵩高さが146mmと高めのBKP紙粉93gに、嵩高さ調整用の粉末添加剤を混合した混合粉末を、サンプル13と同様に横圧縮してから通気性の袋に充填して、吸収体2とした。粉末添加剤としては、以下に示すA〜Dを使用し、嵩高さが115mm〜122mmの範囲となるように調合した。粉末添加剤Bは、混合粉末中の含有量が30重量%であり、それ以外の粉末添加剤A、C、Dは25重量%とした。
A:未変性とうもろこし澱粉
;王子コーンスターチ(株)製、平均粒子径約15μm、嵩高さ30mm
B:酢酸エステル変性タピオカ澱粉
;松谷化学(株)製、平均粒子径約15μm、嵩高さ29mm
C:工業用 滑石粉
;日本タルク(株)製、平均粒子径約12μm、嵩高さ25mm
D:軽質炭酸カルシウム
;奥多摩工業(株)製、平均粒子径約1μm、嵩高さ28mm
E:重質炭酸カルシウム
;丸尾カルシウム(株)製、平均粒子径1.8μm、嵩高さ20mm
In sample 20, a mixed powder obtained by mixing 93 g of BKP paper powder having a high bulk of 146 mm with a powder additive for adjusting the bulk is laterally compressed in the same manner as in sample 13, and then filled in a breathable bag. , Absorber 2. As the powder additive, A to D shown below were used, and the powder was formulated so that the bulkiness was in the range of 115 mm to 122 mm. The content of the powder additive B in the mixed powder was 30% by weight, and the other powder additives A, C, and D were 25% by weight.
A: Undenatured corn starch; manufactured by Oji Cornstarch Co., Ltd., average particle diameter of about 15 μm, bulkiness of 30 mm
B: Acetic acid ester-modified tapioca starch; manufactured by Matsutani Chemical Co., Ltd., average particle diameter of about 15 μm, bulkiness of 29 mm
C: Industrial talc powder; manufactured by Nippon Tarku Co., Ltd., average particle diameter of about 12 μm, bulk height of 25 mm
D: Light calcium carbonate; manufactured by Okutama Kogyo Co., Ltd., average particle diameter of about 1 μm, bulkiness of 28 mm
E: Heavy calcium carbonate; manufactured by Maruo Calcium Co., Ltd., average particle diameter 1.8 μm, bulk height 20 mm

嵩高さが高めで量の多いBKP紙粉を、単独で用いたサンプルでは、通気性が0.6L/分と小さくなり、液漏れが生じた。また、横圧縮主体の成形方法では、偏平率が0.12と大きくなりやすく、紙粉量が多く反発力も3.1kgと大きい。これに対して、粉末添加剤A〜Dを添加したサンプルでは、嵩高さが115mm〜122mmに低下し、飽和容積比率、液化ガスGの充填比率は、高くなっている。また、通気性が2.0L/分以上と大きくなり、液漏れは生じなかった。 In the sample in which the bulky and large amount of BKP paper powder was used alone, the air permeability became as small as 0.6 L / min, and liquid leakage occurred. Further, in the molding method mainly composed of lateral compression, the flatness tends to be as large as 0.12, the amount of paper dust is large, and the repulsive force is as large as 3.1 kg. On the other hand, in the samples to which the powder additives A to D were added, the bulkiness was reduced to 115 mm to 122 mm, and the saturated floor area ratio and the filling ratio of the liquefied gas G were high. In addition, the air permeability was increased to 2.0 L / min or more, and no liquid leakage occurred.

サンプル21は、新聞古紙紙粉にBKP微粉を混合して、繊維集合体の嵩高さが134mmとなるようにした混合紙粉70gを用い、サンプル14と同様に横圧縮してから通気性の袋に充填して、吸収体2とした。全容積590mlのスプレー缶1に吸収体2を充填して、密度が0.148g/cm3となるようにした。サンプル22は、新聞古紙紙粉にBKP微粉を混合して、繊維集合体の嵩高さが127mmとなるようにした混合紙粉70g〜100gを用い、サンプル14と同様に縦横同等圧縮してから通気性の袋に充填して、吸収体2とした。全容積660mlのスプレー缶1に吸収体2を充填して、密度が0.125g/cm3〜0.169g/cm3となるようにした。
液化ガスGとして、DMEと炭酸ガスの混合液化ガスに代えて、プロパンとブタンの混合液化ガスを用い、全容積590mlのスプレー缶1には、400mlの混合液化ガス、660mlのスプレー缶1には、440mlの混合液化ガスを充填して、トーチバーナ用のスプレー製品とした。
For sample 21, 70 g of mixed paper powder obtained by mixing BKP fine powder with used newspaper paper powder so that the bulkiness of the fiber aggregate is 134 mm is used, and the bag is laterally compressed in the same manner as sample 14 and then is a breathable bag. Was filled into the absorber 2 to obtain the absorber 2. The absorber 2 was filled in a spray can 1 having a total volume of 590 ml so that the density was 0.148 g / cm 3 . For sample 22, 70 g to 100 g of mixed paper powder obtained by mixing BKP fine powder with used newspaper paper powder so that the bulkiness of the fiber aggregate is 127 mm is used, and as in sample 14, the same vertical and horizontal compression is performed and then aeration is performed. It was filled in a sex bag to form an absorber 2. The absorber 2 was filled in a spray can 1 having a total volume of 660 ml so that the density was 0.125 g / cm 3 to 0.169 g / cm 3 .
As the liquefied gas G, a mixed liquefied gas of propane and butane is used instead of the mixed liquefied gas of DME and carbon dioxide gas. The spray can 1 having a total volume of 590 ml has 400 ml of the mixed liquefied gas, and the spray can 1 has 660 ml. It was filled with 440 ml of mixed liquefied gas to prepare a spray product for torch burners.

いずれのスプレー製品も、飽和容積比率が90%以上と高く、通気性が1.0L/分以上であり、液漏れは生じなかった。 In each of the spray products, the saturation volume ratio was as high as 90% or more, the air permeability was 1.0 L / min or more, and no liquid leakage occurred.

Figure 0006807166
Figure 0006807166

Figure 0006807166
Figure 0006807166

Figure 0006807166
Figure 0006807166

Figure 0006807166
Figure 0006807166

本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、種々の実施形態に適用することが可能である。例えば、ダストブロワに用いられる液化ガスは、DMEやLPG等の可燃性液化ガスに限らず、トーチバーナにおいて、これら以外の可燃性ガスを用いることもできる。また、ダストブロワやトーチバーナ以外の用途に利用することも、もちろんできる。 The present invention is not limited to the above embodiments, and can be applied to various embodiments without departing from the gist thereof. For example, the liquefied gas used in the dust blower is not limited to a flammable liquefied gas such as DME or LPG, and a flammable gas other than these can also be used in the torch burner. Of course, it can also be used for purposes other than dust blowers and torch burners.

1 スプレー缶
11 噴射口
2 吸収体
21 表皮層
3 空間部
4 フィルタ部材
G 液化ガス
H 頭部
B 底部
1 Spray can 11 Injection port 2 Absorber 21 Skin layer 3 Space 4 Filter member G Liquefied gas H Head B Bottom

Claims (9)

頭部側に噴射口を備えるスプレー缶と、該スプレー缶内に充填される液化ガス及び保液用の吸収体と、上記吸収体と上記噴射口の間に形成され気化ガスが集合する空間部と、を備えるスプレー製品であって、
上記吸収体は、粉砕されたセルロース繊維からなる繊維集合体を主体として構成され、該繊維集合体の繊維間に、上記液化ガスが保持される空隙が形成されており、
上記セルロース繊維は、木材パルプ及び古紙パルプのうちの少なくとも一方を含み、
上記液化ガスの容積は、上記スプレー缶の全容積の50%を超え、かつその全量が上記繊維集合体の上記空隙内に保持されており、
上記空間部の容積は、上記スプレー缶の全容積の4%以上であり、
上記スプレー缶内において、保液状態の上記吸収体を挟んで隔てられる上記頭部側と底部側との間の通気路の状態を示す通気性を、上記底部側から上記スプレー缶の内部に調圧された圧縮空気を供給可能な空気供給管路と、上記空気供給管路に配設された流量計とを備える通気性測定器を用いて、上記吸収体の上記底部側から上記頭部側へ向けて、1.5kPaの空気圧をかけたときに上記流量計で測定される空気流量で表し、該通気性が、大気圧に換算して1L/分以上である、スプレー製品。
A spray can having an injection port on the head side, an absorber for liquefied gas and liquid retention filled in the spray can, and a space formed between the absorber and the injection port to collect vaporized gas. It is a spray product equipped with
The absorber is mainly composed of fiber aggregates made of crushed cellulose fibers, and voids in which the liquefied gas is held are formed between the fibers of the fiber aggregates.
The cellulose fiber contains at least one of wood pulp and waste paper pulp.
The volume of the liquefied gas exceeds 50% of the total volume of the spray can, and the total amount is held in the voids of the fiber aggregate.
The volume of the space portion is 4% or more of the total volume of the spray can.
In the spray can, the air permeability indicating the state of the air passage between the head side and the bottom side separated by the absorbent body in the liquid retention state is adjusted from the bottom side to the inside of the spray can. Using an air permeability measuring instrument including an air supply pipeline capable of supplying compressed compressed air and a flow meter arranged in the air supply pipeline, the absorber is used from the bottom side to the head side. A spray product represented by the air flow rate measured by the flow meter when an air pressure of 1.5 kPa is applied toward the spray product, the air permeability of which is 1 L / min or more in terms of atmospheric pressure.
上記通気性が、2L/分以上、50L/分以下である、請求項1に記載のスプレー製品。 The spray product according to claim 1, wherein the air permeability is 2 L / min or more and 50 L / min or less. 上記吸収体の密度は、0.12g/cm3〜0.22g/cm3である、請求項1又は2に記載のスプレー製品。 The density of the absorbent body is 0.12g / cm 3 ~0.22g / cm 3 , the spray product according to claim 1 or 2. 上記吸収体は、上記空隙に保持される上記液化ガスの容積が、上記空隙の全容積の70%〜100%である、請求項1〜3のいずれか1項に記載のスプレー製品。 The spray product according to any one of claims 1 to 3, wherein the absorber has a volume of the liquefied gas held in the voids of 70% to 100% of the total volume of the voids. 上記吸収体は、上記空隙に保持可能な上記液化ガスの最大量である飽和保液容積が、上記空隙の全容積の80%〜100%である、請求項1〜4のいずれか1項に記載のスプレー製品。 The absorber has a saturated liquid holding volume which is the maximum amount of the liquefied gas that can be held in the voids, which is 80% to 100% of the total volume of the voids, according to any one of claims 1 to 4. Described spray products. 上記吸収体の外表面は、通気性を有する表皮層で覆われている、請求項1〜5のいずれか1項に記載のスプレー製品。 The spray product according to any one of claims 1 to 5, wherein the outer surface of the absorber is covered with a breathable epidermis layer. 上記吸収体と上記空間部との間に、通気性を有するフィルタ部材が介設されている、請求項1〜6のいずれか1項に記載のスプレー製品。 The spray product according to any one of claims 1 to 6, wherein a filter member having air permeability is interposed between the absorber and the space portion. 上記スプレー缶内において、上記吸収体の外周面の少なくとも一部に密接して、上記スプレー缶の軸方向及び径方向に通気路を形成する通気部材が配置される、請求項1〜7のいずれか1項に記載のスプレー製品。 Any of claims 1 to 7, wherein in the spray can, a ventilation member that forms a ventilation path in the axial direction and the radial direction of the spray can is arranged in close contact with at least a part of the outer peripheral surface of the absorber. The spray product according to item 1. 上記吸収体は、嵩高さ調整用の粉末添加剤を含有する、請求項1〜8のいずれか1項に記載のスプレー製品。 The spray product according to any one of claims 1 to 8, wherein the absorber contains a powder additive for adjusting the bulkiness.
JP2016095526A 2016-05-11 2016-05-11 Spray products Active JP6807166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095526A JP6807166B2 (en) 2016-05-11 2016-05-11 Spray products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095526A JP6807166B2 (en) 2016-05-11 2016-05-11 Spray products

Publications (2)

Publication Number Publication Date
JP2017203505A JP2017203505A (en) 2017-11-16
JP6807166B2 true JP6807166B2 (en) 2021-01-06

Family

ID=60321384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095526A Active JP6807166B2 (en) 2016-05-11 2016-05-11 Spray products

Country Status (1)

Country Link
JP (1) JP6807166B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729494A (en) * 1985-04-12 1988-03-08 Peillon Jean Pierre Container for liquid gas
FR2665242A1 (en) * 1990-07-30 1992-01-31 Cricket Sa MEANS FOR STORING, IN A LIQUID PHASE, A NORMALLY GASEOUS FUEL.
US8119853B2 (en) * 2008-01-10 2012-02-21 L'Air Liquide SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Low pressure acetylene storage
JP5400359B2 (en) * 2008-02-26 2014-01-29 エア・ウォーター・ゾル株式会社 Gas injection nozzle
JP5102178B2 (en) * 2008-11-04 2012-12-19 王子ホールディングス株式会社 Spray can product and method for producing spray can product

Also Published As

Publication number Publication date
JP2017203505A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP5102178B2 (en) Spray can product and method for producing spray can product
JP5330673B2 (en) Spray products
RU2011149225A (en) BEVERAGE-BASED CONTAINER
JPH09267866A (en) Cushion material and package provided with the cushion material
JP2010518861A5 (en)
US8857195B2 (en) Absorbent for spray can, process for producing absorbent sheet for spray can, and spray can product
US20190314658A1 (en) Device for extinguishing a fire
JP2022058733A (en) Smoking article
JP6807166B2 (en) Spray products
BR112015032485B1 (en) SMOKING ARTICLE
JP2018527027A (en) Smoking article
CN103144365B (en) Composite and package body
JP6770512B2 (en) Smoking goods with over-chipping band
JP5396136B2 (en) Spray can absorber and spray can product
JPH02296681A (en) Container with adhesive and schock-resistant characteristics
US11337454B2 (en) Smoking article with combined ventilation and filtration efficiency adjustment
TWI492891B (en) Spray can product and process for producing the same
CA2951426A1 (en) Extinguisher for a smoking article
KR20160000208A (en) Packge coal assembly
KR102655854B1 (en) Composition for foaming tray including chaff powders and method for manufacturing the same
GB191110519A (en) Improvements in or connected with Fire Lighters.
CN117396087A (en) Liquid-added filter, flavor-absorbing article provided with same, and flavor-absorbing article package
KR20100008236A (en) Packing materials for fermented food using charcoal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6807166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250