JP6806476B2 - Electrolytic treatment method and electrolytic treatment equipment - Google Patents

Electrolytic treatment method and electrolytic treatment equipment Download PDF

Info

Publication number
JP6806476B2
JP6806476B2 JP2016135227A JP2016135227A JP6806476B2 JP 6806476 B2 JP6806476 B2 JP 6806476B2 JP 2016135227 A JP2016135227 A JP 2016135227A JP 2016135227 A JP2016135227 A JP 2016135227A JP 6806476 B2 JP6806476 B2 JP 6806476B2
Authority
JP
Japan
Prior art keywords
electrode
direct
indirect
counter electrode
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016135227A
Other languages
Japanese (ja)
Other versions
JP2018003133A (en
Inventor
春生 岩津
春生 岩津
Original Assignee
春生 岩津
春生 岩津
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 春生 岩津, 春生 岩津 filed Critical 春生 岩津
Priority to JP2016135227A priority Critical patent/JP6806476B2/en
Publication of JP2018003133A publication Critical patent/JP2018003133A/en
Application granted granted Critical
Publication of JP6806476B2 publication Critical patent/JP6806476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法、及び当該電解処理方法を行うための電解処理装置に関する。 The present invention relates to an electrolytic treatment method for performing a predetermined treatment using ions to be treated contained in a treatment liquid, and an electrolytic treatment apparatus for carrying out the electrolytic treatment method.

電解プロセス(電解処理)は、めっき処理やエッチング処理等の種々の処理に用いられる技術である。 The electrolytic process (electrolytic treatment) is a technique used for various treatments such as plating treatment and etching treatment.

上述しためっき処理を行うため、例えば特許文献1に記載されためっき処理が提案されている。このめっき処理では、めっき液中に直接電極と間接電極を二重に又は近接して配置すると共に、これら直接電極と間接電極に対してめっき液を挟むように対向電極(被処理体)を配置する。その後、間接電極に電圧を印加してめっき液に電界を形成することで、めっき液中の金属イオンを対向電極側に移動させ、さらに直接電極と対向電極との間に電圧を印加することで、対向電極側に移動した金属イオンを還元する。 In order to perform the above-mentioned plating treatment, for example, the plating treatment described in Patent Document 1 has been proposed. In this plating process, the direct electrode and the indirect electrode are arranged in double or close to each other in the plating solution, and the counter electrode (object to be processed) is arranged so as to sandwich the plating solution with respect to the direct electrode and the indirect electrode. To do. After that, by applying a voltage to the indirect electrode to form an electric field in the plating solution, the metal ions in the plating solution are moved to the counter electrode side, and further, a voltage is applied directly between the electrode and the counter electrode. , The metal ion that has moved to the counter electrode side is reduced.

また、めっき処理を行うための別の方法として、例えば特許文献2に記載されためっき処理が提案されている。このめっき処理では、めっき液中に直接電極と間接電極を二重に又は近接して配置すると共に、これら直接電極と間接電極に対してめっき液を挟むように対向電極(被処理体)を配置し、さらに間接電極に対して、電源との接続と、直接電極との接続とを切り替えるスイッチを配置する。その後、スイッチによって間接電極と電源とを接続し電圧を印加してめっき液に電界を形成することで、めっき液中の金属イオンを対向電極側に移動させ、さらにスイッチによって間接電極と電源との接続を切断し、当該間接電極と直接電極とを接続することで、対向電極側に移動した金属イオンを還元する。 Further, as another method for performing the plating treatment, for example, the plating treatment described in Patent Document 2 has been proposed. In this plating process, the direct electrode and the indirect electrode are arranged in double or close to each other in the plating solution, and the counter electrode (object to be processed) is arranged so as to sandwich the plating solution with respect to the direct electrode and the indirect electrode. Then, for the indirect electrode, a switch for switching between the connection with the power supply and the connection with the direct electrode is arranged. After that, the indirect electrode and the power supply are connected by a switch and a voltage is applied to form an electric field in the plating solution to move the metal ions in the plating solution to the counter electrode side, and further, the indirect electrode and the power supply are connected by the switch. By disconnecting the connection and connecting the indirect electrode and the direct electrode, the metal ions that have moved to the counter electrode side are reduced.

特許文献1又は特許文献2のいずれのめっき処理を行った場合でも、金属イオンの移動と金属イオンの還元を個別に行うことで、対向電極側に金属イオンが集積した状態で金属イオンの還元を行い、これによりめっき処理の均一化を図っている。 Regardless of whether the plating treatment of Patent Document 1 or Patent Document 2 is performed, the metal ions are reduced while the metal ions are accumulated on the counter electrode side by individually moving the metal ions and reducing the metal ions. This is done to make the plating process uniform.

特開2015−4124号公報JP-A-2015-4124 国際公開WO2015/104951号公報International Publication WO2015 / 104951

上述したように特許文献1又は特許文献2のいずれのめっき処理においても、金属イオンの移動(以下、「移動工程」という場合がある)と金属イオンの還元(以下、「還元工程」という場合がある)を個別に行おうとしているが、本発明者が鋭意検討したところ、移動工程において金属イオンを対向電極側に移動させ集積させる間にも、当該対向電極側で金属イオンの還元が行われる場合があることが分かった。すなわち、移動工程中に還元工程が進んでしまう場合があることが分かった。 As described above, in any of the plating treatments of Patent Document 1 or Patent Document 2, the movement of metal ions (hereinafter, may be referred to as “movement step”) and the reduction of metal ions (hereinafter, may be referred to as “reduction step”) may occur. However, as a result of diligent studies by the present inventor, metal ions are reduced on the counter electrode side even while the metal ions are moved to the counter electrode side and accumulated in the moving step. It turns out that there are cases. That is, it was found that the reduction step may proceed during the moving step.

この原因について、本発明者は次のとおり推察している。移動工程では、間接電極に電圧を印加することでめっき液に形成された電界により、直接電極と対向電極の間にも電界が生じる。その際、直接電極と対向電極が共に導体であるので、直接電極と対向電極におけるイオンの電荷交換が進んでしまう場合がある。この電荷交換量は、直接電極と対向電極の間の電位差相当分となる。一方で、直接電極の電位は間接電極と対向電極によって形成される電界分布によって決まり、この電界は間接電極と対向電極の間に生じる電気力線分布によって決まる。そうすると、直接電極の配置が電気力線に沿って間接電極に近いほど、当該直接電極の電位は高くなる。特許文献1又は特許文献2のめっき処理では、直接電極は間接電極に近接して配置されているので直接電極の電位が高くなり、その結果、移動工程中に対向電極側で金属イオンの電荷交換が進み、当該金属イオンが還元されてしまう。 The present inventor infers the cause of this as follows. In the moving step, an electric field formed in the plating solution by applying a voltage to the indirect electrode also generates an electric field between the direct electrode and the counter electrode. At that time, since both the direct electrode and the counter electrode are conductors, the charge exchange of ions between the direct electrode and the counter electrode may proceed. This charge exchange amount corresponds to the potential difference between the direct electrode and the counter electrode. On the other hand, the potential of the direct electrode is determined by the electric field distribution formed by the indirect electrode and the counter electrode, and this electric field is determined by the electric line of force distribution generated between the indirect electrode and the counter electrode. Then, the closer the arrangement of the direct electrodes is to the indirect electrodes along the lines of electric force, the higher the potential of the direct electrodes. In the plating process of Patent Document 1 or Patent Document 2, since the direct electrode is arranged close to the indirect electrode, the potential of the direct electrode becomes high, and as a result, the charge exchange of the metal ion on the counter electrode side during the moving process. Proceeds, and the metal ion is reduced.

そして、めっき処理におけるめっきレートを向上させるため、めっき処理において電界を高くする、すなわち電流量をあげると、対向電極への金属イオンの移動(供給)が間に合わず、当該対向電極の表面で水の電気分解が進行する場合がある。かかる場合、水の電気分解により発生する水素気泡によって、被処理体に析出するめっき金属中にボイドが発生し、所望のめっき膜が実現できない。 If the electric field is increased in the plating process, that is, the amount of current is increased in order to improve the plating rate in the plating process, the movement (supply) of metal ions to the counter electrode cannot be completed in time, and water is formed on the surface of the counter electrode. Electrolysis may proceed. In such a case, the hydrogen bubbles generated by the electrolysis of water generate voids in the plating metal deposited on the object to be treated, and the desired plating film cannot be realized.

本発明は、かかる点に鑑みてなされたものであり、処理液中の被処理イオンを用いて、被処理体に対する所定の電解処理を高速且つ均一に行うことを目的とする。 The present invention has been made in view of this point, and an object of the present invention is to perform a predetermined electrolytic treatment on a body to be treated at high speed and uniformly by using ions to be treated in a treatment liquid.

前記の目的を達成するため、本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記配置工程において、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管を配置すると共に、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように前記直接電極と前記対向電極を配置することを特徴としている。
In order to achieve the above object, the present invention is an electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid, and the electrode is directly connected to the treatment liquid so as to be electrically connected to the treatment liquid. In the arrangement step of arranging the counter electrodes and indirect electrodes forming an electric field in the treatment liquid, and applying a voltage to the indirect electrodes, the ions to be processed in the treatment liquid are moved to the counter electrode side. The process includes a step of moving ions to be treated, and a step of treating ions to be treated, which connects the direct electrode and the indirect electrode to oxidize or reduce the ions to be treated that have moved to the counter electrode side. In the ion transfer step, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density , and in the arrangement step, the treatment liquid is divided into two regions and inflow / out holes of the treatment liquid are formed. A partition wall, a pore wall in which the treatment liquid is divided into two regions and a plurality of pores are formed, or a pipe which divides the treatment liquid into two regions and connects the two regions is arranged. At the same time, the direct electrode and the counter electrode are arranged so as to come into contact with the treatment liquid across the partition wall, the pore wall, or the pipe .

なお、限界電流密度とは、電解処理で単位時間当たりに酸化又は還元される被処理イオンの量に対して、供給される被処理イオンの量が限界に達する電流密度である。換言すれば、拡散などによる被処理イオンの供給が限界に達し、電圧を上げても電流密度が増加しなくなる電流密度の最大値である。また、限界電流密度は、一般的に電極の単位面積(例えば100mm)あたりの電流値で表される。 The critical current density is a current density at which the amount of ions to be supplied reaches the limit with respect to the amount of ions to be treated that are oxidized or reduced per unit time in the electrolytic treatment. In other words, it is the maximum value of the current density at which the supply of ions to be processed by diffusion or the like reaches the limit and the current density does not increase even if the voltage is increased. The critical current density is generally represented by the current value per unit area (for example, 100 mm 2 ) of the electrode.

このように限界電流はめっき処理可能な最大電流である。そうすると、本発明のように被処理イオン移動工程において直接電極と対向電極の間を流れる電流が限界電流密度以下である場合、対向電極の表面で水の電気分解が行われることがなく、その結果、気泡が発生することもない。したがって、被処理イオン移動工程において、間接電極への電圧印加で形成される電界を高くすることができる。そして、被処理イオン移動工程において直接電極と対向電極の間を流れる電流によって対向電極の電荷交換が行われても、その電荷量は、例えば間接電極の電界により移動する全電荷量のN分の1(1/N)となる。換言すると、被処理イオン処理工程では、被処理イオン移動工程で交換される電荷量のN倍の電荷量の交換が可能となり、水の電気分解を抑制しつつ、多量の被処理イオンを酸化又は還元することができる。したがって、電解処理のレートを向上させて、当該電解処理を高速に行うことができる。 In this way, the critical current is the maximum current that can be plated. Then, when the current flowing directly between the electrode and the counter electrode is equal to or less than the limit current density in the ion transfer step to be processed as in the present invention, water is not electrolyzed on the surface of the counter electrode, and as a result. , No bubbles are generated. Therefore, in the process of ion transfer to be processed, the electric field formed by applying a voltage to the indirect electrode can be increased. Then, even if the charge exchange of the counter electrode is performed by the current flowing between the direct electrode and the counter electrode in the ion transfer step to be processed, the charge amount is, for example, N part of the total charge amount transferred by the electric field of the indirect electrode. It becomes 1 (1 / N). In other words, in the ion treatment step to be treated, it is possible to exchange an amount of charge N times the amount of charge exchanged in the ion transfer step to be treated, and while suppressing electrolysis of water, a large amount of ions to be treated can be oxidized or It can be reduced. Therefore, the rate of the electrolytic treatment can be improved and the electrolytic treatment can be performed at a high speed.

また、被処理イオン移動工程において対向電極側に十分な被処理イオンが集積し、当該対向電極表面に被処理イオンを均一に配列させた状態で、被処理イオン処理工程において被処理イオンの電荷交換が行われ、当該被処理イオンが酸化又は還元される。したがって、電解処理を均一に行うことができる。 Further, in the state where sufficient ions to be treated are accumulated on the counter electrode side in the ion transfer step to be treated and the ions to be treated are uniformly arranged on the surface of the counter electrode, the charge exchange of the ions to be treated is performed in the ion treatment step. Is performed, and the ion to be treated is oxidized or reduced. Therefore, the electrolytic treatment can be performed uniformly.

かかる場合、前記配置工程において、前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替えるスイッチをさらに配置し、前記被処理イオン移動工程において、前記スイッチによって前記間接電極と前記電源を接続して電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記被処理イオン処理工程において、前記スイッチによって前記間接電極と前記電源の接続を切断し、前記間接電極と前記直接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元してもよい。 In such a case, a switch for switching between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode is further arranged in the arrangement step, and the indirect electrode is connected to the indirect electrode by the switch in the ion transfer step. The power supply is connected and a voltage is applied to move the ions to be processed in the treatment liquid to the counter electrode side, and in the ion treatment step, the indirect electrode and the power supply are disconnected by the switch. Then, the indirect electrode and the direct electrode may be connected to oxidize or reduce the ion to be treated that has moved to the counter electrode side.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記配置工程において、前記処理液に接触するように前記直接電極と前記対向電極を配置し、さらに前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチを配置すると共に、前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチを配置し、前記被処理イオン移動工程において、前記第1のスイッチによって前記間接電極と前記電源を接続して電圧を印加すると共に、前記第2のスイッチによって前記直接電極と前記対向電極を接続して、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記被処理イオン処理工程において、前記第1のスイッチによって前記間接電極との接続を前記電源から前記直接電極に切り替えると共に、前記第2のスイッチによって前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴としている。The present invention from another viewpoint is an electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid, and the direct electrode and the counter electrode are respectively connected so as to be electrically connected to the treatment liquid. The process of arranging and arranging the indirect electrode that forms an electric field in the treatment liquid, and the treatment ion that applies a voltage to the indirect electrode to move the treatment ion in the treatment liquid to the counter electrode side. The moving step includes a moving ion treatment step of connecting the direct electrode and the indirect electrode to oxidize or reduce the treated ion that has moved to the counter electrode side, and the moving ion moving step includes a moving step. The current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and in the arrangement step, the direct electrode and the counter electrode are arranged so as to come into contact with the treatment liquid, and further, the indirect electrode and the power supply are provided. A first switch for switching between the connection of the indirect electrode and the connection between the indirect electrode and the direct electrode is arranged, and a second switch for switching between the connection between the direct electrode and the indirect electrode and the connection between the direct electrode and the counter electrode. In the process of moving ions to be processed, the indirect electrode and the power supply are connected by the first switch to apply a voltage, and the direct electrode and the counter electrode are connected by the second switch. By connecting, the ion to be treated in the treatment liquid is moved to the counter electrode side, and in the ion treatment step, the connection with the indirect electrode is switched from the power source to the direct electrode by the first switch. At the same time, the connection with the direct electrode is switched from the counter electrode to the indirect electrode by the second switch, the direct electrode and the indirect electrode are connected, and the ion to be processed that has moved to the counter electrode side is oxidized. Alternatively, it is characterized by reducing.

かかる場合、前記配置工程において、前記直接電極の表面積は、前記対向電極の表面積より小さくてもよい。 In such a case, the surface area of the direct electrode may be smaller than the surface area of the counter electrode in the arrangement step.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記配置工程において、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管を配置すると共に、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように前記直接電極と前記対向電極を配置し、さらに前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチを配置すると共に、前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチを配置し、前記被処理イオン移動工程において、前記第1のスイッチによって前記間接電極と前記電源を接続して電圧を印加すると共に、前記第2のスイッチによって前記直接電極と前記対向電極を接続して、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記被処理イオン処理工程において、前記第1のスイッチによって前記間接電極との接続を前記電源から前記直接電極に切り替えると共に、前記第2のスイッチによって前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴としている。The present invention from another viewpoint is an electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid, and the direct electrode and the counter electrode are respectively connected so as to be electrically connected to the treatment liquid. The process of arranging and arranging the indirect electrode that forms an electric field in the treatment liquid, and the treatment ion that applies a voltage to the indirect electrode to move the treatment ion in the treatment liquid to the counter electrode side. The moving step includes a moving ion treatment step of connecting the direct electrode and the indirect electrode to oxidize or reduce the treated ion that has moved to the counter electrode side, and the moving ion moving step includes a moving step. A partition wall in which the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, the treatment liquid is divided into two regions and an inflow / outflow hole of the treatment liquid is formed in the arrangement step. A pore wall in which the treatment liquid is divided into two regions and a plurality of pores are formed, or a pipe which divides the treatment liquid into two regions and connects the two regions is arranged, and the partition wall is provided. The direct electrode and the counter electrode are arranged so as to come into contact with the treatment liquid across the pore wall or the pipe, and further, the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode. In addition to arranging a first switch for switching between, and arranging a second switch for switching between the connection between the direct electrode and the indirect electrode and the connection between the direct electrode and the counter electrode, in the ion transfer step to be processed. The indirect electrode and the power supply are connected by the first switch to apply a voltage, and the direct electrode and the counter electrode are connected by the second switch to remove ions to be processed in the treatment liquid. It is moved to the counter electrode side, and in the ion treatment step to be processed, the connection with the indirect electrode is switched from the power source to the direct electrode by the first switch, and the connection with the direct electrode is switched by the second switch. The connection is switched from the counter electrode to the indirect electrode, the direct electrode and the indirect electrode are connected, and the ion to be processed that has moved to the counter electrode side is oxidized or reduced.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記配置工程において、複数の前記直接電極と複数の前記間接電極を、当該直接電極と間接電極が交互に並びかつ前記処理液に接触するように配置し、前記直接電極と前記間接電極の間に隔壁を配置し、前記対向電極を、前記複数の直接電極と前記複数の間接電極が配置される方向に延伸するように配置し、前記複数の間接電極と電源の接続と、前記複数の間接電極と前記複数の直接電極の接続とを切り替えるスイッチを配置し、前記被処理イオン移動工程において、前記スイッチによって前記複数の間接電極と前記電源を接続して電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記被処理イオン処理工程において、前記スイッチによって前記複数の間接電極と前記電源の接続を切断し、前記複数の間接電極と前記複数の直接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴としている。The present invention from another viewpoint is an electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid, and the direct electrode and the counter electrode are respectively connected so as to be electrically connected to the treatment liquid. The process of arranging and arranging the indirect electrode that forms an electric field in the treatment liquid, and the treatment ion that applies a voltage to the indirect electrode to move the treatment ion in the treatment liquid to the counter electrode side. The moving step includes a moving ion treatment step of connecting the direct electrode and the indirect electrode to oxidize or reduce the treated ion that has moved to the counter electrode side, and the moving ion moving step includes a moving step. The current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and in the arrangement step, the direct electrode and the indirect electrode are arranged alternately and the direct electrode and the indirect electrode are arranged alternately. It is arranged so as to be in contact with the treatment liquid, a partition wall is arranged between the direct electrode and the indirect electrode, and the counter electrode is extended in the direction in which the plurality of direct electrodes and the plurality of indirect electrodes are arranged. A switch for switching between the connection between the plurality of indirect electrodes and the power supply and the connection between the plurality of indirect electrodes and the plurality of direct electrodes is arranged, and in the process of ion transfer to be processed, the plurality of switches are used. The indirect electrode and the power supply are connected and a voltage is applied to move the ion to be processed in the processing liquid to the counter electrode side, and in the ion processing step to be processed, the plurality of indirect electrodes and the plurality of indirect electrodes and the said by the switch. The power supply is disconnected, the plurality of indirect electrodes and the plurality of direct electrodes are connected, and the ion to be processed that has moved to the counter electrode side is oxidized or reduced.

かかる場合、前記配置工程において、前記対向電極上に前記処理液のパドルを形成し、前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていてもよい。また、前記配置工程において、前記対向電極の下方で対向する位置に電極保持板を配置し、前記電極保持板と前記対向電極の間に前記処理液のパドルを形成し、前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていてもよい。 In such a case, in the arrangement step, a paddle of the treatment liquid is formed on the counter electrode, and the plurality of direct electrodes, the plurality of indirect electrodes, and the partition wall are arranged by being immersed in the paddle of the treatment liquid. You may. Further, in the arrangement step, an electrode holding plate is arranged below the counter electrode at a position facing each other, a paddle of the treatment liquid is formed between the electrode holding plate and the counter electrode, and the plurality of direct electrodes, The plurality of indirect electrodes and the partition wall may be arranged by being immersed in a paddle of the treatment liquid.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記被処理イオン移動工程において、前記直接電極と前記処理液の電気的な接続を切断し前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記被処理イオン処理工程において、前記直接電極と前記処理液を電気的に接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴としている。The present invention from another viewpoint is an electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid, and the direct electrode and the counter electrode are respectively connected so as to be electrically connected to the treatment liquid. The process of arranging and arranging the indirect electrode that forms an electric field in the treatment liquid, and the treatment ion that applies a voltage to the indirect electrode to move the treatment ion in the treatment liquid to the counter electrode side. The moving step includes a moving ion treatment step of connecting the direct electrode and the indirect electrode to oxidize or reduce the treated ion that has moved to the counter electrode side, and the moving ion moving step includes a moving step. The current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and in the ion transfer step to be processed, the electrical connection between the direct electrode and the treatment liquid is cut and a voltage is applied to the indirect electrode. Then, the ion to be treated in the treatment liquid was moved to the counter electrode side, and in the ion treatment step, the direct electrode and the treatment liquid were electrically connected and moved to the counter electrode side. It is characterized by oxidizing or reducing the ion to be treated.

具体的には、前記配置工程において、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔を開閉する開閉機構が設けられた隔壁を配置すると共に、前記隔壁を挟んで前記処理液に接触するように前記直接電極と前記対向電極を配置し、前記被処理イオン移動工程において、前記開閉機構によって前記処理液の流入出孔を閉鎖し、前記被処理イオン処理工程において、前記開閉機構によって前記処理液の流入出孔を開放してもよい。 Specifically, in the arrangement step, a partition wall is provided which divides the treatment liquid into two regions and has an opening / closing mechanism for opening and closing the inflow / outflow holes of the treatment liquid, and sandwiches the partition wall to perform the treatment. The direct electrode and the counter electrode are arranged so as to come into contact with the liquid, the inflow / outflow holes of the treated liquid are closed by the opening / closing mechanism in the ion transfer step, and the opening / closing in the ion treatment step. The inflow / outflow hole of the treatment liquid may be opened by a mechanism.

また、前記配置工程において、前記処理液に対し前記直接電極を進退自在に移動させる移動機構を配置し、前記被処理イオン移動工程において、前記移動機構によって前記直接電極を移動させて、当該直接電極と前記処理液を分離させ、前記被処理イオン処理工程において、前記移動機構によって前記直接電極を移動させて、当該直接電極と前記処理液を接触させてもよい。 Further, in the arrangement step, a moving mechanism for moving the direct electrode with respect to the treatment liquid is arranged, and in the ion moving step to be processed, the direct electrode is moved by the moving mechanism to move the direct electrode. And the treatment liquid may be separated, and in the ion treatment step to be treated, the direct electrode may be moved by the movement mechanism to bring the direct electrode into contact with the treatment liquid.

また、前記配置工程において、前記直接電極を前記処理液の外部に配置すると共に、クーロン力によって前記処理液を移動させる流路を配置し、前記被処理イオン移動工程において、前記流路を介して前記処理液を移動させて、当該処理液と前記直接電極を分離させ、前記被処理イオン処理工程において、前記流路を介して前記処理液を移動させて、当該処理液と前記直接電極を接触させてもよい。 Further, in the arrangement step, the direct electrode is arranged outside the treatment liquid, and a flow path for moving the treatment liquid by Coulomb force is arranged, and in the ion transfer step to be processed, the flow path is passed through the flow path. The treatment liquid is moved to separate the treatment liquid from the direct electrode, and in the ion treatment step, the treatment liquid is moved through the flow path to bring the treatment liquid into contact with the direct electrode. You may let me.

また、前記配置工程において、前記直接電極を前記処理液の外部に配置すると共に、前記直接電極に接触して帯電した液滴を供給する液供給機構を配置し、前記被処理イオン移動工程において、前記液供給機構による前記帯電した液滴の供給を停止し、前記被処理イオン処理工程において、前記液供給機構によって前記帯電した液滴を前記処理液に供給してもよい。 Further, in the arrangement step, the direct electrode is arranged outside the treatment liquid, and a liquid supply mechanism for supplying charged droplets in contact with the direct electrode is arranged, and in the ion transfer step to be processed. The supply of the charged droplets by the liquid supply mechanism may be stopped, and the charged droplets may be supplied to the treatment liquid by the liquid supply mechanism in the ion treatment step.

前記配置工程において、前記処理液に電界を形成してもよい。 An electric field may be formed in the treatment liquid in the arrangement step.

前記被処理イオン移動工程において、前記間接電極に電圧を印加し、少なくとも当該間接電極の印加電圧又は静電容量を制御して、前記処理液中の複数の被処理イオンを前記対向電極側に移動させ、その後、電荷配列工程において、少なくとも前記間接電極の印加電圧又は静電容量を制御して、前記被処理イオン移動工程で移動した量以下の被処理イオンに対応するように、前記対向電極において所定の電荷配列位置に電荷を配列させ、その後、前記被処理イオン処理工程において、前記直接電極に電流を流し、前記対向電極側に移動した前記複数の被処理イオンのうち、前記所定の電荷配列位置に対応する位置の被処理イオンを酸化又は還元し、前記電荷配列工程と前記被処理イオン処理工程をこの順で繰り返し行ってもよい。 In the process of moving ions to be treated, a voltage is applied to the indirect electrode, and at least the applied voltage or capacitance of the indirect electrode is controlled to move a plurality of ions to be treated in the treatment liquid to the counter electrode side. Then, in the charge arrangement step, at least the applied voltage or capacitance of the indirect electrode is controlled in the counter electrode so as to correspond to the amount of ions to be treated that is equal to or less than the amount transferred in the ion transfer step. The electric charge is arranged at a predetermined charge arrangement position, and then, in the ion treatment step to be processed, a current is passed through the direct electrode to move the electric charge to the counter electrode side. The ion to be treated at the position corresponding to the position may be oxidized or reduced, and the charge arrangement step and the ion treatment step to be treated may be repeated in this order.

かかる場合、前記間接電極の静電容量の制御は、当該間接電極を複数に分割し、分割された間接電極毎に前記処理液に電界を形成することで行ってもよい。 In such a case, the capacitance of the indirect electrode may be controlled by dividing the indirect electrode into a plurality of parts and forming an electric field in the treatment liquid for each of the divided indirect electrodes.

また、前記被処理イオン移動工程において、前記複数の被処理イオンを前記対向電極側に移動させると共に、前記対向電極において当該複数の被処理イオンに対応する位置に電荷を配列させ、前記電荷配列工程で前記対向電極に配列させた電荷の量に対する、前記被処理イオン移動工程で前記対向電極に配列させた電荷の量の割合である間引き率は、2のべき乗であってもよい。 Further, in the ion transfer step, the plurality of ions to be processed are moved to the counter electrode side, and charges are arranged at positions corresponding to the plurality of ions to be processed on the counter electrode, and the charge arrangement step. The thinning ratio, which is the ratio of the amount of electric charge arranged on the counter electrode in the process of moving ions to be processed to the amount of electric charge arranged on the counter electrode, may be a power of 2.

また、前記電荷配列工程において、前記対向電極に近い領域に比べて遠い領域の前記間引き率を大きくし、前記被処理イオン処理工程において、被処理イオンを還元して結晶を形成し、前記電荷配列工程と前記被処理イオン処理工程を繰り返し行った後、前記対向電極に近い領域に比べて遠い領域に形成される結晶の粒径を大きくしてもよい。 Further, in the charge arrangement step, the thinning ratio of the region far from the region near the counter electrode is increased, and in the ion treatment step, the ions to be treated are reduced to form crystals, and the charge arrangement is performed. After repeating the step and the ion treatment step to be treated, the particle size of the crystal formed in the region far from the region near the counter electrode may be increased.

また、前記被処理イオン処理工程において、被処理イオンを還元して結晶を形成し、前記電荷配列工程において、前記所定の電荷配列位置に配列された複数の電荷のうち、隣接する電荷間の距離は、結晶格子の寸法の整数倍であってもよい。 Further, in the ion treatment step, the ions to be treated are reduced to form crystals, and in the charge arrangement step, the distance between adjacent charges among the plurality of charges arranged at the predetermined charge arrangement positions. May be an integral multiple of the size of the crystal lattice.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管と、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記直接電極と前記対向電極は、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように配置されることを特徴としている。
From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. An electrode, an indirect electrode that forms an electric field in the treatment liquid, a partition wall in which the treatment liquid is divided into two regions and an inflow / outflow hole of the treatment liquid is formed, and the treatment liquid is divided into two regions. The indirect electrode has a pore wall in which a plurality of pores are formed, or a pipe that divides the treatment liquid into two regions and connects the two regions, and a voltage is applied to the indirect electrode. Then, the ion to be treated in the treatment liquid was moved to the counter electrode side, and the direct electrode and the indirect electrode were moved to the counter electrode side by connecting the direct electrode and the indirect electrode. Oxidizes or reduces treated ions,
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density , and the direct electrode and the counter electrode are the partition wall and the pore size. It is characterized in that it is arranged so as to come into contact with the treatment liquid across the wall or the pipe .

かかる場合、前記電解処理装置は、前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替えるスイッチをさらに有し、前記被処理イオンを前記対向電極側に移動させる際、前記スイッチは、前記間接電極と前記電源を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記スイッチは、前記間接電極と前記電源の接続を切断し、前記間接電極と前記直接電極を接続してもよい。 In such a case, the electrolytic treatment apparatus further has a switch for switching between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode, and when the ion to be processed is moved to the counter electrode side, When the switch connects the indirect electrode and the power supply and oxidizes or reduces the ion to be processed that has moved to the counter electrode side, the switch disconnects the indirect electrode and the power supply and the indirect. The electrode and the direct electrode may be connected.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチと、前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチと、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記直接電極と前記対向電極は、前記処理液に接触するように配置され、前記被処理イオンを前記対向電極側に移動させる際、前記第1のスイッチは、前記間接電極と前記電源を接続し、前記第2のスイッチは、前記直接電極と前記対向電極を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記第1のスイッチは、前記間接電極との接続を前記電源から前記直接電極に切り替え、前記第2のスイッチは、前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続することを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. An electrode, an indirect electrode that forms an electric field in the treatment liquid, a first switch that switches between the connection between the indirect electrode and the power supply, and the connection between the indirect electrode and the direct electrode, and the direct electrode and the indirect electrode. The indirect electrode has a connection and a second switch for switching between the direct electrode and the connection of the counter electrode, and the indirect electrode is subjected to a voltage to transfer ions to be processed in the treatment liquid to the counter electrode. The direct electrode and the indirect electrode are moved to the side, and by connecting the direct electrode and the indirect electrode, the processed ion that has moved to the counter electrode side is oxidized or reduced, and the processed ion is converted to the above-mentioned. When moving to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and the direct electrode and the counter electrode are arranged so as to be in contact with the treatment liquid, and the subject is covered. When the processed ion is moved to the counter electrode side, the first switch connects the indirect electrode and the power supply, and the second switch connects the direct electrode and the counter electrode to the counter electrode. When oxidizing or reducing the ion to be processed that has moved to the side, the first switch switches the connection with the indirect electrode from the power source to the direct electrode, and the second switch is connected to the direct electrode. The connection is switched from the counter electrode to the indirect electrode, and the direct electrode and the indirect electrode are connected.

かかる場合、前記直接電極の表面積は、前記対向電極の表面積より小さくてもよい。 In such a case, the surface area of the direct electrode may be smaller than the surface area of the counter electrode.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管と、前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチと、前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチと、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記直接電極と前記対向電極は、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように配置され、前記被処理イオンを前記対向電極側に移動させる際、前記第1のスイッチは、前記間接電極と前記電源を接続し、前記第2のスイッチは、前記直接電極と前記対向電極を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記第1のスイッチは、前記間接電極との接続を前記電源から前記直接電極に切り替え、前記第2のスイッチは、前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続することを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. An electrode, an indirect electrode that forms an electric field in the treatment liquid, a partition wall in which the treatment liquid is divided into two regions and an inflow / outflow hole of the treatment liquid is formed, and the treatment liquid is divided into two regions. A pore wall in which a plurality of pores are formed, a pipe that divides the treatment liquid into two regions and connects the two regions, a connection between the indirect electrode and a power source, and the indirect electrode and the direct The indirect electrode has a first switch for switching the connection of the electrodes, a second switch for switching the connection between the direct electrode and the indirect electrode, and the connection between the direct electrode and the counter electrode. When a voltage is applied, the ion to be treated in the treatment liquid is moved to the counter electrode side, and the direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode, whereby the counter electrode is connected. When the ion to be treated that has moved to the side is oxidized or reduced and the ion to be treated is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and the direct The electrode and the counter electrode are arranged so as to come into contact with the treatment liquid across the partition wall, the pore wall or the pipe, and when the ion to be treated is moved to the counter electrode side, the first The switch connects the indirect electrode and the power supply, and the second switch connects the direct electrode and the counter electrode, and when oxidizing or reducing the processed ion that has moved to the counter electrode side, the switch The first switch switches the connection with the indirect electrode from the power source to the direct electrode, and the second switch switches the connection with the direct electrode from the counter electrode to the indirect electrode, and the direct electrode. It is characterized in that the indirect electrode is connected to the indirect electrode.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記直接電極と前記間接電極が交互に並びかつ前記処理液に接触するように配置された複数の前記直接電極と複数の前記間接電極と、前記直接電極と前記間接電極の間に設けられた隔壁と、前記複数の間接電極と電源の接続と、前記複数の間接電極と前記複数の直接電極の接続とを切り替えるスイッチと、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記対向電極は、前記複数の直接電極と前記複数の間接電極が配置される方向に延伸するように配置され、前記被処理イオンを前記対向電極側に移動させる際、前記スイッチは、前記複数の間接電極と前記電源を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記スイッチは、前記複数の間接電極と前記電源の接続を切断し、前記複数の間接電極と前記複数の直接電極を接続することを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. The electrodes, the indirect electrodes that form an electric field in the treatment liquid, the plurality of direct electrodes and the plurality of indirect electrodes arranged so that the direct electrodes and the indirect electrodes are alternately arranged and in contact with the treatment liquid. It has a partition wall provided between the direct electrode and the indirect electrode, a switch for switching between the connection between the plurality of indirect electrodes and a power source, and the connection between the plurality of indirect electrodes and the plurality of direct electrodes. When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side, and the direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode. As a result, when the ion to be treated that has moved to the counter electrode side is oxidized or reduced and the ion to be treated is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is the limit current density. The counter electrode is arranged so as to extend in the direction in which the plurality of direct electrodes and the plurality of indirect electrodes are arranged, and when the ion to be processed is moved to the counter electrode side, the switch is used. When the plurality of indirect electrodes are connected to the power source and the ion to be processed that has moved to the counter electrode side is oxidized or reduced, the switch disconnects the plurality of indirect electrodes and the power source, and the switch is used. It is characterized in that a plurality of indirect electrodes and the plurality of direct electrodes are connected.

かかる場合、前記対向電極上には前記処理液のパドルが形成され、前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていてもよい。また、前記電解処理装置は、前記対向電極の下方で対向する位置に設けられた電極保持板をさらに有し、前記電極保持板と前記対向電極の間に前記処理液のパドルが形成され、前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていてもよい。 In such a case, a paddle of the treatment liquid is formed on the counter electrode, and the plurality of direct electrodes, the plurality of indirect electrodes, and the partition wall may be arranged by being immersed in the paddle of the treatment liquid. Further, the electrolytic treatment apparatus further has an electrode holding plate provided at a position facing the opposite electrode below the counter electrode, and a paddle of the treatment liquid is formed between the electrode holding plate and the counter electrode. The plurality of direct electrodes, the plurality of indirect electrodes, and the partition wall may be arranged by being immersed in a paddle of the treatment liquid.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔を開閉する開閉機構が設けられた隔壁と、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記直接電極と前記対向電極は、前記隔壁を挟んで前記処理液に接触するように配置され、前記被処理イオンを前記対向電極側に移動させる際、前記開閉機構は、前記処理液の流入出孔を閉鎖して、前記直接電極と前記処理液の電気的な接続を切断し、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記開閉機構は、前記処理液の流入出孔を開放して、前記直接電極と前記処理液を電気的に接続することを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. It has an electrode, an indirect electrode that forms an electric field in the treatment liquid, and a partition wall that divides the treatment liquid into two regions and has an opening / closing mechanism for opening and closing the inflow / outflow holes of the treatment liquid. When a voltage is applied to the indirect electrode, the ion to be treated in the treatment liquid is moved to the counter electrode side, and the direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode. When the ion to be treated that has moved to the counter electrode side is oxidized or reduced and the ion to be treated is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is below the limit current density. The direct electrode and the counter electrode are arranged so as to come into contact with the treatment liquid with the partition wall interposed therebetween, and when the ion to be treated is moved to the counter electrode side, the opening / closing mechanism is the treatment liquid. When the inflow / out holes are closed, the electrical connection between the direct electrode and the treatment liquid is cut, and the ion to be treated that has moved to the counter electrode side is oxidized or reduced, the opening / closing mechanism is used for the treatment liquid. It is characterized in that the inflow / out holes of the above are opened to electrically connect the direct electrode and the treatment liquid.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記処理液に対し前記直接電極を進退自在に移動させる移動機構と、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記被処理イオンを前記対向電極側に移動させる際、前記移動機構は、前記直接電極を移動させて、当該直接電極と前記処理液を分離させ、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記移動機構は、前記直接電極を移動させて、当該直接電極と前記処理液を接触させることを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. The indirect electrode has an electrode, an indirect electrode that forms an electric field in the treatment liquid, and a moving mechanism that allows the direct electrode to move back and forth with respect to the treatment liquid. The indirect electrode is subjected to a voltage to be applied. The ion to be treated in the treatment liquid is moved to the counter electrode side, and the direct electrode and the indirect electrode are moved to the counter electrode side by connecting the direct electrode and the indirect electrode. When the ion to be treated is moved to the counter electrode side by oxidizing or reducing, the current flowing between the direct electrode and the counter electrode is equal to or less than the critical current density, and the ion to be treated is moved to the counter electrode side. When moving, the moving mechanism moves the direct electrode to separate the direct electrode from the processing liquid, and when oxidizing or reducing the ion to be treated that has moved to the counter electrode side, the moving mechanism moves. The direct electrode is moved so that the direct electrode and the treatment liquid are brought into contact with each other.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、クーロン力によって前記処理液を移動させる流路と、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記直接電極は前記処理液の外部に配置され、前記被処理イオンを前記対向電極側に移動させる際、前記流路は、前記処理液を移動させて、当該処理液と前記直接電極を分離させ、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記流路は、前記処理液を移動させて、当該処理液と前記直接電極を接触させることを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. The indirect electrode has an electrode, an indirect electrode that forms an electric field in the treatment liquid, and a flow path that moves the treatment liquid by a Coulomb force, and the indirect electrode is in the treatment liquid when a voltage is applied. The ion to be treated is moved to the counter electrode side, and the direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be treated that has moved to the counter electrode side. When the ion to be treated is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and the direct electrode is arranged outside the treatment liquid to be treated. When the treated ion is moved to the counter electrode side, the flow path moves the treated liquid to separate the treated liquid from the direct electrode, and oxidizes or oxidizes the processed ion moved to the counter electrode side. At the time of reduction, the flow path is characterized in that the treatment liquid is moved to bring the treatment liquid into direct contact with the electrode.

別な観点による本発明は、処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、前記処理液に電界を形成する間接電極と、前記直接電極に接触して帯電した液滴を供給する液供給機構と、を有し、前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、前記直接電極は前記処理液の外部に配置され、前記被処理イオンを前記対向電極側に移動させる際、前記液供給機構は、前記帯電した液滴の供給を停止して、前記直接電極と前記処理液の電気的な接続を切断し、前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記液供給機構は、前記帯電した液滴を前記処理液に供給して、前記直接電極と前記処理液を電気的に接続することを特徴としている。From another point of view, the present invention is an electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid, and is a direct electrode arranged so as to be electrically connected to the treatment liquid and a counter electrode. The indirect electrode has an electrode, an indirect electrode that forms an electric field in the treatment liquid, and a liquid supply mechanism that supplies charged droplets in contact with the direct electrode, and the indirect electrode is subjected to a voltage. The ion to be treated in the treatment liquid is moved to the counter electrode side, and the direct electrode and the indirect electrode are moved to the counter electrode side by connecting the direct electrode and the indirect electrode. When the ions are oxidized or reduced and the ions to be treated are moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density, and the direct electrode is outside the treatment liquid. When the ion to be treated is moved to the counter electrode side, the liquid supply mechanism stops the supply of the charged droplets and disconnects the electrical connection between the direct electrode and the treatment liquid. Then, when oxidizing or reducing the ion to be treated that has moved to the counter electrode side, the liquid supply mechanism supplies the charged droplets to the treatment liquid and electrically supplies the direct electrode and the treatment liquid. It is characterized by connecting to.

本発明によれば、処理液中の被処理イオンを用いて、被処理体に対する所定の電解処理を高速且つ均一に行うことができる。 According to the present invention, a predetermined electrolytic treatment on a body to be treated can be performed at high speed and uniformly by using the ions to be treated in the treatment liquid.

第1の実施の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on 1st Embodiment. 第1の実施の形態において間接電極と直流電源を接続した様子を示す説明図である。It is explanatory drawing which shows the state which connected the indirect electrode and the DC power source in 1st Embodiment. 第1の実施の形態において充電時における電荷とイオンの配置を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement of electric charge and ion at the time of charging in 1st Embodiment. 第1の実施の形態において間接電極と直接電極を接続した様子を示す説明図である。It is explanatory drawing which shows the state which connected the indirect electrode and the direct electrode in 1st Embodiment. 第1の実施の形態において放電時における電荷とイオンの配置を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement of charge and ion at the time of discharge in 1st Embodiment. 第1の実施の形態において間接電極と直流電源を再度接続した様子を示す説明図である。It is explanatory drawing which shows the mode that the indirect electrode and the DC power source were reconnected in the 1st Embodiment. 第1の実施の形態において対向電極に所定の銅めっきを形成した様子を示す説明図である。It is explanatory drawing which shows the appearance that the predetermined copper plating was formed on the counter electrode in the 1st Embodiment. 第1の実施の形態の他の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on other embodiment of 1st Embodiment. 第1の実施の形態の他の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on other embodiment of 1st Embodiment. 第2の実施の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on 2nd Embodiment. 第2の実施の形態において間接電極と直流電源を接続すると共に、直接電極と対向電極を接続した様子を示す説明図である。It is explanatory drawing which shows the mode which connected the indirect electrode and the DC power source in the 2nd Embodiment, and connected the direct electrode and the counter electrode. 第2の実施の形態において充電時における電荷とイオンの配置を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement of electric charge and ion at the time of charge in 2nd Embodiment. 第2の実施の形態において直接電極と間接電極を接続した様子を示す説明図である。It is explanatory drawing which shows the state which the direct electrode and the indirect electrode were connected in the 2nd Embodiment. 第2の実施の形態において放電時における電荷とイオンの配置を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement of charge and ion at the time of discharge in 2nd Embodiment. 第3の実施の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on 3rd Embodiment. 第3の実施の形態において間接電極と直流電源を接続すると共に、直接電極と対向電極を接続した様子を示す説明図である。It is explanatory drawing which shows the mode which connected the indirect electrode and the DC power source in the 3rd Embodiment, and connected the direct electrode and the counter electrode. 第3の実施の形態において直接電極と間接電極を接続した様子を示す説明図である。It is explanatory drawing which shows the state which the direct electrode and the indirect electrode were connected in the 3rd Embodiment. 第4の実施の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on 4th Embodiment. 第4の実施の形態において間接電極と直流電源を接続した様子を示す説明図である。It is explanatory drawing which shows the state which connected the indirect electrode and the DC power source in 4th Embodiment. 第4の実施の形態において間接電極と直接電極を接続した様子を示す説明図である。It is explanatory drawing which shows the state which connected the indirect electrode and the direct electrode in 4th Embodiment. 第4の実施の形態の他の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on other embodiment of 4th Embodiment. 第4の実施の形態の他の形態において複数の間接電極と直流電源を接続した様子を示す説明図である。It is explanatory drawing which shows the appearance of connecting a plurality of indirect electrodes and a DC power source in another embodiment of 4th Embodiment. 第4の実施の形態の他の形態において複数の間接電極と複数の直接電極を接続した様子を示す説明図である。It is explanatory drawing which shows the mode that the plurality of indirect electrodes and the plurality of direct electrodes are connected in another embodiment of the fourth embodiment. 第4の実施の形態の他の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on other embodiment of 4th Embodiment. 第4の実施の形態の他の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on other embodiment of 4th Embodiment. 1つ目の第5の実施の形態において開閉機構で流入出孔を閉鎖した様子を示す説明図である。It is explanatory drawing which shows the state that the inflow / out hole was closed by the opening / closing mechanism in the 1st 5th Embodiment. 1つ目の第5の実施の形態において開閉機構で流入出孔を開放した様子を示す説明図である。It is explanatory drawing which shows the state that the inflow / out hole was opened by the opening / closing mechanism in the 1st 5th Embodiment. 2つ目の第5の実施の形態において直接電極とめっき液を分離させ様子を示す説明図である。It is explanatory drawing which shows the state which directly separated the electrode and the plating solution in the 2nd 5th Embodiment. 2つ目の第5の実施の形態において直接電極とめっき液を接触させた様子を示す説明図である。It is explanatory drawing which shows the state that the electrode and the plating solution were brought into direct contact with each other in the 2nd 5th Embodiment. 3つ目の第5の実施の形態において直接電極とめっき液を分離させた様子を示す説明図である。It is explanatory drawing which shows the state that the electrode and the plating solution were separated directly in the 3rd 5th Embodiment. 3つ目の第5の実施の形態において直接電極とめっき液を接触させた様子を示す説明図である。It is explanatory drawing which shows the state that the electrode and the plating solution were brought into direct contact with each other in the 3rd 5th Embodiment. 4つ目の第5の実施の形態において液供給機構による帯電した液滴の供給を停止した様子を示す説明図である。It is explanatory drawing which shows the state which stopped the supply of the charged droplet by the liquid supply mechanism in the 4th 5th Embodiment. 4つ目の第5の実施の形態において液供給機構によって帯電した液滴を供給した様子を示す説明図である。It is explanatory drawing which shows the state which the droplet charged by the liquid supply mechanism was supplied in the 4th 5th Embodiment. めっき処理の各工程における、間接電極の電位とスイッチのオンオフ状態を示す説明図である。It is explanatory drawing which shows the potential of an indirect electrode and the on / off state of a switch in each step of a plating process. 間接電極と直流電源を接続した様子を示す説明図である。It is explanatory drawing which shows the state which connected the indirect electrode and the DC power source. ステップS1において対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion in step S1. ステップS2において対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion in step S2. 間接電極と直接電極とを接続した様子を示す説明図である。It is explanatory drawing which shows the appearance of connecting the indirect electrode and the direct electrode. ステップS3において対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion in step S3. ステップS4において対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion in step S4. ステップS5において対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion in step S5. ステップS9を行った後の対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion after performing step S9. 2回目のステップS1において対向電極の電荷と銅イオンの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the charge of the counter electrode and the state of a copper ion in the 2nd step S1. 対向電極に所定の銅めっきを形成した様子を示す説明図である。It is explanatory drawing which shows the state that the predetermined copper plating was formed on the counter electrode. 他の実施の形態にかかるめっき処理装置の構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the plating processing apparatus which concerns on other embodiment. 銅めっきの結晶構造を模式的に示す説明図である。It is explanatory drawing which shows typically the crystal structure of copper plating. ビアホールと配線溝にめっき処理を行った様子を示す縦断面の説明図である。It is explanatory drawing of the vertical cross section which shows the state that the via hole and the wiring groove were plated. 配線溝にめっき処理を行った様子を示す平面の説明図である。It is explanatory drawing of the plane which shows the state that the wiring groove was plated.

以下、本発明の実施の形態について図面を参照して説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。なお、本実施の形態では、本発明にかかる電解処理としてめっき処理を行う場合について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted. In the present embodiment, a case where a plating treatment is performed as the electrolytic treatment according to the present invention will be described.

<1.第1の実施の形態にかかるめっき処理装置>
図1は、第1の実施の形態にかかる電解処理装置としてのめっき処理装置1の構成の概略を示す縦断面図である。なお、以下の説明で用いる図面において、各構成要素の寸法は、技術の理解の容易さを優先させるため、必ずしも実際の寸法に対応していない。
<1. Plating processing apparatus according to the first embodiment>
FIG. 1 is a vertical cross-sectional view showing an outline of the configuration of a plating processing apparatus 1 as an electrolytic processing apparatus according to the first embodiment. In the drawings used in the following description, the dimensions of each component do not necessarily correspond to the actual dimensions in order to prioritize the ease of understanding the technology.

めっき処理装置1は、内部に処理液としてのめっき液Mを貯留するめっき槽10を有している。めっき槽10には、その内部(めっき液M)を2つの領域T1、T2に区画する隔壁11が設けられている。隔壁11には、2つの領域T1、T2の間でめっき液Mを流すための流入出孔12が形成されている。なお、めっき液Mとしては、例えば硫酸銅を溶解した溶液が用いられる。すなわち、めっき液M中には、被処理イオンとして銅イオンが含まれている。 The plating processing apparatus 1 has a plating tank 10 that stores a plating solution M as a processing liquid inside. The plating tank 10 is provided with a partition wall 11 for partitioning the inside (plating liquid M) into two regions T1 and T2. The partition wall 11 is formed with inflow / out holes 12 for flowing the plating solution M between the two regions T1 and T2. As the plating solution M, for example, a solution in which copper sulfate is dissolved is used. That is, the plating solution M contains copper ions as ions to be treated.

めっき槽10の内部には、直接電極20、間接電極21及び対向電極22がそれぞれめっき液Mに浸漬して設けられている。直接電極20は、領域T1に配置されている。間接電極21及び対向電極22はそれぞれ領域T2に配置され、間接電極21は隔壁11から離間して配置され、対向電極22は隔壁11に近接して配置されている。すなわち、直接電極20は間接電極21に近接して設けられ、対向電極22からは隔壁11を挟んで離間して配置されている。 Inside the plating tank 10, the direct electrode 20, the indirect electrode 21, and the counter electrode 22 are each immersed in the plating solution M. The direct electrode 20 is arranged in the region T1. The indirect electrode 21 and the counter electrode 22 are respectively arranged in the region T2, the indirect electrode 21 is arranged apart from the partition wall 11, and the counter electrode 22 is arranged close to the partition wall 11. That is, the direct electrode 20 is provided close to the indirect electrode 21, and is arranged apart from the counter electrode 22 with the partition wall 11 interposed therebetween.

間接電極21には、当該間接電極21を覆うように絶縁材23が設けられている。また、対向電極22は、めっき処理される被処理体である。 The indirect electrode 21 is provided with an insulating material 23 so as to cover the indirect electrode 21. Further, the counter electrode 22 is an object to be plated.

間接電極21と対向電極22には、直流電源30が接続されている。間接電極21は、直流電源30の正極側に接続されている。対向電極22は、直流電源30の負極側に接続されている。 A DC power supply 30 is connected to the indirect electrode 21 and the counter electrode 22. The indirect electrode 21 is connected to the positive electrode side of the DC power supply 30. The counter electrode 22 is connected to the negative electrode side of the DC power supply 30.

間接電極21には、スイッチ31が設けられている。スイッチ31は、間接電極21と直流電源30の接続と、間接電極21と直接電極20の接続とを切り替える。スイッチ31の切り替えは、制御部40によって制御される。 The indirect electrode 21 is provided with a switch 31. The switch 31 switches between the connection between the indirect electrode 21 and the DC power supply 30 and the connection between the indirect electrode 21 and the direct electrode 20. The switching of the switch 31 is controlled by the control unit 40.

次に、以上のように構成されためっき処理装置1を用いためっき処理について説明する。 Next, the plating process using the plating process device 1 configured as described above will be described.

図2に示すようにスイッチ31によって、間接電極21と直流電源30(対向電極22)を接続する。そして、間接電極21を陽極とし、対向電極22を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、図3に示すように間接電極21に正の電荷が蓄積され、間接電極21側に負の荷電粒子である陰イオンAが集まる。一方、対向電極22には負の電荷が蓄積され、対向電極22側に正の荷電粒子である銅イオンCが移動する。なお、以下の説明において、このように電極に電荷が蓄積される状態を「充電」という場合がある。 As shown in FIG. 2, the indirect electrode 21 and the DC power supply 30 (counter electrode 22) are connected by a switch 31. Then, a DC voltage is applied by using the indirect electrode 21 as an anode and the counter electrode 22 as a cathode to form an electric field (electrostatic field). Then, as shown in FIG. 3, a positive charge is accumulated on the indirect electrode 21, and anions A, which are negatively charged particles, are collected on the indirect electrode 21 side. On the other hand, a negative charge is accumulated in the counter electrode 22, and copper ions C, which are positively charged particles, move to the counter electrode 22 side. In the following description, such a state in which electric charges are accumulated in the electrodes may be referred to as "charging".

ここで、充電時、直接電極20と間接電極21は接続されていないため、直接電極20の電位は間接電極21と対向電極22によって形成される電界分布によって決まり、この電界は間接電極21と対向電極22の間に生じる電気力線分布によって決まる。そして、直接電極20の配置が電気力線に沿って間接電極21から遠いほど、当該直接電極20の電位は低くなる。本実施の形態では、直接電極20は対向電極22に近接し、間接電極21から離間して配置されているので、直接電極20の電位はゼロに近い。なお、直接電極20の電位は完全にはゼロにならないため、直接電極20には電位相当分の銅イオンCが移動する。そうすると、充電中にも、直接電極20と対向電極22において電荷交換(酸化還元)が進む。 Here, since the direct electrode 20 and the indirect electrode 21 are not connected during charging, the potential of the direct electrode 20 is determined by the electric field distribution formed by the indirect electrode 21 and the counter electrode 22, and this electric field faces the indirect electrode 21. It is determined by the distribution of electric potential lines generated between the electrodes 22. Then, the farther the arrangement of the direct electrode 20 is from the indirect electrode 21 along the electric line of force, the lower the potential of the direct electrode 20. In the present embodiment, since the direct electrode 20 is arranged close to the counter electrode 22 and away from the indirect electrode 21, the potential of the direct electrode 20 is close to zero. Since the potential of the direct electrode 20 is not completely zero, copper ions C corresponding to the potential move to the direct electrode 20. Then, even during charging, charge exchange (oxidation-reduction) proceeds between the direct electrode 20 and the counter electrode 22.

また、直接電極20と間接電極21の間には隔壁11が設けられているので、この隔壁11が物理的及び電気的な抵抗になり、直接電極20の電荷量が少なくなる。このため、直接電極20と対向電極22における電荷交換(酸化還元)の電荷量を少なくすることができる。 Further, since the partition wall 11 is provided between the direct electrode 20 and the indirect electrode 21, the partition wall 11 becomes a physical and electrical resistance, and the amount of electric charge of the direct electrode 20 is reduced. Therefore, the amount of charge exchanged (oxidation-reduction) between the direct electrode 20 and the counter electrode 22 can be reduced.

さらに、直接電極20と対向電極22は、充電時に直接電極20と対向電極22の間を流れる電流が限界電流密度以下となるように配置されている。限界電流密度は、めっき処理で単位時間当たりに還元される銅イオンCの量に対して、供給される銅イオンCの量が限界に達する電流密度であり、すなわち限界電流はめっき処理可能な最大電流である。そうすると、充電時に対向電極22の表面には銅イオンCの移動(供給)不足が発生せず、水の電気分解が行われるのを抑制することができる。その結果、気泡の発生を抑制して、後述する銅めっき50中にボイドが発生することも抑制することができる。 Further, the direct electrode 20 and the counter electrode 22 are arranged so that the current flowing between the direct electrode 20 and the counter electrode 22 at the time of charging is equal to or less than the limit current density. The critical current density is the current density at which the amount of copper ions C supplied reaches the limit with respect to the amount of copper ions C reduced per unit time in the plating process, that is, the critical current is the maximum that can be plated. It is an electric current. Then, the movement (supply) of the copper ion C does not become insufficient on the surface of the counter electrode 22 during charging, and it is possible to suppress the electrolysis of water. As a result, the generation of bubbles can be suppressed, and the generation of voids in the copper plating 50, which will be described later, can also be suppressed.

また、直接電極20が陰極になるのを回避するため、直接電極20をグランドに接続せず、電気的にフローティング状態にしている。 Further, in order to prevent the direct electrode 20 from becoming a cathode, the direct electrode 20 is not directly connected to the ground and is electrically floated.

そして、スイッチ31による間接電極21と直流電源30の接続は、間接電極21と対向電極22に十分な電荷が蓄積されるまで、すなわち満充電されるまで行われる。この満充電における間接電極21と対向電極22の電荷量は等価である。そして、上述したように充電時には対向電極22における電荷交換が、水の電気分解を抑制しつつ高速に行われるので、対向電極22の表面に銅イオンCが均一に配列される。また、対向電極22の表面で水の電気分解が抑制されるので、間接電極21と対向電極22との間に電圧を印可する際の電界を高くすることができる。この高電界によって銅イオンCの移動を速くできる。さらに、この電界を任意に制御することで、対向電極22表面に配列される銅イオンCも任意に制御される。 Then, the indirect electrode 21 and the DC power supply 30 are connected by the switch 31 until a sufficient charge is accumulated in the indirect electrode 21 and the counter electrode 22, that is, until the indirect electrode 21 is fully charged. The charges of the indirect electrode 21 and the counter electrode 22 in this full charge are equivalent. Then, as described above, during charging, the charge exchange in the counter electrode 22 is performed at high speed while suppressing the electrolysis of water, so that the copper ions C are uniformly arranged on the surface of the counter electrode 22. Further, since the electrolysis of water is suppressed on the surface of the counter electrode 22, the electric field when applying a voltage between the indirect electrode 21 and the counter electrode 22 can be increased. This high electric field can speed up the movement of copper ions C. Further, by arbitrarily controlling this electric field, the copper ions C arranged on the surface of the counter electrode 22 are also arbitrarily controlled.

その後、図4に示すようにスイッチ31を切り替え、間接電極21と直流電源30の接続を切断し、間接電極21と直接電極20を接続する。そうすると、図5に示すように間接電極21に蓄積された正の電荷が直接電極20に移動し、直接電極20側に集まった陰イオンAの電荷が交換されて、陰イオンAは酸化される。これに伴い、対向電極22の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、図4に示すように、対向電極22の表面に銅めっき50が析出する。なお、以下の説明において、このように電極間で電荷が移動する状態を「放電」という場合がある。 After that, as shown in FIG. 4, the switch 31 is switched, the connection between the indirect electrode 21 and the DC power supply 30 is cut off, and the indirect electrode 21 and the direct electrode 20 are connected. Then, as shown in FIG. 5, the positive charge accumulated in the indirect electrode 21 moves directly to the electrode 20, the charge of the anion A collected on the direct electrode 20 side is exchanged, and the anion A is oxidized. .. Along with this, the charges of the copper ions C arranged on the surface of the counter electrode 22 are exchanged, and the copper ions C are reduced. Then, as shown in FIG. 4, the copper plating 50 is deposited on the surface of the counter electrode 22. In the following description, such a state in which electric charges move between electrodes may be referred to as “discharge”.

ここで、充電時に直接電極20と対向電極22において電荷交換される電荷量を、電界により移動する全電荷量のN分の1(1/N)とすると、放電時には、充電時の電荷量のN倍の電荷量の交換が可能となる。すなわち、水の電気分解を抑制しつつ、多量の銅イオンCを還元することができる。したがって、めっきレートを向上させて、めっき処理を高速に行うことができる。 Here, assuming that the amount of charge exchanged between the direct electrode 20 and the counter electrode 22 during charging is 1/N (1 / N) of the total amount of electric charge moved by the electric field, the amount of charge during charging during discharging It is possible to exchange N times the amount of electric charge. That is, a large amount of copper ions C can be reduced while suppressing the electrolysis of water. Therefore, the plating rate can be improved and the plating process can be performed at high speed.

なお、充電時には間接電極21と対向電極22の電荷量は等価であるので、放電時に電荷交換される量も等価となる。 Since the charges of the indirect electrode 21 and the counter electrode 22 are equivalent during charging, the amounts of charge exchanged during discharging are also equivalent.

そして、対向電極22の表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、対向電極22の表面に銅めっき50を均一に析出させることができる。結果的に、銅めっき50における結晶の密度が高くなり、品質の良い銅めっき50を形成することができる。 Then, since sufficient copper ions C are accumulated on the surface of the counter electrode 22 and reduced in a uniformly arranged state, the copper plating 50 can be uniformly deposited on the surface of the counter electrode 22. As a result, the density of crystals in the copper plating 50 is increased, and a high quality copper plating 50 can be formed.

その後、図6に示すようにスイッチ31を切り替えて間接電極21と直流電源30を接続し、対向電極22側に銅イオンCを移動させて集積させる。そして、対向電極22の表面に銅イオンCが均一に配列されると、スイッチ31を切り替えて間接電極21と直接電極20を接続し、銅イオンCを還元させる。 After that, as shown in FIG. 6, the switch 31 is switched to connect the indirect electrode 21 and the DC power supply 30, and the copper ions C are moved and integrated on the counter electrode 22 side. Then, when the copper ions C are uniformly arranged on the surface of the counter electrode 22, the switch 31 is switched to connect the indirect electrode 21 and the direct electrode 20 to reduce the copper ions C.

このように充電時の銅イオンCの移動集積と放電時の銅イオンCの還元が繰り返し行われることで、図7に示すように銅めっき50が所定の膜厚に成長する。こうして、めっき処理装置1における一連のめっき処理が終了する。 By repeatedly moving and accumulating the copper ions C during charging and reducing the copper ions C during discharging in this way, the copper plating 50 grows to a predetermined film thickness as shown in FIG. In this way, a series of plating processes in the plating processing apparatus 1 is completed.

以上の実施の形態によれば、充電時に銅イオンCを移動させる際、直接電極20と対向電極22の間を流れる電流が限界電流密度以下となるので、対向電極22の表面で水の電気分解が行われることがなく、その結果、気泡の発生を抑制して、銅めっき50中にボイドが発生することも抑制することができる。したがって、充電時に間接電極21と対向電極22によって形成される電界を高くすることができる。そして、放電時には、充電時に交換される電荷量の数倍の電荷量の交換が可能となり、水の電気分解を抑制しつつ、多量の銅イオンCを還元することができる。したがって、めっき処理のレートを向上させて、めっき処理を高速に行うことができる。 According to the above embodiment, when the copper ion C is moved during charging, the current flowing directly between the electrode 20 and the counter electrode 22 is equal to or less than the limit current density, so that water is electrolyzed on the surface of the counter electrode 22. As a result, the generation of air bubbles can be suppressed, and the generation of voids in the copper plating 50 can also be suppressed. Therefore, the electric field formed by the indirect electrode 21 and the counter electrode 22 during charging can be increased. Then, at the time of discharging, it is possible to exchange an amount of electric charge that is several times the amount of electric charge exchanged at the time of charging, and it is possible to reduce a large amount of copper ions C while suppressing electrolysis of water. Therefore, the rate of the plating process can be improved and the plating process can be performed at a high speed.

また、直接電極20は対向電極22に近接し、間接電極21から離間して配置されているので、直接電極20の電位は低く、ゼロに近くなる。しかも、直接電極20と間接電極21の間の隔壁11が抵抗となる。このため、充電時に直接電極20と対向電極22において電荷交換(酸化還元)が進むものの、その電荷量を少なくすることができる。そうすると、充電時においては、対向電極22の表面に銅イオンCを均一に配列させた状態で、当該銅イオンCが還元される。したがって、めっき処理を均一に行うことができ、銅めっき50の膜厚を均一にすることができる。しかも、銅イオンCが均一に配置されるので、銅めっき50中の結晶を密に配置することができる。したがって、めっき処理後の銅めっき50の品質を向上させることができる。 Further, since the direct electrode 20 is arranged close to the counter electrode 22 and separated from the indirect electrode 21, the potential of the direct electrode 20 is low and close to zero. Moreover, the partition wall 11 between the direct electrode 20 and the indirect electrode 21 serves as a resistor. Therefore, although charge exchange (oxidation-reduction) proceeds directly between the electrode 20 and the counter electrode 22 during charging, the amount of electric charge can be reduced. Then, at the time of charging, the copper ions C are reduced in a state where the copper ions C are uniformly arranged on the surface of the counter electrode 22. Therefore, the plating process can be performed uniformly, and the film thickness of the copper plating 50 can be made uniform. Moreover, since the copper ions C are uniformly arranged, the crystals in the copper plating 50 can be densely arranged. Therefore, the quality of the copper plating 50 after the plating treatment can be improved.

また、間接電極21に十分な電荷が蓄積され、対向電極22の表面に銅イオンCが均一に配列された状態で、スイッチ31により充電から放電に切り替えられるので、対向電極22側に十分な銅イオンCが集積した状態で銅イオンCの還元を行うことができる。このため、陽極と陰極間に水の電気分解に消費される電流を流す必要がなく、銅イオンCを効率よく還元できる。 Further, since sufficient charge is accumulated in the indirect electrode 21 and copper ions C are uniformly arranged on the surface of the counter electrode 22, the switch 31 switches from charging to discharging, so that sufficient copper is provided on the counter electrode 22 side. Copper ion C can be reduced in a state where ions C are accumulated. Therefore, it is not necessary to pass a current consumed for electrolysis of water between the anode and the cathode, and the copper ion C can be efficiently reduced.

また、充電時に間接電極21に電圧を印可する際の電界を高くすることができ、銅イオンCの移動を速くさせて、めっき処理のレートを向上させることができる。しかも、めっき処理のレートを向上させるために大掛かりな機構が必要なく、装置構成を簡易化することができる。 Further, the electric field when applying a voltage to the indirect electrode 21 at the time of charging can be increased, the movement of the copper ion C can be accelerated, and the rate of the plating process can be improved. Moreover, a large-scale mechanism is not required to improve the plating processing rate, and the device configuration can be simplified.

本実施の形態のめっき処理装置1において、直接電極20と間接電極21の間の抵抗を大きくするため、隔壁11を設けていたが、これに代えて細孔質壁又は配管を設けてもよい。 In the plating processing apparatus 1 of the present embodiment, the partition wall 11 is provided in order to increase the resistance between the direct electrode 20 and the indirect electrode 21, but a pore wall or piping may be provided instead. ..

図8に示すように、隔壁11に代えて、めっき槽10には、その内部を2つの領域T1、T2に区画する細孔質壁60が設けられている。細孔質壁60には複数の細孔が形成され、当該複数の細孔を介してめっき液Mを流すことができるようになっている。かかる場合でも、細孔質壁60が物理的及び電気的な抵抗になり、直接電極20と対向電極22における電荷交換(酸化還元)の電荷量を少なくすることができる。 As shown in FIG. 8, instead of the partition wall 11, the plating tank 10 is provided with a pore wall 60 that divides the inside into two regions T1 and T2. A plurality of pores are formed in the pore wall 60, and the plating solution M can flow through the plurality of pores. Even in such a case, the pore wall 60 becomes a physical and electrical resistance, and the amount of charge exchange (oxidation-reduction) between the direct electrode 20 and the counter electrode 22 can be reduced.

また、図9に示すように、めっき槽10はめっき槽10a(領域T1)とめっき槽10b(領域T2)に分割される。めっき槽10a、10b間には、これらめっき槽10a、10bを接続する配管70が設けられている。かかる場合でも、配管70が物理的及び電気的な抵抗になり、直接電極20と対向電極22における電荷交換(酸化還元)の電荷量を少なくすることができる。 Further, as shown in FIG. 9, the plating tank 10 is divided into a plating tank 10a (region T1) and a plating tank 10b (region T2). A pipe 70 for connecting these plating tanks 10a and 10b is provided between the plating tanks 10a and 10b. Even in such a case, the pipe 70 becomes a physical and electrical resistance, and the amount of electric charge exchanged (oxidation-reduction) between the direct electrode 20 and the counter electrode 22 can be reduced.

<2.第2の実施の形態にかかるめっき処理装置>
次に、めっき処理装置の第2の実施の形態について説明する。図10は、第2の実施の形態にかかるめっき処理装置100の構成の概略を示す縦断面図である。
<2. Plating processing apparatus according to the second embodiment>
Next, a second embodiment of the plating processing apparatus will be described. FIG. 10 is a vertical cross-sectional view showing an outline of the configuration of the plating processing apparatus 100 according to the second embodiment.

めっき処理装置100は、内部にめっき液Mを貯留するめっき槽110を有している。めっき槽110の内部には、直接電極120、間接電極121及び対向電極122がそれぞれめっき液Mに浸漬して設けられている。直接電極120は、対向電極122に近接して配置されている。間接電極121は、直接電極120及び対向電極122から離間して配置されている。 The plating processing apparatus 100 has a plating tank 110 that stores the plating solution M inside. Inside the plating tank 110, the direct electrode 120, the indirect electrode 121, and the counter electrode 122 are each immersed in the plating solution M. The direct electrode 120 is arranged close to the counter electrode 122. The indirect electrode 121 is arranged apart from the direct electrode 120 and the counter electrode 122.

間接電極121には、当該間接電極121を覆うように絶縁材123が設けられている。また、対向電極122は、めっき処理される被処理体である。 The indirect electrode 121 is provided with an insulating material 123 so as to cover the indirect electrode 121. Further, the counter electrode 122 is an object to be plated.

間接電極121と対向電極122には、直流電源130が接続されている。間接電極121は、直流電源130の正極側に接続されている。対向電極122は、直流電源130の負極側に接続されている。 A DC power supply 130 is connected to the indirect electrode 121 and the counter electrode 122. The indirect electrode 121 is connected to the positive electrode side of the DC power supply 130. The counter electrode 122 is connected to the negative electrode side of the DC power supply 130.

間接電極121には、第1のスイッチ131が設けられている。第1のスイッチ131は、間接電極121と直流電源130の接続と、間接電極121と直接電極120の接続とを切り替える。 The indirect electrode 121 is provided with a first switch 131. The first switch 131 switches between the connection between the indirect electrode 121 and the DC power supply 130 and the connection between the indirect electrode 121 and the direct electrode 120.

直接電極120には、第2のスイッチ132が設けられている。第2のスイッチ132は、直接電極120と間接電極121の接続と、直接電極120と対向電極122の接続とを切り替える。 The direct electrode 120 is provided with a second switch 132. The second switch 132 switches between the connection between the direct electrode 120 and the indirect electrode 121 and the connection between the direct electrode 120 and the counter electrode 122.

次に、以上のように構成されためっき処理装置100を用いためっき処理について説明する。 Next, a plating process using the plating processing apparatus 100 configured as described above will be described.

先ず、充電時、図11に示すように第1のスイッチ131によって間接電極121と直流電源130を接続すると共に、第2のスイッチ132によって直接電極120と対向電極122を接続する。そして、間接電極121を陽極とし、対向電極122を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、図12に示すように間接電極121に正の電荷が蓄積され、間接電極121側に負の荷電粒子である陰イオンAが集まる。一方、対向電極122及び直接電極120にはそれぞれ負の電荷が蓄積され、対向電極122側に正の荷電粒子である銅イオンCが移動する。 First, at the time of charging, as shown in FIG. 11, the indirect electrode 121 and the DC power supply 130 are connected by the first switch 131, and the direct electrode 120 and the counter electrode 122 are connected by the second switch 132. Then, an electric field (electrostatic field) is formed by applying a DC voltage using the indirect electrode 121 as an anode and the counter electrode 122 as a cathode. Then, as shown in FIG. 12, positive charges are accumulated in the indirect electrode 121, and anions A, which are negatively charged particles, are collected on the indirect electrode 121 side. On the other hand, negative charges are accumulated in the counter electrode 122 and the direct electrode 120, respectively, and copper ions C, which are positively charged particles, move to the counter electrode 122 side.

この充電時では、直接電極120と対向電極122が接続されているので、直接電極120と対向電極122は等電位となる。このため、直接電極120と対向電極122における電荷交換(酸化還元)を抑制することができる。 At the time of this charging, since the direct electrode 120 and the counter electrode 122 are connected, the direct electrode 120 and the counter electrode 122 have equal potentials. Therefore, charge exchange (oxidation-reduction) between the direct electrode 120 and the counter electrode 122 can be suppressed.

そして、第1のスイッチ131による間接電極121と直流電源130の接続、及び第2のスイッチ132による直接電極120と対向電極122の接続は、間接電極121と対向電極122に十分な電荷が蓄積されるまで、すなわち満充電されるまで行われる。上述したように充電時には対向電極122における電荷交換が抑制されるので、対向電極122の表面に銅イオンCが均一に配列される。また、対向電極122の表面で銅イオンCの電荷交換が行われず、水の電気分解も抑制されるので、間接電極121と対向電極122との間に電圧を印可する際の電界を高くすることができる。この高電界によって銅イオンCの移動を速くできる。さらに、この電界を任意に制御することで、対向電極122表面に配列される銅イオンCも任意に制御される。 Then, in the connection between the indirect electrode 121 and the DC power supply 130 by the first switch 131 and the connection between the direct electrode 120 and the counter electrode 122 by the second switch 132, sufficient charges are accumulated in the indirect electrode 121 and the counter electrode 122. Until it is fully charged, that is, until it is fully charged. As described above, since the charge exchange in the counter electrode 122 is suppressed during charging, the copper ions C are uniformly arranged on the surface of the counter electrode 122. Further, since the charge exchange of copper ions C is not performed on the surface of the counter electrode 122 and the electrolysis of water is suppressed, the electric field when applying a voltage between the indirect electrode 121 and the counter electrode 122 is increased. Can be done. This high electric field can speed up the movement of copper ions C. Further, by arbitrarily controlling this electric field, the copper ions C arranged on the surface of the counter electrode 122 are also arbitrarily controlled.

その後、放電時において、図13に示すように第1のスイッチ131によって間接電極121との接続を直流電源130から直接電極120に切り替えると共に、第2のスイッチ132によって直接電極120との接続を対向電極122から間接電極121に切り替えて、直接電極120と間接電極121を接続する。そうすると、図14に示すように間接電極121に蓄積された正の電荷が直接電極120に移動し、直接電極120側に集まった陰イオンAの電荷が交換されて、陰イオンAは酸化される。これに伴い、対向電極122の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、図13に示すように、対向電極122の表面に銅めっき150が析出する。 After that, at the time of discharge, as shown in FIG. 13, the connection with the indirect electrode 121 is switched from the DC power supply 130 to the direct electrode 120 by the first switch 131, and the connection with the direct electrode 120 is opposed by the second switch 132. The direct electrode 120 and the indirect electrode 121 are connected by switching from the electrode 122 to the indirect electrode 121. Then, as shown in FIG. 14, the positive charge accumulated in the indirect electrode 121 moves directly to the electrode 120, the charge of the anion A collected on the direct electrode 120 side is exchanged, and the anion A is oxidized. .. Along with this, the charges of the copper ions C arranged on the surface of the counter electrode 122 are exchanged, and the copper ions C are reduced. Then, as shown in FIG. 13, the copper plating 150 is deposited on the surface of the counter electrode 122.

そして、対向電極122の表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、対向電極122の表面に銅めっき150を均一に析出させることができる。結果的に、銅めっき150における結晶の密度が高くなり、品質の良い銅めっき150を形成することができる。 Then, since sufficient copper ions C are accumulated on the surface of the counter electrode 122 and reduced in a uniformly arranged state, the copper plating 150 can be uniformly deposited on the surface of the counter electrode 122. As a result, the density of crystals in the copper plating 150 is increased, and a high quality copper plating 150 can be formed.

ここで、充電時には直接電極120と対向電極122が接続されるので、直接電極120の表面積と対向電極122の表面積が等しい場合、直接電極120と対向電極122の電荷量は等価となり、さらに間接電極121の電荷量はこれら直接電極120と対向電極122の電荷量の合計となる。すなわち、直接電極120と対向電極122にはそれぞれ電荷量Qの負の電荷が蓄積され、間接電極121には電荷量2Qの正の電荷が蓄積される。そして、放電時には間接電極121から直接電極120に電荷量2Qの正の電荷が移動し、当該移動した電荷量Qの正の電荷は直接電極120の電荷量Qの負の電荷で中和されて、直接電極120には電荷量Qの正の電荷が残存することになる。さらに、この直接電極120に残存する電荷量Qの正の電荷は、放電時に電荷交換が完了し、直接電極120に電荷は残存しない。そこで、この中和により無駄な電気が消費されるのでこれを低減するため、直接電極120の表面積を小さくしてもよいし、或いは、上述したように隔壁11や細孔質壁60、配管70を設けてもよい。 Here, since the direct electrode 120 and the counter electrode 122 are connected during charging, when the surface area of the direct electrode 120 and the surface area of the counter electrode 122 are equal, the charge amounts of the direct electrode 120 and the counter electrode 122 are equivalent, and further, the indirect electrode The charge amount of 121 is the sum of the charge amounts of the direct electrode 120 and the counter electrode 122. That is, a negative charge having an electric charge Q is accumulated in the direct electrode 120 and the counter electrode 122, respectively, and a positive electric charge having an electric charge 2Q is accumulated in the indirect electrode 121. Then, at the time of discharge, a positive charge having a charge amount of 2Q moves from the indirect electrode 121 to the direct electrode 120, and the positive charge of the transferred charge amount Q is neutralized by a negative charge of the charge amount Q of the direct electrode 120. , A positive charge having an electric charge Q remains on the direct electrode 120. Further, the positive charge of the amount of charge Q remaining on the direct electrode 120 completes the charge exchange at the time of discharge, and no charge remains on the direct electrode 120. Therefore, wasteful electricity is consumed by this neutralization, and in order to reduce this, the surface area of the direct electrode 120 may be reduced, or as described above, the partition wall 11, the pore wall 60, and the pipe 70 may be reduced. May be provided.

そして、充電時の銅イオンCの移動集積と放電時の銅イオンCの還元が繰り返し行われることで、銅めっき150が所定の膜厚に成長する。こうして、めっき処理装置100における一連のめっき処理が終了する。 Then, the copper plating 150 grows to a predetermined film thickness by repeatedly moving and accumulating the copper ions C during charging and reducing the copper ions C during discharging. In this way, a series of plating processes in the plating processing apparatus 100 is completed.

本実施の形態によれば、充電時に銅イオンCを移動させる際、直接電極120と対向電極122を接続しているので、直接電極120と対向電極122における電荷交換を抑制することができ、銅イオンCの還元を抑制することができる。そうすると、充電時においては、対向電極122の表面に銅イオンCを均一に配列させた状態で、当該銅イオンCが還元される。したがって、めっき処理を均一に行うことができる。 According to the present embodiment, when the copper ion C is moved during charging, since the direct electrode 120 and the counter electrode 122 are connected, the charge exchange between the direct electrode 120 and the counter electrode 122 can be suppressed, and copper can be suppressed. The reduction of ion C can be suppressed. Then, at the time of charging, the copper ions C are reduced in a state where the copper ions C are uniformly arranged on the surface of the counter electrode 122. Therefore, the plating process can be performed uniformly.

なお、直接電極120の表面積は対向電極122の表面積より小さいのが好ましい。かかる場合、直接電極120の静電容量(C)を小さくして、電荷量(Q=CV)を小さくすることができ、放電時の電荷中和による無駄な電力消費を抑制することができる。 The surface area of the direct electrode 120 is preferably smaller than the surface area of the counter electrode 122. In such a case, the capacitance (C) of the direct electrode 120 can be reduced to reduce the amount of charge (Q = CV), and wasteful power consumption due to charge neutralization during discharge can be suppressed.

<3.第3の実施の形態にかかるめっき処理装置>
次に、めっき処理装置の第3の実施の形態について説明する。図15は、第3の実施の形態にかかるめっき処理装置200の構成の概略を示す縦断面図である。
<3. Plating processing apparatus according to the third embodiment>
Next, a third embodiment of the plating processing apparatus will be described. FIG. 15 is a vertical cross-sectional view showing an outline of the configuration of the plating processing apparatus 200 according to the third embodiment.

第3の実施の形態のめっき処理装置200は、第1の実施の形態のめっき処理装置1と第2の実施の形態のめっき処理装置100を組み合わせた構成を有している。すなわち、めっき処理装置200は、めっき処理装置1においてスイッチ31の構成を、めっき処理装置100の第1のスイッチ131及び第2のスイッチ132の構成に置き換えたものである。 The plating processing device 200 of the third embodiment has a configuration in which the plating processing device 1 of the first embodiment and the plating processing device 100 of the second embodiment are combined. That is, the plating processing device 200 replaces the configuration of the switch 31 in the plating processing device 1 with the configuration of the first switch 131 and the second switch 132 of the plating processing device 100.

めっき処理装置200において、めっき槽210、隔壁211、流入出孔212、直接電極220、間接電極221、対向電極222、絶縁材223は、それぞれめっき処理装置1におけるめっき槽10、隔壁11、流入出孔12、直接電極20、間接電極21、対向電極22、絶縁材23に対応している。 In the plating processing apparatus 200, the plating tank 210, the partition wall 211, the inflow / out hole 212, the direct electrode 220, the indirect electrode 221, the counter electrode 222, and the insulating material 223 are the plating tank 10, the partition wall 11, and the inflow / outflow in the plating processing apparatus 1, respectively. It corresponds to the hole 12, the direct electrode 20, the indirect electrode 21, the counter electrode 22, and the insulating material 23.

また、めっき処理装置200において、直流電源230、第1のスイッチ231、及び第2のスイッチ232は、それぞれめっき処理装置100における直流電源130、第1のスイッチ131、及び第2のスイッチ132に対応している。 Further, in the plating processing apparatus 200, the DC power supply 230, the first switch 231 and the second switch 232 correspond to the DC power supply 130, the first switch 131, and the second switch 132 in the plating processing apparatus 100, respectively. doing.

なお、めっき処理装置200の各部材の構成は、上記対応する部材の構成と同様であるので説明を省略する。 Since the configuration of each member of the plating processing apparatus 200 is the same as the configuration of the corresponding member, the description thereof will be omitted.

次に、以上のように構成されためっき処理装置200を用いためっき処理について説明する。 Next, the plating process using the plating process device 200 configured as described above will be described.

先ず、充電時、図16に示すように第1のスイッチ231によって間接電極221と直流電源230を接続すると共に、第2のスイッチ232によって直接電極220と対向電極222を接続する。そして、間接電極221を陽極とし、対向電極222を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、間接電極221に正の電荷が蓄積され、間接電極221側に負の荷電粒子である陰イオンAが集まる。一方、対向電極222及び直接電極220にはそれぞれ負の電荷が蓄積され、対向電極222側に正の荷電粒子である銅イオンCが移動する。 First, at the time of charging, as shown in FIG. 16, the indirect electrode 221 and the DC power supply 230 are connected by the first switch 231 and the direct electrode 220 and the counter electrode 222 are connected by the second switch 232. Then, a DC voltage is applied by using the indirect electrode 221 as an anode and the counter electrode 222 as a cathode to form an electric field (electrostatic field). Then, a positive charge is accumulated on the indirect electrode 221 and anions A, which are negatively charged particles, are collected on the indirect electrode 221 side. On the other hand, negative charges are accumulated in the counter electrode 222 and the direct electrode 220, respectively, and copper ions C, which are positively charged particles, move to the counter electrode 222 side.

この充電時では、直接電極220と対向電極222が接続されているので、直接電極220と対向電極222は等電位となる。このため、直接電極220と対向電極222における電荷交換(酸化還元)を抑制することができる。しかも、直接電極220と間接電極221の間には隔壁211が設けられているので、この隔壁211が物理的及び電気的な抵抗になり、直接電極220の電荷量が少なくなる。このため、放電時の電荷中和による無駄な電力消費を抑制することができる。なお、第1の実施の形態と同様に、直接電極220と間接電極221の間の抵抗を大きくするため、隔壁211に代えて細孔質壁や配管を設けてもよい。 At the time of this charging, since the direct electrode 220 and the counter electrode 222 are connected, the direct electrode 220 and the counter electrode 222 have equal potentials. Therefore, charge exchange (oxidation-reduction) between the direct electrode 220 and the counter electrode 222 can be suppressed. Moreover, since the partition wall 211 is provided between the direct electrode 220 and the indirect electrode 221, the partition wall 211 becomes a physical and electrical resistance, and the amount of electric charge of the direct electrode 220 is reduced. Therefore, wasteful power consumption due to charge neutralization during discharge can be suppressed. As in the first embodiment, in order to increase the resistance between the direct electrode 220 and the indirect electrode 221, a pore wall or piping may be provided instead of the partition wall 211.

そして、第1のスイッチ231による間接電極221と直流電源230の接続、及び第2のスイッチ232による直接電極220と対向電極222の接続は、間接電極221と対向電極222に十分な電荷が蓄積されるまで、すなわち満充電されるまで行われる。上述したように充電時には対向電極222における電荷交換が抑制されるので、対向電極222の表面に銅イオンCが均一に配列される。また、対向電極222の表面で銅イオンCの電荷交換が行われず、水の電気分解も抑制されるので、間接電極221と対向電極222との間に電圧を印可する際の電界を高くすることができる。この高電界によって銅イオンCの移動を速くできる。さらに、この電界を任意に制御することで、対向電極222表面に配列される銅イオンCも任意に制御される。 Then, in the connection between the indirect electrode 221 and the DC power supply 230 by the first switch 231 and the connection between the direct electrode 220 and the counter electrode 222 by the second switch 232, sufficient charges are accumulated in the indirect electrode 221 and the counter electrode 222. Until it is fully charged, that is, until it is fully charged. As described above, since the charge exchange in the counter electrode 222 is suppressed during charging, the copper ions C are uniformly arranged on the surface of the counter electrode 222. Further, since the charge exchange of copper ions C is not performed on the surface of the counter electrode 222 and the electrolysis of water is suppressed, the electric field when applying a voltage between the indirect electrode 221 and the counter electrode 222 should be increased. Can be done. This high electric field can speed up the movement of copper ions C. Further, by arbitrarily controlling this electric field, the copper ions C arranged on the surface of the counter electrode 222 are also arbitrarily controlled.

その後、放電時において、図17に示すように第1のスイッチ231によって間接電極221との接続を直流電源230から直接電極220に切り替えると共に、第2のスイッチ232によって直接電極220との接続を対向電極222から間接電極221に切り替えて、直接電極220と間接電極221を接続する。そうすると、間接電極221に蓄積された正の電荷が直接電極220に移動し、間接電極221側に集まった陰イオンAの電荷が交換されて、陰イオンAは酸化される。これに伴い、対向電極222の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極222の表面に銅めっき250が析出する。 After that, at the time of discharge, as shown in FIG. 17, the connection with the indirect electrode 221 is switched from the DC power supply 230 to the direct electrode 220 by the first switch 231 and the connection with the direct electrode 220 is opposed by the second switch 232. The direct electrode 220 and the indirect electrode 221 are connected by switching from the electrode 222 to the indirect electrode 221. Then, the positive charge accumulated in the indirect electrode 221 moves directly to the electrode 220, the charge of the anion A collected on the indirect electrode 221 side is exchanged, and the anion A is oxidized. Along with this, the charges of the copper ions C arranged on the surface of the counter electrode 222 are exchanged, and the copper ions C are reduced. Then, the copper plating 250 is deposited on the surface of the counter electrode 222.

そして、対向電極222の表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、対向電極222の表面に銅めっき250を均一に析出させることができる。結果的に、銅めっき250における結晶の密度が高くなり、品質の良い銅めっき250を形成することができる。 Then, since sufficient copper ions C are accumulated on the surface of the counter electrode 222 and reduced in a uniformly arranged state, the copper plating 250 can be uniformly deposited on the surface of the counter electrode 222. As a result, the density of crystals in the copper plating 250 is increased, and a high quality copper plating 250 can be formed.

そして、充電時の銅イオンCの移動集積と放電時の銅イオンCの還元が繰り返し行われることで、銅めっき250が所定の膜厚に成長する。こうして、めっき処理装置200における一連のめっき処理が終了する。 Then, the copper plating 250 grows to a predetermined film thickness by repeatedly moving and accumulating the copper ions C during charging and reducing the copper ions C during discharging. In this way, a series of plating processes in the plating processing apparatus 200 is completed.

第3の実施の形態においても、第2の実施の形態と同様の効果を享受できる。すなわち、充電時に銅イオンCを移動させる際、直接電極220と対向電極222を接続しているので、直接電極220と対向電極222における電荷交換を抑制することができ、銅イオンCの還元を抑制することができる。しかも、直接電極220と間接電極221の間には隔壁211が設けられているので、直接電極220の電荷量が少なくなり、放電時の電荷中和による無駄な電力消費を抑制することができる。そうすると、充電時においては、対向電極222の表面に銅イオンCを均一に配列させた状態で、当該銅イオンCが還元される。したがって、めっき処理を均一に行うことができる。 In the third embodiment, the same effect as that of the second embodiment can be enjoyed. That is, since the direct electrode 220 and the counter electrode 222 are connected when the copper ion C is moved during charging, the charge exchange between the direct electrode 220 and the counter electrode 222 can be suppressed, and the reduction of the copper ion C is suppressed. can do. Moreover, since the partition wall 211 is provided between the direct electrode 220 and the indirect electrode 221, the amount of electric charge of the direct electrode 220 is reduced, and wasteful power consumption due to charge neutralization during discharge can be suppressed. Then, at the time of charging, the copper ions C are reduced in a state where the copper ions C are uniformly arranged on the surface of the counter electrode 222. Therefore, the plating process can be performed uniformly.

<4.第4の実施の形態にかかるめっき処理装置>
次に、めっき処理装置の第4の実施の形態について説明する。図18は、第4の実施の形態にかかるめっき処理装置300の構成の概略を示す縦断面図である。
<4. Plating processing apparatus according to the fourth embodiment>
Next, a fourth embodiment of the plating processing apparatus will be described. FIG. 18 is a vertical cross-sectional view showing an outline of the configuration of the plating processing apparatus 300 according to the fourth embodiment.

めっき処理装置300は、内部に処理液としてのめっき液Mを貯留するめっき槽310を有している。めっき槽310には、その内部を2つの領域T1、T2に区画する隔壁311が設けられている。隔壁311には、2つの領域T1、T2の間でめっき液Mを流すための流入出孔312が形成されている。また、隔壁311の下部には、後述する対向電極322が設けられるスペースが形成されている。なお、第1の実施の形態と同様に、直接電極320と間接電極321の間の抵抗を大きくするため、隔壁311に代えて細孔質壁や配管を設けてもよい。 The plating processing apparatus 300 has a plating tank 310 inside which stores the plating liquid M as the processing liquid. The plating tank 310 is provided with a partition wall 311 that divides the inside into two regions T1 and T2. The partition wall 311 is formed with inflow / out holes 312 for flowing the plating solution M between the two regions T1 and T2. Further, a space for providing the counter electrode 322, which will be described later, is formed in the lower portion of the partition wall 311. As in the first embodiment, in order to increase the resistance between the direct electrode 320 and the indirect electrode 321, a pore wall or piping may be provided instead of the partition wall 311.

めっき槽310の内部には、直接電極320、間接電極321及び対向電極322がそれぞれめっき液Mに浸漬して設けられている。直接電極320は、領域T1に配置されている。間接電極321は、領域T2において隔壁311から離間して配置されている。対向電極322は、隔壁311の下部において、領域T1と領域T2の間に延伸して設けられている。すなわち、直接電極320及び間接電極321はそれぞれ鉛直方向に延伸し、対向電極322は水平方向に延伸している。 Inside the plating tank 310, a direct electrode 320, an indirect electrode 321 and a counter electrode 322 are each immersed in the plating solution M. The direct electrode 320 is arranged in the region T1. The indirect electrode 321 is arranged apart from the partition wall 311 in the region T2. The counter electrode 322 is provided so as to extend between the regions T1 and T2 in the lower part of the partition wall 311. That is, the direct electrode 320 and the indirect electrode 321 are respectively stretched in the vertical direction, and the counter electrode 322 is stretched in the horizontal direction.

間接電極321には、当該間接電極321を覆うように絶縁材323が設けられている。また、対向電極322は、めっき処理される被処理体である。 The indirect electrode 321 is provided with an insulating material 323 so as to cover the indirect electrode 321. Further, the counter electrode 322 is an object to be plated.

間接電極321と対向電極322には、直流電源330が接続されている。間接電極321は、直流電源330の正極側に接続されている。対向電極322は、直流電源330の負極側に接続されている。 A DC power supply 330 is connected to the indirect electrode 321 and the counter electrode 322. The indirect electrode 321 is connected to the positive electrode side of the DC power supply 330. The counter electrode 322 is connected to the negative electrode side of the DC power supply 330.

間接電極321には、スイッチ331が設けられている。スイッチ331は、間接電極321と直流電源330の接続と、間接電極321と直接電極320の接続とを切り替える。 The indirect electrode 321 is provided with a switch 331. The switch 331 switches between the connection between the indirect electrode 321 and the DC power supply 330 and the connection between the indirect electrode 321 and the direct electrode 320.

次に、以上のように構成されためっき処理装置300を用いためっき処理について説明する。 Next, the plating process using the plating process device 300 configured as described above will be described.

先ず、充電時、図19に示すようにスイッチ331によって、間接電極321と直流電源330(対向電極322)を接続する。そして、間接電極321を陽極とし、対向電極322を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、間接電極321に正の電荷が蓄積され、間接電極321側に負の荷電粒子である陰イオンAが集まる。一方、対向電極322には負の電荷が蓄積され、対向電極322側に正の荷電粒子である銅イオンCが移動する。 First, at the time of charging, the indirect electrode 321 and the DC power supply 330 (opposite electrode 322) are connected by the switch 331 as shown in FIG. Then, a DC voltage is applied by using the indirect electrode 321 as an anode and the counter electrode 322 as a cathode to form an electric field (electrostatic field). Then, a positive charge is accumulated on the indirect electrode 321 and anions A, which are negatively charged particles, are collected on the indirect electrode 321 side. On the other hand, a negative charge is accumulated in the counter electrode 322, and copper ions C, which are positively charged particles, move to the counter electrode 322 side.

この際、第1の実施の形態と同様に、隔壁311が物理的及び電気的な抵抗になり、直接電極320と対向電極322における電荷交換(酸化還元)の電荷量を少なくすることができる。また、直接電極320と対向電極322は、充電時に直接電極320と対向電極322の間を流れる電流が限界電流密度以下となるように配置されている。したがって、充電時に対向電極322の表面には銅イオンCの移動(供給)不足が発生せず、水の電気分解が行われるのを抑制することができる。その結果、気泡の発生を抑制して、後述する銅めっき350中にボイドが発生することも抑制することができる。 At this time, as in the first embodiment, the partition wall 311 becomes a physical and electrical resistance, and the amount of charge exchange (oxidation-reduction) between the direct electrode 320 and the counter electrode 322 can be reduced. Further, the direct electrode 320 and the counter electrode 322 are arranged so that the current flowing between the direct electrode 320 and the counter electrode 322 during charging is equal to or less than the limit current density. Therefore, the movement (supply) of copper ions C is not insufficient on the surface of the counter electrode 322 during charging, and it is possible to suppress the electrolysis of water. As a result, the generation of bubbles can be suppressed, and the generation of voids in the copper plating 350, which will be described later, can also be suppressed.

そして、スイッチ331による間接電極321と直流電源330の接続は、間接電極321と対向電極322に十分な電荷が蓄積されるまで、すなわち満充電されるまで行われる。この満充電における間接電極321と対向電極322の電荷量は等価である。そして、上述したように充電時には対向電極322における電荷交換が、水の電気分解を抑制しつつ高速に行われるので、対向電極322の表面に銅イオンCが均一に配列される。また、対向電極322の表面で水の電気分解が抑制されるので、間接電極321と対向電極322との間に電圧を印可する際の電界を高くすることができる。この高電界によって銅イオンCの移動を速くできる。さらに、この電界を任意に制御することで、対向電極322表面に配列される銅イオンCも任意に制御される。 Then, the indirect electrode 321 and the DC power supply 330 are connected by the switch 331 until sufficient charges are accumulated in the indirect electrode 321 and the counter electrode 322, that is, until they are fully charged. The charges of the indirect electrode 321 and the counter electrode 322 in this full charge are equivalent. Then, as described above, during charging, the charge exchange in the counter electrode 322 is performed at high speed while suppressing the electrolysis of water, so that the copper ions C are uniformly arranged on the surface of the counter electrode 322. Further, since the electrolysis of water is suppressed on the surface of the counter electrode 322, the electric field when applying a voltage between the indirect electrode 321 and the counter electrode 322 can be increased. This high electric field can speed up the movement of copper ions C. Further, by arbitrarily controlling this electric field, the copper ions C arranged on the surface of the counter electrode 322 are also arbitrarily controlled.

その後、放電時において、図20に示すようにスイッチ331を切り替え、間接電極321と直流電源330の接続を切断し、間接電極321と直接電極320を接続する。そうすると、間接電極321に蓄積された正の電荷が直接電極320に移動し、直接電極320側に集まった陰イオンAの電荷が交換されて、陰イオンAは酸化される。これに伴い、対向電極322の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極322の表面に銅めっき350が析出する。 After that, at the time of discharging, the switch 331 is switched as shown in FIG. 20, the connection between the indirect electrode 321 and the DC power supply 330 is disconnected, and the indirect electrode 321 and the direct electrode 320 are connected. Then, the positive charge accumulated in the indirect electrode 321 moves directly to the electrode 320, the charge of the anion A collected directly on the electrode 320 side is exchanged, and the anion A is oxidized. Along with this, the charges of the copper ions C arranged on the surface of the counter electrode 322 are exchanged, and the copper ions C are reduced. Then, the copper plating 350 is deposited on the surface of the counter electrode 322.

この際、第1の実施の形態と同様に、充電時より多い電荷量の交換が可能となり、水の電気分解を抑制しつつ、多量の銅イオンCを還元することができる。したがって、めっきレートを向上させて、めっき処理を高速に行うことができる。 At this time, as in the first embodiment, it is possible to exchange a larger amount of electric charge than during charging, and it is possible to reduce a large amount of copper ions C while suppressing electrolysis of water. Therefore, the plating rate can be improved and the plating process can be performed at high speed.

そして、対向電極322の表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、対向電極322の表面に銅めっき350を均一に析出させることができる。結果的に、銅めっき350における結晶の密度が高くなり、品質の良い銅めっき350を形成することができる。 Then, since sufficient copper ions C are accumulated on the surface of the counter electrode 322 and reduced in a uniformly arranged state, the copper plating 350 can be uniformly deposited on the surface of the counter electrode 322. As a result, the density of crystals in the copper plating 350 is increased, and a high quality copper plating 350 can be formed.

そして、充電時の銅イオンCの移動集積と放電時の銅イオンCの還元が繰り返し行われることで、銅めっき350が所定の膜厚に成長する。こうして、めっき処理装置1における一連のめっき処理が終了する。 Then, the copper plating 350 grows to a predetermined film thickness by repeatedly moving and accumulating the copper ions C during charging and reducing the copper ions C during discharging. In this way, a series of plating processes in the plating processing apparatus 1 is completed.

第4の実施の形態においても、第1の実施の形態と同様の効果を享受できる。 Also in the fourth embodiment, the same effect as that of the first embodiment can be enjoyed.

本実施の形態のめっき処理装置300において、図21に示すように直接電極320と間接電極321はそれぞれ複数設けられていてもよい。直接電極320と間接電極321は交互に水平方向に並ぶように配置されている。 In the plating processing apparatus 300 of the present embodiment, as shown in FIG. 21, a plurality of direct electrodes 320 and a plurality of indirect electrodes 321 may be provided. The direct electrode 320 and the indirect electrode 321 are arranged so as to be arranged alternately in the horizontal direction.

隔壁311は、直接電極320と間接電極321の間において、直接電極320に接触して設けられている。すなわち、直接電極320の両側面には、一対の隔壁311、311が対向して設けられている。流入出孔312は、これら一対の隔壁311、311の下端部において開口して形成されている。 The partition wall 311 is provided between the direct electrode 320 and the indirect electrode 321 in contact with the direct electrode 320. That is, a pair of partition walls 311 and 311 are provided facing each other on both side surfaces of the direct electrode 320. The inflow / outflow holes 312 are formed by opening at the lower ends of these pair of partition walls 311 and 311.

対向電極322は、複数の直接電極320と複数の間接電極321が配置される方向(水平方向)に、これら複数の直接電極320と複数の間接電極321をカバーするように設けられている。すなわち、複数の直接電極320及び複数の間接電極321はそれぞれ鉛直方向に延伸し、対向電極322は水平方向に延伸している。 The counter electrode 322 is provided so as to cover the plurality of direct electrodes 320 and the plurality of indirect electrodes 321 in the direction (horizontal direction) in which the plurality of direct electrodes 320 and the plurality of indirect electrodes 321 are arranged. That is, the plurality of direct electrodes 320 and the plurality of indirect electrodes 321 are respectively stretched in the vertical direction, and the counter electrode 322 is stretched in the horizontal direction.

この図21に示しためっき処理装置300におけるめっき処理は、図18に示しためっき処理装置300で行われるめっき処理と同様である。すなわち、先ず、充電時、図22に示すようにスイッチ331によって、複数の間接電極321と直流電源330(対向電極322)を接続する。そして、複数の間接電極321を陽極とし、対向電極322を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、複数の間接電極321に正の電荷が蓄積され、複数の間接電極321側に負の荷電粒子である陰イオンAが集まる。一方、対向電極322には負の電荷が蓄積され、対向電極322側に正の荷電粒子である銅イオンCが移動する。 The plating process in the plating processing apparatus 300 shown in FIG. 21 is the same as the plating processing performed in the plating processing apparatus 300 shown in FIG. That is, first, at the time of charging, as shown in FIG. 22, a plurality of indirect electrodes 321 and a DC power supply 330 (opposite electrode 322) are connected by a switch 331. Then, a DC voltage is applied using the plurality of indirect electrodes 321 as the anode and the counter electrode 322 as the cathode to form an electric field (electrostatic field). Then, positive charges are accumulated in the plurality of indirect electrodes 321 and negative ion A, which is a negatively charged particle, is collected on the side of the plurality of indirect electrodes 321. On the other hand, a negative charge is accumulated in the counter electrode 322, and copper ions C, which are positively charged particles, move to the counter electrode 322 side.

その後、放電時において、図23に示すようにスイッチ331を切り替え、間接電極321と直流電源330の接続を切断し、間接電極321と直接電極320を接続する。そうすると、間接電極321に蓄積された正の電荷が直接電極320に移動し、直接電極320側に集まった陰イオンAの電荷が交換されて、陰イオンAは酸化される。これに伴い、対向電極322の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極322の表面に銅めっき350が析出する。 After that, at the time of discharging, the switch 331 is switched as shown in FIG. 23, the connection between the indirect electrode 321 and the DC power supply 330 is disconnected, and the indirect electrode 321 and the direct electrode 320 are connected. Then, the positive charge accumulated in the indirect electrode 321 moves directly to the electrode 320, the charge of the anion A collected directly on the electrode 320 side is exchanged, and the anion A is oxidized. Along with this, the charges of the copper ions C arranged on the surface of the counter electrode 322 are exchanged, and the copper ions C are reduced. Then, the copper plating 350 is deposited on the surface of the counter electrode 322.

この放電時では、一の対向電極322に対して、直接電極320が水平方向に複数並べて配置されているので、複数の直接電極320における電界が均一になり、電荷交換を均一に行うことができる。このため、より均一性の高い銅めっき350を形成することができる。 At the time of this discharge, since a plurality of direct electrodes 320 are arranged side by side in the horizontal direction with respect to one counter electrode 322, the electric fields in the plurality of direct electrodes 320 become uniform, and charge exchange can be performed uniformly. .. Therefore, it is possible to form a copper plating 350 having higher uniformity.

なお、図21に示しためっき処理装置300では、めっき槽310内にめっき液Mを貯留していたが、図24及び図25に示すようにめっき槽310を省略し、めっき液Mのパドルを形成してもよい。 In the plating processing apparatus 300 shown in FIG. 21, the plating solution M was stored in the plating tank 310, but as shown in FIGS. 24 and 25, the plating tank 310 was omitted and the paddle of the plating solution M was used. It may be formed.

図24に示すめっき処理装置300では、対向電極322上には、めっき液Mのパドルが形成される。めっき液Mのパドルの形成方法は、任意であるが、例えば配管(図示せず)を介して対向電極322上にめっき液Mを供給することでパドルが形成される。その後、このめっき液Mのパドルに複数の直接電極320、複数の間接電極321、及び複数の隔壁311が配置される。 In the plating processing apparatus 300 shown in FIG. 24, a paddle of the plating solution M is formed on the counter electrode 322. The method of forming the paddle of the plating solution M is arbitrary, but the paddle is formed by supplying the plating solution M onto the counter electrode 322 via, for example, a pipe (not shown). After that, a plurality of direct electrodes 320, a plurality of indirect electrodes 321 and a plurality of partition walls 311 are arranged on the paddle of the plating solution M.

また、図25に示すめっき処理装置300では、対向電極322の下方において、当該対向電極322に対向するように電極保持板360が配置される。その後、電極保持板360と対向電極322の間に、めっき液Mのパドルが形成される。その後、このめっき液Mのパドルに複数の直接電極320、複数の間接電極321、及び複数の隔壁311が配置される。 Further, in the plating processing apparatus 300 shown in FIG. 25, the electrode holding plate 360 is arranged below the counter electrode 322 so as to face the counter electrode 322. After that, a paddle of the plating solution M is formed between the electrode holding plate 360 and the counter electrode 322. After that, a plurality of direct electrodes 320, a plurality of indirect electrodes 321 and a plurality of partition walls 311 are arranged on the paddle of the plating solution M.

図24及び図25に示したいずれのめっき処理装置300においても、図21に示しためっき処理装置300と同様の効果を享受することができる。 In any of the plating processing devices 300 shown in FIGS. 24 and 25, the same effect as that of the plating processing device 300 shown in FIG. 21 can be enjoyed.

<5.第5の実施の形態にかかるめっき処理装置>
次に、めっき処理装置の第5の実施の形態について説明する。第5の実施の形態のめっき処理装置では、充電時に直接電極とめっき液の電気的な接続を切断し、放電時に直接電極とめっき液を電気的に接続する。かかるめっき処理を実現するめっき処理装置の構成は種々考えられ、以下、図26〜図33に基づいて4つのめっき処理装置を例示して説明する。
<5. Plating processing apparatus according to the fifth embodiment>
Next, a fifth embodiment of the plating processing apparatus will be described. In the plating processing apparatus of the fifth embodiment, the electrical connection between the electrode and the plating solution is directly disconnected during charging, and the electrode and the plating solution are electrically connected during discharging. Various configurations of the plating processing apparatus that realizes such a plating treatment can be considered, and four plating processing apparatus will be described below by way of exemplification based on FIGS. 26 to 33.

1つ目のめっき処理装置について説明する。図26及び図27は、第5の実施の形態にかかる第1のめっき処理装置400の構成の概略を示す縦断面図である。 The first plating processing apparatus will be described. 26 and 27 are vertical cross-sectional views showing an outline of the configuration of the first plating processing apparatus 400 according to the fifth embodiment.

第1のめっき処理装置400は、内部にめっき液Mを貯留するめっき槽410を有している。めっき槽410には、その内部を2つの領域T1、T2に区画する隔壁411が設けられている。隔壁411には、2つの領域T1、T2の間でめっき液Mを流すための流入出孔を開閉する開閉機構412が設けられている。なお、開閉機構412の構成は特に限定されるものではないが、例えば電磁弁が用いられる。 The first plating processing apparatus 400 has a plating tank 410 that stores the plating solution M inside. The plating tank 410 is provided with a partition wall 411 that divides the inside into two regions T1 and T2. The partition wall 411 is provided with an opening / closing mechanism 412 that opens / closes an inflow / out hole for flowing the plating solution M between the two regions T1 and T2. The configuration of the opening / closing mechanism 412 is not particularly limited, but for example, a solenoid valve is used.

めっき槽10の内部には、直接電極420、間接電極421及び対向電極422がそれぞれめっき液Mに浸漬して設けられている。直接電極420は、領域T1に配置されている。間接電極421及び対向電極422はそれぞれ領域T2に配置され、間接電極421は隔壁411から離間して配置され、対向電極422は隔壁411に近接して配置されている。直接電極420は間接電極421に近接して設けられ、対向電極422からは隔壁411を挟んで離間して配置されている。 Inside the plating tank 10, a direct electrode 420, an indirect electrode 421, and a counter electrode 422 are each immersed in the plating solution M. The direct electrode 420 is located in region T1. The indirect electrode 421 and the counter electrode 422 are respectively arranged in the region T2, the indirect electrode 421 is arranged apart from the partition wall 411, and the counter electrode 422 is arranged close to the partition wall 411. The direct electrode 420 is provided close to the indirect electrode 421, and is arranged apart from the counter electrode 422 with the partition wall 411 interposed therebetween.

間接電極421には、当該間接電極421を覆うように絶縁材423が設けられている。また、対向電極422は、めっき処理される被処理体である。 The indirect electrode 421 is provided with an insulating material 423 so as to cover the indirect electrode 421. Further, the counter electrode 422 is an object to be plated.

直接電極420、間接電極421及び対向電極422には、直流電源430が接続されている。直接電極420と間接電極421は、それぞれ直流電源430の正極側に接続されている。対向電極422は、直流電源430の負極側に接続されている。 A DC power supply 430 is connected to the direct electrode 420, the indirect electrode 421, and the counter electrode 422. The direct electrode 420 and the indirect electrode 421 are each connected to the positive electrode side of the DC power supply 430. The counter electrode 422 is connected to the negative electrode side of the DC power supply 430.

間接電極421には、スイッチ431が設けられている。スイッチ431は、間接電極421と直流電源430の接続と、間接電極421と直接電極420の接続とを切り替える。 The indirect electrode 421 is provided with a switch 431. The switch 431 switches between the connection between the indirect electrode 421 and the DC power supply 430 and the connection between the indirect electrode 421 and the direct electrode 420.

次に、以上のように構成された第1のめっき処理装置400を用いためっき処理について説明する。 Next, a plating process using the first plating processing apparatus 400 configured as described above will be described.

先ず、充電時、図26に示すようにスイッチ431によって、間接電極421と直流電源430(対向電極422)を接続する。そして、間接電極421を陽極とし、対向電極422を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、間接電極421に正の電荷が蓄積され、間接電極421側に負の荷電粒子である陰イオンAが集まる。一方、対向電極422には負の電荷が蓄積され、対向電極422側に正の荷電粒子である銅イオンCが移動する。 First, at the time of charging, the indirect electrode 421 and the DC power supply 430 (opposite electrode 422) are connected by the switch 431 as shown in FIG. Then, a DC voltage is applied by using the indirect electrode 421 as an anode and the counter electrode 422 as a cathode to form an electric field (electrostatic field). Then, a positive charge is accumulated on the indirect electrode 421, and anions A, which are negatively charged particles, are collected on the indirect electrode 421 side. On the other hand, a negative charge is accumulated in the counter electrode 422, and copper ions C, which are positively charged particles, move to the counter electrode 422 side.

この充電時、開閉機構412によって領域T1、T2間のめっき液Mの流入出孔を閉鎖する。すなわち、領域T1、T2を分離する。そうすると、直接電極420と対向電極422の間に電流は流れず、直接電極420と対向電極422における電荷交換(酸化還元)を抑制することができる。 At the time of this charging, the opening / closing mechanism 412 closes the inflow / outflow holes of the plating solution M between the regions T1 and T2. That is, the regions T1 and T2 are separated. Then, no current flows between the direct electrode 420 and the counter electrode 422, and charge exchange (oxidation reduction) between the direct electrode 420 and the counter electrode 422 can be suppressed.

そして、対向電極422の表面に銅イオンCが均一に配列される。対向電極422の表面で銅イオンCの電荷交換が行われず、水の電気分解も抑制されるので、間接電極421と対向電極422との間に電圧を印可する際の電界を高くすることができる。この高電界によって銅イオンCの移動を速くできる。さらに、この電界を任意に制御することで、対向電極422表面に配列される銅イオンCも任意に制御される。 Then, copper ions C are uniformly arranged on the surface of the counter electrode 422. Since the charge exchange of copper ions C is not performed on the surface of the counter electrode 422 and the electrolysis of water is suppressed, the electric field when applying a voltage between the indirect electrode 421 and the counter electrode 422 can be increased. .. This high electric field can speed up the movement of copper ions C. Further, by arbitrarily controlling this electric field, the copper ions C arranged on the surface of the counter electrode 422 are also arbitrarily controlled.

その後、十分な銅イオンCが対向電極422側に移動して集積すると、放電時、図27に示すようにスイッチ431を切り替え、間接電極421と直流電源430の接続を切断し、間接電極421と直接電極420を接続する。また、開閉機構412によって領域T1、T2間のめっき液Mの流入出孔を開放する。すなわち、領域T1、T2を接続する。そうすると、間接電極421に蓄積された正の電荷が直接電極420に移動し、間接電極421側に集まった陰イオンAの電荷が交換されて、陰イオンAは酸化される。これに伴い、対向電極422の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極422の表面に銅めっき450が析出する。 After that, when sufficient copper ions C move to the counter electrode 422 side and accumulate, the switch 431 is switched as shown in FIG. 27 at the time of discharge, the connection between the indirect electrode 421 and the DC power supply 430 is disconnected, and the indirect electrode 421 and the indirect electrode 421 are connected. The electrode 420 is directly connected. Further, the opening / closing mechanism 412 opens the inflow / outflow holes of the plating solution M between the regions T1 and T2. That is, the areas T1 and T2 are connected. Then, the positive charge accumulated in the indirect electrode 421 is directly transferred to the electrode 420, the charge of the anion A collected on the indirect electrode 421 side is exchanged, and the anion A is oxidized. Along with this, the charges of the copper ions C arranged on the surface of the counter electrode 422 are exchanged, and the copper ions C are reduced. Then, the copper plating 450 is deposited on the surface of the counter electrode 422.

対向電極422の表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、対向電極422表面に銅めっき450を均一に析出させることができる。結果的に、銅めっき450における結晶の密度が高くなり、品質の良い銅めっき450を形成することができる。 Since sufficient copper ions C are accumulated on the surface of the counter electrode 422 and reduced in a uniformly arranged state, the copper plating 450 can be uniformly deposited on the surface of the counter electrode 422. As a result, the crystal density in the copper plating 450 is increased, and a high quality copper plating 450 can be formed.

そして、充電時の銅イオンCの移動集積と放電時の銅イオンCの還元が繰り返し行われることで、銅めっき450が所定の膜厚に成長する。こうして、めっき処理装置1における一連のめっき処理が終了する。 Then, the copper plating 450 grows to a predetermined film thickness by repeatedly moving and accumulating the copper ions C during charging and reducing the copper ions C during discharging. In this way, a series of plating processes in the plating processing apparatus 1 is completed.

次に、2つ目のめっき処理装置について説明する。図28及び図29は、第5の実施の形態にかかる第2のめっき処理装置400の構成の概略を示す縦断面図である。 Next, the second plating processing apparatus will be described. 28 and 29 are vertical cross-sectional views showing an outline of the configuration of the second plating processing apparatus 400 according to the fifth embodiment.

第2のめっき処理装置400は、上述した第1のめっき処理装置400において、隔壁411及び開閉機構412を省略し、直接電極420の構成を変更したものである。 The second plating processing device 400 is the first plating processing device 400 described above, in which the partition wall 411 and the opening / closing mechanism 412 are omitted, and the configuration of the direct electrode 420 is changed.

第2のめっき処理装置400は、めっき液Mに対し直接電極420を進退自在に移動させる移動機構460を有している。すなわち、移動機構460によって直接電極420は昇降してめっき液Mから分離され、或いはめっき液Mに接触するようになっている。なお、第2のめっき処理装置400の他の構成は、第1のめっき処理装置400の他の構成と同じである。 The second plating processing apparatus 400 has a moving mechanism 460 that directly moves the electrode 420 back and forth with respect to the plating solution M. That is, the moving mechanism 460 directly raises and lowers the electrode 420 to separate it from the plating solution M or bring it into contact with the plating solution M. The other configuration of the second plating processing apparatus 400 is the same as the other configuration of the first plating processing apparatus 400.

そして、充電時、図28に示すようにスイッチ431によって、間接電極421と直流電源430(対向電極422)を接続し、間接電極421と対向電極422の間に直流電圧を印加して、電界(静電場)を形成し、対向電極422側に正の荷電粒子である銅イオンCが移動させる。この充電時、移動機構460によって直接電極420をめっき液Mの外部に上昇させて、当該直接電極420とめっき液Mを分離する。そうすると、直接電極420と対向電極422の間に電流は流れず、直接電極420と対向電極422における電荷交換(酸化還元)を抑制することができる。 Then, at the time of charging, as shown in FIG. 28, the indirect electrode 421 and the DC power supply 430 (counter electrode 422) are connected by the switch 431, and a DC voltage is applied between the indirect electrode 421 and the counter electrode 422 to generate an electric field (counter electrode 422). An electrostatic field) is formed, and copper ions C, which are positively charged particles, are moved to the counter electrode 422 side. At the time of this charging, the moving mechanism 460 raises the direct electrode 420 to the outside of the plating solution M to separate the direct electrode 420 and the plating solution M. Then, no current flows between the direct electrode 420 and the counter electrode 422, and charge exchange (oxidation reduction) between the direct electrode 420 and the counter electrode 422 can be suppressed.

その後、放電時、図29に示すようにスイッチ431を切り替え、間接電極421と直流電源430の接続を切断し、間接電極421と直接電極420を接続する。また、移動機構460によって直接電極420をめっき液Mの内部に下降させ、当該直接電極420とめっき液Mを接触させる。そうすると、対向電極422の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極422の表面に銅めっき450が析出する。 After that, at the time of discharging, the switch 431 is switched as shown in FIG. 29, the connection between the indirect electrode 421 and the DC power supply 430 is disconnected, and the indirect electrode 421 and the direct electrode 420 are connected. Further, the direct electrode 420 is lowered into the plating solution M by the moving mechanism 460, and the direct electrode 420 and the plating solution M are brought into contact with each other. Then, the charges of the copper ions C arranged on the surface of the counter electrode 422 are exchanged, and the copper ions C are reduced. Then, the copper plating 450 is deposited on the surface of the counter electrode 422.

次に、3つ目のめっき処理装置について説明する。図30及び図31は、第5の実施の形態にかかる第のめっき処理装置400の構成の概略を示す縦断面図である。 Next, the third plating processing apparatus will be described. 30 and 31 are vertical cross-sectional views showing an outline of the configuration of the fifth plating processing apparatus 400 according to the fifth embodiment.

第3のめっき処理装置400は、上述した第1のめっき処理装置400において、隔壁411及び開閉機構412を省略し、直接電極420の構成を変更したものである。 The third plating processing device 400 is the first plating processing device 400 described above, in which the partition wall 411 and the opening / closing mechanism 412 are omitted, and the configuration of the direct electrode 420 is changed.

第3のめっき処理装置400において、直接電極420はめっき液Mの外部に配置されている。また、第3のめっき処理装置400は、クーロン力(静電気力)によってめっき液Mを移動(昇降)させる流路470を有している。クーロン力は、例えばめっき液Mの外部から当該めっき液Mに電界を形成して発生させる。流路470の一端部470aは、めっき液Mに浸漬するように位置している。流路470の他端部470bは、めっき液Mが昇降した際に直接電極420に接触するように位置している。なお、第3のめっき処理装置400の他の構成は、第1のめっき処理装置400の他の構成と同じである。 In the third plating processing apparatus 400, the direct electrode 420 is arranged outside the plating solution M. Further, the third plating processing apparatus 400 has a flow path 470 that moves (elevates) the plating solution M by Coulomb force (electrostatic force). The Coulomb force is generated by forming an electric field in the plating solution M from the outside of the plating solution M, for example. One end portion 470a of the flow path 470 is positioned so as to be immersed in the plating solution M. The other end 470b of the flow path 470 is positioned so as to come into direct contact with the electrode 420 when the plating solution M moves up and down. The other configuration of the third plating processing apparatus 400 is the same as the other configuration of the first plating processing apparatus 400.

そして、充電時、図30に示すようにスイッチ431によって、間接電極421と直流電源430(対向電極422)を接続し、間接電極421と対向電極422の間に直流電圧を印加して、電界(静電場)を形成し、対向電極422側に正の荷電粒子である銅イオンCが移動させる。この充電時、めっき槽410に貯留されためっき液Mを、流路470を介して上昇させず、直接電極420に接触させない。そして、直接電極420とめっき液Mを分離する。そうすると、直接電極420と対向電極422の間に電流は流れず、直接電極420と対向電極422における電荷交換(酸化還元)を抑制することができる。 Then, at the time of charging, as shown in FIG. 30, the indirect electrode 421 and the DC power supply 430 (counter electrode 422) are connected by the switch 431, and a DC voltage is applied between the indirect electrode 421 and the counter electrode 422 to generate an electric field (counter electrode 422). An electrostatic field) is formed, and copper ions C, which are positively charged particles, are moved to the counter electrode 422 side. At the time of this charging, the plating solution M stored in the plating tank 410 is not raised through the flow path 470 and is not brought into direct contact with the electrode 420. Then, the electrode 420 and the plating solution M are directly separated. Then, no current flows between the direct electrode 420 and the counter electrode 422, and charge exchange (oxidation reduction) between the direct electrode 420 and the counter electrode 422 can be suppressed.

その後、放電時、図31に示すようにスイッチ431を切り替え、間接電極421と直流電源430の接続を切断し、間接電極421と直接電極420を接続する。また、めっき槽410に貯留されためっき液Mを、クーロン力により流路470を介して上昇させ、直接電極420に接触させる。そして、直接電極420とめっき液Mを接触させる。そうすると、対向電極422の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極422の表面に銅めっき450が析出する。 After that, at the time of discharging, the switch 431 is switched as shown in FIG. 31, the connection between the indirect electrode 421 and the DC power supply 430 is cut off, and the indirect electrode 421 and the direct electrode 420 are connected. Further, the plating solution M stored in the plating tank 410 is raised through the flow path 470 by Coulomb force and is brought into direct contact with the electrode 420. Then, the electrode 420 and the plating solution M are brought into direct contact with each other. Then, the charges of the copper ions C arranged on the surface of the counter electrode 422 are exchanged, and the copper ions C are reduced. Then, the copper plating 450 is deposited on the surface of the counter electrode 422.

次に、4つ目のめっき処理装置について説明する。図32及び図33は、第5の実施の形態にかかる第4のめっき処理装置400の構成の概略を示す縦断面図である。 Next, the fourth plating processing apparatus will be described. 32 and 33 are vertical cross-sectional views showing an outline of the configuration of the fourth plating processing apparatus 400 according to the fifth embodiment.

第4のめっき処理装置400は、上述した第1のめっき処理装置400において、隔壁411及び開閉機構412を省略し、直接電極420の構成を変更したものである。 The fourth plating treatment device 400 is the first plating treatment device 400 described above, in which the partition wall 411 and the opening / closing mechanism 412 are omitted, and the configuration of the direct electrode 420 is changed.

第4のめっき処理装置400において、直接電極420はめっき液Mの外部に配置されている。また、第4のめっき処理装置400は、直接電極420に接触して帯電した液滴Dを供給する液供給機構480を有している。液供給機構480は、例えばノズル(図示せず)を有し、当該ノズルから液滴Dを供給する。この液供給機構480から供給される液滴Dは、めっき液Mと同じ成分を有する。なお、第4のめっき処理装置400の他の構成は、第1のめっき処理装置1の他の構成と同じである。 In the fourth plating processing apparatus 400, the direct electrode 420 is arranged outside the plating solution M. Further, the fourth plating processing apparatus 400 has a liquid supply mechanism 480 that directly contacts the electrode 420 and supplies the charged droplet D. The liquid supply mechanism 480 has, for example, a nozzle (not shown), and the droplet D is supplied from the nozzle. The droplet D supplied from the liquid supply mechanism 480 has the same components as the plating solution M. The other configuration of the fourth plating processing device 400 is the same as the other configuration of the first plating processing device 1.

そして、充電時、図32に示すようにスイッチ431によって、間接電極421と直流電源430(対向電極422)を接続し、間接電極421と対向電極422の間に直流電圧を印加して、電界(静電場)を形成し、対向電極422側に正の荷電粒子である銅イオンCが移動させる。この充電時、液供給機構480からの液滴Dの供給を停止する。そして、直接電極420とめっき液Mを分離する。そうすると、直接電極420と対向電極422の間に電流は流れず、直接電極420と対向電極422における電荷交換(酸化還元)を抑制することができる。 Then, at the time of charging, as shown in FIG. 32, the indirect electrode 421 and the DC power supply 430 (counter electrode 422) are connected by the switch 431, and a DC voltage is applied between the indirect electrode 421 and the counter electrode 422 to generate an electric field (counter electrode 422). An electrostatic field) is formed, and copper ions C, which are positively charged particles, are moved to the counter electrode 422 side. At the time of this charging, the supply of the droplet D from the liquid supply mechanism 480 is stopped. Then, the electrode 420 and the plating solution M are directly separated. Then, no current flows between the direct electrode 420 and the counter electrode 422, and charge exchange (oxidation reduction) between the direct electrode 420 and the counter electrode 422 can be suppressed.

その後、放電時、図33に示すようにスイッチ431を切り替え、間接電極421と直流電源430の接続を切断し、間接電極421と直接電極420を接続する。また、液供給機構480から直接電極420に接触して帯電した液滴Dをめっき液Mに供給する。そして、直接電極420とめっき液Mを間接的に接触させる。そうすると、対向電極422の表面に配列されている銅イオンCの電荷が交換されて、銅イオンCが還元される。そして、対向電極422の表面に銅めっき450が析出する。 After that, at the time of discharging, the switch 431 is switched as shown in FIG. 33, the connection between the indirect electrode 421 and the DC power supply 430 is cut off, and the indirect electrode 421 and the direct electrode 420 are connected. In addition, the liquid supply mechanism 480 directly contacts the electrode 420 to supply the charged droplet D to the plating solution M. Then, the electrode 420 and the plating solution M are brought into direct contact with each other. Then, the charges of the copper ions C arranged on the surface of the counter electrode 422 are exchanged, and the copper ions C are reduced. Then, the copper plating 450 is deposited on the surface of the counter electrode 422.

第5の実施の形態の第1のめっき処理装置400〜第4のめっき処理装置400のいずれを用いた場合でも、第1の実施の形態と同様の効果を享受できる。すなわち、充電時に銅イオンCを移動させる際、直接電極420とめっき液Mの電気的な接続を切断しているので、直接電極420と対向電極422における電荷交換を抑制することができ、銅イオンCの還元を抑制することができる。そうすると、充電時においては、対向電極422の表面に銅イオンCを均一に配列させた状態で、当該銅イオンCが還元される。したがって、めっき処理を均一に行うことができる。 When any of the first plating processing apparatus 400 to the fourth plating processing apparatus 400 of the fifth embodiment is used, the same effect as that of the first embodiment can be enjoyed. That is, when the copper ion C is moved during charging, the electrical connection between the direct electrode 420 and the plating solution M is cut off, so that charge exchange between the direct electrode 420 and the counter electrode 422 can be suppressed, and the copper ion The reduction of C can be suppressed. Then, at the time of charging, the copper ions C are reduced in a state where the copper ions C are uniformly arranged on the surface of the counter electrode 422. Therefore, the plating process can be performed uniformly.

なお、第5の実施の形態において、めっき処理装置400の構成は上述した4つの例に限定されない。めっき処理装置400は、充電時に直接電極420とめっき液Mの電気的な接続を切断し、放電時に直接電極420とめっき液Mを電気的に接続する構成であれば、任意の構成を取り得る。 In the fifth embodiment, the configuration of the plating processing apparatus 400 is not limited to the above four examples. The plating processing apparatus 400 may have any configuration as long as it has a configuration in which the electrical connection between the electrode 420 and the plating solution M is directly disconnected during charging and the electrode 420 and the plating solution M are electrically connected during discharging. ..

<6.めっきの下地膜の剥がれ防止>
以上のめっき処理装置において、被処理体としての対向電極に銅めっきを形成する前に、当該対向電極の表面には所定の下地膜が形成されている場合がある。例えば半導体装置において、銅めっきからなる配線を形成する場合、半導体基板(対向電極)の表面には例えばコバルトめっきからなるバリア膜(下地膜)が形成されている。この下地膜の金属のイオン化傾向が、めっき液の銅のイオン化傾向より小さい場合、無電解の置換めっきが行われ、当該下地膜が剥がれる場合がある。
<6. Prevention of peeling of plating base film>
In the above plating processing apparatus, a predetermined base film may be formed on the surface of the counter electrode before forming copper plating on the counter electrode as the object to be processed. For example, in a semiconductor device, when forming a wiring made of copper plating, a barrier film (base film) made of, for example, cobalt plating is formed on the surface of a semiconductor substrate (counter electrode). If the ionization tendency of the metal of the base film is smaller than the ionization tendency of copper in the plating solution, electroless substitution plating may be performed and the base film may be peeled off.

一方、この置換めっきを防止するためには適正な電圧を印加する必要があるが、この電圧によって電解めっきが進行し、電解めっき処理が均一に行われない場合がある。すなわち、上述しためっき処理装置において、例えば対向電極をめっき液中に配置する際など、対向電極に集積しためっき液の銅イオンが不均一に分布している状態や、電界が不安定な状態で電解めっきを行うと、めっき金属が不均一に析出し、めっき処理が均一に行われない。したがって、対向電極をめっき液中に配置する際には、無電解の置換めっきを防止しつつ、電解めっきも進行させないようにする必要がある。 On the other hand, in order to prevent this replacement plating, it is necessary to apply an appropriate voltage, but this voltage may cause electrolytic plating to proceed and the electrolytic plating process may not be performed uniformly. That is, in the above-mentioned plating processing apparatus, for example, when the counter electrode is arranged in the plating solution, the copper ions of the plating solution accumulated on the counter electrode are unevenly distributed or the electric field is unstable. When electrolytic plating is performed, the plated metal is unevenly deposited, and the plating process is not performed uniformly. Therefore, when arranging the counter electrode in the plating solution, it is necessary to prevent electroless replacement plating and prevent electrolytic plating from proceeding.

そこで、例えば第1の実施の形態のめっき処理装置1において、対向電極22をめっき液M中に配置する際、図2に示したようにスイッチ31によって、間接電極21と直流電源30を接続する。そして、間接電極21を陽極とし、対向電極22を陰極として直流電圧を印加して、めっき液Mに電界を形成する。これにより、例えば対向電極22の表面に下地膜が形成されている場合でも、無電解の置換めっきを防止して下地膜の剥がれを抑制することができ、めっき液Mによる電解めっきも進行しない。その結果、めっき処理を均一に行うことができる。 Therefore, for example, in the plating processing apparatus 1 of the first embodiment, when the counter electrode 22 is arranged in the plating solution M, the indirect electrode 21 and the DC power supply 30 are connected by the switch 31 as shown in FIG. .. Then, a DC voltage is applied using the indirect electrode 21 as an anode and the counter electrode 22 as a cathode to form an electric field in the plating solution M. As a result, for example, even when a base film is formed on the surface of the counter electrode 22, electroless replacement plating can be prevented and peeling of the base film can be suppressed, and electrolytic plating with the plating solution M does not proceed. As a result, the plating process can be performed uniformly.

なお、このようにめっき液Mに電界を形成することで、下地膜の剥がれを抑制することは、他の第2の実施の形態〜第5の実施の形態のいずれのめっき処理装置にも適用できる。 It should be noted that suppressing the peeling of the base film by forming an electric field in the plating solution M in this way is applied to any of the plating treatment devices of the other second embodiment to the fifth embodiment. it can.

<7.結晶構造>
以上のめっき処理装置を用いて形成される銅めっきの結晶について、本発明者は鋭意検討し、その結晶性をさらに向上させる方法を想到するに至った。以下、この方法について説明するにあたり、第1の実施の形態のめっき処理装置1を用いて説明するが、他の第2の実施の形態〜第5の実施の形態のいずれのめっき処理装置にも適用できる。
<7. Crystal structure>
The present inventor has diligently studied the copper plating crystals formed by using the above plating treatment apparatus, and has come up with a method for further improving the crystallinity. Hereinafter, this method will be described using the plating processing apparatus 1 of the first embodiment, but the plating processing apparatus of any of the other second embodiment to the fifth embodiment will be used. Applicable.

<7−1.結晶粒径制御とめっきレート向上>
図34は、めっき処理の各工程(ステップ)における、間接電極21の電位とスイッチ31の切り替え状態、すなわち間接電極21と直流電源30の接続と、間接電極21と直接電極20の接続を示す説明図である。
<7-1. Crystal grain size control and plating rate improvement>
FIG. 34 is an explanation showing the potential of the indirect electrode 21 and the switching state of the switch 31, that is, the connection between the indirect electrode 21 and the DC power supply 30, and the connection between the indirect electrode 21 and the direct electrode 20 in each step of the plating process. It is a figure.

先ず、ステップS1において、図35に示すようにスイッチ31によって、間接電極21と直流電源30(対向電極22)を接続し、間接電極21を陽極とし、対向電極22を陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、図36に示すように間接電極21に正の電荷が蓄積され、間接電極21側に負の荷電粒子である陰イオンAが集まる。一方、対向電極22には負の電荷が蓄積され、対向電極22側に正の荷電粒子である銅イオンCが移動する。図36は、対向電極22の表面に銅イオンCが配列した様子を示している。銅イオンCは、対向電極22に蓄積された電荷Eに対応して配列される。 First, in step S1, as shown in FIG. 35, the indirect electrode 21 and the DC power supply 30 (counter electrode 22) are connected by a switch 31, and a DC voltage is applied by using the indirect electrode 21 as an anode and the counter electrode 22 as a cathode. To form an electric field (electrostatic field). Then, as shown in FIG. 36, a positive charge is accumulated on the indirect electrode 21, and anions A, which are negatively charged particles, are collected on the indirect electrode 21 side. On the other hand, a negative charge is accumulated in the counter electrode 22, and copper ions C, which are positively charged particles, move to the counter electrode 22 side. FIG. 36 shows how copper ions C are arranged on the surface of the counter electrode 22. The copper ions C are arranged corresponding to the charges E stored in the counter electrode 22.

ステップS1では、対向電極22の表面において銅イオンCの電荷交換が行われず、水の電気分解を抑制することができるので、間接電極21と対向電極22間に高い電圧を印加することができる。このように高電圧を印加することで、多量の銅イオンCの対向電極22側への移動レートを向上させることができ、対向電極22の表面に複数の銅イオンCを密に均一に配列させることができる。 In step S1, the charge exchange of copper ions C is not performed on the surface of the counter electrode 22, and the electrolysis of water can be suppressed, so that a high voltage can be applied between the indirect electrode 21 and the counter electrode 22. By applying such a high voltage, it is possible to improve the movement rate of a large amount of copper ions C to the counter electrode 22 side, and a plurality of copper ions C are densely and uniformly arranged on the surface of the counter electrode 22. be able to.

対向電極22側に移動する銅イオンCの量は、上述したように間接電極21と対向電極22間の電圧で制御することもできるし、また後述するように間接電極21の静電容量で制御することもできる。あるいは、これら電圧と静電容量の両方で制御してもよい。 The amount of copper ions C moving to the counter electrode 22 side can be controlled by the voltage between the indirect electrode 21 and the counter electrode 22 as described above, or is controlled by the capacitance of the indirect electrode 21 as described later. You can also do it. Alternatively, it may be controlled by both these voltages and capacitances.

その後、ステップS2において、間接電極21と対向電極22間に印加される電圧を低くする。例えばステップS1における電圧Vの1/4まで低くする。そうすると、図37に示すように対向電極22に蓄積される電荷Eも1/4に間引かれ、疎に配列される。換言すれば、対向電極22に残存する電荷Eの量は、ステップS1で移動した銅イオンCの量以下となる。そして、残存する電荷Eの位置が、本発明における所定の電荷配列位置Pとなる。図示の例においては、1つの電荷配列位置Pのみを示しているが、実際には、対向電極22において複数の電荷配列位置Pが等間隔に並んでいる。 After that, in step S2, the voltage applied between the indirect electrode 21 and the counter electrode 22 is lowered. For example, the voltage V in step S1 is reduced to 1/4. Then, as shown in FIG. 37, the electric charge E accumulated in the counter electrode 22 is also thinned out to 1/4 and arranged sparsely. In other words, the amount of charge E remaining on the counter electrode 22 is equal to or less than the amount of copper ions C transferred in step S1. Then, the position of the remaining charge E becomes the predetermined charge arrangement position P in the present invention. In the illustrated example, only one charge arrangement position P is shown, but in reality, a plurality of charge arrangement positions P are arranged at equal intervals on the counter electrode 22.

なお、ステップS2では、対向電極22の表面に配列された銅イオンCは、めっき液Mの存在により残留し、密に配列されたままとなる。 In step S2, the copper ions C arranged on the surface of the counter electrode 22 remain due to the presence of the plating solution M and remain densely arranged.

以下の説明においては、ステップS2で対向電極22に残存する電荷Eの量に対する、ステップS1で対向電極22に配列させた電荷Eの量の割合を間引き率という。間引き率は、後述するように対向電極22の表面に形成される結晶の粒径に応じて設定される。すなわち、間引き率を大きくすれば、結晶粒径は大きくなり、間引き率を小さくすれば、結晶粒径は小さくなる。 In the following description, the ratio of the amount of charge E arranged on the counter electrode 22 in step S1 to the amount of charge E remaining on the counter electrode 22 in step S2 is referred to as a thinning rate. The thinning rate is set according to the particle size of the crystals formed on the surface of the counter electrode 22 as described later. That is, if the thinning rate is increased, the crystal grain size is increased, and if the thinning rate is decreased, the crystal grain size is decreased.

また、間引き率は、隣接する電荷配列位置P、P間の距離が、結晶格子の寸法の整数倍になるように設定される。例えば電荷配列位置P、P間の距離の距離を結晶格子の寸法と等しくすれば、単結晶化し、2倍以上の整数倍にすれば、隣接する結晶同士を接合するのに有利となる。かかる場合、結晶性を向上させることができる。また、このように結晶性が向上するので、結晶表面を平坦化することができる。 The thinning rate is set so that the distance between adjacent charge array positions P and P is an integral multiple of the size of the crystal lattice. For example, if the distance between the charge array positions P and P is equal to the size of the crystal lattice, it becomes a single crystal, and if it is an integral multiple of 2 times or more, it is advantageous to join adjacent crystals. In such a case, the crystallinity can be improved. Moreover, since the crystallinity is improved in this way, the crystal surface can be flattened.

なお、間引き率(対向電極22に残存する電荷Eの量)は、上述したように間接電極21と対向電極22間の電圧で制御することもできるし、後述するように間接電極21の静電容量で制御することもできる。あるいは、これら電圧と静電容量の両方で制御してもよい。 The thinning rate (the amount of charge E remaining on the counter electrode 22) can be controlled by the voltage between the indirect electrode 21 and the counter electrode 22 as described above, and the capacitance of the indirect electrode 21 as described later. It can also be controlled by capacity. Alternatively, it may be controlled by both these voltages and capacitances.

その後、ステップS3において、図38に示すようにスイッチ31を切り替え、間接電極21と直接電極20を接続する。そうすると、図39に示すように電荷配列位置Pにおいて、銅イオンCは電荷Eと電荷交換されて酸化され、当該銅イオンCの結晶Gが析出する。なお、対向電極22の表面に配列された銅イオンCのうち、電荷配列位置P以外の位置にある銅イオンCは電荷交換されず、イオンとして残留する。また、このとき、間接電極21側において、陰イオンAは酸化される。 Then, in step S3, the switch 31 is switched as shown in FIG. 38 to connect the indirect electrode 21 and the direct electrode 20. Then, as shown in FIG. 39, at the charge arrangement position P, the copper ion C is charged-exchanged with the charge E and oxidized, and the crystal G of the copper ion C is precipitated. Of the copper ions C arranged on the surface of the counter electrode 22, the copper ions C located at positions other than the charge arrangement position P are not charged-exchanged and remain as ions. At this time, the anion A is oxidized on the indirect electrode 21 side.

その後、ステップS4において、スイッチ31を切り替え、間接電極21と直流電源30を接続し、図40に示すように再び対向電極22の電荷配列位置Pに電荷Eを配置する。このように対向電極22に電荷Eを充電する際、間接電極21と対向電極22間に印加される電圧は、ステップS2における電圧(V/4)と同じである。また、このとき、ステップS3で電荷交換されていない銅イオンCが、電荷配列位置Pに移動する。 After that, in step S4, the switch 31 is switched, the indirect electrode 21 and the DC power supply 30 are connected, and the charge E is arranged again at the charge arrangement position P of the counter electrode 22 as shown in FIG. 40. When the counter electrode 22 is charged with the electric charge E in this way, the voltage applied between the indirect electrode 21 and the counter electrode 22 is the same as the voltage (V / 4) in step S2. Further, at this time, the copper ion C whose charge has not been exchanged in step S3 moves to the charge arrangement position P.

その後、ステップS5において、スイッチ31を切り替え、間接電極21と直接電極20を接続する。そうすると、図41に示すように電荷配列位置Pにおいて、銅イオンCは電荷Eと電荷交換されて酸化され、当該銅イオンCの結晶Gが析出する。なお、図41では説明を容易にするため、結晶Gとして2つ図示しているが、実際には、1つの結晶Gとして成長する。 After that, in step S5, the switch 31 is switched to connect the indirect electrode 21 and the direct electrode 20. Then, as shown in FIG. 41, at the charge arrangement position P, the copper ion C is charged-exchanged with the charge E and oxidized, and the crystal G of the copper ion C is precipitated. Although two crystals G are shown in FIG. 41 for ease of explanation, they actually grow as one crystal G.

その後、ステップS4、S5と同じ処理をこの順で繰り返す。すなわち、ステップS6における電荷配列位置Pへの電荷Eと銅イオンCの配置、ステップS7における銅イオンCの還元、ステップS8における電荷配列位置Pへの電荷Eと銅イオンCの配置、ステップS9における銅イオンCの還元を順次行う。そうすると、図42に示すように、電荷配列位置Pに結晶Gが成長する。 After that, the same processing as in steps S4 and S5 is repeated in this order. That is, the arrangement of the charge E and the copper ion C at the charge arrangement position P in step S6, the reduction of the copper ion C in step S7, the arrangement of the charge E and the copper ion C at the charge arrangement position P in step S8, in step S9. Copper ion C is reduced in sequence. Then, as shown in FIG. 42, the crystal G grows at the charge arrangement position P.

その後、ステップS1〜S9を繰り返し行い、電荷配列位置Pに結晶Gを成長させる。図43は、2回目のステップS1を行った様子を示している。そして、一の電荷配列位置Pに形成された結晶Gは、隣接する電荷配列位置Pに形成された結晶Gと接するまで成長する。換言すれば、結晶Gの粒径は、隣接する電荷配列位置P、P間の距離に依存し、上述したようにステップS2における対向電極22の電荷Eの間引き率に依存する。結晶Gの粒径を大きくする場合、間引き率を大きくして、隣接する電荷配列位置P、P間の距離を大きくすればよい。また、結晶Gの粒径を小さくする場合、間引き率を小さくして、隣接する電荷配列位置P、P間の距離を小さくすればよい。 After that, steps S1 to S9 are repeated to grow the crystal G at the charge arrangement position P. FIG. 43 shows how the second step S1 was performed. Then, the crystal G formed at one charge arrangement position P grows until it comes into contact with the crystal G formed at the adjacent charge arrangement position P. In other words, the particle size of the crystal G depends on the distance between the adjacent charge arrangement positions P and P, and depends on the thinning rate of the charge E of the counter electrode 22 in step S2 as described above. When increasing the particle size of the crystal G, the thinning rate may be increased to increase the distance between adjacent charge array positions P and P. Further, when the particle size of the crystal G is reduced, the thinning rate may be reduced to reduce the distance between the adjacent charge arrangement positions P and P.

こうして、図44に示すように対向電極22の表面に銅めっき50が所定の膜厚で形成され、めっき処理装置1における一連のめっき処理が終了する。 In this way, as shown in FIG. 44, the copper plating 50 is formed on the surface of the counter electrode 22 with a predetermined film thickness, and a series of plating treatments in the plating treatment apparatus 1 is completed.

本実施の形態によれば、ステップS2において対向電極22の電荷Eの間引き率を制御することで、銅めっき50中の結晶Gの粒径を制御することができる。そして、例えば結晶Gの粒径を大きくすると、配線形成時のエレクトロマイグレーションを抑制することができ、また電子散乱を抑制して、配線の低抵抗化を実現することができる。 According to the present embodiment, the particle size of the crystal G in the copper plating 50 can be controlled by controlling the thinning rate of the charge E of the counter electrode 22 in step S2. Then, for example, when the particle size of the crystal G is increased, electromigration at the time of wiring formation can be suppressed, electron scattering can be suppressed, and the resistance of the wiring can be reduced.

ここで、従来、めっき処理を行った後、めっき金属の結晶を成長させ、且つ水の電気分解により発生するボイドなどの不純物を除去するため、めっき処理後に熱アニール処理を行う場合があった。この点、上述したように結晶Gの粒径を制御できるので、従来の熱アニールによる結晶成長処理は不要となる。また、めっき液Mには硫酸銅を溶解した溶液が用いられるので、従来の水素等起因のボイドを除去できる。かかる観点からも熱アニール処理は不要となり、配線形成時のストレスマイグレーションも抑制することができる。 Here, conventionally, in order to grow crystals of the plating metal after the plating treatment and remove impurities such as voids generated by electrolysis of water, there is a case where the thermal annealing treatment is performed after the plating treatment. In this respect, since the particle size of the crystal G can be controlled as described above, the conventional crystal growth treatment by thermal annealing becomes unnecessary. Further, since a solution in which copper sulfate is dissolved is used as the plating solution M, conventional voids caused by hydrogen or the like can be removed. From this point of view, the thermal annealing treatment becomes unnecessary, and stress migration during wiring formation can be suppressed.

また、ステップS1では、銅イオンCはめっき液M中を移動するため、その移動距離が長いのに対し、ステップS4、S6、S8では、対向電極22の表面に配置された銅イオンCが当該対向電極22の表面に沿って電荷配列位置Pまで移動するだけであるため、その移動距離が短い。そうすると、粒径の大きい結晶Gを形成するため、従来のように移動距離の長い、めっき液中での銅イオンの移動を繰り返し行う場合に比べて、本実施の形態によれば銅イオンCの移動距離を短くすることができる。したがって、めっき処理を短時間で行うことができ、めっき処理のレートを向上させることができる。 Further, in step S1, since the copper ion C moves in the plating solution M, the moving distance is long, whereas in steps S4, S6, and S8, the copper ion C arranged on the surface of the counter electrode 22 is concerned. Since it only moves to the charge arrangement position P along the surface of the counter electrode 22, the moving distance is short. Then, in order to form the crystal G having a large particle size, according to the present embodiment, the copper ions C are compared with the case where the copper ions are repeatedly moved in the plating solution having a long moving distance as in the conventional case. The moving distance can be shortened. Therefore, the plating process can be performed in a short time, and the rate of the plating process can be improved.

<7−2.対向電極の電荷量の制御>
以上の実施の形態では、ステップS1における銅イオンCの移動量(対向電極22の電荷E)と、ステップS2における対向電極22の電荷Eの間引き率は、それぞれ間接電極21と対向電極22間の電圧で制御していたが、間接電極21の静電容量で制御してもよい。
<7-2. Control of charge amount of counter electrode>
In the above embodiment, the amount of movement of the copper ion C in step S1 (charge E of the counter electrode 22) and the thinning ratio of the charge E of the counter electrode 22 in step S2 are between the indirect electrode 21 and the counter electrode 22, respectively. Although it was controlled by the voltage, it may be controlled by the capacitance of the indirect electrode 21.

静電容量Cは、C=εA/d(ε:電極間の誘電体の誘電率、A:電極の面積、d:電極間の距離)で表せる。静電容量Cを制御するには、これら誘電率ε、面積A、距離dのいずれのパラメータを制御してもよいが、実際には誘電率εと距離dを制御するのは困難であるため、本実施の形態では、面積Aを制御する場合について説明する。 The capacitance C can be expressed by C = εA / d (ε: dielectric constant of the dielectric between the electrodes, A: area of the electrodes, d: distance between the electrodes). In order to control the capacitance C, any of these parameters of the permittivity ε, the area A, and the distance d may be controlled, but it is actually difficult to control the permittivity ε and the distance d. In the present embodiment, a case where the area A is controlled will be described.

静電容量を制御するため、例えば間接電極21を複数に分割する。図45に示すようにめっき処理装置1において、めっき槽10内には2つの間接電極21a、21bが設けられる。また、この間接電極21の分割に伴い、直接電極20も直接電極20a、20bに分割される。 For example, the indirect electrode 21 is divided into a plurality of parts in order to control the capacitance. As shown in FIG. 45, in the plating processing apparatus 1, two indirect electrodes 21a and 21b are provided in the plating tank 10. Further, with the division of the indirect electrode 21, the direct electrode 20 is also divided into the direct electrodes 20a and 20b.

間接電極21a、21bには、それぞれスイッチ31a、31bが設けられている。これらスイッチ31a、31bは、それぞれ第1の実施の形態のスイッチ31と同様の機能を果たす。 The indirect electrodes 21a and 21b are provided with switches 31a and 31b, respectively. These switches 31a and 31b each perform the same functions as the switch 31 of the first embodiment.

かかる場合、ステップS1において、銅イオンCを対向電極22側に移動させる際には、スイッチ31a、31bによって、それぞれ間接電極21a、21bと直流電源30を接続する。そうすると、静電容量が大きくなるので、銅イオンCの移動量を多くでき、対向電極22に蓄積される電荷Eの量も多くできる。 In such a case, when the copper ion C is moved to the counter electrode 22 side in step S1, the indirect electrodes 21a and 21b and the DC power supply 30 are connected by switches 31a and 31b, respectively. Then, since the capacitance becomes large, the amount of movement of the copper ion C can be increased, and the amount of the electric charge E accumulated in the counter electrode 22 can also be increased.

その後、ステップS2において、対向電極22の電荷Eを間引く際には、例えばスイッチ31aを切り替え、スイッチ31bを切り替えない。そうすると、静電容量が小さくなるので、対向電極22に蓄積される電荷Eも少なくなる。なお、間接電極21と直接電極20を分割する数は、本実施の形態に限定されず、間引き率に応じて設定される。例えば間引き率を1/4にするには、間接電極21と直接電極20をそれぞれ4つに分割すればよい。 After that, in step S2, when thinning out the charge E of the counter electrode 22, for example, the switch 31a is switched and the switch 31b is not switched. Then, since the capacitance becomes small, the charge E accumulated in the counter electrode 22 also becomes small. The number of the indirect electrode 21 and the direct electrode 20 to be divided is not limited to the present embodiment, and is set according to the thinning rate. For example, in order to reduce the thinning rate to 1/4, the indirect electrode 21 and the direct electrode 20 may be divided into four parts each.

本実施の形態によれば、間接電極21と対向電極22間の電圧を一定にしても、静電容量を制御することで、対向電極22の電荷Eの量を制御することができ、結晶Gの粒径を制御することができる。 According to the present embodiment, even if the voltage between the indirect electrode 21 and the counter electrode 22 is constant, the amount of charge E of the counter electrode 22 can be controlled by controlling the capacitance, and the crystal G The particle size of the can be controlled.

<7−3.めっきの平坦化>
以上の実施の形態において、ステップS2における対向電極22の電荷Eの間引き率は、銅めっき50の平坦化の観点から、2のべき乗であるのが好ましい。かかる場合、対向電極22に析出する結晶Gの粒径は、原子格子の寸法と析出数(2のべき乗)の積となる。そうすると、図46に示すように対向電極22から離れる側に向けて、結晶G1とG2を順次形成して積層する際、隣接する結晶G1、G1間に結晶G2が隙間なく充填される。同様に対向電極22から離れる側に向けて、結晶G3〜G5を順次形成することで、これら結晶G1〜G5を隙間なく充填することができる。その結果、結晶G1〜G5からなる銅めっき50の表面を平坦化することができる。
<7-3. Plating flattening>
In the above embodiment, the thinning rate of the charge E of the counter electrode 22 in step S2 is preferably a power of 2 from the viewpoint of flattening the copper plating 50. In such a case, the particle size of the crystal G precipitated on the counter electrode 22 is the product of the size of the atomic lattice and the number of precipitations (power of 2). Then, as shown in FIG. 46, when the crystals G1 and G2 are sequentially formed and laminated toward the side away from the counter electrode 22, the crystals G2 are filled between the adjacent crystals G1 and G1 without any gap. Similarly, by sequentially forming the crystals G3 to G5 toward the side away from the counter electrode 22, these crystals G1 to G5 can be filled without gaps. As a result, the surface of the copper plating 50 made of crystals G1 to G5 can be flattened.

なお、図46では説明を容易にするため、結晶G1〜G5の形状を三角形で図示しているが、例えば半球状であっても同様の方法で銅めっき50の表面を平坦化することができる。 Although the shapes of the crystals G1 to G5 are shown in triangles in FIG. 46 for the sake of simplicity, the surface of the copper plating 50 can be flattened by the same method even if the crystals are hemispherical, for example. ..

また、図46に示すように対向電極22に結晶G1〜G5を形成する際、対向電極22から離れる側に向けて(対向電極22に近い領域から遠い領域に向けて)、ステップS2の間引き率を大きくする。かかる場合、結晶G2を形成する際の間引き率が、結晶G1を形成する際の間引き率に比べて大きくなるので、結晶G2の粒径は、結晶G1の粒径より大きくなる。そして、結晶G1〜G5の粒径はこの順で大きくなる。 Further, as shown in FIG. 46, when the crystals G1 to G5 are formed on the counter electrode 22, the thinning ratio of step S2 is directed toward the side away from the counter electrode 22 (toward the region far from the region near the counter electrode 22). To increase. In such a case, the thinning rate when forming the crystal G2 is larger than the thinning rate when forming the crystal G1, so that the particle size of the crystal G2 is larger than the particle size of the crystal G1. Then, the particle sizes of the crystals G1 to G5 increase in this order.

かかる場合、結晶G1の粒径を小さくすることにより、当該対向電極22の表面と結晶G1との結合点が多くなる。このため、対向電極22の表面に対する銅めっき50の密着性を向上させることができる。そして、本実施の形態では、対向電極22の近い領域では小粒径の結晶G1を形成して平坦化しつつ、遠い領域では大粒径の結晶G5を形成することができる。 In such a case, by reducing the particle size of the crystal G1, the number of bonding points between the surface of the counter electrode 22 and the crystal G1 increases. Therefore, the adhesion of the copper plating 50 to the surface of the counter electrode 22 can be improved. Then, in the present embodiment, a crystal G1 having a small particle size can be formed and flattened in a region near the counter electrode 22, and a crystal G5 having a large particle size can be formed in a region far from the counter electrode 22.

ここで、結晶の粒径を大きくした場合、成膜面には粒径に比例した凹凸が発生し、その後の工程で成膜面を平坦にするための研磨負荷が増大する。この点、平坦化しつつ、結晶G5の粒径を大きくできるので、研磨負荷を軽減できるという効果もある。 Here, when the particle size of the crystal is increased, unevenness proportional to the particle size is generated on the film-forming surface, and the polishing load for flattening the film-forming surface increases in the subsequent steps. In this respect, since the particle size of the crystal G5 can be increased while flattening, there is also an effect that the polishing load can be reduced.

<7−4.ダマシンプロセスへの適用>
次に、図46に示しためっき処理方法をダマシンプロセスに適用した例について説明する。図47及び図48において、ビアホール500と配線溝501にめっき処理を行う。なお、以下の説明においては、結晶G1〜G6を結晶Gと総称する場合がある。
<7-4. Application to damascene process>
Next, an example in which the plating treatment method shown in FIG. 46 is applied to the damascene process will be described. In FIGS. 47 and 48, the via hole 500 and the wiring groove 501 are plated. In the following description, crystals G1 to G6 may be collectively referred to as crystal G.

ビアホール500では、その底面と側面に上述した結晶G1〜G5を形成する。そして、さらに結晶G5の内側を埋めるように、結晶G5より粒径の大きい結晶G6を形成する。このようにビアホール500にめっき処理が行われ、ビアが形成される。 In the via hole 500, the above-mentioned crystals G1 to G5 are formed on the bottom surface and the side surface thereof. Then, a crystal G6 having a particle size larger than that of the crystal G5 is formed so as to further fill the inside of the crystal G5. In this way, the via hole 500 is plated to form a via.

配線溝501においても、その底面と側面に上述した結晶G1〜G5を形成する。そして、さらに結晶G5の内側を埋めるように、結晶G5より粒径の大きい結晶G6を形成する。図示のとおり、結晶G1〜G6は、それぞれ配線方向(長手方向)に並べて配列される。 Also in the wiring groove 501, the above-mentioned crystals G1 to G5 are formed on the bottom surface and the side surface thereof. Then, a crystal G6 having a particle size larger than that of the crystal G5 is formed so as to further fill the inside of the crystal G5. As shown in the figure, the crystals G1 to G6 are arranged side by side in the wiring direction (longitudinal direction).

その後、配線溝501の配線方向に電流を流す。そうすると、隣接する結晶G、G間においてエレクトロマイグレーションが起きるため、当該結晶G、G間の粒界の電子散乱と空洞(ボイド)を抑制して補填することができる。また、結晶G、Gは分子間力によっても結合するが、配線方向に電流を流すことによって、結晶G、Gを強固に結合することができる。このように配線溝501にめっき処理が行われ、配線が形成される。 After that, a current is passed in the wiring direction of the wiring groove 501. Then, since electromigration occurs between the adjacent crystals G and G, electron scattering and cavities (voids) at the grain boundaries between the crystals G and G can be suppressed and compensated. Further, the crystals G and G are also bonded by an intermolecular force, but the crystals G and G can be firmly bonded by passing a current in the wiring direction. In this way, the wiring groove 501 is plated to form the wiring.

なお、配線幅が結晶Gの粒径より小さい場合、図46に示しためっき処理方法では結晶Gの大粒径化が実現できないおそれがある。かかる場合には、結晶Gを配線方向に結晶長が長い平坦粒とすることで、配線の抵抗率を低減することができる。すなわち、図46で示した結晶Gの三角形において、底辺に対する高さの比率を小さくすればよい。 If the wiring width is smaller than the particle size of the crystal G, the plating method shown in FIG. 46 may not be able to increase the particle size of the crystal G. In such a case, the resistivity of the wiring can be reduced by forming the crystal G into flat grains having a long crystal length in the wiring direction. That is, in the triangle of crystal G shown in FIG. 46, the ratio of the height to the base may be reduced.

結晶Gの平坦粒を実現するためには、次の2つの条件が必要である。1つ目の条件は、結晶Gが析出する界面の表面エネルギーを大きくすることである。析出界面の表面エネルギーが小さくなる要因は水素終端である。この点、上述のとおり、めっき液Mには硫酸銅を溶解した溶液が用いられるので、水の電気分解による水素が発生しない。このため、析出界面では水素終端されず、当該析出界面の表面エネルギーを大きくできる。 In order to realize flat grains of crystal G, the following two conditions are required. The first condition is to increase the surface energy of the interface where the crystal G is precipitated. The factor that reduces the surface energy of the precipitation interface is the hydrogen termination. In this regard, as described above, since a solution in which copper sulfate is dissolved is used as the plating solution M, hydrogen is not generated by electrolysis of water. Therefore, hydrogen termination is not performed at the precipitation interface, and the surface energy of the precipitation interface can be increased.

2つ目の条件は、結晶Gが析出する界面を平坦化することである。結晶長が長い平坦粒を隙間なく積層するためには、析出界面が平坦であることが必要となる。この点、図46に示しためっき処理方法を実行すること、すなわちステップS2における対向電極22の電荷Eの間引き率を2のべき乗とすることにより、析出界面の平坦化を実現できる。 The second condition is to flatten the interface where the crystal G is deposited. In order to stack flat grains having a long crystal length without gaps, it is necessary that the precipitation interface is flat. In this regard, flattening of the precipitation interface can be realized by executing the plating treatment method shown in FIG. 46, that is, by setting the thinning rate of the charge E of the counter electrode 22 to the power of 2 in step S2.

以上より、配線溝501の底面と側面から近い領域においては小粒径の結晶Gを形成して、平坦化を実現しつつ、遠い領域においては平坦な結晶成長(沿面成長)が実現でき、結晶Gを平坦粒とすることができる。したがって、低抵抗の配線を形成することができる。 From the above, it is possible to form crystals G having a small particle size in a region close to the bottom surface and the side surface of the wiring groove 501 to achieve flattening, and to achieve flat crystal growth (planar growth) in a region far away. G can be a flat grain. Therefore, low resistance wiring can be formed.

<8.他の実施の形態>
以上の実施の形態では、電解処理としてめっき処理を行う場合について説明したが、本発明は例えばエッチング処理等の種々の電解処理に適用することができる。
<8. Other embodiments>
In the above embodiments, the case where the plating treatment is performed as the electrolytic treatment has been described, but the present invention can be applied to various electrolytic treatments such as an etching treatment.

また、以上の実施の形態では対向電極22側において銅イオンCを還元する場合について説明したが、本発明は対向電極22側において被処理イオンを酸化する場合にも適用できる。 Further, in the above embodiment, the case where the copper ion C is reduced on the counter electrode 22 side has been described, but the present invention can also be applied to the case where the ion to be treated is oxidized on the counter electrode 22 side.

かかる場合、被処理イオンは陰イオンであり、上記実施の形態において陽極と陰極を反対にして同様の電解処理を行えばよい。すなわち、間接電極と対向電極の間に電圧を印加して電界を形成し、対向電極側に被処理イオンを移動させる。その後、直接電極と間接電極との間に電流を流す。そうすると、対向電極側に移動した被処理イオンの電荷が交換されて、被処理イオンが酸化される。 In such a case, the ion to be treated is an anion, and the same electrolytic treatment may be performed with the anode and cathode reversed in the above embodiment. That is, a voltage is applied between the indirect electrode and the counter electrode to form an electric field, and the ion to be processed is moved to the counter electrode side. After that, a current is passed between the direct electrode and the indirect electrode. Then, the electric charge of the ion to be processed that has moved to the counter electrode side is exchanged, and the ion to be processed is oxidized.

本実施の形態においても、被処理イオンの酸化と還元の違いはあれ、上記実施の形態と同様の効果を享受することができる。 Also in this embodiment, the same effect as that of the above-described embodiment can be enjoyed, although there is a difference between oxidation and reduction of the ion to be treated.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the ideas described in the claims, which naturally belong to the technical scope of the present invention. It is understood as a thing. The present invention is not limited to this example, and various aspects can be adopted.

1、100、200、300、400 めっき処理装置
10(10a、10b)、110、210、310、410 めっき槽
11、211、311、411 隔壁
12、212、312 流入出孔
20、120、220、320、420 直接電極
21、121、221、321、421 間接電極
22、122、222、322、422 対向電極
23、123、223、323、423 絶縁材
30、130、230、330、430 直流電源
31、331、431 スイッチ
40 制御部
50、150、250、350、450 銅めっき
60 細孔質壁
70 配管
131、231 第1のスイッチ
132、232 第2のスイッチ
360 電極保持板
412 開閉機構
460 移動機構
470 流路
480 液供給機構
500 ビアホール
501 配線溝
A 陰イオン
C 銅イオン
D 液滴
E 電荷
G(G1〜G6) 結晶
M めっき液
T1、T2 領域
1, 100, 200, 300, 400 Plating apparatus 10 (10a, 10b), 110, 210, 310, 410 Plating tank 11, 211, 311, 411 Bulk partition 12, 212, 312 Inflow / out holes 20, 120, 220, 320, 420 Direct electrode 21, 121, 221, 321, 421 Indirect electrode 22, 122, 222, 322, 422 Counter electrode 23, 123, 223, 323, 423 Insulation material 30, 130, 230, 330, 430 DC power supply 31 , 331, 431 Switch 40 Control unit 50, 150, 250, 350, 450 Copper plating 60 Porous wall 70 Piping 131, 231 First switch 132, 232 Second switch 360 Electrode holding plate 412 Opening and closing mechanism 460 Moving mechanism 470 Flow path 480 Liquid supply mechanism 500 Via hole 501 Wiring groove A Anion C Copper ion D Droplet E Charge G (G1 to G6) Crystal M Plating liquid T1, T2 region

Claims (31)

処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、
前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、
前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、
前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、
前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記配置工程において、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管を配置すると共に、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように前記直接電極と前記対向電極を配置することを特徴とする、電解処理方法。
An electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid.
An arrangement step of arranging a direct electrode and a counter electrode so as to be electrically connected to the treatment liquid, and arranging an indirect electrode that forms an electric field in the treatment liquid, respectively.
A process of moving ions to be treated by applying a voltage to the indirect electrode to move the ions to be treated in the treatment liquid to the counter electrode side.
It has a process ion treatment step of connecting the direct electrode and the indirect electrode and oxidizing or reducing the ion to be processed that has moved to the counter electrode side.
In the ion transfer step to be processed, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
In the arrangement step, a partition wall in which the treatment liquid is divided into two regions and inflow / out holes of the treatment liquid are formed, and pores in which the treatment liquid is divided into two regions and a plurality of pores are formed. The quality wall or the treatment liquid is divided into two regions and a pipe connecting the two regions is arranged, and the partition wall, the pore quality wall or the pipe is sandwiched so as to come into contact with the treatment liquid. An electrolytic treatment method comprising arranging the direct electrode and the counter electrode .
前記配置工程において、前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替えるスイッチをさらに配置し、
前記被処理イオン移動工程において、前記スイッチによって前記間接電極と前記電源を接続して電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記被処理イオン処理工程において、前記スイッチによって前記間接電極と前記電源の接続を切断し、前記間接電極と前記直接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴とする、請求項に記載の電解処理方法。
In the arrangement step, a switch for switching between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode is further arranged.
In the ion transfer step, the indirect electrode and the power supply are connected by the switch and a voltage is applied to move the ions to be processed in the treatment liquid to the counter electrode side.
In the ion treatment step, the switch disconnects the indirect electrode from the power supply, connects the indirect electrode to the direct electrode, and oxidizes or reduces the ion to be treated that has moved to the counter electrode side. The electrolytic treatment method according to claim 1 , wherein the method is characterized by the above.
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、
前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、
前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、
前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、
前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記配置工程において、前記処理液に接触するように前記直接電極と前記対向電極を配置し、さらに前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチを配置すると共に、前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチを配置し、
前記被処理イオン移動工程において、前記第1のスイッチによって前記間接電極と前記電源を接続して電圧を印加すると共に、前記第2のスイッチによって前記直接電極と前記対向電極を接続して、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記被処理イオン処理工程において、前記第1のスイッチによって前記間接電極との接続を前記電源から前記直接電極に切り替えると共に、前記第2のスイッチによって前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴とする、電解処理方法。
An electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid.
An arrangement step of arranging a direct electrode and a counter electrode so as to be electrically connected to the treatment liquid, and arranging an indirect electrode that forms an electric field in the treatment liquid, respectively.
A process of moving ions to be treated by applying a voltage to the indirect electrode to move the ions to be treated in the treatment liquid to the counter electrode side.
It has a process ion treatment step of connecting the direct electrode and the indirect electrode and oxidizing or reducing the ion to be processed that has moved to the counter electrode side.
In the ion transfer step to be processed, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
In the arrangement step, the first switch arranges the direct electrode and the counter electrode so as to come into contact with the treatment liquid, and further switches between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode. A second switch for switching between the connection between the direct electrode and the indirect electrode and the connection between the direct electrode and the counter electrode is arranged.
In the ion transfer step to be processed, the indirect electrode and the power supply are connected by the first switch to apply a voltage, and the direct electrode and the counter electrode are connected by the second switch to perform the processing. The ions to be treated in the liquid are moved to the counter electrode side to move them.
In the ion treatment step, the connection with the indirect electrode is switched from the power source to the direct electrode by the first switch, and the connection with the direct electrode is made from the counter electrode by the second switch. An electrolytic treatment method comprising switching to an electrode, connecting the direct electrode and the indirect electrode, and oxidizing or reducing the ion to be treated that has moved to the counter electrode side .
前記配置工程において、前記直接電極の表面積は、前記対向電極の表面積より小さいことを特徴とする、請求項に記載の電解処理方法。 The electrolysis treatment method according to claim 3 , wherein the surface area of the direct electrode is smaller than the surface area of the counter electrode in the arrangement step. 処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、
前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、
前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、
前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、
前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記配置工程において、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管を配置すると共に、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように前記直接電極と前記対向電極を配置し、さらに前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチを配置すると共に、前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチを配置し、
前記被処理イオン移動工程において、前記第1のスイッチによって前記間接電極と前記電源を接続して電圧を印加すると共に、前記第2のスイッチによって前記直接電極と前記対向電極を接続して、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記被処理イオン処理工程において、前記第1のスイッチによって前記間接電極との接続を前記電源から前記直接電極に切り替えると共に、前記第2のスイッチによって前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続し、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴とする、電解処理方法。
An electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid.
An arrangement step of arranging a direct electrode and a counter electrode so as to be electrically connected to the treatment liquid and arranging an indirect electrode that forms an electric field in the treatment liquid.
A process of moving ions to be treated by applying a voltage to the indirect electrode to move the ions to be treated in the treatment liquid to the counter electrode side.
It has a process ion treatment step of connecting the direct electrode and the indirect electrode and oxidizing or reducing the ion to be processed that has moved to the counter electrode side.
In the ion transfer step to be processed, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
In the arrangement step, a partition wall in which the treatment liquid is divided into two regions and inflow / out holes of the treatment liquid are formed, and a pore in which the treatment liquid is divided into two regions and a plurality of pores are formed. The quality wall or the treatment liquid is divided into two regions and a pipe connecting the two regions is arranged so as to be in contact with the treatment liquid across the partition wall, the pore quality wall or the pipe. The direct electrode and the counter electrode are arranged, and a first switch for switching between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode is arranged, and the direct electrode and the indirect electrode are arranged. A second switch for switching the connection and the connection between the direct electrode and the counter electrode is arranged.
In the ion transfer step to be processed, the indirect electrode and the power supply are connected by the first switch to apply a voltage, and the direct electrode and the counter electrode are connected by the second switch to perform the processing. The ions to be treated in the liquid are moved to the counter electrode side to move them.
In the ion treatment step, the connection with the indirect electrode is switched from the power source to the direct electrode by the first switch, and the connection with the direct electrode is made from the counter electrode by the second switch. An electrolytic treatment method comprising switching to an electrode, connecting the direct electrode and the indirect electrode, and oxidizing or reducing the ion to be treated that has moved to the counter electrode side .
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、
前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、
前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、
前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、
前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記配置工程において、
複数の前記直接電極と複数の前記間接電極を、当該直接電極と間接電極が交互に並びかつ前記処理液に接触するように配置し、
前記直接電極と前記間接電極の間に隔壁を配置し、
前記対向電極を、前記複数の直接電極と前記複数の間接電極が配置される方向に延伸するように配置し、
前記複数の間接電極と電源の接続と、前記複数の間接電極と前記複数の直接電極の接続とを切り替えるスイッチを配置し、
前記被処理イオン移動工程において、前記スイッチによって前記複数の間接電極と前記電源を接続して電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記被処理イオン処理工程において、前記スイッチによって前記複数の間接電極と前記電源の接続を切断し、前記複数の間接電極と前記複数の直接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴とする、電解処理方法。
An electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid.
An arrangement step of arranging a direct electrode and a counter electrode so as to be electrically connected to the treatment liquid, and arranging an indirect electrode that forms an electric field in the treatment liquid, respectively.
A process of moving ions to be treated by applying a voltage to the indirect electrode to move the ions to be treated in the treatment liquid to the counter electrode side.
It has a process ion treatment step of connecting the direct electrode and the indirect electrode and oxidizing or reducing the ion to be processed that has moved to the counter electrode side.
In the ion transfer step to be processed, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
In the placement process
The plurality of the direct electrodes and the plurality of the indirect electrodes are arranged so that the direct electrodes and the indirect electrodes are alternately arranged and in contact with the treatment liquid.
A partition wall is placed between the direct electrode and the indirect electrode,
The counter electrode is arranged so as to extend in the direction in which the plurality of direct electrodes and the plurality of indirect electrodes are arranged.
A switch for switching between the connection between the plurality of indirect electrodes and the power supply and the connection between the plurality of indirect electrodes and the plurality of direct electrodes is arranged.
In the ion transfer step to be processed, the switch connects the plurality of indirect electrodes and the power source and applies a voltage to move the ions to be processed in the processing liquid to the counter electrode side.
In the ion treatment step to be processed, the switch disconnects the connection between the plurality of indirect electrodes and the power supply, connects the plurality of indirect electrodes and the plurality of direct electrodes, and moves the subject to the counter electrode side. An electrolytic treatment method characterized by oxidizing or reducing treated ions .
前記配置工程において、前記対向電極上に前記処理液のパドルを形成し、前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていることを特徴とする、請求項に記載の電解処理方法。 In the arrangement step, a paddle of the treatment liquid is formed on the counter electrode, and the plurality of direct electrodes, the plurality of indirect electrodes, and the partition wall are arranged by being immersed in the paddle of the treatment liquid. The electrolytic treatment method according to claim 6 , which is characterized. 前記配置工程において、前記対向電極の下方で対向する位置に電極保持板を配置し、前記電極保持板と前記対向電極の間に前記処理液のパドルを形成し、前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていることを特徴とする、請求項に記載の電解処理方法。 In the arrangement step, an electrode holding plate is arranged below the counter electrode at a position facing each other, a paddle of the treatment liquid is formed between the electrode holding plate and the counter electrode, and the plurality of direct electrodes, the plurality of direct electrodes. The electrolytic treatment method according to claim 6 , wherein the indirect electrode and the partition wall of the above are arranged by being immersed in a paddle of the treatment liquid. 処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理方法であって、
前記処理液に電気的に接続されるように直接電極と対向電極をそれぞれ配置すると共に、当該処理液に電界を形成する間接電極を配置する配置工程と、
前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させる被処理イオン移動工程と、
前記直接電極と前記間接電極を接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元する被処理イオン処理工程と、を有し、
前記被処理イオン移動工程において前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記被処理イオン移動工程において、前記直接電極と前記処理液の電気的な接続を切断し前記間接電極に電圧を印加して、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記被処理イオン処理工程において、前記直接電極と前記処理液を電気的に接続して、前記対向電極側に移動した前記被処理イオンを酸化又は還元することを特徴とする、電解処理方法。
An electrolytic treatment method in which a predetermined treatment is performed using ions to be treated contained in the treatment liquid.
An arrangement step of arranging a direct electrode and a counter electrode so as to be electrically connected to the treatment liquid, and arranging an indirect electrode that forms an electric field in the treatment liquid, respectively.
A process of moving ions to be treated by applying a voltage to the indirect electrode to move the ions to be treated in the treatment liquid to the counter electrode side.
It has a process ion treatment step of connecting the direct electrode and the indirect electrode and oxidizing or reducing the ion to be processed that has moved to the counter electrode side.
In the ion transfer step to be processed, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
In the ion transfer step to be processed, the electrical connection between the direct electrode and the treatment liquid is cut and a voltage is applied to the indirect electrode to move the ions to be processed in the treatment liquid to the counter electrode side.
An electrolytic treatment method, characterized in that, in the ion treatment step, the direct electrode and the treatment liquid are electrically connected to oxidize or reduce the ions to be treated that have moved to the counter electrode side .
前記配置工程において、前記処理液を2つの領域に区画しかつ当該処理液の流入出孔を開閉する開閉機構が設けられた隔壁を配置すると共に、前記隔壁を挟んで前記処理液に接触するように前記直接電極と前記対向電極を配置し、
前記被処理イオン移動工程において、前記開閉機構によって前記処理液の流入出孔を閉鎖し、
前記被処理イオン処理工程において、前記開閉機構によって前記処理液の流入出孔を開放することを特徴とする、請求項に記載の電解処理方法。
In the arrangement step, a partition wall is arranged in which the treatment liquid is divided into two regions and an opening / closing mechanism for opening / closing the inflow / outflow hole of the treatment liquid is provided, and the partition wall is sandwiched so as to come into contact with the treatment liquid. The direct electrode and the counter electrode are arranged in the
In the ion transfer step to be processed, the inflow / outflow holes of the treatment liquid are closed by the opening / closing mechanism.
The electrolytic treatment method according to claim 9 , wherein in the ion treatment step to be treated, the inflow / outflow holes of the treatment liquid are opened by the opening / closing mechanism.
前記配置工程において、前記処理液に対し前記直接電極を進退自在に移動させる移動機構を配置し、
前記被処理イオン移動工程において、前記移動機構によって前記直接電極を移動させて、当該直接電極と前記処理液を分離させ、
前記被処理イオン処理工程において、前記移動機構によって前記直接電極を移動させて、当該直接電極と前記処理液を接触させることを特徴とする、請求項に記載の電解処理方法。
In the arrangement step, a movement mechanism for moving the direct electrode directly with respect to the treatment liquid is arranged.
In the ion transfer step to be processed, the direct electrode is moved by the transfer mechanism to separate the direct electrode and the treatment liquid.
The electrolytic treatment method according to claim 9 , wherein in the ion treatment step to be treated, the direct electrode is moved by the moving mechanism to bring the direct electrode into contact with the treatment liquid.
前記配置工程において、前記直接電極を前記処理液の外部に配置すると共に、クーロン力によって前記処理液を移動させる流路を配置し、
前記被処理イオン移動工程において、前記流路を介して前記処理液を移動させて、当該処理液と前記直接電極を分離させ、
前記被処理イオン処理工程において、前記流路を介して前記処理液を移動させて、当該処理液と前記直接電極を接触させることを特徴とする、請求項に記載の電解処理方法。
In the arrangement step, the direct electrode is arranged outside the treatment liquid, and a flow path for moving the treatment liquid by Coulomb force is arranged.
In the ion transfer step to be processed, the treatment liquid is moved through the flow path to separate the treatment liquid from the direct electrode.
The electrolytic treatment method according to claim 9 , wherein in the ion treatment step to be treated, the treatment liquid is moved through the flow path to bring the treatment liquid into direct contact with the electrode.
前記配置工程において、前記直接電極を前記処理液の外部に配置すると共に、前記直接電極に接触して帯電した液滴を供給する液供給機構を配置し、
前記被処理イオン移動工程において、前記液供給機構による前記帯電した液滴の供給を停止し、
前記被処理イオン処理工程において、前記液供給機構によって前記帯電した液滴を前記処理液に供給することを特徴とする、請求項に記載の電解処理方法。
In the arrangement step, the direct electrode is arranged outside the treatment liquid, and a liquid supply mechanism that contacts the direct electrode and supplies charged droplets is arranged.
In the ion transfer step to be processed, the supply of the charged droplets by the liquid supply mechanism is stopped.
The electrolytic treatment method according to claim 9 , wherein in the ion treatment step to be treated, the charged droplets are supplied to the treatment liquid by the liquid supply mechanism.
前記配置工程において、前記処理液に電界を形成することを特徴とする、請求項1〜13のいずれか一項に記載の電解処理方法。 The electrolytic treatment method according to any one of claims 1 to 13 , wherein an electric field is formed in the treatment liquid in the arrangement step. 前記被処理イオン移動工程において、前記間接電極に電圧を印加し、少なくとも当該間接電極の印加電圧又は静電容量を制御して、前記処理液中の複数の被処理イオンを前記対向電極側に移動させ、
その後、電荷配列工程において、少なくとも前記間接電極の印加電圧又は静電容量を制御して、前記被処理イオン移動工程で移動した量以下の被処理イオンに対応するように、前記対向電極において所定の電荷配列位置に電荷を配列させ、
その後、前記被処理イオン処理工程において、前記直接電極に電流を流し、前記対向電極側に移動した前記複数の被処理イオンのうち、前記所定の電荷配列位置に対応する位置の被処理イオンを酸化又は還元し、
前記電荷配列工程と前記被処理イオン処理工程をこの順で繰り返し行うことを特徴とする、請求項1〜14のいずれか一項に記載の電解処理方法。
In the ion transfer step, a voltage is applied to the indirect electrode, and at least the applied voltage or capacitance of the indirect electrode is controlled to move a plurality of ions to be processed in the treatment liquid to the counter electrode side. Let me
After that, in the charge arrangement step, at least the applied voltage or capacitance of the indirect electrode is controlled, and the counter electrode is predetermined so as to correspond to the amount of ions to be treated that is equal to or less than the amount transferred in the ion transfer step. Arrange the charge at the charge arrangement position,
After that, in the ion treatment step, a current is passed through the direct electrode to oxidize the ion to be treated at a position corresponding to the predetermined charge arrangement position among the plurality of ions to be treated that have moved to the counter electrode side. Or reduce
The electrolysis treatment method according to any one of claims 1 to 14 , wherein the charge arrangement step and the ion treatment step to be treated are repeated in this order.
前記間接電極の静電容量の制御は、当該間接電極を複数に分割し、分割された間接電極毎に前記処理液に電界を形成することで行うことを特徴とする、請求項15に記載の電解処理方法。 The 15th aspect of the present invention, wherein the capacitance of the indirect electrode is controlled by dividing the indirect electrode into a plurality of parts and forming an electric field in the treatment liquid for each of the divided indirect electrodes. Electrolytic treatment method. 前記被処理イオン移動工程において、前記複数の被処理イオンを前記対向電極側に移動させると共に、前記対向電極において当該複数の被処理イオンに対応する位置に電荷を配列させ、
前記電荷配列工程で前記対向電極に配列させた電荷の量に対する、前記被処理イオン移動工程で前記対向電極に配列させた電荷の量の割合である間引き率は、2のべき乗であることを特徴とする、請求項15又は16に記載の電解処理方法。
In the ion transfer step, the plurality of ions to be processed are moved to the counter electrode side, and charges are arranged at positions corresponding to the plurality of ions to be processed on the counter electrode.
The thinning ratio, which is the ratio of the amount of charges arranged on the counter electrode in the ion transfer step to be processed, to the amount of charges arranged on the counter electrode in the charge arrangement step is a power of 2. The electrolytic treatment method according to claim 15 or 16 .
前記電荷配列工程において、前記対向電極に近い領域に比べて遠い領域の前記間引き率を大きくし、
前記被処理イオン処理工程において、被処理イオンを還元して結晶を形成し、
前記電荷配列工程と前記被処理イオン処理工程を繰り返し行った後、前記対向電極に近い領域に比べて遠い領域に形成される結晶の粒径を大きくすることを特徴とする、請求項17に記載の電解処理方法。
In the charge arrangement step, the thinning rate in the region far from the counter electrode is increased as compared with the region near the counter electrode.
In the ion treatment step, the ions to be treated are reduced to form crystals.
17. The invention according to claim 17 , wherein after repeating the charge arrangement step and the ion treatment step to be treated, the particle size of the crystal formed in the region far from the counter electrode is increased as compared with the region near the counter electrode. Electrolytic treatment method.
前記被処理イオン処理工程において、被処理イオンを還元して結晶を形成し、
前記電荷配列工程において、前記所定の電荷配列位置に配列された複数の電荷のうち、隣接する電荷間の距離は、結晶格子の寸法の整数倍であることを特徴とする、請求項1518のいずれか一項に記載の電解処理方法。
In the ion treatment step, the ions to be treated are reduced to form crystals.
Claims 15 to 18 are characterized in that, in the charge arrangement step, the distance between adjacent charges among the plurality of charges arranged at the predetermined charge arrangement position is an integral multiple of the size of the crystal lattice. The electrolytic treatment method according to any one of the above.
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管と、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記直接電極と前記対向電極は、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように配置されることを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
A partition wall in which the treatment liquid is divided into two regions and inflow / out holes of the treatment liquid are formed, a pore wall in which the treatment liquid is divided into two regions and a plurality of pores are formed, or the above. It has a pipe that divides the treatment liquid into two regions and connects the two regions .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
An electrolytic treatment apparatus, characterized in that the direct electrode and the counter electrode are arranged so as to be in contact with the treatment liquid with the partition wall, the pore wall or the pipe sandwiched therein .
前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替えるスイッチをさらに有し、
前記被処理イオンを前記対向電極側に移動させる際、前記スイッチは、前記間接電極と前記電源を接続し、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記スイッチは、前記間接電極と前記電源の接続を切断し、前記間接電極と前記直接電極を接続することを特徴とする、請求項20に記載の電解処理装置。
Further having a switch for switching between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode.
When moving the ion to be processed to the counter electrode side, the switch connects the indirect electrode and the power supply.
When oxidizing or reducing the ion to be processed that has moved to the counter electrode side, the switch is characterized in that the connection between the indirect electrode and the power supply is cut off and the indirect electrode and the direct electrode are connected. The electrolytic treatment apparatus according to claim 20 .
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチと、
前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチと、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記直接電極と前記対向電極は、前記処理液に接触するように配置され、
前記被処理イオンを前記対向電極側に移動させる際、前記第1のスイッチは、前記間接電極と前記電源を接続し、前記第2のスイッチは、前記直接電極と前記対向電極を接続し、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記第1のスイッチは、前記間接電極との接続を前記電源から前記直接電極に切り替え、前記第2のスイッチは、前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続することを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
A first switch that switches between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode.
It has a second switch for switching between the connection between the direct electrode and the indirect electrode and the connection between the direct electrode and the counter electrode .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
The direct electrode and the counter electrode are arranged so as to be in contact with the treatment liquid.
When the ion to be processed is moved to the counter electrode side, the first switch connects the indirect electrode and the power supply, and the second switch connects the direct electrode and the counter electrode.
When oxidizing or reducing the ion to be processed that has moved to the counter electrode side, the first switch switches the connection with the indirect electrode from the power supply to the direct electrode, and the second switch is the direct. An electrolytic treatment apparatus, characterized in that the connection with the electrode is switched from the counter electrode to the indirect electrode, and the direct electrode and the indirect electrode are connected .
前記直接電極の表面積は、前記対向電極の表面積より小さいことを特徴とする、請求項22に記載の電解処理装置。 The electrolysis treatment apparatus according to claim 22 , wherein the surface area of the direct electrode is smaller than the surface area of the counter electrode. 処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記処理液を2つの領域に区画しかつ当該処理液の流入出孔が形成された隔壁、前記処理液を2つの領域に区画しかつ複数の細孔が形成された細孔質壁、又は前記処理液を2つの領域に区画しかつ当該2つの領域を接続する配管と、
前記間接電極と電源の接続と、前記間接電極と前記直接電極の接続とを切り替える第1のスイッチと、
前記直接電極と前記間接電極の接続と、前記直接電極と前記対向電極の接続とを切り替える第2のスイッチと、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記直接電極と前記対向電極は、前記隔壁、前記細孔質壁又は前記配管を挟んで前記処理液に接触するように配置され、
前記被処理イオンを前記対向電極側に移動させる際、前記第1のスイッチは、前記間接電極と前記電源を接続し、前記第2のスイッチは、前記直接電極と前記対向電極を接続し、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記第1のスイッチは、前記間接電極との接続を前記電源から前記直接電極に切り替え、前記第2のスイッチは、前記直接電極との接続を前記対向電極から前記間接電極に切り替えて、前記直接電極と前記間接電極を接続することを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
A partition wall in which the treatment liquid is divided into two regions and inflow / out holes of the treatment liquid are formed, a pore wall in which the treatment liquid is divided into two regions and a plurality of pores are formed, or the above. A pipe that divides the treatment liquid into two areas and connects the two areas,
A first switch that switches between the connection between the indirect electrode and the power supply and the connection between the indirect electrode and the direct electrode.
It has a second switch for switching between the connection between the direct electrode and the indirect electrode and the connection between the direct electrode and the counter electrode .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
The direct electrode and the counter electrode are arranged so as to come into contact with the treatment liquid across the partition wall, the pore wall or the pipe.
When the ion to be processed is moved to the counter electrode side, the first switch connects the indirect electrode and the power supply, and the second switch connects the direct electrode and the counter electrode.
When oxidizing or reducing the ion to be processed that has moved to the counter electrode side, the first switch switches the connection with the indirect electrode from the power supply to the direct electrode, and the second switch is the direct. An electrolytic treatment apparatus, characterized in that the connection with the electrode is switched from the counter electrode to the indirect electrode, and the direct electrode and the indirect electrode are connected .
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記直接電極と前記間接電極が交互に並びかつ前記処理液に接触するように配置された複数の前記直接電極と複数の前記間接電極と、
前記直接電極と前記間接電極の間に設けられた隔壁と、
前記複数の間接電極と電源の接続と、前記複数の間接電極と前記複数の直接電極の接続とを切り替えるスイッチと、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記対向電極は、前記複数の直接電極と前記複数の間接電極が配置される方向に延伸するように配置され、
前記被処理イオンを前記対向電極側に移動させる際、前記スイッチは、前記複数の間接電極と前記電源を接続し、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記スイッチは、前記複数の間接電極と前記電源の接続を切断し、前記複数の間接電極と前記複数の直接電極を接続することを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
A plurality of the direct electrodes and a plurality of the indirect electrodes arranged so that the direct electrodes and the indirect electrodes are alternately arranged and in contact with the treatment liquid.
A partition wall provided between the direct electrode and the indirect electrode,
It has a switch for switching between the connection between the plurality of indirect electrodes and a power source and the connection between the plurality of indirect electrodes and the plurality of direct electrodes .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
The counter electrode is arranged so as to extend in the direction in which the plurality of direct electrodes and the plurality of indirect electrodes are arranged.
When moving the ion to be processed to the counter electrode side, the switch connects the plurality of indirect electrodes and the power supply.
When oxidizing or reducing the ion to be processed that has moved to the counter electrode side, the switch disconnects the plurality of indirect electrodes and the power supply, and connects the plurality of indirect electrodes and the plurality of direct electrodes. An electrolytic processing apparatus characterized in that.
前記対向電極上には前記処理液のパドルが形成され、
前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていることを特徴とする、請求項25に記載の電解処理装置。
A paddle of the treatment liquid is formed on the counter electrode.
The electrolytic treatment apparatus according to claim 25 , wherein the plurality of direct electrodes, the plurality of indirect electrodes, and the partition wall are arranged by being immersed in a paddle of the treatment liquid.
前記対向電極の下方で対向する位置に設けられた電極保持板をさらに有し、
前記電極保持板と前記対向電極の間に前記処理液のパドルが形成され、
前記複数の直接電極、前記複数の間接電極及び前記隔壁は、前記処理液のパドルに浸漬して配置されていることを特徴とする、請求項25に記載の電解処理装置。
Further having an electrode holding plate provided below the counter electrode at a position facing each other,
A paddle of the treatment liquid is formed between the electrode holding plate and the counter electrode.
The electrolytic treatment apparatus according to claim 25 , wherein the plurality of direct electrodes, the plurality of indirect electrodes, and the partition wall are arranged by being immersed in a paddle of the treatment liquid.
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記処理液を2つの領域に区画しかつ当該処理液の流入出孔を開閉する開閉機構が設けられた隔壁と、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記直接電極と前記対向電極は、前記隔壁を挟んで前記処理液に接触するように配置され、
前記被処理イオンを前記対向電極側に移動させる際、前記開閉機構は、前記処理液の流入出孔を閉鎖して、前記直接電極と前記処理液の電気的な接続を切断し、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記開閉機構は、前記処理液の流入出孔を開放して、前記直接電極と前記処理液を電気的に接続することを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
It has a partition wall that divides the treatment liquid into two regions and is provided with an opening / closing mechanism for opening and closing the inflow / outflow holes of the treatment liquid .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
The direct electrode and the counter electrode are arranged so as to be in contact with the treatment liquid with the partition wall interposed therebetween.
When the ion to be processed is moved to the counter electrode side, the opening / closing mechanism closes the inflow / outflow hole of the processing liquid and disconnects the electrical connection between the direct electrode and the processing liquid.
When oxidizing or reducing the ion to be treated that has moved to the counter electrode side, the opening / closing mechanism opens an inflow / out hole of the treatment liquid to electrically connect the direct electrode and the treatment liquid. A featured electrolytic processing device.
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記処理液に対し前記直接電極を進退自在に移動させる移動機構と、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記被処理イオンを前記対向電極側に移動させる際、前記移動機構は、前記直接電極を移動させて、当該直接電極と前記処理液を分離させ、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記移動機構は、前記直接電極を移動させて、当該直接電極と前記処理液を接触させることを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
It has a moving mechanism for freely moving the direct electrode with respect to the treatment liquid .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
When the ion to be processed is moved to the counter electrode side, the moving mechanism moves the direct electrode to separate the direct electrode and the treatment liquid.
When oxidizing or reducing the ion to be treated that has moved to the counter electrode side, the moving mechanism moves the direct electrode so that the direct electrode and the treatment liquid are brought into contact with each other. ..
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
クーロン力によって前記処理液を移動させる流路と、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記直接電極は前記処理液の外部に配置され、
前記被処理イオンを前記対向電極側に移動させる際、前記流路は、前記処理液を移動させて、当該処理液と前記直接電極を分離させ、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記流路は、前記処理液を移動させて、当該処理液と前記直接電極を接触させることを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
It has a flow path for moving the treatment liquid by Coulomb force .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
The direct electrode is arranged outside the treatment liquid and
When the ion to be treated is moved to the counter electrode side, the flow path moves the treatment liquid to separate the treatment liquid from the direct electrode.
When oxidizing or reducing the ion to be treated that has moved to the counter electrode side, the flow path moves the treatment liquid so that the treatment liquid and the direct electrode are brought into contact with each other. ..
処理液に含まれる被処理イオンを用いて所定の処理を行う電解処理装置であって、
前記処理液に電気的に接続されるように配置された直接電極及び対向電極と、
前記処理液に電界を形成する間接電極と
前記直接電極に接触して帯電した液滴を供給する液供給機構と、を有し、
前記間接電極は、電圧が印加されることで、前記処理液中の被処理イオンを前記対向電極側に移動させ、
前記直接電極と前記間接電極は、当該直接電極と間接電極が接続されることで、前記対向電極側に移動した前記被処理イオンを酸化又は還元し、
前記被処理イオンを前記対向電極側に移動させる際、前記直接電極と前記対向電極の間を流れる電流が限界電流密度以下であり、
前記直接電極は前記処理液の外部に配置され、
前記被処理イオンを前記対向電極側に移動させる際、前記液供給機構は、前記帯電した液滴の供給を停止して、前記直接電極と前記処理液の電気的な接続を切断し、
前記対向電極側に移動した前記被処理イオンを酸化又は還元する際、前記液供給機構は、前記帯電した液滴を前記処理液に供給して、前記直接電極と前記処理液を電気的に接続することを特徴とする、電解処理装置。
An electrolytic treatment apparatus that performs a predetermined treatment using ions to be treated contained in the treatment liquid.
A direct electrode and a counter electrode arranged so as to be electrically connected to the treatment liquid,
And indirect electrodes forming an electric field in the treatment liquid,
It has a liquid supply mechanism that directly contacts the electrode and supplies charged droplets .
When a voltage is applied to the indirect electrode, ions to be processed in the treatment liquid are moved to the counter electrode side.
The direct electrode and the indirect electrode are connected to the direct electrode and the indirect electrode to oxidize or reduce the ion to be processed that has moved to the counter electrode side.
When the ion to be processed is moved to the counter electrode side, the current flowing between the direct electrode and the counter electrode is equal to or less than the limit current density .
The direct electrode is arranged outside the treatment liquid and
When the ion to be processed is moved to the counter electrode side, the liquid supply mechanism stops the supply of the charged droplet and disconnects the direct electrode and the treatment liquid.
When oxidizing or reducing the ion to be treated that has moved to the counter electrode side, the liquid supply mechanism supplies the charged droplets to the treatment liquid and electrically connects the direct electrode and the treatment liquid. An electrolytic treatment apparatus characterized in that it is used.
JP2016135227A 2016-07-07 2016-07-07 Electrolytic treatment method and electrolytic treatment equipment Active JP6806476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135227A JP6806476B2 (en) 2016-07-07 2016-07-07 Electrolytic treatment method and electrolytic treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135227A JP6806476B2 (en) 2016-07-07 2016-07-07 Electrolytic treatment method and electrolytic treatment equipment

Publications (2)

Publication Number Publication Date
JP2018003133A JP2018003133A (en) 2018-01-11
JP6806476B2 true JP6806476B2 (en) 2021-01-06

Family

ID=60945836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135227A Active JP6806476B2 (en) 2016-07-07 2016-07-07 Electrolytic treatment method and electrolytic treatment equipment

Country Status (1)

Country Link
JP (1) JP6806476B2 (en)

Also Published As

Publication number Publication date
JP2018003133A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
KR102217899B1 (en) Electrolytic treatment method and electrolytic treatment device
JP6337016B2 (en) Electrolytic treatment method and electrolytic treatment apparatus
WO2017094568A1 (en) Apparatus and method for manufacturing semiconductor device
JP6806476B2 (en) Electrolytic treatment method and electrolytic treatment equipment
WO2018142955A1 (en) Electrolytic treatment device and electrolytic treatment method
TW201718956A (en) High resistance virtual anode for electroplating cell, electorplating cell and method of treating surface of substrate
CN101748459B (en) Method for depositing copper film on semiconductor wafer super-uniformly
KR101639564B1 (en) Belt-type Electroforming Apparatus
JP2016113652A (en) Electrolytic treatment method and electrolytic treatment apparatus
TW201934814A (en) Apparatus for producing semiconductor device, method for producing semiconductor device, and computer storage medium
CN105683423A (en) Method for structuring layers of oxidizable materials by means of oxidation and substrate having a structured coating
JP2015129330A (en) Electrolytic treatment method and device
JP7458877B2 (en) Electrolytic treatment method and electrolytic treatment device
CN207828440U (en) Electroplating system
JP2023120930A (en) Electrolytic treatment method and electrolytic treatment apparatus
JP6833521B2 (en) Wiring forming method and wiring forming device
KR102523718B1 (en) Electrolytic treatment apparatus and electrolytic treatment method
JP2012503096A (en) Method for substantially uniform copper deposition on a semiconductor wafer
WO2019102867A1 (en) Apparatus for producing semiconductor device, method for producing semiconductor device, and computer storage medium
KR100698063B1 (en) Apparatus and Method for Electro Chemical Plating
KR20140141322A (en) Metal plating device
CN103117217A (en) Device improving copper mechanical milling efficiency

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250