JP6804020B2 - マルチモードJosephsonパラメトリック・コンバータを動作させる方法および多重キュービットの遠隔エンタングルメントの方法 - Google Patents
マルチモードJosephsonパラメトリック・コンバータを動作させる方法および多重キュービットの遠隔エンタングルメントの方法 Download PDFInfo
- Publication number
- JP6804020B2 JP6804020B2 JP2018513354A JP2018513354A JP6804020B2 JP 6804020 B2 JP6804020 B2 JP 6804020B2 JP 2018513354 A JP2018513354 A JP 2018513354A JP 2018513354 A JP2018513354 A JP 2018513354A JP 6804020 B2 JP6804020 B2 JP 6804020B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- multimode
- resonator
- frequency
- qubit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002096 quantum dot Substances 0.000 claims description 92
- 238000000034 method Methods 0.000 claims description 80
- 230000005540 biological transmission Effects 0.000 claims description 54
- 238000005259 measurement Methods 0.000 claims description 13
- 230000003993 interaction Effects 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 description 27
- 230000008569 process Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000010365 information processing Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/38—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of superconductive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/40—Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/38—Circulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/005—Transference of modulation from one carrier to another, e.g. frequency-changing by means of superconductive devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F19/00—Amplifiers using superconductivity effects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/14—Frequency selective two-port networks using electro-optic devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/12—Josephson-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/805—Constructional details for Josephson-effect devices
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
であり、ここでkはklである。この関係の1つの帰結は、左手系伝送線路では、低周波数は、短波長に対応するということである。対照的に、分散関係が波数ベクトルとともに増大する右手系伝送線路では、低周波数は、長波長に対応する。
マルチモードJPC130は、マルチモード量子限界増幅器として動作するように構成される。マルチモードJPC130は、多重量子信号を、異なる周波数で並列に(すなわち、同時に)量子限界で増幅させるように構成される。例えば、多重量子信号は、それぞれ、第1のマルチモード共振器_a 115A内にポート_a 120Aを経て、および、第2のマルチモード共振器_b 115B内にポート_b 120Bを経て入力される、多重信号(S)量子信号(第1のマルチモード共振器_a 115A上の共振周波数に対応する)およびアイドラ(I)量子信号(第2のマルチモード共振器_b 115B上の共振周波数に対応する)であり得る。
および
を有する、第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115Bを伴う、マルチモードJPC130を考える。3つのポンプ・トーンであって、それらの周波数
が、関係
を満たす、3つのポンプ・トーンによって、マルチモードJPC130(デバイス)を同時にポンピングすることにより、それぞれ、周波数
および
での、ポート_a 120A、および、ポート_b 120B上の入力量子信号は、(パワー利得Gにより)反射で増幅し、周波数
での入力信号は、マルチモードJPC130からパワー利得Gを伴わずに反射する。反射で増幅するということは、周波数
および周波数
での、それぞれの量子信号が、それらの量子信号のそれぞれの、多重量子信号が初期に入力された、ポート_a 120A、および、ポート_b 120Bを通って再度増幅するということを意味する。
は、第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115Bの周波数共振モードと一致すべきではない。
)に、第2の群内の第1の共振周波数(例えば、
)をプラスした、第1の周波数和(例えば、
)である。第2のポンプ信号は、第1の群内の第2の共振周波数に、第2の群内の第2の共振周波数をプラスした、第2の周波数和である。最後のポンプ信号は、第1の群内の最後の共振周波数に、第2の群内の最後の共振周波数をプラスした、最後の周波数和である。周波数和として使用され得る、周波数のはるかに多くの組み合わせが存し、例周波数和(例えば、
)は、解説目的のために提供されるということが注目される。例えば、別の周波数和は、
であり得るものであり、ここで、第1の群内の第1の共振周波数は、
であり得るものであり、第2の群内の第2の共振周波数は、
であり得る。
図8は、実施形態による、マルチモードJPC130を使用する、測定による多重キュービットの遠隔エンタングルメントのためのマイクロ波量子デバイス800の概略図である。簡潔性のために、マルチモードJPC130の詳細は、図8では示されない。マルチモードJPC130の詳細については、参照が、本明細書で論考されている図1〜6に対して行われ得る。
は、バス_a 810Aに結合される第1の読み出し共振器802_1〜802_nの読み出し周波数と一致する(すなわち、同じである)ということが想定される。第1の読み出し共振器802_1〜802_nは、バス_a 810Aに容量結合され得る。
は、バス_b 810Bに結合される第2の読み出し共振器804_1〜804_nの読み出し周波数と一致するということが想定される。第2の読み出し共振器804_1〜804_nは、バス_b 810Bに容量結合され得る。
を含む。同様に、第2のキュービット820Bは、各々がそれ自体の第2の読み出し共振器804_1、804_2、804_3、…804_nに容量結合される、
を含む。図8では、周波数
を入力1(IN1)で適用することは、第1の読み出し共振器802_1がそのキュービット
を読み出すようにし、第1のマルチモード共振器_a 115Aをその共振周波数
で共振させる、二重効果を有する。類似的に、周波数
を並列に入力1(IN1)で適用することは、第1の読み出し共振器802_1、802_2、802_3、…、802_nがそれらの容量結合されるキュービット
をそれぞれ読み出すようにし、第1のマルチモード共振器_a 115Aをその共振周波数
で共振させる、二重効果を有する。各々の第1の読み出し共振器802は、それぞれ、第1のマルチモード共振器_a 115A内の共振モードの1つと同じ共振周波数を共有し、したがって、この同じ周波数を伴う信号は、両方を共振させる。
を入力2(IN2)で適用することは、第2の読み出し共振器804_1がそのキュービット
を読み出すようにし、第2のマルチモード共振器_b 115Bをその共振周波数
で共振させる、二重効果を有する。類似的に、周波数
を並列に入力2(IN2)で適用することは、第2の読み出し共振器804_1、804_2、804_3、…、804_nがそれらの容量結合されるキュービット
をそれぞれ読み出すようにし、第2のマルチモード共振器_b 115Bをその共振周波数
で共振させる、二重効果を有する。各々の第2の読み出し共振器804は、それぞれ、第2のマルチモード共振器_b 115B内の共振モードの1つと同じ共振周波数を共有し、したがって、この同じ周波数を伴う信号は、両方を共振させる。
は、エンタングルされることになる、第1のキュービット820A、および、第2のキュービット820B内のキュービットの対の読み出し周波数の周波数和に対応する。周波数
および
を適用すること、ならびに、ポンプ・トーン周波数
を適用することに関して、インデックスmは、インデックスnより大きいということが察知されるべきであるが、これは、個々の共振周波数より多くの、ポンプ・トーン周波数に対する組み合わせが存するからである。解説目的のため、数個の例が、限定のためにではなく、例解のために提供される。
であるキュービット対
をエンタングルしている。適宜、適用されるポンプ周波数は、
により与えられる。この例では、第1のキュービット820Aの各々は、それぞれ、第2のキュービット820B内の、第1のキュービット820Aのその各々の対応するキュービットとエンタングルされ、したがって、例えば、エンタングルされるキュービット対
から、エンタングルされるキュービット対
までが存する。
を伴う、第1の読み出し共振器802_1、第2の読み出し共振器804_2、第2の読み出し共振器804_3に結合される3つのキュービット
をエンタングルすることを、周波数
および
での2つのポンプ・トーンを逐次的に適用することにより行うように構成される。かくして、エンタングルメントのこの方法を使用して、マイクロ波量子デバイス800は、n個の異なるキュービットを遠隔でエンタングルすることを、それらのキュービットの読み出し周波数の和条件を満たすn−1個のポンプを逐次的に適用することにより行うように構成される。
での、すなわち、第1のマルチモード共振器_a 115Aの共振モードの帯域幅の中にある、読み出し信号の第1の群を受信するように構成され、第1のマルチモード共振器は、第1の左手系伝送線路である。
での、すなわち、第2のマルチモード共振器の共振モードの帯域幅の中にある、読み出し信号の第2の群を受信するように構成され、第2のマルチモード共振器は、第2の左手系伝送線路である。
を受信するように構成され、ポンプ・ドライブは、第1の(ポンプ)周波数和(例えば、
)、第2の(ポンプ)周波数和(例えば、
)から、最後の(ポンプ)周波数和(例えば、
)までである。nは、項目の特定のひと続きの最後の番号を表すということが注目される。当業者により理解されるように、利用され得る多くの他の組み合わせが存し、例周波数和は、単に解説目的のためのものである。例えば、別の周波数和は、
等々であり得る。
)、第2の周波数和に基づく第2のキュービット対(例えば、
)から、最後の周波数和に基づく最後のキュービット対(例えば、
)までを生成するように構成される。当業者により理解されるように、これらの例キュービット対は、単に解説目的のために例解されるものであり、キュービット対の多くの他の組み合わせが照応させられ得る。例えば、他のキュービット対は、
等々を含み得る。
)が、第1の群の1つの共振周波数で読み出され、第2のキュービット820B内の1つのキュービット(例えば、
)が、第2の群の1つの共振周波数で読み出されるということが、第1のキュービット対(例えば、
)が、ポンプ信号の第1の周波数和に応じて、第1のキュービット内のその1つのキュービット、および、第2のキュービット内のその1つのキュービットであるように行われている。第1のキュービット820A内の別のキュービット(例えば、
)が、第1の群の別の共振周波数で読み出され、第2のキュービット820B内の別のキュービット(例えば、
)が、第2の群の別の共振周波数で読み出されるということが、第2のキュービット対(例えば、
)が、ポンプ信号の第2の周波数和に応じて、第1のキュービット820A内のその別のキュービット、および、第2のキュービット820B内のその別のキュービットであるように行われている。さらには、第1のキュービット820A内のさらに別のキュービット(例えば、
)が、第1の群のさらに別の共振周波数で読み出され、第2のキュービット820B内のさらに別のキュービット(例えば、
)が、第2の群のさらに別の共振周波数で読み出されるということが、第3のキュービット対(例えば、
)が、ポンプ信号の最後の周波数和に応じて、第1のキュービット内のそのさらに別のキュービット、および、第2のキュービット内のそのさらに別のキュービットであるように行われている。本明細書で注目されるように、組み合わせは、理解を容易にするために指し示されるものであるが、実施形態は、例組み合わせに限定されない。はるかに多くの組み合わせが存するということが理解される。その上、第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115Bからとられる、あらゆる対組み合わせが存し得るものであり、ポンプ周波数(すなわち、周波数和)は、2つのインデックス(バス_a 810A上のキュービットに対する1つ、および、バス_b 810B上のキュービットに対する1つ)を有することを必要とする。
を有する。第2の読み出し共振器804_1から804_nまでは、第2のマルチモード共振器_b 115Bの共振周波数と一致する読み出し共振器周波数
を有する。
セクション(エンタングルされる光子の多重対の発生、および、エンタングルされる光子を適用することによる多重キュービットの遠隔エンタングルメントのための)は、エンタングルされる光子を最初に発生させることを、エンタングルされる光子が、キュービットを読み出すためなどでさらに利用され得るように行う。これらのセクション(エンタングルされる光子の多重対の生成、および、エンタングルされる光子を適用することによる多重キュービットの遠隔エンタングルメント)の順序は、測定スキームによる多重キュービットの遠隔エンタングルメントのセクションと比較して逆にされる。
と一致する。同様に、JRM105に結合する、ポート_b 120Bの(ポート_b 120Bに接続される)第2のマルチモード共振器_b 115Bの共振周波数は、バス_b 810Bに結合される第2の読み出し共振器804の読み出し周波数、すなわち、
と一致する。適宜、マイクロ波量子デバイス1000は、バス_a 810A、および、バス_b 810Bに結合されるキュービットの対を遠隔でエンタングルすることを、マルチモードJPC130により、対応する読み出し周波数で発生させる、光子のエンタングルされる対を適用することにより行うように構成される。このことは、多重ポンプ・トーンであって、それらの周波数
が、エンタングルされることになるキュービットの対の読み出し周波数の周波数和に対応する、多重ポンプ・トーンをマルチモードJPC130に適用することにより達成され得る。
であるキュービット対
をエンタングルするために、適用されるポンプ・ドライブを受信し、それらのポンプ・ドライブの周波数は、
により与えられる。
であるキュービット対
をエンタングルするために、適用されるポンプ・ドライブを受信し、それらのポンプ・ドライブの周波数は、
により与えられる。
を伴う、第1の読み出し共振器802_1、第2の読み出し共振器804_2、第2の読み出し共振器804_3に結合される3つのキュービット
をエンタングルすることを、周波数
および
での2つのポンプ・トーンを逐次的に適用することにより行うように構成される。かくして、エンタングルメントのこの方法を使用して、マイクロ波量子デバイス1000は、n個の異なるキュービットを遠隔でエンタングルすることを、それらのキュービットの読み出し周波数の和条件を満たすn−1個のポンプを逐次的に適用することにより行うように構成される。
エンタングルされる光子の多重対の発生は、多重キュービットの状態を読み出すための、エンタングルされる光子を適用することによる多重キュービットの遠隔エンタングルメントより、一般的なマルチモードJPC130の用途である。
での、信号の第1の群を受信するように構成され、信号の第1の群は、第1のマルチモード共振器_a 115Aの共振モードに対応し、第1のマルチモード共振器は、第1の左手系伝送線路である。
での、信号の第2の群を受信するように構成され、信号の第2の群は、第2のマルチモード共振器_b 115Bの共振モードに対応し、第2のマルチモード共振器は、第2の左手系伝送線路である。
)を第1の読み出し共振器802_1により読み出す読み出し周波数で行い得る。同時に、第1の光子対内の他方のエンタングルされる光子は、マルチモードJPC130を抜け出すことを、第2のマルチモード共振器_b 115Bのポート_b 120Bを経て、特定の第2の読み出し共振器804(例えば、第2の読み出し共振器804_1)に対応する読み出し周波数で行い、サーキュレータ1015Bに送信され得る。サーキュレータ1015Bは、その他方の光子を有する信号をバス_b 810Bに送信することを、キュービットの1つ(例えば、キュービット
)を第2の読み出し共振器804_1により読み出す読み出し周波数で行い得る。第1の光子対内の光子の初期エンタングルメントは、キュービット対
のエンタングルメントを引き起こすために利用される。別の実装形態では、第1の光子対のエンタングルされる光子を、第1のマルチモード共振器_a 115A、第2のマルチモード共振器_b 115Bから、第1の読み出し共振器802、第2の読み出し共振器804に出力する代わりに、第1の光子対の光子はそれぞれ、第1の量子系および第2の量子系それぞれに出力され得る。この事例では、第1の光子対のエンタングルされる光子はなおも、別個の第1の量子系および第2の量子系の態様をエンタングルする。
図1〜6を参照すると、この実施形態は、光子を量子ビットとして使用する量子計算スキームで有用であり、空間的に非縮退である(異なる空間的ポートを有する)が、時間的に縮退である(同じ共振周波数を有する)、2つの共振器(すなわち、第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115B)からなっているマルチモードJPC130を利用する。特にマルチモードJPC130は、第1のマルチモード共振器_a 115A内の2つの共振モードが、第2のマルチモード共振器_b 115B内の2つの共振モードと一致する共振周波数を有する、すなわち、
および
であるように構成される。さらには、この技法では、マルチモードJPC130は、増幅器としてではなく、むしろ、単一光子ダウンコンバータとして機能し、ゆえに、デバイスの所定のパラメータは、適宜、変更および再設計されるということが注目される。特に、JRM、および、左手系共振器への結合は、単一ポンプ光子が、信号光子およびアイドラ光子の1つの対にダウンコンバートされるようにエンジニアリングされる。このことは部分的には、小さな臨界電流を伴う微小Josephson接合をJRMで使用し、ポンプを「ソフト」にする(例えば、共振で適用される)ことにより達成され得る。
でのポンプ・トーンをマルチモードJPC130に適用することにより、マルチモードJPC130のJRM105との非線形相互作用によるポンプ光子のダウン・コンバージョン・プロセスの結果として発生する光子は、(第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115B内の)空間状態の、等しい重ね合わせの様態である。
と書き表され得る。
と書き換えられ得るものであり、その式は、論理キュービット「a」および「b」に対するBell状態を表し、その計算状態「0a,b」は、光子が、マルチモード共振器_aおよびマルチモード共振器_bそれぞれの、モード1で存在し、モード2で欠如している事例に対応し、その計算状態「1a,b」は、光子が、マルチモード共振器_aおよびマルチモード共振器_bそれぞれの、モード1で欠如し、モード2で存在している事例に対応する。
は、それぞれ、
に等しい)。
左手系伝送線路からなっているJPC共振器(第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115B)のモード(周波数共振モード)の密度が、それらの低周波数境界fIR=ωIR/2πの近くで大きいという特徴は、マルチモードJPC130が、周波数において近い(例えば、数十メガヘルツ)伝搬するマイクロ波モードの対の間のユニタリ周波数コンバージョンを遂行することを、(ポンプPによって)マルチモードJPC130を並列ポンプ・トーンによってポンピングすることにより行うことを可能とするものであり、それらの並列ポンプ・トーンの周波数は、(伝搬するマイクロ波信号(例えば、それぞれの第1のマルチモード共振器_a 115A、および、第2のマルチモード共振器_b 115Bへの、S信号およびI信号)の)共振周波数の間の周波数差に対応するものである。
での量子信号(例えば、S)が、第1のマルチモード共振器_a 115Aに送出され、周波数
での量子信号(例えば、I)が、第2のマルチモード共振器_b 115Bに送出されることが、伝搬するマイクロ波モードのこの対の間のユニタリ周波数コンバージョンを遂行するために行われるとき、周波数差
でのポンプ・トーンが、マルチモードJPC130に注入される。ユニタリ周波数コンバージョンという用語は、信号が、1つの周波数から別のものに、情報の損失を伴わずにコンバートされる、または換言すれば、信号が、無損失(失われる光子がない)およびコヒーレント(位相が保存される)様式でコンバートされるということを意味する。類似的に、このコンバージョン・プロセスは、伝搬するマイクロ波信号の他の対であって、適切なポンプ・ドライブを適用することにより、ポート_aおよびポート_b上で入力され、それらの他の対の周波数が、JRMに結合する共振器_aおよび共振器_bの共振モードの帯域幅の中にある、伝搬するマイクロ波信号の他の対に一般化され得る。
Claims (21)
- マルチモードJosephsonパラメトリック・コンバータをマルチモード量子限界増幅器として動作させる方法であって、
前記マルチモードJosephsonパラメトリック・コンバータにより、異なる共振周波数での、多重量子信号を同時に受信するステップであって、前記多重量子信号の第1の群が第1のマルチモード共振器により受信され、前記多重量子信号の第2の群が第2のマルチモード共振器により受信されるようにする、ステップと、
前記マルチモードJosephsonパラメトリック・コンバータにより、ポンプ信号を受信するステップと、
前記マルチモードJosephsonパラメトリック・コンバータにより、前記多重量子信号を同時に増幅させるステップと、
前記異なる共振周波数で増幅させた前記多重量子信号を反射させるステップと
を含む、方法。 - 前記第1の群は、異なる共振周波数を有する、前記第1のマルチモード共振器の共振モードのものであり、
前記第1のマルチモード共振器は、第1の左手系伝送線路であり、
前記第2の群は、異なる共振周波数を有する、前記第2のマルチモード共振器の共振モードのものであり、
前記第2のマルチモード共振器は、第2の左手系伝送線路である、請求項1に記載の方法。 - 前記ポンプ信号の各々は、前記第1の群内の前記異なる共振周波数の1つと、前記第2の群内の前記異なる共振周波数の1つとの周波数和であり、したがって、前記第1の群の前記1つ、および、前記第2の群の前記1つでの、前記多重量子信号を増幅させる、請求項2に記載の方法。
- 前記ポンプ信号は、前記第1の群内の第1の共振周波数に、前記第2の群内の第1の共振周波数をプラスした、第1の周波数和である第1のポンプ信号、前記第1の群内の第2の共振周波数に、前記第2の群内の第2の共振周波数をプラスした、第2の周波数和である第2のポンプ信号から、前記第1の群内の最後の共振周波数に、前記第2の群内の最後の共振周波数をプラスした、最後の周波数和である最後のポンプ信号までを含む、請求項2に記載の方法。
- 前記第1の群内の前記第1の共振周波数から前記最後の共振周波数までの少なくとも1つと、前記第2の群内の前記第1の共振周波数から前記最後の共振周波数までの少なくとも1つが同じである、請求項4に記載の方法。
- 前記第1の群内の前記第1の共振周波数から前記最後の共振周波数までの少なくとも1つと、前記第2の群内の前記第1の共振周波数から前記最後の共振周波数までとは異なる、請求項4に記載の方法。
- 前記異なる共振周波数での、前記多重量子信号は、約5〜15GHzの範囲に及ぶ、請求項1〜6のいずれか1項に記載の方法。
- 前記マルチモードJosephsonパラメトリック・コンバータは、前記異なる共振周波数での、前記多重量子信号を、前記第1のマルチモード共振器および前記第2のマルチモード共振器によって、同時に増幅させるように構成され、前記第1のマルチモード共振器および前記第2のマルチモード共振器は、分散非線形媒体に接続される、請求項1〜7のいずれか1項に記載の方法。
- マルチモードJosephsonパラメトリック・コンバータを動作させて、エンタングルされる光子の多重対を発生させる方法であって、
前記マルチモードJosephsonパラメトリック・コンバータ内の第1のマルチモード共振器により、前記第1のマルチモード共振器の共振モードの、異なる共振周波数での、信号の第1の群を受信するステップであって、前記第1のマルチモード共振器は、第1の左手系伝送線路である、前記受信するステップと、
前記マルチモードJosephsonパラメトリック・コンバータ内の第2のマルチモード共振器により、前記第2のマルチモード共振器の共振モードの、異なる共振周波数での、信号の第2の群を受信するステップであって、前記第2のマルチモード共振器は、第2の左手系伝送線路である、前記受信するステップと、
ポンプ信号の群を、前記第2のマルチモード共振器により受信するステップと、
前記ポンプ信号の群と分散非線形媒体との相互作用に基づいて、エンタングルされる光子の対の群を同時に発生させるステップとを含む、方法。 - 前記受信するステップにおいて、前記ポンプ信号の群は、周波数和が、前記第1のマルチモード共振器の1つの共振周波数と、前記第2のマルチモード共振器の1つの共振周波数との和であるとして、第1の周波数和から最後の周波数和までを含み、前記発生させるステップにおいて、エンタングルされる光子の前記対の群は、第1の対から最後の対までを含む、請求項9に記載の方法。
- 前記第1の周波数和は、前記第1の群の1つの共振周波数に、前記第2の群の1つの共振周波数をプラスした総和であり、前記ポンプ信号の群における第2の周波数和は、前記第1の群の別の共振周波数に、前記第2の群の別の共振周波数をプラスした総和であり、前記最後の周波数和は、前記第1の群のさらに別の共振周波数に、前記第2の群のさらに別の共振周波数をプラスした総和である、請求項10に記載の方法。
- 前記エンタングルされる光子の前記第1の対は、前記分散非線形媒体との相互作用によってダウン・コンバートされる、前記ポンプ信号の群の前記第1の周波数和のエネルギーに応じて、前記第1の群の前記1つの共振周波数での第1の光子、および、前記第2の群の前記1つの共振周波数での第1の光子に対応し、
前記エンタングルされる光子の第2の対は、前記分散非線形媒体との相互作用によってダウン・コンバートされる、前記ポンプ信号の群の前記第2の周波数和のエネルギーに応じて、前記第1の群の前記別の共振周波数での第2の光子、および、前記第2の群の前記別の共振周波数での第2の光子に対応し、
前記エンタングルされる光子の前記最後の対は、前記分散非線形媒体との相互作用によってダウン・コンバートされる、前記ポンプ信号の群の第3の周波数和のエネルギーに応じて、前記第1の群の前記さらに別の共振周波数での最後の光子、および、前記第2の群の前記さらに別の共振周波数での最後の光子に対応する、請求項11に記載の方法。 - 前記異なる共振周波数での、信号の前記第1の群、および、信号の前記第2の群は、約5〜15GHzの範囲に及ぶ、請求項9〜12のいずれか1項に記載の方法。
- 測定による多重キュービットの遠隔エンタングルメントの方法であって、
マルチモードJosephsonパラメトリック・コンバータ内の第1のマルチモード共振器により、前記第1のマルチモード共振器の共振モードと共振的な、第1のキュービット群からの読み出し信号の第1の群を受信するステップであって、前記第1のマルチモード共振器は、第1の左手系伝送線路である、前記受信するステップと、
前記マルチモードJosephsonパラメトリック・コンバータ内の第2のマルチモード共振器により、前記第2のマルチモード共振器の共振モードと共振的な、第2のキュービット群からの読み出し信号の第2の群を受信するステップであって、前記第2のマルチモード共振器は、第2の左手系伝送線路である、前記受信するステップと、
ポンプ信号を、前記第2のマルチモード共振器により受信するステップであって、前記ポンプ信号は、第1のポンプ信号から最後のポンプ信号までを含む、前記受信するステップと、
前記読み出し信号の第1の群の受信および前記読み出し信号の第2の群の受信に応答して、前記マルチモードJosephsonパラメトリック・コンバータにより、前記第1のポンプ信号に基づく第1のキュービット対から、前記最後のポンプ信号に基づく最後のキュービット対までを発生させるステップと
を含む、方法。 - 前記第1のマルチモード共振器および前記第2のマルチモード共振器は、前記マルチモードJosephsonパラメトリック・コンバータ内で結合される、請求項14に記載の方法。
- 前記第1のポンプ信号は、前記第1の群の1つの共振周波数に、前記第2の群の1つの共振周波数をプラスした総和である第1の周波数和であり、
前記ポンプ信号に含まれる第2のポンプ信号は、前記第1の群の別の共振周波数に、前記第2の群の別の共振周波数をプラスした総和である第2の周波数和であり、
前記最後のポンプ信号は、前記第1の群のさらに別の共振周波数に、前記第2の群のさらに別の共振周波数をプラスした総和である最後の周波数和である、請求項14または15に記載の方法。 - 前記読み出し信号の前記第1の群は、第1の読み出し共振器から受信され、前記第1の読み出し共振器は、前記第1のキュービット群に結合され、
前記読み出し信号の前記第2の群は、第2の読み出し共振器から受信され、前記第2の読み出し共振器は、前記第2のキュービット群に結合される、請求項16に記載の方法。 - 前記第1のキュービット群内の1つのキュービットが、前記第1の群の前記1つの共振周波数で読み出され、前記第2のキュービット群内の1つのキュービットが、前記第2の群の前記1つの共振周波数で読み出されるということが、前記第1のキュービット対が、前記ポンプ信号の前記第1のポンプ信号に応じて、前記第1のキュービット群内の前記1つのキュービット、および、前記第2のキュービット群内の前記1つのキュービットであるように行われており、
前記第1のキュービット群内の別のキュービットが、前記第1の群の前記別の共振周波数で読み出され、前記第2のキュービット群内の別のキュービットが、前記第2の群の前記別の共振周波数で読み出されるということが、第2のキュービット対が、前記ポンプ信号の前記第2のポンプ信号に応じて、前記第1のキュービット群内の前記別のキュービット、および、前記第2のキュービット群内の前記別のキュービットであるように行われており、
前記第1のキュービット群内のさらに別のキュービットが、前記第1の群の前記さらに別の共振周波数で読み出され、前記第2のキュービット群内のさらに別のキュービットが、前記第2の群の前記さらに別の共振周波数で読み出されるということが、前記最後のキュービット対が、前記ポンプ信号の前記最後のポンプ信号に応じて、前記第1のキュービット群内の前記さらに別のキュービット、および、前記第2のキュービット群内の前記さらに別のキュービットであるように行われている、請求項17に記載の方法。 - 前記第1の読み出し共振器は、前記第1のマルチモード共振器の前記共振モードと一致する読み出し共振器周波数を有し、
前記第2の読み出し共振器は、前記第2のマルチモード共振器の前記共振モードと一致する読み出し共振器周波数を有する、請求項17または18に記載の方法。 - 前記第1のマルチモード共振器の前記共振周波数、および、前記第1の読み出し共振器の前記読み出し共振器周波数の両方は、約5〜15GHzの範囲に及び、
前記第2のマルチモード共振器の前記共振周波数、および、前記第2の読み出し共振器の前記読み出し共振器周波数の両方は、約5〜15GHzの範囲に及ぶ、請求項19に記載の方法。 - マルチモードJosephsonパラメトリック・コンバータをマルチモード量子限界増幅器として動作させる方法であって、
前記マルチモードJosephsonパラメトリック・コンバータにより、異なる共振周波数での、多重量子信号を並列に受信するステップと、
前記マルチモードJosephsonパラメトリック・コンバータにより、前記多重量子信号を、前記マルチモードJosephsonパラメトリック・コンバータに適用されるポンプ信号によって、同時に増幅させるステップと、
前記異なる共振周波数で増幅させた前記多重量子信号を、前記ポンプ信号に従って反射させるステップと
を含み、前記異なる共振周波数の第1の群は、第1のマルチモード共振器の共振モードのものであり、
前記第1のマルチモード共振器は、第1の左手系伝送線路であり、
前記異なる共振周波数の第2の群は、第2のマルチモード共振器の共振モードのものであり、
前記第2のマルチモード共振器は、第2の左手系伝送線路であり、
前記ポンプ信号の各々は、前記第1の群内の前記異なる共振周波数の1つと、前記第2の群内の前記異なる共振周波数の1つとの周波数和であり、したがって、前記第1の群の前記1つ、および、前記第2の群の前記1つでの、前記多重量子信号を増幅させる、方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/871,562 US9843312B2 (en) | 2015-09-30 | 2015-09-30 | Multimode Josephson parametric converter: coupling Josephson ring modulator to metamaterial |
US14/871,562 | 2015-09-30 | ||
PCT/IB2016/055741 WO2017055988A1 (en) | 2015-09-30 | 2016-09-26 | Multimode josephson parametric converter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020130005A Division JP7116379B2 (ja) | 2015-09-30 | 2020-07-31 | bell状態を生成する方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018538680A JP2018538680A (ja) | 2018-12-27 |
JP6804020B2 true JP6804020B2 (ja) | 2020-12-23 |
Family
ID=58407003
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018513354A Active JP6804020B2 (ja) | 2015-09-30 | 2016-09-26 | マルチモードJosephsonパラメトリック・コンバータを動作させる方法および多重キュービットの遠隔エンタングルメントの方法 |
JP2020130005A Active JP7116379B2 (ja) | 2015-09-30 | 2020-07-31 | bell状態を生成する方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020130005A Active JP7116379B2 (ja) | 2015-09-30 | 2020-07-31 | bell状態を生成する方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US9843312B2 (ja) |
JP (2) | JP6804020B2 (ja) |
CN (1) | CN108140716B (ja) |
DE (1) | DE112016003872B4 (ja) |
GB (1) | GB2558831B (ja) |
WO (1) | WO2017055988A1 (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10740688B2 (en) | 2016-03-11 | 2020-08-11 | Rigetti & Co, Inc. | Impedance-matched microwave quantum circuit systems |
GB2553848B (en) * | 2016-09-19 | 2022-06-22 | Royal Holloway & Bedford New College | Quantum power sensor |
US9806711B1 (en) * | 2016-09-28 | 2017-10-31 | International Business Machines Corporation | Quantum limited josephson amplifier with spatial separation between spectrally degenerate signal and idler modes |
US9680452B1 (en) * | 2016-10-17 | 2017-06-13 | International Business Machines Corporation | Sum frequency generator in the microwave domain for quantum communication and computation applications |
US9755608B1 (en) * | 2016-10-28 | 2017-09-05 | International Business Machines Corporation | Generating squeezed states of the microwave field left-handed transmission line resonator |
US9870536B1 (en) * | 2017-04-04 | 2018-01-16 | International Business Machines Corporation | Integrated drive and readout circuit for superconducting qubits |
US10230038B2 (en) * | 2017-04-18 | 2019-03-12 | International Business Machines Corporation | Four-port circulator with frequency conversion based on nondegenerate three waving mixing josephson devices |
US10062829B1 (en) | 2017-05-05 | 2018-08-28 | International Business Machines Corporation | Isolator based on nondegenerate three-wave mixing Josephson devices |
US10826713B2 (en) * | 2017-05-18 | 2020-11-03 | International Business Machines Corporation | Qubit network secure identification |
US10535809B1 (en) * | 2017-08-30 | 2020-01-14 | Rigetti & Co, Inc. | Substrate materials for quantum processors |
US10629978B2 (en) | 2017-10-30 | 2020-04-21 | International Business Machines Corporation | Multi-path interferometric Josephson isolator based on nondegenerate three-wave mixing Josephson devices |
US10396731B2 (en) | 2017-12-01 | 2019-08-27 | International Business Machines Corporation | Selective amplification of frequency multiplexed microwave signals using cascading multi-path interferometric Josephson directional amplifiers with nonoverlapping bandwidths |
US10169722B1 (en) | 2017-12-01 | 2019-01-01 | International Business Machines Corporation | Selective isolation of frequency multiplexed microwave signals using cascading multi-path interferometric josephson isolators with nonoverlapping bandwidths |
US10311379B1 (en) * | 2017-12-01 | 2019-06-04 | International Business Machines Corporation | Isolation of frequency multiplexed microwave signals using cascading multi-path interferometric josephson isolators with nonoverlapping bandwidths |
US10511072B2 (en) | 2017-12-01 | 2019-12-17 | International Business Machines Corporation | Switching of frequency multiplexed microwave signals using cascading multi-path interferometric Josephson switches with nonoverlapping bandwidths |
US10396732B2 (en) | 2017-12-01 | 2019-08-27 | International Business Machines Corporation | Amplification of frequency multiplexed microwave signals using cascading multi-path interferometric josephson directional amplifiers with nonoverlapping bandwidths |
US10262275B1 (en) | 2017-12-01 | 2019-04-16 | International Business Machines Corporation | Selective switching of frequency multiplexed microwave signals using cascading multi-path interferometric Josephson switches with nonoverlapping bandwidths |
CN108365955B (zh) * | 2018-02-11 | 2020-12-08 | 成都信息工程大学 | 一种设备无关的高信道容量量子通信系统及方法 |
US10916821B2 (en) * | 2018-03-05 | 2021-02-09 | California Institute Of Technology | Metamaterial waveguides and shielded bridges for quantum circuits |
US10858240B2 (en) | 2018-03-05 | 2020-12-08 | California Institute Of Technology | Techniques for bidirectional transduction of quantum level signals between optical and microwave frequencies using a common acoustic intermediary |
US10622536B2 (en) | 2018-03-23 | 2020-04-14 | International Business Machines Corporation | Reducing qubit frequency collisions through lattice design |
US10944362B2 (en) | 2018-07-30 | 2021-03-09 | International Business Machines Corporation | Coupling surface acoustic wave resonators to a Josephson ring modulator |
US10320331B1 (en) | 2018-07-30 | 2019-06-11 | International Business Machines Corporation | Applications of a superconducting device that mixes surface acoustic waves and microwave signals |
US10348245B1 (en) | 2018-07-30 | 2019-07-09 | International Business Machines Corporation | Applications of surface acoustic wave resonators coupled to a josephson ring modulator |
US10707812B2 (en) * | 2018-07-30 | 2020-07-07 | International Business Machines Corporation | Superconducting device that mixes surface acoustic waves and microwave signals |
US10475983B1 (en) * | 2018-08-28 | 2019-11-12 | International Business Machines Corporation | Antenna-based qubit annealing method |
CN109581099B (zh) * | 2018-11-16 | 2019-08-02 | 合肥本源量子计算科技有限责任公司 | 一种约瑟夫森参量放大器的性能测试方法 |
US10491221B1 (en) * | 2018-11-21 | 2019-11-26 | International Business Machines Corporation | Tunable microwave resonator for qubit circuits |
US10650322B1 (en) * | 2018-12-13 | 2020-05-12 | International Business Machines Corporation | Multi-mode qubit readout and qubit state assignment |
US10608044B1 (en) * | 2019-01-07 | 2020-03-31 | Microsoft Technology Licensing, Llc | Capacitively coupled superconducting integrated circuits powered using alternating current clock signals |
US11556411B2 (en) | 2019-04-24 | 2023-01-17 | International Business Machines Corporation | Quantum code for reduced frequency collisions in qubit lattices |
CN110120792B (zh) * | 2019-06-17 | 2024-07-16 | 本源量子计算科技(合肥)股份有限公司 | 一种量子参量放大器 |
CN110518361B (zh) * | 2019-08-22 | 2021-01-12 | 西安电子科技大学 | 一种2比特相位可调的反射超表面单元 |
US11552239B2 (en) * | 2019-11-27 | 2023-01-10 | International Business Machines Corporation | Superconducting qubit and resonator system based on the Josephson ring modulator |
US11201274B2 (en) | 2019-12-05 | 2021-12-14 | International Business Machines Corporation | Entangled microwave-photon-pair generator |
US10985701B1 (en) | 2020-03-16 | 2021-04-20 | International Business Machines Corporation | Magnetic flux bias for pulse shaping of microwave signals |
US11880742B2 (en) | 2020-10-01 | 2024-01-23 | International Business Machines Corporation | Josephson double balanced coupler |
CN113206364B (zh) * | 2021-04-29 | 2022-03-25 | 浙江大学 | 一种量子信号环形器和量子芯片 |
CN113671509B (zh) * | 2021-08-16 | 2023-07-11 | 南京牧镭激光科技股份有限公司 | 一种大能量多通道激光雷达光束切换方法 |
US11888471B2 (en) | 2021-12-27 | 2024-01-30 | International Business Machines Corporation | Josephson parametric converter having impedance-matching networks |
WO2023248370A1 (ja) * | 2022-06-22 | 2023-12-28 | 日本電気株式会社 | 超伝導量子回路 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0430509A3 (en) | 1989-11-30 | 1991-11-06 | Raytheon Company | Symmetric bi-directional amplifier |
US5105166A (en) | 1989-11-30 | 1992-04-14 | Raytheon Company | Symmetric bi-directional amplifier |
JP3129552B2 (ja) * | 1992-12-02 | 2001-01-31 | 日本電信電話株式会社 | 超伝導接合素子 |
US9251522B2 (en) * | 2007-06-22 | 2016-02-02 | International Business Machines Corporation | Pixel cluster transit monitoring for detecting click fraud |
US7570075B2 (en) | 2007-06-29 | 2009-08-04 | Hypres, Inc. | Ultra fast differential transimpedance digital amplifier for superconducting circuits |
US7724083B2 (en) | 2008-08-05 | 2010-05-25 | Northrop Grumman Systems Corporation | Method and apparatus for Josephson distributed output amplifier |
CN101436713A (zh) | 2008-12-11 | 2009-05-20 | 中国科学院微电子研究所 | 一种宽频带微带天线 |
US8154340B2 (en) | 2009-02-18 | 2012-04-10 | Hollinworth Fund, LLC | Metamaterial power amplifier systems |
US8878626B2 (en) | 2010-10-20 | 2014-11-04 | California Institute Of Technology | Dispersion-engineered traveling wave kinetic inductance parametric amplifier |
US8861619B2 (en) | 2011-08-16 | 2014-10-14 | Wisconsin Alumni Research Foundation | System and method for high-frequency amplifier |
US9350460B2 (en) * | 2013-04-23 | 2016-05-24 | Raytheon Bbn Technologies Corp. | System and method for quantum information transfer between optical photons and superconductive qubits |
CA2927326C (en) * | 2013-10-15 | 2024-02-27 | Yale University | Low-noise josephson junction-based directional amplifier |
US9948254B2 (en) * | 2014-02-21 | 2018-04-17 | Yale University | Wireless Josephson bifurcation amplifier |
US9692423B2 (en) * | 2014-12-29 | 2017-06-27 | Wisconsin Alumni Research Foundation | System and method for circuit quantum electrodynamics measurement |
US9548742B1 (en) * | 2015-06-29 | 2017-01-17 | International Business Machines Corporation | Driving the common-mode of a josephson parametric converter using a three-port power divider |
US9922289B2 (en) * | 2015-09-30 | 2018-03-20 | International Business Machines Corporation | Quantum nondemolition microwave photon counter based on the cross-Kerr nonlinearity of a Josephson junction embedded in a superconducting circuit |
US9680452B1 (en) * | 2016-10-17 | 2017-06-13 | International Business Machines Corporation | Sum frequency generator in the microwave domain for quantum communication and computation applications |
-
2015
- 2015-09-30 US US14/871,562 patent/US9843312B2/en active Active
-
2016
- 2016-09-26 CN CN201680056805.5A patent/CN108140716B/zh active Active
- 2016-09-26 JP JP2018513354A patent/JP6804020B2/ja active Active
- 2016-09-26 DE DE112016003872.0T patent/DE112016003872B4/de active Active
- 2016-09-26 GB GB1805985.7A patent/GB2558831B/en active Active
- 2016-09-26 WO PCT/IB2016/055741 patent/WO2017055988A1/en active Application Filing
-
2017
- 2017-02-27 US US15/443,120 patent/US10056885B2/en active Active
- 2017-02-27 US US15/443,137 patent/US9985614B2/en active Active
-
2020
- 2020-07-31 JP JP2020130005A patent/JP7116379B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020205424A (ja) | 2020-12-24 |
CN108140716B (zh) | 2021-10-29 |
GB2558831A (en) | 2018-07-18 |
DE112016003872B4 (de) | 2021-08-12 |
US9843312B2 (en) | 2017-12-12 |
US20170093381A1 (en) | 2017-03-30 |
US9985614B2 (en) | 2018-05-29 |
US20170170813A1 (en) | 2017-06-15 |
CN108140716A (zh) | 2018-06-08 |
GB201805985D0 (en) | 2018-05-23 |
US10056885B2 (en) | 2018-08-21 |
JP2018538680A (ja) | 2018-12-27 |
DE112016003872T5 (de) | 2018-05-17 |
GB2558831B (en) | 2021-11-17 |
US20170170812A1 (en) | 2017-06-15 |
JP7116379B2 (ja) | 2022-08-10 |
WO2017055988A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6804020B2 (ja) | マルチモードJosephsonパラメトリック・コンバータを動作させる方法および多重キュービットの遠隔エンタングルメントの方法 | |
JP6905510B2 (ja) | マイクロ波装置、およびマイクロ波装置を構成する方法 | |
US11271533B2 (en) | Wireless Josephson bifurcation amplifier | |
US9947856B2 (en) | High fidelity and high efficiency qubit readout scheme | |
JP6742028B2 (ja) | 無線ジョセフソンパラメトリック変換器 | |
Pechal et al. | Superconducting switch for fast on-chip routing of quantum microwave fields | |
Abdo et al. | Directional amplification with a Josephson circuit | |
CN112368940A (zh) | 混合表面声波和微波信号的超导器件的应用 | |
JP7241446B2 (ja) | 超伝導デバイス、超伝導デバイスを形成する方法、超伝導4ポート・サーキュレータ、超伝導4ポート・サーキュレータを形成する方法、および超伝導4ポート・サーキュレータを動作させる方法 | |
Scigliuzzo et al. | Controlling atom-photon bound states in an array of Josephson-junction resonators | |
Abdo et al. | Gyrator operation using Josephson mixers | |
JP6931051B2 (ja) | マイクロ波場のスクイーズド状態を発生させるためのマイクロ波デバイスおよび方法、ならびにマイクロ波デバイスを形成する方法 | |
Westig et al. | Josephson parametric reflection amplifier with integrated directionality | |
Khalifa et al. | Nonlinearity and parametric amplification of superconducting nanowire resonators in magnetic field | |
Stokowski et al. | Towards millimeter-wave based quantum networks | |
Liu et al. | Integrating Brillouin processing with functional circuits for enhanced RF photonic processing | |
Neog et al. | Determination of resonant frequency of slot‐loaded rectangular microstrip patch antennas | |
Rameev | MW-Magnon Systems for Quantum Transduction Applications | |
Qing et al. | Broadband coplanar-waveguide-based impedance-transformed Josephson parametric amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200731 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20200807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201027 |
|
RD14 | Notification of resignation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7434 Effective date: 20201028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201030 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6804020 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |