JP6803985B2 - Outside air temperature detection system for heat pump heat source machine - Google Patents

Outside air temperature detection system for heat pump heat source machine Download PDF

Info

Publication number
JP6803985B2
JP6803985B2 JP2019532568A JP2019532568A JP6803985B2 JP 6803985 B2 JP6803985 B2 JP 6803985B2 JP 2019532568 A JP2019532568 A JP 2019532568A JP 2019532568 A JP2019532568 A JP 2019532568A JP 6803985 B2 JP6803985 B2 JP 6803985B2
Authority
JP
Japan
Prior art keywords
outside air
blower fan
air temperature
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019532568A
Other languages
Japanese (ja)
Other versions
JPWO2019021961A1 (en
Inventor
智明 田邊
智明 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Publication of JPWO2019021961A1 publication Critical patent/JPWO2019021961A1/en
Application granted granted Critical
Publication of JP6803985B2 publication Critical patent/JP6803985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明の実施形態は、ヒートポンプ熱源機の外気温度検出システムに関する。 An embodiment of the present invention relates to an outside air temperature detection system for a heat pump heat source machine.

特許文献1に記載の空調室外機は、送風ファンによって室外熱交換器に空気を流通させるべく構成され、室外熱交換器の空気流通上流側の位置であって、室外熱交換器からの輻射熱の影響を受ける位置に外気温度センサを有する。また、この空調室外機は、室外熱交換器を流通する空気量が減少したときに、検出外気温の出力を停止し、停止直前の検出外気温をそれ以後の外気温として擬似出力する外気温補正手段を備える。 The air conditioner outdoor unit described in Patent Document 1 is configured to allow air to flow to the outdoor heat exchanger by a blower fan, is located on the upstream side of the air flow of the outdoor heat exchanger, and receives radiant heat from the outdoor heat exchanger. It has an outside air temperature sensor at the affected position. In addition, this air conditioner outdoor unit stops the output of the detected outside air temperature when the amount of air flowing through the outdoor heat exchanger decreases, and pseudo-outputs the detected outside air temperature immediately before the stop as the subsequent outside air temperature. Provide correction means.

特許第3019081号公報Japanese Patent No. 3019081

ところが、上述の空調室外機では、外気温補正手段が検出外気温の出力を停止してから、この状態で長時間運転が継続されると、外気温度センサが検出した外気温の検出値が、制御に使用される外気温度として長時間更新されなくなる。このため、正確に検出された外気温度の検出値を用いて圧縮機を制御できなくなるので、冷凍サイクルの効率的な運転を実現できない恐れがある。 However, in the above-mentioned air conditioner outdoor unit, if the outside air temperature correction means stops the output of the detected outside air temperature and then the operation is continued for a long time in this state, the detected value of the outside air temperature detected by the outside air temperature sensor becomes. It will not be updated for a long time as the outside air temperature used for control. For this reason, the compressor cannot be controlled using the accurately detected value of the outside air temperature, and there is a risk that efficient operation of the refrigeration cycle cannot be realized.

本発明の実施形態は、上述の事情を考慮してなされたものであり、送風ファンから送風される空気と冷媒とを熱交換する凝縮器または蒸発器に設置された外気温度センサが、送風ファンによる送風量が低い場合にも外気温度を正確に検出できるヒートポンプ熱源機の外気温度検出システムを提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above circumstances, and the outside air temperature sensor installed in the condenser or evaporator that exchanges heat between the air blown from the blower fan and the refrigerant is the blower fan. It is an object of the present invention to provide an outside air temperature detection system for a heat pump heat source machine that can accurately detect the outside air temperature even when the amount of air blown by the heat pump is low.

本発明の実施形態におけるヒートポンプ熱源機の外気温度検出システムは、運転周波数が可変される圧縮機、凝縮器、膨張弁及び蒸発器が順次接続されて冷媒が循環する冷凍サイクルを有し、前記凝縮器と前記蒸発器の一方が送風ファンを備えると共に、この送風ファンから送風される空気と前記冷媒とを熱交換させ、更に外気温度を検出する外気温度センサを備え、この外気温度センサにて検出される外気温度の検出値に基づいて、前記圧縮機及び前記送風ファンが制御装置により制御されるヒートポンプ熱源機において、前記送風ファンによる送風量が所定値未満のときには、前記外気温度センサからの検出値が前記制御装置により制御に使用されず、前記送風ファンによる送風量が所定値未満のときの所定時間毎に、前記送風ファンによる送風量を前記所定値以上の一定値で且つそのときの送風時間を一定時間に設定して前記送風ファンを運転し、この運転終了時に前記外気温度センサにより検出された外気温度の検出値が、前記制御装置により制御に使用されるよう構成され、前記送風ファンによる前記送風量の一定値及びそのときの前記送風時間の一定時間は、前記圧縮機の前記運転周波数に応じて異なって設定されることを特徴とするものである。 The outside air temperature detection system of the heat pump heat source machine according to the embodiment of the present invention has a refrigeration cycle in which a compressor, a condenser, an expansion valve and an evaporator having variable operating frequencies are sequentially connected to circulate the refrigerant, and the condensation One of the compressor and the compressor is provided with a blower fan, and an outside air temperature sensor that exchanges heat between the air blown from the blower fan and the refrigerant and further detects the outside air temperature is provided and detected by the outside air temperature sensor. In a heat pump heat source machine in which the compressor and the blower fan are controlled by a control device based on the detected value of the outside air temperature, when the amount of air blown by the blower fan is less than a predetermined value, the detection from the outside air temperature sensor is performed. When the value is not used for control by the control device and the amount of air blown by the blower fan is less than a predetermined value, the amount of air blown by the blower fan is set to a constant value equal to or higher than the predetermined value and blown at that time. driving the blower fan is set to a predetermined time period, the detection value of the detected outside air temperature by the outside air temperature sensor during the operation end is configured to be used to control by the control unit, the blower fan The constant value of the air blowing amount and the constant time of the air blowing time at that time are set differently according to the operating frequency of the compressor .

一実施形態に係るヒートポンプ熱源機の外気温度検出システムが適用されたヒートポンプ熱源機の冷凍サイクル等を示す系統図。The system diagram which shows the refrigeration cycle of the heat pump heat source machine to which the outside air temperature detection system of the heat pump heat source machine which concerns on one Embodiment is applied. 図1の制御装置を有する制御系を示すブロック図。The block diagram which shows the control system which has the control device of FIG. 図1の外気温度センサにより検出される外気温度のゾーンを説明する説明図。Explanatory drawing explaining the zone of the outside air temperature detected by the outside air temperature sensor of FIG. 図1の第1及び第2送風ファンの回転数とファンタップとの関係を示す図表。The chart which shows the relationship between the rotation speed of the 1st and 2nd blower fans of FIG. 1 and a fan tap. 図3の外気温度の各ゾーンと図1の圧縮機の運転周波数と図4のファンタップとの関係を示し、(A)は第1送風ファンに関する図表、(B)は第2送風ファンに関する図表。The relationship between each zone of the outside air temperature in FIG. 3, the operating frequency of the compressor in FIG. 1 and the fan tap in FIG. 4 is shown, (A) is a chart for the first blower fan, and (B) is a chart for the second blower fan. .. 制御に使用される外気温度を更新するために実施される両ファン運転時のファンタップと運転継続時間とを、圧縮機の運転周波数との関係で示す図表。A chart showing the fan tap and operation duration during operation of both fans, which are carried out to update the outside air temperature used for control, in relation to the operating frequency of the compressor. 図1の制御装置が実行する主に送風ファンのメインルーチンの制御手順を示すフローチャート。FIG. 5 is a flowchart showing a control procedure of a main routine of a blower fan mainly executed by the control device of FIG. 図1の制御装置が実行する主に送風ファンのサブルーチンの制御手順を示すフローチャート。FIG. 3 is a flowchart showing a control procedure of a subroutine of a blower fan mainly executed by the control device of FIG.

以下、本発明を実施するための形態を、図面に基づき説明する。
図1は、一実施形態に係るヒートポンプ熱源機の外気温度検出システムが適用されたヒートポンプ熱源機の冷凍サイクル等を示す系統図である。この図1に示すヒートポンプ熱源機10は、圧縮機12、四方弁13、凝縮器(空気熱交換器14または水熱交換器15)、膨張弁16、蒸発器(水熱交換器15または空気熱交換器14)、四方弁13、及びアキュムレータ17が冷媒配管18により順次接続されて、冷媒が循環する冷凍サイクル11を有する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing a refrigeration cycle of a heat pump heat source machine to which the outside air temperature detection system of the heat pump heat source machine according to the embodiment is applied. The heat pump heat source machine 10 shown in FIG. 1 includes a compressor 12, a four-way valve 13, a condenser (air heat exchanger 14 or water heat exchanger 15), an expansion valve 16, and an evaporator (water heat exchanger 15 or air heat). The exchanger 14), the four-way valve 13, and the accumulator 17 are sequentially connected by the refrigerant pipe 18, and have a refrigeration cycle 11 in which the refrigerant circulates.

つまり、冷凍サイクル11は、四方弁13の冷却運転切換位置では、圧縮機12、四方弁13、凝縮器としての空気熱交換器14、膨張弁16、蒸発器としての水熱交換器15、四方弁13及びアキュムレータ17が冷媒配管18により順次接続されて、冷媒が環状に循環するよう構成される。また、冷凍サイクル11は、図示しないが、四方弁13の加熱運転切換位置では、圧縮機12、四方弁13、凝縮器としての水熱交換器15、膨張弁16、蒸発器としての空気熱交換器14、四方弁13及びアキュムレータ17が、冷媒配管18により順次接続されて、冷媒が環状に循環するよう構成される。 That is, in the refrigeration cycle 11, at the cooling operation switching position of the four-way valve 13, the compressor 12, the four-way valve 13, the air heat exchanger 14 as the condenser, the expansion valve 16, the water heat exchanger 15 as the evaporator, and the four-way valve 13 The valve 13 and the accumulator 17 are sequentially connected by the refrigerant pipe 18, so that the refrigerant circulates in an annular shape. Although not shown, the refrigeration cycle 11 is a compressor 12, a four-way valve 13, a water heat exchanger 15 as a condenser, an expansion valve 16, and air heat exchange as an evaporator at the heating operation switching position of the four-way valve 13. The vessel 14, the four-way valve 13, and the accumulator 17 are sequentially connected by the refrigerant pipe 18, so that the refrigerant circulates in a ring shape.

ここで、圧縮機12は、冷媒を圧縮して高温高圧状態として吐出する。また、本実施形態に用いられる冷媒は、例えばR410AまたはR32等である。更に、膨張弁16は、冷媒を減圧して低温低圧状態とする。また、四方弁13は、冷凍サイクル11における冷媒の流れを切り換えるものであり、前述の如く、加熱運転時と冷却運転時とで冷媒の流れを切り換える。 Here, the compressor 12 compresses the refrigerant and discharges it in a high temperature and high pressure state. The refrigerant used in this embodiment is, for example, R410A or R32. Further, the expansion valve 16 depressurizes the refrigerant to bring it into a low temperature and low pressure state. Further, the four-way valve 13 switches the flow of the refrigerant in the refrigeration cycle 11, and as described above, switches the flow of the refrigerant between the heating operation and the cooling operation.

空気熱交換器14は、この空気熱交換器14の近傍に設置された複数台、例えば2台の送風ファン(第1送風ファン21、第2送風ファン22)から送風される空気と冷媒との間で熱交換を行う。例えば、第1送風ファン21は、空気熱交換器14の下方で且つ外気温度センサ34(後述)から遠い位置に、第2送風ファン22は、空気熱交換器14の上方で且つ外気温度センサ34に近い位置にそれぞれ設置される。また、水熱交換器15は、冷媒と水(具体的には水または不凍液。以下同様)との間で熱交換を行うものであり、水配管23を介して負荷24に接続される。水配管23には、定速回転する循環ポンプ25が配設され、この循環ポンプ25の作用で、水熱交換器15と負荷24との間で水配管23により水が循環する間に、この水が冷却または加熱される。 The air heat exchanger 14 is a combination of air and refrigerant blown from a plurality of units, for example, two blower fans (first blower fan 21, second blower fan 22) installed in the vicinity of the air heat exchanger 14. Heat exchange between them. For example, the first blower fan 21 is located below the air heat exchanger 14 and far from the outside air temperature sensor 34 (described later), and the second blower fan 22 is located above the air heat exchanger 14 and outside the outside air temperature sensor 34. It will be installed at a position close to. Further, the water heat exchanger 15 exchanges heat between the refrigerant and water (specifically, water or antifreeze; the same applies hereinafter), and is connected to the load 24 via the water pipe 23. A circulation pump 25 that rotates at a constant speed is provided in the water pipe 23, and by the action of the circulation pump 25, the water is circulated between the water heat exchanger 15 and the load 24 by the water pipe 23. The water is cooled or heated.

上述の冷凍サイクル11の冷却運転時における冷媒の状態変化及び作用等を、図1を用いて説明する。圧縮機12から吐出された高温高圧の冷媒は、四方弁13を通り空気熱交換器(凝縮器)14で、送風ファン21、22により導かれた空気(外気)と熱交換して放熱し凝縮する。この空気熱交換器14で凝縮した冷媒は、膨張弁16にて低温低圧状態に変化して水熱交換器(蒸発器)15に流入する。低温低圧の冷媒は、水熱交換器15において水と熱交換して蒸発し、吸熱により水を冷却する。この水熱交換器15で蒸発した冷媒は、四方弁13を通りアキュムレータ17に流入した後に圧縮機12に戻される。 The change of state and action of the refrigerant during the cooling operation of the refrigeration cycle 11 described above will be described with reference to FIG. The high-temperature and high-pressure refrigerant discharged from the compressor 12 passes through the four-way valve 13 and exchanges heat with the air (outside air) guided by the blower fans 21 and 22 at the air heat exchanger (condenser) 14, dissipates heat and condenses. To do. The refrigerant condensed by the air heat exchanger 14 changes to a low temperature and low pressure state by the expansion valve 16 and flows into the water heat exchanger (evaporator) 15. The low-temperature low-pressure refrigerant exchanges heat with water in the water heat exchanger 15 and evaporates, and cools the water by endothermic heat. The refrigerant evaporated in the water heat exchanger 15 flows into the accumulator 17 through the four-way valve 13 and then is returned to the compressor 12.

また、冷凍サイクル11の加熱運転時における冷媒の状態変化及び作用等を説明する。圧縮機12から吐出された高温高圧の冷媒は、四方弁13を通り水熱交換器15で水と熱交換して凝縮し、放熱により水を加熱する。水熱交換器15にて凝縮した冷媒は、膨張弁16にて低温低圧状態に変化して空気熱交換器14に流入する。低温低圧の冷媒は、空気熱交換器14で、送風ファン21、22により導かれた空気(外気)と熱交換して吸熱し蒸発する。この蒸発した冷媒は、四方弁13を経てアキュムレータ17に流入した後に圧縮機12に戻される。以下の説明は、空気熱交換器14が凝縮器として機能する冷凍サイクル11の冷却運転時の場合について述べる。 In addition, the state change and action of the refrigerant during the heating operation of the refrigeration cycle 11 will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 12 passes through the four-way valve 13 and exchanges heat with water in the water heat exchanger 15 to condense and heat the water by heat dissipation. The refrigerant condensed by the water heat exchanger 15 changes to a low temperature and low pressure state by the expansion valve 16 and flows into the air heat exchanger 14. The low-temperature low-pressure refrigerant exchanges heat with the air (outside air) guided by the blower fans 21 and 22 in the air heat exchanger 14, absorbs heat, and evaporates. The evaporated refrigerant flows into the accumulator 17 via the four-way valve 13 and then is returned to the compressor 12. The following description describes a case where the air heat exchanger 14 functions as a condenser during the cooling operation of the refrigeration cycle 11.

図1に示すように、冷媒配管18には、圧縮機12の吐出側に吐出側圧力センサ26及び吐出側温度センサ28が、吸込側に吸込側圧力センサ27及び吸込側温度センサ29がそれぞれ設置される。更に、冷媒配管18には、空気熱交換器14の出口側に凝縮器出口温度センサ30が、水熱交換器15の入口側に蒸発器入口温度センサ31がそれぞれ設置される。また、水配管23には、水熱交換器15への入口側に水入口温度センサ32が、水熱交換器15からの出口側に水出口温度センサ33がそれぞれ設置される。更に、空気熱交換器14には、外気温度TOを検出する外気温度センサ34が設置されている。 As shown in FIG. 1, a discharge side pressure sensor 26 and a discharge side temperature sensor 28 are installed on the discharge side of the compressor 12, and a suction side pressure sensor 27 and a suction side temperature sensor 29 are installed on the suction side in the refrigerant pipe 18. Will be done. Further, in the refrigerant pipe 18, a condenser outlet temperature sensor 30 is installed on the outlet side of the air heat exchanger 14, and an evaporator inlet temperature sensor 31 is installed on the inlet side of the water heat exchanger 15. Further, in the water pipe 23, a water inlet temperature sensor 32 is installed on the inlet side to the water heat exchanger 15, and a water outlet temperature sensor 33 is installed on the outlet side from the water heat exchanger 15. Further, the air heat exchanger 14 is provided with an outside air temperature sensor 34 that detects the outside air temperature TO.

上述の各センサ26〜34の検出値は、図1及び図2に示す制御装置35に入力される。この制御装置35は、各センサ26〜34からの検出値に基づいて圧縮機12、四方弁13、膨張弁16、第1送風ファン21及び第2送風ファン22を制御する。 The detected values of the above-mentioned sensors 26 to 34 are input to the control device 35 shown in FIGS. 1 and 2. The control device 35 controls the compressor 12, the four-way valve 13, the expansion valve 16, the first blower fan 21, and the second blower fan 22 based on the detected values from the sensors 26 to 34.

例えば、制御装置35は、水出口温度センサ33の検出値(水出口温度TWO)が水出口温度閾値(目標水出口温度bTWOs+オフセットON)よりも大きくなると圧縮機12を起動させて、冷凍サイクル11に冷却運転を開始させる。また、制御装置35は、水入口温度センサ32の検出値(水入口温度TWI)が水入口温度閾値(目標水入口温度bTWIs)以下になったときに圧縮機12を停止させる。 For example, the control device 35 activates the compressor 12 when the detected value (water outlet temperature TWO) of the water outlet temperature sensor 33 becomes larger than the water outlet temperature threshold (target water outlet temperature bTWOs + offset ON), and the refrigeration cycle 11 To start the cooling operation. Further, the control device 35 stops the compressor 12 when the detected value (water inlet temperature TWI) of the water inlet temperature sensor 32 becomes equal to or less than the water inlet temperature threshold (target water inlet temperature bTWIs).

また、制御装置3は、外気温度センサ34の検出値に基づいて圧縮機12、第1送風ファン21及び第2送風ファン22を制御する。例えば、冷凍サイクル11の冷却運転開始時における外気温度センサ34の検出値(外気温度TO)が、所定の外気温度低閾値よりも低い場合(後述のTゾーンにある場合)には、制御装置35は第1送風ファン21を停止させ、第2送風ファン22のみを運転させる片ファン運転を実施させると共に、圧縮機12の運転周波数を低下させる。 Further, the control device 3 controls the compressor 12, the first blower fan 21, and the second blower fan 22 based on the detected value of the outside air temperature sensor 34. For example, when the detected value (outside air temperature TO) of the outside air temperature sensor 34 at the start of the cooling operation of the refrigeration cycle 11 is lower than the predetermined outside air temperature low threshold value (when it is in the T zone described later), the control device 35 Stops the first blower fan 21 to perform one-sided fan operation in which only the second blower fan 22 is operated, and lowers the operating frequency of the compressor 12.

一般に、外気温度TOが低い場合には、凝縮器としての空気熱交換器14の放熱能力が高くなるので、第1送風ファン21及び第2送風ファン22の回転数を低下させ、圧縮機12の運転周波数を低く設定することが可能になる。従って、外気温度TOが所定の外気温度低閾値よりも低いときには、第2送風ファン22のみを運転させる片ファン運転が可能になる。 Generally, when the outside air temperature TO is low, the heat dissipation capacity of the air heat exchanger 14 as a condenser is high, so that the rotation speeds of the first blower fan 21 and the second blower fan 22 are lowered, and the compressor 12 It becomes possible to set the operating frequency low. Therefore, when the outside air temperature TO is lower than the predetermined outside air temperature low threshold value, one-sided fan operation in which only the second blower fan 22 is operated becomes possible.

ここで、制御装置35は、外気温度TOを図3に示す各ゾーン(Tゾーン、Sゾーン、Rゾーン、Qゾーン、Pゾーン、Oゾーン、Uゾーン)に区分し、外気温度センサ34により検出された外気温度TOの検出値が該当するゾーン毎に、特に第1送風ファン21、第2送風ファン22を制御する。例えば、外気温度TOがTゾーンにあるときには、第2送風ファン22のみを運転する片ファン運転を行うなどである。尚、外気温度TOの各ゾーンには、昇温と降温のそれぞれのゾーン変更時に1K(ケルビン)のディファレンシャルが設けられている。これにより、ゾーンの変更時における冷凍サイクル11の急峻且つ頻繁な変更が防止される。 Here, the control device 35 divides the outside air temperature TO into each zone (T zone, S zone, R zone, Q zone, P zone, O zone, U zone) shown in FIG. 3, and detects it by the outside air temperature sensor 34. In particular, the first blower fan 21 and the second blower fan 22 are controlled for each zone to which the detected value of the outside air temperature TO corresponds. For example, when the outside air temperature TO is in the T zone, one-sided fan operation is performed in which only the second blower fan 22 is operated. Each zone of the outside air temperature TO is provided with a 1K (Kelvin) differential when the temperature rise and fall zones are changed. This prevents abrupt and frequent changes in the refrigeration cycle 11 when the zone is changed.

また、制御装置35は、第1送風ファン21、第2送風ファン22のファン回転数を図4に示すファンタップを用いて制御している。ここで、第1送風ファンの回転数をm1、m2、m3、・・・、m14、m15(m1<m2<m3<・・・<m14<m15)とすると、第2送風ファンの回転数はm1、m2―α、m3―α、・・・、m14―α、m15―αと設定されている。すなわち、第1送風ファン21の回転数は第2送風ファン22の回転数よりもαだけ高い回転数に設定されている。最低回転数では同一の回転数の設定となっている。例えば、最低回転数であるm1=200rpsとし、α=20とする場合、第1送風ファン21及び第2送風ファン22がファンタップのW5で制御されるときには、第1送風ファン21はm5=360rpsの回転数とし、第2送風ファン22はm5−α=340rpsの回転数としてそれぞれ制御される。 Further, the control device 35 controls the fan rotation speeds of the first blower fan 21 and the second blower fan 22 by using the fan tap shown in FIG. Here, assuming that the rotation speed of the first blower fan is m1, m2, m3, ..., M14, m15 (m1 <m2 <m3 <... <m14 <m15), the rotation speed of the second blower fan is It is set as m1, m2-α, m3-α, ..., M14-α, m15-α. That is, the rotation speed of the first blower fan 21 is set to a rotation speed that is α higher than the rotation speed of the second blower fan 22. At the minimum rotation speed, the same rotation speed is set. For example, when the minimum rotation speed is m1 = 200 rps and α = 20, when the first blower fan 21 and the second blower fan 22 are controlled by the fan tap W5, the first blower fan 21 has m5 = 360 rps. The rotation speed of the second blower fan 22 is controlled as m5-α = 340 rps.

また、制御装置35は、図5に示すように、第1送風ファン21、第2送風ファン22のそれぞれの回転数の最大値と最小値を、外気温度TOのゾーン及び圧縮機12の運転周波数fによって決定し、この最大値と最小値の範囲で、第1送風ファン21及び第2送風ファン22の回転数を制御する。更に制御装置35は、図5に示す第1送風ファン21、第2送風ファン22のそれぞれの回転数の最大値と最小値を、吐出側温度センサ28の検出値(吐出側温度TD)や、凝縮器出口温度センサ30の検出値(凝縮器出口温度TE)によって補正する。 Further, as shown in FIG. 5, the control device 35 sets the maximum and minimum values of the rotation speeds of the first blower fan 21 and the second blower fan 22 to the zone of the outside air temperature TO and the operating frequency of the compressor 12. It is determined by f, and the rotation speeds of the first blower fan 21 and the second blower fan 22 are controlled within the range of the maximum value and the minimum value. Further, the control device 35 sets the maximum and minimum values of the rotation speeds of the first blower fan 21 and the second blower fan 22 shown in FIG. 5 by the detection value (discharge side temperature TD) of the discharge side temperature sensor 28 and the discharge side temperature TD. It is corrected by the detected value of the condenser outlet temperature sensor 30 (condenser outlet temperature TE).

ところで、図1に示すように、第1送風ファン21、第2送風ファン22の一部を稼働させる(つまり、第1送風ファン21を停止させ且つ第2送風ファン22のみを運転させる)前述の片ファン運転時には、凝縮器としての空気熱交換器14内を流れる送風量が減少するので、この空気熱交換器14に設置された外気温度センサ34は、空気熱交換器14からの輻射熱の影響を受けて外気温度TOを正確に検出することができなくなる。このため、制御装置35は、空気熱交換器14内を流れる送風量が所定値未満になる上記片ファン運転時には、外気温度センサ34からの検出値を取り込まず、制御に使用しない。 By the way, as shown in FIG. 1, a part of the first blower fan 21 and the second blower fan 22 is operated (that is, the first blower fan 21 is stopped and only the second blower fan 22 is operated). During single fan operation, the amount of air flowing through the air heat exchanger 14 as a condenser decreases, so the outside air temperature sensor 34 installed in the air heat exchanger 14 is affected by the radiant heat from the air heat exchanger 14. As a result, the outside air temperature TO cannot be detected accurately. Therefore, the control device 35 does not take in the detected value from the outside air temperature sensor 34 and is not used for control during the operation of the single fan when the amount of air flowing through the air heat exchanger 14 is less than a predetermined value.

しかしながら、片ファン運転が長時間に及んだときには外気温度TOが大きく変動することがあり、この場合にも、外気温度センサ34にて検出された外気温度TOの検出値を制御装置35が使用できなくなると、外気温度TOの変化に応じた冷凍サイクル11の効率的な運転が実施できなくなる。 However, when one-fan operation lasts for a long time, the outside air temperature TO may fluctuate significantly, and even in this case, the control device 35 uses the detection value of the outside air temperature TO detected by the outside air temperature sensor 34. If this is not possible, efficient operation of the refrigeration cycle 11 in response to changes in the outside air temperature TO cannot be performed.

そこで、本実施形態では、制御装置35は、空気熱交換器14内を流れる空気量が所定値未満になる片ファン運転時の所定時間毎に、第1送風ファン21、第2送風ファン22の全てを稼働させる(つまり、第1送風ファン21及び第2送風ファン22を共に運転させる)両ファン運転を実施して、空気熱交換器14内を流れる送風量を前記所定値以上の一定値で且つそのときの送風時間を一定時間に設定する。 Therefore, in the present embodiment, the control device 35 uses the first blower fan 21 and the second blower fan 22 at predetermined time intervals during operation of the single fan when the amount of air flowing in the air heat exchanger 14 becomes less than a predetermined value. Both fans are operated (that is, the first blower fan 21 and the second blower fan 22 are operated together), and the amount of blown air flowing through the air heat exchanger 14 is set to a constant value equal to or higher than the predetermined value. Moreover, the ventilation time at that time is set to a fixed time.

ここで、上記所定時間毎は、外気温度が大きく変動しない時間間隔、例えば2時間毎である。また、空気熱交換器14内を流れる空気量の一定値及びそのときの送風時間の一定時間は、両ファン運転の実施が冷凍サイクル11に影響を与えず、且つ凝縮器としての空気熱交換器14に設置された外気温度センサ34が、この空気熱交換器14からの輻射熱の影響を受けることがなくなる最小の値である。 Here, every predetermined time is a time interval in which the outside air temperature does not fluctuate significantly, for example, every two hours. Further, for a constant value of the amount of air flowing in the air heat exchanger 14 and a constant time of the blowing time at that time, the execution of both fan operations does not affect the refrigeration cycle 11, and the air heat exchanger as a condenser The outside air temperature sensor 34 installed in the 14 is the minimum value that is not affected by the radiant heat from the air heat exchanger 14.

更に、空気熱交換器14内を流れる空気量の一定値及びそのときの送風時間の一定時間は、図6に示すように、圧縮機12の運転周波数fに応じて異なって設定される。例えば、空気熱交換器14内を流れる送風量の一定値を実現するファン回転数(ファンタップFT)と、そのときの送風時間の一定時間(即ち運転継続時間TA)は、圧縮機12の運転周波数fがf<30であれば、ファンタップFTがW5に、運転継続時間TAが10分になり、圧縮機12の運転周波数が高いf≧45では、ファンタップFTがW7となってファン回転数が上昇し、運転継続時間TAが6分となって短縮される。 Further, a constant value of the amount of air flowing in the air heat exchanger 14 and a constant time of the blowing time at that time are set differently according to the operating frequency f of the compressor 12, as shown in FIG. For example, the fan rotation speed (fan tap FT) that realizes a constant value of the amount of air blown through the air heat exchanger 14 and the fixed time of the air blow time at that time (that is, the operation duration TA) are the operations of the compressor 12. When the frequency f is f <30, the fan tap FT becomes W5, the operation duration TA becomes 10 minutes, and when the operating frequency of the compressor 12 is high f ≧ 45, the fan tap FT becomes W7 and the fan rotates. The number will increase, and the operation duration TA will be shortened to 6 minutes.

制御装置35は、上述のような片ファン運転の所定時間毎に両ファン運転を実施して、空気熱交換器14内を流れる送風量を一定値で且つそのときの送風時間を一定時間に設定した上記両ファン運転の終了時に、外気温度センサ34により検出された外気温度TOの検出値を取り込み、この検出値を用いて、制御に使用する外気温度TOを更新する。 The control device 35 executes both fan operations at predetermined time of single fan operation as described above, and sets the amount of air flowing through the air heat exchanger 14 to a constant value and the air blowing time at that time to a constant time. At the end of the above-mentioned operation of both fans, the detected value of the outside air temperature TO detected by the outside air temperature sensor 34 is taken in, and the outside air temperature TO used for control is updated using this detected value.

また、制御装置35は、圧縮機12の停止時においても、凝縮器としての空気熱交換器14の近傍に設置された第1送風ファン21及び第2送風ファン22を運転して(両ファン運転)、この空気熱交換器14内を流れる第1送風ファン21、第2送風ファン22による送風量を一定値で且つそのときの送風時間を一定時間に設定する。 Further, the control device 35 operates the first blower fan 21 and the second blower fan 22 installed in the vicinity of the air heat exchanger 14 as the condenser even when the compressor 12 is stopped (both fan operations). ), The amount of air blown by the first blower fan 21 and the second blower fan 22 flowing in the air heat exchanger 14 is set to a constant value, and the blower time at that time is set to a constant time.

この場合、第1送風ファン21、第2送風ファン22による送風量の一定値及びそのときの送風時間の一定時間は、空気熱交換器14に設置された外気温度センサ34が空気熱交換器14からの輻射熱の影響を受けなくなる最小の値である。また、空気熱交換器14内を流れる送風量の一定値を実現するファン回転数(ファンタップFT)と、そのときの送風時間の一定時間(即ち運転継続時間TA)は、図6に示すように、圧縮機12の運転周波数fがf=0のときであり、ファンタップFTがW5で、運転継続時間TAが3分になる。 In this case, the outside air temperature sensor 34 installed in the air heat exchanger 14 determines the constant value of the amount of air blown by the first blower fan 21 and the second blower fan 22 and the fixed time of the blower time at that time. This is the minimum value that is not affected by the radiant heat from. Further, the fan rotation speed (fan tap FT) that realizes a constant value of the amount of air blown through the air heat exchanger 14 and the fixed time of the air blow time at that time (that is, the operation duration TA) are as shown in FIG. In addition, when the operating frequency f of the compressor 12 is f = 0, the fan tap FT is W5, and the operation duration TA is 3 minutes.

制御装置35は、上述のように、圧縮機12の停止時に両ファン運転を実施し、空気熱交換器14内を流れる第1送風ファン21、第2送風ファン22による送風量を一定値で且つそのときの送風時間を一定時間に設定した上記両ファン運転の終了時に、外気温度センサ34により検出された外気温度TOの検出値を取り込み、この検出値を用いて、制御に使用する外気温度TOを更新する。 As described above, the control device 35 operates both fans when the compressor 12 is stopped, and keeps the amount of air blown by the first blower fan 21 and the second blower fan 22 flowing in the air heat exchanger 14 at a constant value. At the end of the operation of both fans in which the ventilation time at that time is set to a fixed time, the detected value of the outside air temperature TO detected by the outside air temperature sensor 34 is taken in, and this detected value is used to use the outside air temperature TO used for control. To update.

次に、制御装置35が実行する主に第1送風ファン21、第2送風ファン22の制御手順を、図7及び図8を用いて説明する。
図7に示すように、制御装置35は、水出口温度センサ33の検出値(水出口温度TWO)が、水出口温度閾値(目標水出口温度bTWOs+オフセットON)よりも大きいか否かを判断し(S1)、大きい場合に圧縮機12を起動して、冷凍サイクル11に冷却運転を開始させる(S2)。
Next, the control procedure of the first blower fan 21 and the second blower fan 22 executed by the control device 35 will be described with reference to FIGS. 7 and 8.
As shown in FIG. 7, the control device 35 determines whether or not the detected value (water outlet temperature TWO) of the water outlet temperature sensor 33 is larger than the water outlet temperature threshold (target water outlet temperature bTWOs + offset ON). (S1), when it is large, the compressor 12 is started to start the cooling operation in the refrigeration cycle 11 (S2).

次に、制御装置35は、外気温度センサ34にて検出された外気温度TOの検出値がTゾーン(図3参照)に該当するか否かを判断する(S3)。外気温度TOの検出値がTゾーン以外のSゾーン〜Uゾーン(図3参照)のいずれかにあるときには、制御装置35は、凝縮器としての空気熱交換器14の近傍に設置された第1送風ファン21及び第2送風ファン22を共に運転させる両ファン運転を実施する(S4)。 Next, the control device 35 determines whether or not the detected value of the outside air temperature TO detected by the outside air temperature sensor 34 corresponds to the T zone (see FIG. 3) (S3). When the detected value of the outside air temperature TO is in any of the S zone to the U zone (see FIG. 3) other than the T zone, the control device 35 is the first installed in the vicinity of the air heat exchanger 14 as a condenser. Both fan operations are carried out in which the blower fan 21 and the second blower fan 22 are operated together (S4).

ステップS3において、外気温度TOの検出値がTゾーンにあるときには、制御装置35は、第1送風ファン21を停止し且つ第2送風ファン22の運転させる片ファン運転を実施する(S5)。次に、制御装置35は、ステップS5の片ファン運転を開始してから所定時間、即ち片ファン運転の継続時間が例えば2時間を経過しているか否かを判断する(S6)。 In step S3, when the detected value of the outside air temperature TO is in the T zone, the control device 35 performs a one-sided fan operation in which the first blower fan 21 is stopped and the second blower fan 22 is operated (S5). Next, the control device 35 determines whether or not a predetermined time, that is, the duration of the single fan operation has elapsed, for example, 2 hours since the start of the single fan operation in step S5 (S6).

制御装置35は、ステップS6で片ファン運転の運転継続時間が例えば2時間を経過していないときには、ステップS3に戻り、経過しているときには、第1送風ファン21及び第2送風ファン22による両ファン運転を実施させる(S7)。この両ファン運転では、第2送風ファン21及び第2送風ファン22の回転数は、圧縮機12の運転周波数fにより定められたファンタップFT(図6参照)に基づいて決定される。 The control device 35 returns to step S3 when the operation duration of one-fan operation has not elapsed, for example, 2 hours in step S6, and when it has elapsed, both the first blower fan 21 and the second blower fan 22 are used. The fan operation is performed (S7). In both fan operations, the rotation speeds of the second blower fan 21 and the second blower fan 22 are determined based on the fan tap FT (see FIG. 6) determined by the operating frequency f of the compressor 12.

制御装置35は、ステップS7の両ファン運転を開始してからの運転継続時間が、運転継続時間TA(図6参照)に到達したか否かを判断する(S8)。制御装置35は、このステップS8で両ファン運転の運転継続時間が運転継続時間TAに到達していないときには、ステップS7の両ファン運転を継続する。 The control device 35 determines whether or not the operation continuation time after starting the operation of both fans in step S7 has reached the operation continuation time TA (see FIG. 6) (S8). When the operation duration of both fan operations has not reached the operation duration TA in step S8, the control device 35 continues the operation of both fans in step S7.

制御装置35は、ステップS8で両ファン運転の運転継続時間が運転継続時間TAに到達したときには、外気温度センサ34により検出された外気温度TOの検出値を取り込み、この検出値を用いて、制御に使用する外気温度TOを更新する(S4)。この更新された外気温度TOはステップS1以降の制御に使用される。 When the operation duration of both fan operations reaches the operation duration TA in step S8, the control device 35 takes in the detected value of the outside air temperature TO detected by the outside air temperature sensor 34, and controls using this detected value. The outside air temperature TO used for is updated (S4). This updated outside air temperature TO is used for the control after step S1.

図7のステップS2における冷凍サイクル11の冷却運転の開始後、制御装置35は、図8に示すように、水入口温度センサ32の検出値(水入口温度TWI)が水入口温度閾値(目標水入口温度bTWIs)以下になったか否かを判断し(S11)、以下になったときに圧縮機12を停止させる(S12)。 After the start of the cooling operation of the refrigeration cycle 11 in step S2 of FIG. 7, in the control device 35, as shown in FIG. 8, the detected value (water inlet temperature TWI) of the water inlet temperature sensor 32 is the water inlet temperature threshold (target water). It is determined whether or not the temperature is below the inlet temperature bTWIs (S11), and when the temperature is below the temperature, the compressor 12 is stopped (S12).

制御装置35は、ステップS12で圧縮機12を停止させた後に、第1送風ファン21及び第2送風ファン22による両ファン運転を実施させる(S13)。この両ファン運転では、第1送風ファン21と第2送風ファン22の回転数は、図6に示すように、圧縮機12の運転周波数fがf=0のときのファンタップFT(W5)により決定される。 After stopping the compressor 12 in step S12, the control device 35 causes both fan operations by the first blower fan 21 and the second blower fan 22 (S13). In both fan operations, the rotation speeds of the first blower fan 21 and the second blower fan 22 are determined by the fan tap FT (W5) when the operating frequency f of the compressor 12 is f = 0, as shown in FIG. It is determined.

制御装置35は、ステップS13の両ファン運転を開始してからの運転継続時間が、運転継続時間TAに到達したか否かを判断する(S14)。この運転継続時間TAは、図6に示すように、圧縮機12の運転周波数fがf=0のときの運転継続時間TA(3分)である。 The control device 35 determines whether or not the operation continuation time after starting the operation of both fans in step S13 has reached the operation continuation time TA (S14). As shown in FIG. 6, the operation duration TA is the operation duration TA (3 minutes) when the operation frequency f of the compressor 12 is f = 0.

制御装置35は、このステップS14で両ファン運転の運転継続時間が運転継続時間TAに到達していないときには、ステップS13の両ファン運転を継続させる。制御装置35は、ステップS14で両ファン運転の運転継続時間が運転継続時間TAに到達したときには、外気温度センサ34により検出された外気温度TOの検出値を取り込み、この検出値を用いて、制御に使用する外気温度TOを更新する(S15)。この更新された外気温度TOが、図7に示すステップS1以降の制御に使用される。 When the operation duration of both fan operations has not reached the operation duration TA in step S14, the control device 35 continues the operation of both fans in step S13. When the operation duration of both fan operations reaches the operation duration TA in step S14, the control device 35 takes in the detected value of the outside air temperature TO detected by the outside air temperature sensor 34, and controls using this detected value. The outside air temperature TO used for is updated (S15). This updated outside air temperature TO is used for the control after step S1 shown in FIG.

以上のように構成されたことから、本実施形態によれば、次の効果(1)〜(3)を奏する。
(1)図1及び図7に示すように、制御装置35は、凝縮器としての空気熱交換器14内で第1送風ファン21、第2送風ファン22による送風量が所定値未満となる片ファン運転時の所定時間(例えば2時間)毎に、第1送風ファン21及び第2送風ファン22を共に運転させる両ファン運転を実施させる。
Since it is configured as described above, according to the present embodiment, the following effects (1) to (3) are obtained.
(1) As shown in FIGS. 1 and 7, the control device 35 is a piece in which the amount of air blown by the first blower fan 21 and the second blower fan 22 in the air heat exchanger 14 as a condenser is less than a predetermined value. Both fan operations are performed in which the first blower fan 21 and the second blower fan 22 are operated together at predetermined time (for example, 2 hours) during the fan operation.

この両ファン運転では、第1送風ファン21及び第2送風ファン22による空気熱交換器14内の送風量を前記所定値以上の一定値で、且つそのときの送風時間を一定時間に設定する。上記送風量の一定値と送風時間の一定時間のそれぞれは、図6に示すように、圧縮機12の運転周波数fによって定まるファンタップFTと運転継続時間TAのそれぞれにより決定される。制御装置35は、上述の両ファン運転の終了時に、外気温度センサ34により検出された外気温度TOの検出値を取り込み、この検出値を用いて、制御に使用する外気温度TOを更新する。 In both fan operations, the amount of air blown in the air heat exchanger 14 by the first blower fan 21 and the second blower fan 22 is set to a constant value equal to or higher than the predetermined value, and the blower time at that time is set to a constant time. As shown in FIG. 6, each of the constant value of the blast amount and the constant time of the blast time is determined by the fan tap FT and the operation duration TA determined by the operating frequency f of the compressor 12. At the end of the above-mentioned operation of both fans, the control device 35 takes in the detected value of the outside air temperature TO detected by the outside air temperature sensor 34, and uses this detected value to update the outside air temperature TO used for control.

このため、第1送風ファン21、第2送風ファン22による空気熱交換器14内での送風量が所定値未満と低い片ファン運転時に、空気熱交換器14に設置された外気温度センサ34が空気熱交換器14からの輻射熱の影響を受ける場合であっても、この片ファン運転時の所定時間毎に実施される上述の両ファン運転の終了によって、外気温度センサ34は、空気熱交換器14からの輻射熱の影響を受けない状態で外気温度TOを正確に検出できる。この結果、正確に検出された外気温度の検出値を用いて、制御に使用する外気温度TOが更新されることで、この外気温度により圧縮機12が適正に制御されて、ヒートポンプ熱源機10の冷凍サイクル11を効率的に運転させることができる。 Therefore, the outside air temperature sensor 34 installed in the air heat exchanger 14 is operated during single fan operation in which the amount of air blown in the air heat exchanger 14 by the first blower fan 21 and the second blower fan 22 is as low as less than a predetermined value. Even if it is affected by the radiant heat from the air heat exchanger 14, the outside air temperature sensor 34 becomes the air heat exchanger by the end of the above-mentioned operation of both fans, which is carried out at predetermined time intervals during the operation of one fan. The outside air temperature TO can be accurately detected without being affected by the radiant heat from 14. As a result, the outside air temperature TO used for control is updated by using the accurately detected outside air temperature detection value, so that the compressor 12 is properly controlled by this outside air temperature, and the heat pump heat source machine 10 The refrigeration cycle 11 can be operated efficiently.

(2)図1及び図8に示すように、制御装置35は、圧縮機12の運転停止後には、第1送風ファン21及び第2送風ファン22を共に運転させて、空気熱交換器14内の送風量を一定値とし且つそのときの送風時間を一定時間とする両ファン運転を実施させる。この両ファン運転における空気熱交換器14内の送風量の一定値は、図6の圧縮機12の運転周波数fがf=0のときのファンタップFTにより決定されるファン回転数により定まり、このときの送風時間の一定時間は、図6の圧縮機12の運転周波数fがf=0のときの運転継続時間TAにより定まる。制御装置35は、上述の両ファン運転の終了時に、外気温度センサ34により検出された外気温度TOの検出値を取り込み、この検出値を用いて、制御に使用する外気温度TOを更新する。 (2) As shown in FIGS. 1 and 8, after the operation of the compressor 12 is stopped, the control device 35 operates both the first blower fan 21 and the second blower fan 22 in the air heat exchanger 14. Both fans are operated so that the amount of air blown is a constant value and the air blown time at that time is a fixed time. The constant value of the amount of air blown in the air heat exchanger 14 in both fan operations is determined by the fan rotation speed determined by the fan tap FT when the operating frequency f of the compressor 12 in FIG. 6 is f = 0. The constant time of the air blowing time is determined by the operation duration TA when the operation frequency f of the compressor 12 in FIG. 6 is f = 0. At the end of the above-mentioned operation of both fans, the control device 35 takes in the detected value of the outside air temperature TO detected by the outside air temperature sensor 34, and uses this detected value to update the outside air temperature TO used for control.

このため、圧縮機12の停止後に実施される上述の両ファン運転の終了によって、外気温度センサ34は、空気熱交換器からの熱輻射の影響を受けない状態で外気温度TOを正確に検出できる。この結果、正確に検出された外気温度TOの検出値を用いて、制御に使用される外気温度TOが更新されることで、この外気温度TOにより圧縮機12が適正に制御されて、ヒートポンプ熱源機10の冷凍サイクル11を効率的に運転させることができる。 Therefore, by ending the above-mentioned operation of both fans, which is carried out after the compressor 12 is stopped, the outside air temperature sensor 34 can accurately detect the outside air temperature TO without being affected by heat radiation from the air heat exchanger. .. As a result, the outside air temperature TO used for control is updated by using the accurately detected value of the outside air temperature TO, so that the compressor 12 is properly controlled by the outside air temperature TO, and the heat pump heat source. The refrigeration cycle 11 of the machine 10 can be operated efficiently.

(3)図6に示すように、制御に使用される外気温度TOを更新するために実施する両ファン運転では、圧縮機12の運転周波数fがf≧45、30≦f<45と高い場合の方が、f<30と低い場合に比べて、両ファン運転の運転継続時間TAを短縮できる。このため、特に、外気温度が低く本来片ファン運転を実施するべきときに、上述のように両ファン運転を短縮することで、ヒートポンプ熱源機10の冷凍サイクル11を効率的に運転できる。 (3) As shown in FIG. 6, in the operation of both fans carried out to update the outside air temperature TO used for control, the operating frequencies f of the compressor 12 are as high as f ≧ 45 and 30 ≦ f <45. Is able to shorten the operation duration TA of both fan operations as compared with the case where f <30 is low. Therefore, in particular, when the outside air temperature is low and one fan operation should be originally performed, the refrigeration cycle 11 of the heat pump heat source machine 10 can be efficiently operated by shortening the operation of both fans as described above.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and the replacements and changes thereof can be made. , It is included in the scope and gist of the invention, and is also included in the scope of the invention described in the claims and the equivalent scope thereof.

例えば、本実施形態では、外気温度センサ34が設置される空気熱交換器14が凝縮器として機能する場合を述べたが、この空気熱交換器14を蒸発器として機能させる場合においても、片ファン運転時の所定時間毎にまたは圧縮機12の停止時に、両ファン運転を、その送風量が一定値で且つそのときの送風時間が一定時間となるように実施して、この両ファン運転終了時に外気温度センサ34により検出された外気温度TOの検出値を用いて、制御に使用される外気温度TOを更新してもよい。 For example, in the present embodiment, the case where the air heat exchanger 14 in which the outside air temperature sensor 34 is installed functions as a condenser has been described, but even when the air heat exchanger 14 functions as an evaporator, one fan Both fans are operated at predetermined time intervals during operation or when the compressor 12 is stopped so that the amount of air blown is a constant value and the air blow time at that time is a certain time, and at the end of the operation of both fans. The outside air temperature TO used for control may be updated by using the detected value of the outside air temperature TO detected by the outside air temperature sensor 34.

10…ヒートポンプ熱源機、11…冷凍サイクル、12…圧縮機、14…空気熱交換器(凝縮器、蒸発器)、15…水熱交換器(蒸発器、凝縮器)、16…膨張弁、21…第1送風ファン、22…第2送風ファン、34…外気温度センサ、35…制御装置、f…運転周波数、TO…外気温度。 10 ... Heat pump heat source machine, 11 ... Refrigeration cycle, 12 ... Compressor, 14 ... Air heat exchanger (condenser, evaporator), 15 ... Water heat exchanger (evaporator, condenser), 16 ... Expansion valve, 21 ... 1st blower fan, 22 ... 2nd blower fan, 34 ... outside air temperature sensor, 35 ... control device, f ... operating frequency, TO ... outside air temperature.

Claims (3)

運転周波数が可変される圧縮機、凝縮器、膨張弁及び蒸発器が順次接続されて冷媒が循環する冷凍サイクルを有し、
前記凝縮器と前記蒸発器の一方が送風ファンを備えると共に、この送風ファンから送風される空気と前記冷媒とを熱交換させ、更に外気温度を検出する外気温度センサを備え、
この外気温度センサにて検出される外気温度の検出値に基づいて、前記圧縮機及び前記送風ファンが制御装置により制御されるヒートポンプ熱源機において、
前記送風ファンによる送風量が所定値未満のときには、前記外気温度センサからの検出値が前記制御装置により制御に使用されず、
前記送風ファンによる送風量が所定値未満のときの所定時間毎に、前記送風ファンによる送風量を前記所定値以上の一定値で且つそのときの送風時間を一定時間に設定して前記送風ファンを運転し、この運転終了時に前記外気温度センサにより検出された外気温度の検出値が、前記制御装置により制御に使用されるよう構成され
前記送風ファンによる前記送風量の一定値及びそのときの前記送風時間の一定時間は、前記圧縮機の前記運転周波数に応じて異なって設定されることを特徴とするヒートポンプ熱源機の外気温度検出システム。
It has a refrigeration cycle in which a compressor, a condenser, an expansion valve and an evaporator whose operating frequency is variable are sequentially connected to circulate the refrigerant.
One of the condenser and the evaporator is provided with a blower fan, and is also provided with an outside air temperature sensor that exchanges heat between the air blown from the blower fan and the refrigerant and further detects the outside air temperature.
In the heat pump heat source machine in which the compressor and the blower fan are controlled by the control device based on the detected value of the outside air temperature detected by the outside air temperature sensor.
When the amount of air blown by the blower fan is less than a predetermined value, the value detected from the outside air temperature sensor is not used for control by the control device.
Every predetermined time when the amount of air blown by the blower fan is less than a predetermined value, the amount of air blown by the blower fan is set to a constant value equal to or higher than the predetermined value, and the air blow time at that time is set to a certain time. It is configured so that the detection value of the outside air temperature detected by the outside air temperature sensor at the end of the operation is used for control by the control device .
An outside air temperature detection system for a heat pump heat source machine, characterized in that a constant value of the amount of air blown by the blower fan and a certain time of the air blow time at that time are set differently according to the operating frequency of the compressor. ..
前記送風ファンが複数台設置され、
前記送風ファンの一部が稼働されることで、この送風ファンによる送風量が所定値未満になり、前記送風ファンの全てが稼働されることで、この送風ファンによる送風量が一定値で且つそのときの送風時間が一定時間に設定されることを特徴とする請求項に記載のヒートポンプ熱源機の外気温度検出システム。
Multiple blower fans are installed,
When a part of the blower fan is operated, the amount of air blown by the blower fan becomes less than a predetermined value, and when all of the blower fans are operated, the amount of air blown by the blower fan is a constant value and its value. The outside air temperature detection system for a heat pump heat source machine according to claim 1 , wherein the ventilation time is set to a fixed time.
前記送風ファンによる送風量が一定値で且つそのときの送風時間が一定時間に設定されることで、凝縮器または蒸発器に設置された外気温度センサが、前記凝縮器または前記蒸発器からの輻射熱の影響を受けなくなるよう構成されたことを特徴とする請求項1または2に記載のヒートポンプ熱源機の外気温度検出システム。 When the amount of air blown by the blower fan is set to a constant value and the blowing time at that time is set to a fixed time, the outside air temperature sensor installed in the condenser or the evaporator causes the radiant heat from the condenser or the evaporator. The outside air temperature detection system of the heat pump heat source machine according to claim 1 or 2 , wherein the system is configured so as not to be affected by the above.
JP2019532568A 2017-07-24 2018-07-20 Outside air temperature detection system for heat pump heat source machine Active JP6803985B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017142773 2017-07-24
JP2017142773 2017-07-24
PCT/JP2018/027300 WO2019021961A1 (en) 2017-07-24 2018-07-20 Outside air temperature detection system for heat pump heat source machine

Publications (2)

Publication Number Publication Date
JPWO2019021961A1 JPWO2019021961A1 (en) 2020-04-02
JP6803985B2 true JP6803985B2 (en) 2020-12-23

Family

ID=65041199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532568A Active JP6803985B2 (en) 2017-07-24 2018-07-20 Outside air temperature detection system for heat pump heat source machine

Country Status (2)

Country Link
JP (1) JP6803985B2 (en)
WO (1) WO2019021961A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078036B2 (en) * 2001-02-20 2008-04-23 東芝キヤリア株式会社 Heat pump water heater
JP2008202908A (en) * 2007-02-22 2008-09-04 Mitsubishi Heavy Ind Ltd Air conditioner
JP6405181B2 (en) * 2014-10-09 2018-10-17 東芝キヤリア株式会社 Heat pump type heat source device

Also Published As

Publication number Publication date
WO2019021961A1 (en) 2019-01-31
JPWO2019021961A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP6447742B2 (en) Refrigeration cycle equipment
JP6338761B2 (en) Air conditioning system
JP2020051667A (en) Air conditioner
JP7148344B2 (en) air conditioner
JP6465711B2 (en) Refrigeration cycle equipment
JP5641875B2 (en) Refrigeration equipment
WO2016016913A1 (en) Air conditioning device
JPWO2019003306A1 (en) Air conditioner
JP7257782B2 (en) air conditioning system
CN104937352A (en) Binary refrigeration cycle device
JP6950191B2 (en) Air conditioner
JPWO2017163296A1 (en) Refrigeration equipment
WO2019026270A1 (en) Refrigeration cycle device and heat source unit
EP2472188B1 (en) Heat pump interoperating hot water feeding apparatus
JP2008025901A (en) Air conditioner
JP2006194526A (en) Air conditioner
JP2014142168A (en) Freezer
JP6803985B2 (en) Outside air temperature detection system for heat pump heat source machine
JP2016008740A (en) Air conditioner
JP7058717B2 (en) Heat pump system
JP5897215B1 (en) refrigerator
JP2011027347A (en) Air conditioner
KR101303239B1 (en) Air conditioner and method for controlling the same
US20200263889A1 (en) Air conditioning system
JP6856470B2 (en) Heat pump heat source machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201201

R150 Certificate of patent or registration of utility model

Ref document number: 6803985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150