JP6803273B2 - Differential reducer - Google Patents

Differential reducer Download PDF

Info

Publication number
JP6803273B2
JP6803273B2 JP2017050241A JP2017050241A JP6803273B2 JP 6803273 B2 JP6803273 B2 JP 6803273B2 JP 2017050241 A JP2017050241 A JP 2017050241A JP 2017050241 A JP2017050241 A JP 2017050241A JP 6803273 B2 JP6803273 B2 JP 6803273B2
Authority
JP
Japan
Prior art keywords
input shaft
bearing
eccentric
gear
differential speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050241A
Other languages
Japanese (ja)
Other versions
JP2018155264A (en
Inventor
国弘 原口
国弘 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Corp
Original Assignee
Nissei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Corp filed Critical Nissei Corp
Priority to JP2017050241A priority Critical patent/JP6803273B2/en
Priority to CN201880009531.3A priority patent/CN110234907B/en
Priority to PCT/JP2018/009492 priority patent/WO2018168763A1/en
Publication of JP2018155264A publication Critical patent/JP2018155264A/en
Application granted granted Critical
Publication of JP6803273B2 publication Critical patent/JP6803273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Description

本発明は、内歯歯車と、内歯歯車に内接して噛合する外歯歯車とを含む内接揺動式の差動減速機に関する。 The present invention relates to an inscribed swing type differential speed reducer including an internal gear and an external gear that inscribes and meshes with the internal gear.

差動減速機は、内歯歯車と、内歯歯車に内接して噛合する外歯歯車とを含み、入力軸からの回転入力によって内歯歯車内で外歯歯車が偏心運動することで、両歯車間に相対回転を生じさせ、偏心運動と相対回転との回転数差による減速比で出力軸へ回転を出力するものである。例えば特許文献1には、前後一対の支持フランジに一対の軸受を介して中空の入力軸を軸支し、軸受の間で入力軸の外周に設けた前後一対の偏心体に、ころ軸受を介して2つの外歯歯車をそれぞれ異なる位相で配置して、支持フランジ間に、各外歯歯車に設けた内ピン孔を遊挿する内ピンを架設してなる動力伝達装置が開示されている。すなわち、入力軸が回転すると、偏心体を介して外歯歯車を内歯歯車内で揺動(偏心運動)させて内歯と外歯との歯数差分の相対回転成分を取り出すことで支持フランジへ出力されるもので、特にここでは、入力軸にプーリやギヤ等の入力部材を堅牢に固定するために、入力軸の外径を、動力入力側に向かって、軸受に対応する部分ごとに段階的に拡大させている。 The differential speed reducer includes an internal gear and an external gear that meshes inscribed with the internal gear, and the external gear moves eccentrically in the internal gear due to rotational input from the input shaft. Relative rotation is generated between the gears, and the rotation is output to the output shaft at a reduction ratio due to the difference in rotation speed between the eccentric movement and the relative rotation. For example, in Patent Document 1, a hollow input shaft is pivotally supported on a pair of front and rear support flanges via a pair of bearings, and a pair of front and rear eccentric bodies provided on the outer periphery of the input shaft between the bearings are provided with roller bearings. A power transmission device is disclosed in which two external gears are arranged in different phases, and an internal pin for loosely inserting an internal pin hole provided in each external gear is installed between support flanges. That is, when the input shaft rotates, the external gear is oscillated (eccentric) in the internal gear via the eccentric body to extract the relative rotation component of the difference in the number of teeth between the internal and external teeth, thereby extracting the support flange. In particular, in order to firmly fix input members such as pulleys and gears to the input shaft, the outer diameter of the input shaft is set toward the power input side for each part corresponding to the bearing. It is expanding in stages.

国際公開第2006/085536号International Publication No. 2006/08536

差動減速機の強度を上げるためには、外歯歯車を軸支するころの外径を大きくするのが有効である。しかし、上記特許文献1の発明においては、入力軸の外径が段階的に拡大しているため、ころ軸受の内径は、入力軸の軸受の内径よりも大きくなり、ころの外径に制約を受け、強度アップが難しかった。 In order to increase the strength of the differential speed reducer, it is effective to increase the outer diameter of the rollers that support the external gears. However, in the invention of Patent Document 1, since the outer diameter of the input shaft is gradually expanded, the inner diameter of the roller bearing becomes larger than the inner diameter of the bearing of the input shaft, and the outer diameter of the roller is restricted. It was difficult to increase the strength.

そこで、本発明は、外歯歯車の軸支にころ軸受を採用しても、ころの外径を大きくして強度アップを図ることができる差動減速機を提供することを目的としたものである。 Therefore, an object of the present invention is to provide a differential speed reducer capable of increasing the outer diameter of the roller and increasing the strength even if a roller bearing is used for the shaft support of the external gear. is there.

上記目的を達成するために、請求項1に記載の発明は、ケーシング内に設けられる内歯歯車と、内歯歯車を同軸で貫通する入力軸と、入力軸に設けた偏心部に偏心部用軸受を介して外装され、内歯歯車に内接して噛合する外歯歯車と、外歯歯車を遊挿するピンを備えて入力軸との間に入力軸用軸受を介在させた出力部と、を含んでなり、入力軸の回転によって内歯歯車に対して外歯歯車が偏心運動することで、内歯歯車と外歯歯車との歯数差と外歯歯車の歯数とに基づく減速比でピンを介して出力部を回転させる差動減速機であって、
偏心部用軸受を総ころとすると共に、入力軸用軸受を、入力軸の軸方向で外歯歯車の前後に一対配置し、入力軸における偏心部の外径を、入力軸用軸受が設けられる部分の外径よりも小さくしたことを特徴とする。
請求項2に記載の発明は、請求項1の構成において、入力軸用軸受と偏心部用軸受との間で入力軸の外周に、入力軸用軸受の側面に当接して入力軸の軸方向への移動を規制する抜け止め部を設けて、偏心部は、全周に亘って抜け止め部よりも低く形成されていることを特徴とする。
請求項3に記載の発明は、請求項2の構成において、抜け止め部は、入力軸に同軸で一体形成される円板形状であることを特徴とする。
請求項4に記載の発明は、請求項1乃至3の何れかの構成において、偏心部及び偏心部用軸受、外歯歯車は複数組設けられて、各偏心部の外径は全て等しいことを特徴とする。
請求項5に記載の発明は、請求項4の構成において、各外歯歯車及び各偏心部用軸受の形状は各々共通であることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is for an internal gear provided in a casing, an input shaft coaxially penetrating the internal gear, and an eccentric portion provided on the input shaft. An output unit having an input shaft bearing interposed between an external gear that is externally mounted via a bearing and meshes with the internal gear inwardly and an input shaft having a pin for loosely inserting the external gear. The reduction ratio is based on the difference in the number of teeth between the internal gear and the external gear and the number of teeth of the external gear due to the eccentric movement of the external gear with respect to the internal gear due to the rotation of the input shaft. It is a differential speed reducer that rotates the output part via a pin.
An eccentric bearing is used as a full roller, and a pair of input shaft bearings are arranged in front of and behind the external gear in the axial direction of the input shaft , and the outer diameter of the eccentric portion on the input shaft is set to the input shaft bearing. The feature is that it is smaller than the outer diameter of the part.
According to the second aspect of the present invention, in the configuration of the first aspect, the input shaft bearing is in contact with the outer periphery of the input shaft between the input shaft bearing and the eccentric bearing and the side surface of the input shaft bearing in the axial direction of the input shaft. A retaining portion for restricting movement to the retaining portion is provided, and the eccentric portion is formed lower than the retaining portion over the entire circumference.
The invention according to claim 3 is characterized in that, in the configuration of claim 2, the retaining portion has a disk shape integrally formed coaxially with the input shaft.
The invention according to claim 4 is that, in any of the configurations of claims 1 to 3, a plurality of sets of eccentric portions, bearings for eccentric portions, and external gears are provided, and the outer diameters of the eccentric portions are all equal. It is a feature.
The invention according to claim 5 is characterized in that, in the configuration of claim 4, the shapes of the external gears and the bearings for the eccentric portions are the same.

請求項1に記載の発明によれば、偏心部用軸受を総ころとすると共に、入力軸用軸受を、入力軸の軸方向で外歯歯車の前後に一対配置し、入力軸における偏心部の外径を、入力軸用軸受が設けられる部分の外径よりも小さくしたことで、ころの外径を大きくすることができ、強度アップに繋がる。
請求項2に記載の発明によれば、請求項1の効果に加えて、入力軸の外周に、入力軸用軸受の側面に当接して入力軸の軸方向への移動を規制する抜け止め部を設けて、偏心部を、全周に亘って抜け止め部よりも低く形成したことで、総ころとしても偏心部の全周に亘ってころの軸方向への移動を規制できる。また、抜け止め部を、入力軸用軸受ところとの双方の抜け止めに共用できる。
請求項3に記載の発明によれば、請求項2の効果に加えて、抜け止め部を、入力軸に同軸で一体形成される円板形状としているので、抜け止め部を旋盤等によって容易に加工可能となる。
請求項4に記載の発明によれば、請求項1乃至3の何れかの効果に加えて、偏心部及び偏心部用軸受、外歯歯車を複数組設けて、各偏心部の外径を全て等しくしているので、各偏心部に同じ偏心部用軸受を配置することができ、各偏心部用軸受のころの外径を大きくすることができる。
請求項5に記載の発明によれば、請求項4の効果に加えて、各外歯歯車及び各偏心部用軸受の形状を各々共通としているので、一層のコストダウンが期待できる。
According to the invention of claim 1, the eccentric bearing is a full roller, and a pair of input shaft bearings are arranged in front of and behind the external gear in the axial direction of the input shaft to form an eccentric bearing on the input shaft . By making the outer diameter smaller than the outer diameter of the portion where the input shaft bearing is provided, the outer diameter of the roller can be increased, which leads to an increase in strength.
According to the second aspect of the present invention, in addition to the effect of the first aspect, a retaining portion that abuts on the outer periphery of the input shaft and abuts on the side surface of the bearing for the input shaft to regulate the movement of the input shaft in the axial direction. By providing the eccentric portion to be lower than the retaining portion over the entire circumference, it is possible to regulate the movement of the roller in the axial direction over the entire circumference of the eccentric portion as a total roller. Further, the retaining portion can be shared with both the retaining portion and the bearing for the input shaft.
According to the third aspect of the present invention, in addition to the effect of the second aspect, since the retaining portion has a disk shape integrally formed coaxially with the input shaft, the retaining portion can be easily formed by a lathe or the like. It can be processed.
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3, a plurality of sets of eccentric portions, bearings for eccentric portions, and external gears are provided, and the outer diameter of each eccentric portion is all set. Since they are made equal, the same eccentric bearing can be arranged in each eccentric portion, and the outer diameter of the roller of each eccentric bearing can be increased.
According to the fifth aspect of the present invention, in addition to the effect of the fourth aspect, since the shapes of the external gears and the bearings for the eccentric parts are the same, further cost reduction can be expected.

差動減速機のシリーズの中央縦断面図である。It is a central vertical sectional view of a series of differential reduction gears. (A)〜(C)は、図1のA−A線における差動減速機1A〜1Cの断面図をそれぞれ示す。(A) to (C) show cross-sectional views of the differential speed reducers 1A to 1C in the line AA of FIG. 図1のF部拡大図である。It is an enlarged view of F part of FIG. 内歯歯車4の転位係数が異なる場合の効率を比較したグラフである。It is a graph which compared the efficiency when the dislocation coefficient of the internal gear 4 is different.

以下、本発明の実施の形態を図面に基づいて説明する。
図1,2は、3種類の差動減速機1A,1B,1CからなるシリーズSを示す。但し、差動減速機1A〜1Cの構造は略同じであるため、図1では代表として差動減速機1Aの中央縦断面図を示し、図2(A)〜(C)では、図1のA−A線における差動減速機1A〜1Cの断面図をそれぞれ示している。また、差動減速機1A〜1Cごとに構成部を区別する際は、14A〜14Cのように英字を付記する。
差動減速機1A(1B,1C)において、2はケーシングで、このケーシング2は、内側に内歯歯車4を一体に設けた円筒状の中ケース3と、中ケース3における軸方向の一方の端面(入力側、図1の右側)に配置される円盤状のケースカバー5と、他方の端面(出力側、図1の左側)に配置される円筒状の外ケース6とからなる。この中ケース3とケースカバー5と外ケース6とは、ケースカバー5側から中ケース3を貫通して外ケース6に螺合される複数のボルト7,7・・により一体に結合されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIGS. 1 and 2 show a series S composed of three types of differential speed reducers 1A, 1B, and 1C. However, since the structures of the differential speed reducers 1A to 1C are substantially the same, FIG. 1 shows a central longitudinal sectional view of the differential speed reducer 1A as a representative, and FIGS. 2 (A) to 2 (C) show FIG. Cross-sectional views of the differential speed reducers 1A to 1C on the AA line are shown. Further, when distinguishing the components for each of the differential speed reducers 1A to 1C, alphabetic characters such as 14A to 14C are added.
In the differential speed reducer 1A (1B, 1C), reference numeral 2 denotes a casing, which is a cylindrical inner case 3 in which an internal gear 4 is integrally provided inside and one of the axial directions in the inner case 3. It consists of a disk-shaped case cover 5 arranged on an end surface (input side, right side in FIG. 1) and a cylindrical outer case 6 arranged on the other end surface (output side, left side in FIG. 1). The inner case 3, the case cover 5, and the outer case 6 are integrally connected by a plurality of bolts 7, 7, ... Which penetrate the inner case 3 from the case cover 5 side and are screwed into the outer case 6. ..

外ケース6の内側には、外側軸受としてのクロスローラベアリング8を介して、円盤状の出力軸9が回転可能に軸支されている。また、ケーシング2の内側には、入力軸用軸受となるボールベアリング10,11を介して、中空筒状の入力軸12が同軸で回転可能に軸支されている。但し、入力側の内側軸受としてのボールベアリング10は、外輪10aの軸方向入力側半分がケースカバー5に支持され、外輪10aの軸方向出力側半分が後述するキャリア24に支持されている。
この入力軸12において、ボールベアリング10,11が配置される軸支部13,13の間には、外径が互いに等しく、最大偏心側が互いに180度異なる位相となる一対の偏心部14A,14A(14B,14B及び14C,14C)が軸方向に隣接して形成されている。各偏心部14A,14A(14B,14B及び14C,14C)には、偏心部用軸受として、全周に亘って配設される横断面円形状の複数のニードル16,16・・からなる総ころのニードルベアリング15が設けられて、ニードルベアリング15を介して、同じ外形の外歯歯車17A,17A(17B,17B及び17C,17C)がそれぞれ回転可能に外装されている。よって、各ニードル16は、内側の偏心部14A〜14Cと外側の外歯歯車17A〜17Cとに直接当接している。
Inside the outer case 6, a disk-shaped output shaft 9 is rotatably supported via a cross roller bearing 8 as an outer bearing. Further, inside the casing 2, a hollow tubular input shaft 12 is coaxially and rotatably supported via ball bearings 10 and 11 which are bearings for the input shaft. However, in the ball bearing 10 as the inner bearing on the input side, the axial input side half of the outer ring 10a is supported by the case cover 5, and the axial output side half of the outer ring 10a is supported by the carrier 24 described later.
In this input shaft 12, a pair of eccentric portions 14A, 14A (14B) having outer diameters equal to each other and having a phase in which the maximum eccentric side is 180 degrees different from each other between the shaft support portions 13 and 13 on which the ball bearings 10 and 11 are arranged , 14B and 14C, 14C) are formed adjacent to each other in the axial direction. Each of the eccentric portions 14A and 14A (14B, 14B and 14C, 14C) is a total roller composed of a plurality of needles 16 and 16 having a circular cross section arranged over the entire circumference as bearings for the eccentric portion. Needle bearings 15 are provided, and external gears 17A and 17A (17B, 17B and 17C, 17C) having the same outer shape are rotatably exteriorized via the needle bearings 15. Therefore, each needle 16 is in direct contact with the inner eccentric portions 14A to 14C and the outer external gears 17A to 17C.

ここで、入力軸12において、ボールベアリング10,11が配置される軸支部13の外径D1と、ニードルベアリング15が設けられる偏心部14A(14B,14C)の外径D2とは、D1>D2の関係となるように形成されている。このように偏心部14A(14B,14C)の外径D2を小さくしたことで、この外周に設けられる各ニードル16のサイズ(外径)を大きくすることができる。また、軸支部13と偏心部14A(14B,14C)との間には、全周に亘って偏心部14A(14B,14C)よりも外周側へ高く突出する円板状の抜け止め部18がそれぞれ周設されている。この抜け止め部18により、全周に亘ってニードル16の軸方向外側への移動及びボールベアリング10,11の軸方向内側への移動が規制される。この結果、入力軸12の軸方向への移動も規制される。ボールベアリング10の外側への移動は、ケースカバー5の内周縁に設けられて外輪10aに外側から重なる被り部19によって規制され、ボールベアリング11の外側への移動は、出力軸9に設けられた段部20によって規制される。 Here, in the input shaft 12, the outer diameter D1 of the shaft support portion 13 on which the ball bearings 10 and 11 are arranged and the outer diameter D2 of the eccentric portion 14A (14B, 14C) on which the needle bearing 15 is provided are D1> D2. It is formed so as to have a relationship of. By reducing the outer diameter D2 of the eccentric portions 14A (14B, 14C) in this way, the size (outer diameter) of each needle 16 provided on the outer circumference can be increased. Further, between the shaft support portion 13 and the eccentric portion 14A (14B, 14C), a disk-shaped retaining portion 18 projecting higher toward the outer peripheral side than the eccentric portion 14A (14B, 14C) over the entire circumference is provided. Each is installed around. The retaining portion 18 restricts the movement of the needle 16 outward in the axial direction and the movement of the ball bearings 10 and 11 inward in the axial direction over the entire circumference. As a result, the movement of the input shaft 12 in the axial direction is also restricted. The movement of the ball bearing 10 to the outside is regulated by a covering portion 19 provided on the inner peripheral edge of the case cover 5 and overlapping the outer ring 10a from the outside, and the movement of the ball bearing 11 to the outside is provided on the output shaft 9. It is regulated by the step 20.

外歯歯車17A〜17Cは、図2に示すように、内歯歯車4の歯数よりも少ない歯数を有して内歯歯車4に偏心位置で内接している。ここでは差動減速機1A〜1Cにおいて、各内歯歯車4は、歯数を120とした同形状のものが使用されている。これに対して各外歯歯車17A〜17Cでは、外歯歯車17Aが、歯数を114として内歯歯車4との歯数差を6として、減速比が1/19となり、外歯歯車17Bが、歯数を116として内歯歯車4との歯数差を4として、減速比が1/29となり、外歯歯車17Cが、歯数を118として内歯歯車4との歯数差を2として、減速比が1/59となっている。よって、外歯歯車17A〜17Cのそれぞれの中心O2(偏心部14A〜14Cの中心)の内歯歯車4の中心O1(入力軸12の軸心)からの偏心量δ1、δ2、δ3は、δ1>δ2>δ3の関係となっている。
ここで、内歯歯車4の内歯と外歯歯車17の外歯とは、それぞれインボリュート歯型となっており、内歯歯車4の転位係数は、1を超えて1.9までの間に設定されている。
As shown in FIG. 2, the external gears 17A to 17C have a number of teeth smaller than that of the internal gear 4 and are inscribed in the internal gear 4 at an eccentric position. Here, in the differential speed reducers 1A to 1C, the internal gears 4 having the same shape with 120 teeth are used. On the other hand, in each of the external tooth gears 17A to 17C, the external tooth gear 17A has 114 teeth, the difference in the number of teeth from the internal tooth gear 4 is 6, the reduction ratio is 1/19, and the external tooth gear 17B has. , The number of teeth is 116, the difference in the number of teeth from the internal gear 4 is 4, the reduction ratio is 1/29, and the external gear 17C has the number of teeth 118 and the difference in the number of teeth from the internal gear 4 is 2. , The reduction ratio is 1/59. Therefore, the eccentricities δ1, δ2, and δ3 from the center O1 (axis center of the input shaft 12) of the internal gear 4 of the respective centers O2 of the external gears 17A to 17C (centers of the eccentric portions 14A to 14C) are δ1. The relationship is>δ2> δ3.
Here, the internal teeth of the internal gear 4 and the external teeth of the external gear 17 have involute tooth types, respectively, and the displacement coefficient of the internal gear 4 exceeds 1 and is between 1.9. It is set.

また、各外歯歯車17A〜17Cには、中心O2を中心とした同心円上に8つの円形のピン孔21A〜21Cが、周方向に等間隔をおいて形成されて、このピン孔21A〜21Cに、それぞれピン22,22・・が遊挿している。このピン22は、出力軸9と、ケースカバー5の内側に配置される円盤状のキャリア24との間に、内歯歯車4の軸線を中心とした同心円上で当該軸線と平行に架設される軸体で、ピン22の外周における外歯歯車17A〜17Cの遊挿部分には、筒状のメタル23が一体に外装されている。キャリア24は、ケースカバー5の内側でボールベアリング10の外輪10aの内側半分を支持して、ピン22を介して出力軸9と一体に回転可能となっている。ここではピン22及びピン22を介して連結される出力軸9が出力部となる。 Further, in each of the external gears 17A to 17C, eight circular pin holes 21A to 21C are formed on a concentric circle centered on the center O2 at equal intervals in the circumferential direction, and the pin holes 21A to 21C are formed at equal intervals in the circumferential direction. Pins 22, 22 ... Are loosely inserted, respectively. The pin 22 is erected between the output shaft 9 and the disk-shaped carrier 24 arranged inside the case cover 5 on a concentric circle centered on the axis of the internal gear 4 and parallel to the axis. In the shaft body, a tubular metal 23 is integrally exteriorized at the free insertion portion of the external gears 17A to 17C on the outer circumference of the pin 22. The carrier 24 supports the inner half of the outer ring 10a of the ball bearing 10 inside the case cover 5 and can rotate integrally with the output shaft 9 via the pin 22. Here, the pin 22 and the output shaft 9 connected via the pin 22 serve as the output unit.

各ピン22は、メタル23の外周を、前後の外歯歯車17A,17A(17B,17B及び17C,17C)のピン孔21A〜21Cの内周に、互いに180度異なる位相で内接させており、外歯歯車17A〜17Cのピン孔21A〜21Cの孔径は、差動減速機1A〜1Cごとに設定されている。すなわち、外歯歯車17A〜17Cでのピン孔21A〜21Cの直径は、メタル23を含むピン22の直径に、外歯歯車17A〜17Cの偏心量δ1〜δ3の2倍を加えた寸法となって、差動減速機1A〜1Cごとにピン孔21A〜21Cの孔径が異なっている。但し、孔径が異なっていても、各外歯歯車17A〜17Cのピン孔21A〜21Cの中心位置は、全て一致している。 Each pin 22 inscribes the outer circumference of the metal 23 with the inner circumferences of the pin holes 21A to 21C of the front and rear external gears 17A and 17A (17B, 17B and 17C, 17C) in phases different from each other by 180 degrees. The hole diameters of the pin holes 21A to 21C of the external gears 17A to 17C are set for each of the differential speed reducers 1A to 1C. That is, the diameter of the pin holes 21A to 21C in the external gears 17A to 17C is the diameter obtained by adding twice the eccentricity δ1 to δ3 of the external gears 17A to 17C to the diameter of the pin 22 including the metal 23. Therefore, the hole diameters of the pin holes 21A to 21C are different for each of the differential speed reducers 1A to 1C. However, even if the hole diameters are different, the center positions of the pin holes 21A to 21C of the external gears 17A to 17C are all the same.

一方、ボールベアリング10は、ケースカバー5とキャリア24との内周面に隙間嵌めされて、外輪10aを支持するケースカバー5とキャリア24との間には、図3にも示すように、入力軸12の軸方向に隙間Aが形成されてケーシング2内と連通している。また、ケースカバー5とキャリア24との内周面には、全周に亘ってリング状のグリス溝25,25がそれぞれ形成されている。
さらに、ケースカバー5の前面に突設したリング状の突条26と入力軸12の外周面との間には、シール部材としてのオイルシール27が介在されている。また、外ケース6と出力軸との間でクロスローラベアリング8の出力側にもオイルシール28が介在されている。また、出力軸9と入力軸12との間でボールベアリング11の出力側にもオイルシール29が介在されている。
On the other hand, the ball bearing 10 is gap-fitted on the inner peripheral surface of the case cover 5 and the carrier 24, and is input between the case cover 5 supporting the outer ring 10a and the carrier 24 as shown in FIG. A gap A is formed in the axial direction of the shaft 12 and communicates with the inside of the casing 2. Further, ring-shaped grease grooves 25 and 25 are formed on the inner peripheral surfaces of the case cover 5 and the carrier 24, respectively, over the entire circumference.
Further, an oil seal 27 as a seal member is interposed between the ring-shaped ridge 26 projecting from the front surface of the case cover 5 and the outer peripheral surface of the input shaft 12. An oil seal 28 is also interposed between the outer case 6 and the output shaft 9 on the output side of the cross roller bearing 8. An oil seal 29 is also interposed between the output shaft 9 and the input shaft 12 on the output side of the ball bearing 11.

以上の如く構成された差動減速機1A〜1Cにおいて、入力軸12に回転入力されて入力軸12が回転すると、前後の偏心部14A〜14Cがそれぞれ対称的に偏心運動を行い、各外歯歯車17A〜17Cを内歯歯車4に内接した状態で偏心及び自転運動させる。このため、各ピン孔21A〜21Cも偏心及び自転運動するが、各ピン孔21A〜21Cはメタル23を含むピン22よりも大径に形成されているので、各ピン22はピン孔21A〜21Cに内接した状態で相対的に偏心運動して偏心成分を吸収し、各ピン22からは自転成分のみが取り出される。よって、ピン22を介して出力軸9及びキャリア24が同期回転し、上述した減速比で出力軸9が減速された状態で回転する。ここではシリーズSにおいて、差動減速機1Aが低減速、差動減速機1Bが中減速、差動減速機1Cが高減速となっている。 In the differential speed reducers 1A to 1C configured as described above, when the input shaft 12 is rotationally input and the input shaft 12 rotates, the front and rear eccentric portions 14A to 14C perform eccentric movements symmetrically, and each external tooth The gears 17A to 17C are eccentric and rotate while being inscribed in the internal gear 4. Therefore, the pin holes 21A to 21C also eccentrically and rotate, but since the pin holes 21A to 21C are formed to have a larger diameter than the pin 22 including the metal 23, each pin 22 has a pin hole 21A to 21C. The eccentric component is absorbed by relatively eccentric movement in the state of being inscribed in the pin 22, and only the rotation component is extracted from each pin 22. Therefore, the output shaft 9 and the carrier 24 rotate synchronously via the pin 22, and the output shaft 9 rotates in a state of being decelerated at the reduction ratio described above. Here, in the series S, the differential speed reducer 1A has a reduced speed, the differential speed reducer 1B has a medium speed reduction, and the differential speed reducer 1C has a high speed reduction.

このとき、ケーシング2内に充填されたグリスは、隙間Aから外輪10aとケースカバー5の内周面とキャリア24の内周面との間を通ってグリス溝25,25に供給され、潤滑が保たれて摩擦が低減される。また、このようにグリスを供給しても、ケースカバー5と入力軸12との間にオイルシール27が介在されているので、グリス漏れは生じない。 At this time, the grease filled in the casing 2 is supplied from the gap A between the outer ring 10a, the inner peripheral surface of the case cover 5 and the inner peripheral surface of the carrier 24 to the grease grooves 25 and 25, and lubrication is supplied. It is maintained and friction is reduced. Further, even if the grease is supplied in this way, the grease does not leak because the oil seal 27 is interposed between the case cover 5 and the input shaft 12.

(差動減速機のシリーズに係る発明の効果)
このように、上記形態の差動減速機1A〜1CのシリーズSによれば、各外歯歯車17A〜17Cのピン孔21A〜21Cを、外歯の歯数に応じてそれぞれ外歯歯車17A〜17Cごとに異なる径で形成して、内歯歯車4、ピン22、及びメタル23を共通化したことで、外歯歯車17A〜17Cには、1つの減速比に対応した孔径のピン孔21A〜21Cのみを形成すれば足りる。よって、外歯歯車17A〜17Cの強度を低下させることなく、部品を共有化して製造コストを抑えることができる。
特にここでは、ピン孔21A〜21Cの中心位置は、各外歯歯車17A〜17C間で互いに一致しているので、出力軸9及びキャリア24の共通化も図ることができる。
(Effects of Inventions Related to Series of Differential Reducers)
As described above, according to the series S of the differential speed reducers 1A to 1C of the above-described embodiment, the pin holes 21A to 21C of the external gears 17A to 17C are respectively provided with the external gears 17A to 17A according to the number of external teeth. By forming each 17C with a different diameter and sharing the internal gear 4, the pin 22, and the metal 23, the external gears 17A to 17C have pin holes 21A to a hole diameter corresponding to one reduction ratio. It suffices to form only 21C. Therefore, the parts can be shared and the manufacturing cost can be suppressed without lowering the strength of the external gears 17A to 17C.
In particular, here, since the center positions of the pin holes 21A to 21C coincide with each other between the external gears 17A to 17C, the output shaft 9 and the carrier 24 can be shared.

また、内歯歯車4と外歯歯車17A〜17Cとの歯型はインボリュート歯型である。
日本歯車工業会の歯車規格であるJGMA(日本歯車工業会規格)(JGMA 611−01)「ISO規格に準拠 円筒歯車の転位方式」によれば、歯車の噛み合い効率を考慮して、インボリュート内歯歯車の転位係数とインボリュート外歯歯車の転位係数との合計値は1以下で設計するように推奨されている。
しかしながら、本形態においては内歯歯車4の転位係数を、1を超えて1.9までの間に設定したことで、これと噛合する外歯歯車17A〜17Cの歯底円径を大きくすることができ、外歯歯車17A〜17Cの歯底とピン孔21A〜21Cとの肉厚を確保することができる。
なお、図4は、内歯歯車4の転位係数を1.9と0.2として、入力2000rpm時で入力トルクを1N・mまで変化させた際の効率(伝動効率)の変化を比較したグラフで、No.1の実線が転位係数1.9(歯数76、歯数差1、減速比1/75)、No.2の点線が転位係数0.2(歯数60、歯数差1、減速比1/59)の場合をそれぞれ示す。
ここでは最大効率が転位係数1.9で略68%、転位係数0.2で略70%となっており、転位係数が1.9になっても効率への影響度がさほどないことが分かる。
Further, the tooth molds of the internal gear 4 and the external gears 17A to 17C are involute tooth molds.
According to JGMA (Japan Gear Industry Association Standard) (JGMA 611-01) "ISO standard compliant cylindrical gear shift method", which is the gear standard of the Japan Gear Industry Association, involute internal teeth are considered in consideration of gear meshing efficiency. It is recommended that the total value of the shift coefficient of the gear and the shift coefficient of the involute external gear be designed to be 1 or less.
However, in the present embodiment, by setting the displacement coefficient of the internal gear 4 to exceed 1 and up to 1.9, the diameter of the root circle of the external gears 17A to 17C that mesh with the coefficient is increased. It is possible to secure the wall thickness between the tooth bottoms of the external gears 17A to 17C and the pin holes 21A to 21C.
Note that FIG. 4 is a graph comparing changes in efficiency (transmission efficiency) when the input torque is changed to 1 Nm at an input of 2000 rpm, with the dislocation coefficients of the internal gear 4 being 1.9 and 0.2. Then, No. The solid line of 1 is the dislocation coefficient of 1.9 (76 teeth, difference of 1 tooth, reduction ratio 1/75), No. The case where the dotted line of 2 has a dislocation coefficient of 0.2 (60 teeth, difference in number of teeth 1, reduction ratio 1/59) is shown.
Here, the maximum efficiency is approximately 68% with a dislocation coefficient of 1.9 and approximately 70% with a dislocation coefficient of 0.2, indicating that even if the dislocation coefficient is 1.9, the degree of influence on efficiency is not so great. ..

さらに、出力部のピン22の数を8本としているので、差動減速機1A〜1Cの剛性を高くすることができる。特に外歯歯車17A〜17Cには1つの減速比に対応したピン孔21A〜21Cのみを形成すれば足りるため、ピン22の数を8本以上とすることも容易に行える。
また、差動減速機1A〜1Cの剛性を高くするためにはピン22を太くするのが効果的である。先に挙げた背景技術のように外歯歯車に減速比ごとに多くの内ローラ孔を形成すると、内ローラ孔同士が近くなってピンを太くするのが困難であるが、上記形態では、外歯歯車17A〜17Cには1つの減速比に対応したピン孔21A〜21Cのみを形成するため、ピン孔21A〜21C同士の距離が確保できる。よって、ピン22を太くして剛性をより高くすることも容易に行える。
Further, since the number of pins 22 of the output unit is eight, the rigidity of the differential speed reducers 1A to 1C can be increased. In particular, since it is sufficient to form only the pin holes 21A to 21C corresponding to one reduction ratio in the external gears 17A to 17C, the number of pins 22 can be easily increased to eight or more.
Further, in order to increase the rigidity of the differential speed reducers 1A to 1C, it is effective to make the pin 22 thicker. If many inner roller holes are formed in the outer gear for each reduction ratio as in the background technique mentioned above, it is difficult to make the pins thicker because the inner roller holes are close to each other. Since only the pin holes 21A to 21C corresponding to one reduction ratio are formed in the tooth gears 17A to 17C, the distance between the pin holes 21A to 21C can be secured. Therefore, it is possible to easily make the pin 22 thicker to increase the rigidity.

加えて、外歯歯車17A〜17Cには1つの減速比に対応したピン孔21A〜21Cのみを形成すればよいので、異なる減速比が3種類のシリーズとしても、各差動減速機1A〜1Cで外歯歯車17A〜17Cの強度が落ちることがない。よって、内歯歯車4、ピン22、メタル23、出力軸9、及びキャリア24を共通化したまま、3種類以上のシリーズを構成することができる。
そして、入力軸12を中空としたことで、軽量化が達成できる。また、入力軸12を中空としても外歯歯車17A〜17Cの強度は維持できる。
In addition, since it is only necessary to form the pin holes 21A to 21C corresponding to one reduction ratio in the external gears 17A to 17C, even if the series has three different reduction ratios, the differential reduction gears 1A to 1C The strength of the external gears 17A to 17C does not decrease. Therefore, three or more types of series can be configured while the internal gear 4, the pin 22, the metal 23, the output shaft 9, and the carrier 24 are shared.
Then, by making the input shaft 12 hollow, weight reduction can be achieved. Further, even if the input shaft 12 is hollow, the strength of the external gears 17A to 17C can be maintained.

なお、上記形態では3種類の差動減速機のシリーズを例示しているが、減速比や差動減速機の数はこれに限らず、減速比が異なる2又は4種類以上の差動減速機のシリーズであっても同様に内歯歯車や出力部の共通化は可能である。各減速比も上記形態には限定されない。各差動減速機に設ける外歯歯車の数も増減可能である。
また、上記形態ではピンにメタルを外装させているが、ローラ等の転動体を外装させたり、このような別部材を外装させないピン単独としても差し支えない。
In the above embodiment, a series of three types of differential reduction gears is illustrated, but the reduction ratio and the number of differential reduction gears are not limited to this, and two or four or more types of differential reduction gears having different reduction ratios are used. It is possible to standardize the internal gear and the output unit even in the series. Each reduction ratio is also not limited to the above form. The number of external gears provided in each differential speed reducer can also be increased or decreased.
Further, in the above embodiment, the pin is made of metal, but a rolling element such as a roller may be made of the pin, or such a separate member may not be made of the pin alone.

(偏心部用軸受及び偏心部の外径に係る差動減速機の発明の効果)
このように、上記形態の差動減速機1A〜1Cによれば、偏心部用軸受を総ころのニードルベアリング15とすると共に、入力軸12における偏心部14A〜14Cの外径D2を、ボールベアリング10,11が設けられる軸支部13の外径D1よりも小さくしたことで、ニードル16の外径を大きくすることができ、強度アップに繋がる。
特にここでは、ボールベアリング10,11とニードルベアリング15との間で入力軸12の外周に、ボールベアリング10,11の側面に当接して入力軸12の軸方向への移動を規制する抜け止め部18,18を設けて、偏心部14A〜14Cは、全周に亘って抜け止め部18よりも低く形成されているので、総ころとしても偏心部14A〜14Cの全周に亘ってニードル16の軸方向への移動を規制できる。また、抜け止め部18を、ボールベアリング10,11とニードル16との双方の抜け止めに共用できる。さらに、抜け止め部18は入力軸12自身の抜け止めにもなる。
(Effect of invention of differential speed reducer relating to bearing for eccentric part and outer diameter of eccentric part)
As described above, according to the differential speed reducers 1A to 1C of the above-described embodiment, the bearing for the eccentric portion is the needle bearing 15 of the full roller, and the outer diameter D2 of the eccentric portions 14A to 14C on the input shaft 12 is a ball bearing. By making the outer diameter D1 of the shaft support 13 provided with 10 and 11 smaller, the outer diameter of the needle 16 can be increased, which leads to an increase in strength.
In particular, here, a retaining portion that abuts on the outer periphery of the input shaft 12 between the ball bearings 10 and 11 and the needle bearing 15 and abuts on the side surfaces of the ball bearings 10 and 11 to restrict the axial movement of the input shaft 12. Since 18 and 18 are provided and the eccentric portions 14A to 14C are formed lower than the retaining portion 18 over the entire circumference, the needle 16 is formed over the entire circumference of the eccentric portions 14A to 14C as a whole. Axial movement can be regulated. Further, the retaining portion 18 can be shared as a retaining portion for both the ball bearings 10 and 11 and the needle 16. Further, the retaining portion 18 also serves as a retaining portion for the input shaft 12 itself.

また、抜け止め部18を、入力軸12に同軸で一体形成される円板形状としているので、抜け止め部18を旋盤等によって容易に加工可能となる。
さらに、偏心部14A〜14C及びニードルベアリング15、外歯歯車17A〜17Cを複数組設けて、各偏心部14A〜14Cの外径を全て等しくしているので、各偏心部14A〜14Cに同じニードルベアリング15を配置することができ、各ニードルベアリング15のニードル16の外径を大きくすることができる。
加えて、各外歯歯車17A〜17C及び各ニードルベアリング15の形状を各々共通としているので、一層のコストダウンが期待できる。
そして、ニードルベアリング15のニードル16を内歯歯車4の中心O1(入力軸12の軸心)に近い位置に配置できるため、外歯歯車17A〜17Cから自転運動を取り出すためのピン22の径を大きくすることができる。よって、差動減速機1A〜1Cの強度をアップさせることができる。
Further, since the retaining portion 18 has a disk shape coaxially formed with the input shaft 12, the retaining portion 18 can be easily processed by a lathe or the like.
Further, since a plurality of sets of eccentric portions 14A to 14C, needle bearings 15, and external gears 17A to 17C are provided to make the outer diameters of the eccentric portions 14A to 14C all equal, the same needle is provided for each eccentric portion 14A to 14C. Bearings 15 can be arranged and the outer diameter of the needle 16 of each needle bearing 15 can be increased.
In addition, since the external gears 17A to 17C and the needle bearings 15 have the same shape, further cost reduction can be expected.
Since the needle 16 of the needle bearing 15 can be arranged at a position close to the center O1 of the internal gear 4 (the axial center of the input shaft 12), the diameter of the pin 22 for extracting the rotation motion from the external gears 17A to 17C is increased. Can be made larger. Therefore, the strength of the differential speed reducers 1A to 1C can be increased.

なお、抜け止め部の形状は、円板形状が必須ではなく、ニードルの移動規制が可能であれば、複数の突起を外周に形成した歯車形状であってもよいし、入力軸と別体の部材であってもよい。 The shape of the retaining portion is not necessarily a disk shape, and may be a gear shape having a plurality of protrusions formed on the outer circumference as long as the movement of the needle can be regulated, or is separate from the input shaft. It may be a member.

(ボールベアリングの支持に係る差動減速機の発明の効果)
このように、上記形態の差動減速機1A〜1Cによれば、ボールベアリング10の外輪10aを、ケーシング2のケースカバー5及びキャリア24によって支持させたことで、入力軸12とケーシング2との同軸度を高くして入力軸12を精度よく組み付けることができる。
特にここでは、ボールベアリング10の外輪10aを、ケースカバー5及びキャリア24に対して隙間嵌めしているので、摺動面で滑らせることができ、回転抵抗が減少する。
(Effect of Invention of Differential Reducer for Supporting Ball Bearings)
As described above, according to the differential speed reducers 1A to 1C of the above-described embodiment, the outer ring 10a of the ball bearing 10 is supported by the case cover 5 and the carrier 24 of the casing 2, so that the input shaft 12 and the casing 2 are supported. The input shaft 12 can be assembled accurately by increasing the coaxiality.
In particular, here, since the outer ring 10a of the ball bearing 10 is gap-fitted with respect to the case cover 5 and the carrier 24, it can be slid on the sliding surface, and the rotational resistance is reduced.

また、隙間嵌めされる外輪10aと、ケースカバー5及びキャリア24との摺動面には、グリス溝25,25が形成されているので、摺動面にグリスが保持されて低摩擦で滑らせることができる。
さらに、グリス溝25は、ケースカバー5及びキャリア24に形成されているので、標準のボールベアリング10を採用でき、コストアップを抑えることができる。
加えて、グリス溝25は、摺動面の全周に亘って形成されているので、旋盤等によってグリス溝25を容易に加工できる。
そして、入力軸12の軸方向でボールベアリング10の外側には、ケーシング2と入力軸12との間をシールするオイルシール27が配置されているので、同軸度の高いケーシング2と入力軸12との間でオイルシール27を精度よく入力軸12に接触させることができ、グリス漏れのおそれを低減可能となる。
Further, since the grease grooves 25 and 25 are formed on the sliding surfaces of the outer ring 10a to be fitted in the gap and the case cover 5 and the carrier 24, the grease is held on the sliding surfaces and slides with low friction. be able to.
Further, since the grease groove 25 is formed in the case cover 5 and the carrier 24, the standard ball bearing 10 can be adopted, and the cost increase can be suppressed.
In addition, since the grease groove 25 is formed over the entire circumference of the sliding surface, the grease groove 25 can be easily machined by a lathe or the like.
An oil seal 27 for sealing between the casing 2 and the input shaft 12 is arranged outside the ball bearing 10 in the axial direction of the input shaft 12, so that the casing 2 having a high degree of coaxiality and the input shaft 12 The oil seal 27 can be brought into contact with the input shaft 12 with high accuracy, and the risk of grease leakage can be reduced.

なお、上記形態では、ボールベアリングの外輪を、ケースカバー及びキャリアの両方に対して隙間嵌めしているが、何れか一方にのみ隙間嵌めしてもよい。よって、グリス溝も隙間嵌めされる一方側の摺動面にのみ設ければよい。
また、グリス溝を設ける場合、摺動面の全周に亘って設ける他、周方向へ断続的に設けることも可能である。
In the above embodiment, the outer ring of the ball bearing is gap-fitted to both the case cover and the carrier, but it may be gap-fitted to only one of them. Therefore, the grease groove may be provided only on the sliding surface on one side where the gap is fitted.
Further, when the grease groove is provided, it can be provided over the entire circumference of the sliding surface, or can be provided intermittently in the circumferential direction.

その他、各形態に共通して、ケーシングの構造は上記形態のような中ケースとケースカバーと外ケースとの組み合わせに限らず、部品の数を増減したり、一部材でケーシングを形成したりして差し支えない。
また、外側軸受はクロスローラベアリングに限らず、ボールベアリング等の他の軸受も採用できるし、軸受の数を増やしてもよい。
さらに、入力軸や出力軸の構造も上記形態に限らず、入力軸を中空でなく中実とする等、適宜設計変更可能である。
In addition, in common with each form, the casing structure is not limited to the combination of the inner case, the case cover, and the outer case as in the above form, and the number of parts can be increased or decreased, or the casing can be formed by one member. It doesn't matter.
Further, the outer bearing is not limited to the cross roller bearing, and other bearings such as ball bearings can be adopted, and the number of bearings may be increased.
Further, the structure of the input shaft and the output shaft is not limited to the above-mentioned form, and the design can be changed as appropriate, such as making the input shaft solid instead of hollow.

1A〜1C・・差動減速機、2・・ケーシング、3・・中ケース、4・・内歯歯車、5・・ケースカバー、6・・外ケース、7・・ボルト、8・・クロスローラベアリング、9・・出力軸、10・・ボールベアリング、10a・・外輪、11・・ボールベアリング、12・・入力軸、13・・軸支部、14・・偏心部、15・・ニードルベアリング、16・・ニードル、17A〜17C・・外歯歯車、18・・抜け止め部、21A〜21C・・ピン孔、22・・ピン、23・・メタル、24・・キャリア、25・・グリス溝、27,28,29・・オイルシール、S・・シリーズ、A・・隙間、D1・・軸支部の外径、D2・・偏心部の外径、O1・・内歯歯車の中心、O2・・外歯歯車の中心、δ1〜δ3・・偏心量。 1A to 1C ... Differential reducer, 2 ... Casing, 3 ... Middle case, 4 ... Internal gear, 5 ... Case cover, 6 ... Outer case, 7 ... Bolt, 8 ... Cross roller Bearing, 9 ... Output shaft, 10 ... Ball bearing, 10a ... Outer ring, 11 ... Ball bearing, 12 ... Input shaft, 13 ... Shaft branch, 14 ... Eccentric part, 15 ... Needle bearing, 16・ ・ Needle, 17A to 17C ・ ・ External gear, 18 ・ ・ Retaining part, 21A to 21C ・ ・ Pin hole, 22 ・ ・ Pin, 23 ・ ・ Metal, 24 ・ ・ Carrier, 25 ・ ・ Gris groove, 27 , 28, 29 ... Oil seal, S ... Series, A ... Gap, D1 ... Shaft support outer diameter, D2 ... Eccentric outer diameter, O1 ... Internal gear center, O2 ... Outer Center of tooth gear, δ1 to δ3 ... Eccentricity.

Claims (5)

ケーシング内に設けられる内歯歯車と、前記内歯歯車を同軸で貫通する入力軸と、前記入力軸に設けた偏心部に偏心部用軸受を介して外装され、前記内歯歯車に内接して噛合する外歯歯車と、前記外歯歯車を遊挿するピンを備えて前記入力軸との間に入力軸用軸受を介在させた出力部と、を含んでなり、前記入力軸の回転によって前記内歯歯車に対して前記外歯歯車が偏心運動することで、前記内歯歯車と前記外歯歯車との歯数差と前記外歯歯車の歯数とに基づく減速比で前記ピンを介して前記出力部を回転させる差動減速機であって、
前記偏心部用軸受を総ころとすると共に、前記入力軸用軸受を、前記入力軸の軸方向で前記外歯歯車の前後に一対配置し、
前記入力軸における前記偏心部の外径を、前記入力軸用軸受が設けられる部分の外径よりも小さくしたことを特徴とする差動減速機。
An internal gear provided in the casing, an input shaft coaxially penetrating the internal gear, and an eccentric portion provided on the input shaft are externally provided via an eccentric bearing and inscribed in the internal gear. An external gear that meshes with an external gear and an output portion that is provided with a pin for loosely inserting the external gear and has an input shaft bearing interposed between the input shaft are included, and the rotation of the input shaft causes the above-mentioned When the external gear moves eccentrically with respect to the internal gear, the reduction ratio is based on the difference in the number of teeth between the internal gear and the external gear and the number of teeth of the external gear through the pin. A differential speed reducer that rotates the output unit.
The bearing for the eccentric portion is used as a total roller, and a pair of bearings for the input shaft are arranged in front of and behind the external gear in the axial direction of the input shaft.
A differential speed reducer characterized in that the outer diameter of the eccentric portion of the input shaft is made smaller than the outer diameter of the portion provided with the bearing for each input shaft.
前記入力軸用軸受と前記偏心部用軸受との間で前記入力軸の外周に、前記入力軸用軸受の側面に当接して前記入力軸の軸方向への移動を規制する抜け止め部を設けて、前記偏心部は、全周に亘って前記抜け止め部よりも低く形成されていることを特徴とする請求項1に記載の差動減速機。 Between the bearing for the input shaft and the bearing for the eccentric portion, a retaining portion is provided on the outer periphery of the input shaft to abut on the side surface of the bearing for the input shaft to restrict the movement of the input shaft in the axial direction. The differential speed reducer according to claim 1, wherein the eccentric portion is formed lower than the retaining portion over the entire circumference. 前記抜け止め部は、前記入力軸に同軸で一体形成される円板形状であることを特徴とする請求項2に記載の差動減速機。 The differential speed reducer according to claim 2, wherein the retaining portion has a disk shape coaxially formed with the input shaft. 前記偏心部及び前記偏心部用軸受、前記外歯歯車は複数組設けられて、各前記偏心部の外径は全て等しいことを特徴とする請求項1乃至3の何れかに記載の差動減速機。 The differential reduction gear according to any one of claims 1 to 3, wherein a plurality of sets of the eccentric portion, the bearing for the eccentric portion, and the external gear are provided, and the outer diameters of the eccentric portions are all equal. Machine. 各前記外歯歯車及び各前記偏心部用軸受の形状は各々共通であることを特徴とする請求項4に記載の差動減速機。 The differential speed reducer according to claim 4, wherein the external gears and the eccentric bearings have the same shape.
JP2017050241A 2017-03-15 2017-03-15 Differential reducer Active JP6803273B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017050241A JP6803273B2 (en) 2017-03-15 2017-03-15 Differential reducer
CN201880009531.3A CN110234907B (en) 2017-03-15 2018-03-12 Differential speed reducer
PCT/JP2018/009492 WO2018168763A1 (en) 2017-03-15 2018-03-12 Differential reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050241A JP6803273B2 (en) 2017-03-15 2017-03-15 Differential reducer

Publications (2)

Publication Number Publication Date
JP2018155264A JP2018155264A (en) 2018-10-04
JP6803273B2 true JP6803273B2 (en) 2020-12-23

Family

ID=63523637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050241A Active JP6803273B2 (en) 2017-03-15 2017-03-15 Differential reducer

Country Status (3)

Country Link
JP (1) JP6803273B2 (en)
CN (1) CN110234907B (en)
WO (1) WO2018168763A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748611A (en) * 2019-10-25 2020-02-04 青岛郑洋机器人有限公司 Speed reducer driven by rigid gear of eccentric input shaft with large hollow structure
JP2023015745A (en) 2021-07-20 2023-02-01 住友重機械工業株式会社 Eccentric oscillation type gear device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627532B2 (en) * 1987-04-13 1994-04-13 住友重機械工業株式会社 Planetary gearbox
CN2591333Y (en) * 2002-11-29 2003-12-10 夏正权 Cyclo gear speed reducer
JP4265748B2 (en) * 2003-03-31 2009-05-20 ナブテスコ株式会社 Reducer using needle roller bearing
JP5032975B2 (en) * 2005-02-09 2012-09-26 住友重機械工業株式会社 Power transmission device
JP4818787B2 (en) * 2006-04-17 2011-11-16 住友重機械工業株式会社 Swing intermeshing planetary gear unit
JP5291575B2 (en) * 2009-08-26 2013-09-18 住友重機械工業株式会社 Bearing structure and bearing
JP5654798B2 (en) * 2010-07-30 2015-01-14 住友重機械工業株式会社 Roller retainer and swinging intermeshing gear device
JP2014122681A (en) * 2012-12-21 2014-07-03 Jtekt Corp Reducer of wind power generation device, and manufacturing method of reducer of wind power generation device
JP2015175512A (en) * 2014-03-18 2015-10-05 Ntn株式会社 In-wheel motor driving device
CN104565261A (en) * 2014-12-26 2015-04-29 浙江恒丰泰减速机制造有限公司 Precision rotational transmission mechanism
JP6727034B2 (en) * 2016-05-30 2020-07-22 日本電産シンポ株式会社 Gear reducer

Also Published As

Publication number Publication date
WO2018168763A1 (en) 2018-09-20
JP2018155264A (en) 2018-10-04
CN110234907A (en) 2019-09-13
CN110234907B (en) 2023-03-10

Similar Documents

Publication Publication Date Title
US8545357B2 (en) Gear transmission
JP5603717B2 (en) Oscillating intermeshing planetary gear device and manufacturing method thereof
JP6932068B2 (en) Eccentric swing type gear device
JP5283591B2 (en) Series of simple planetary gear reducers
JP5844628B2 (en) Planetary gear device and method of manufacturing planetary gear device
JP3186812U (en) Variable speed transmission bearing
JP6803273B2 (en) Differential reducer
KR20120004295U (en) Epicyclic reduction gear
JP6976787B2 (en) Differential reducer
JP6769897B2 (en) How to manufacture a series of differential reducers
JP7129308B2 (en) Eccentric oscillating reduction gear
JP6284368B2 (en) Gear transmission
JP6744244B2 (en) Differential reducer
JP5832959B2 (en) Planetary gear set
JP5606587B2 (en) Gear device
JP7442364B2 (en) Differential reducer with improved lubrication performance
JP6570837B2 (en) Decelerator
JP2020051541A (en) Gear speed reducer
KR20170070986A (en) Bearing with gear tooth and reducer using the bearing
JP5961534B2 (en) Oscillating intermeshing planetary gear device and manufacturing method thereof
JP5339743B2 (en) Gear device
JP7367351B2 (en) Multistage planetary roller power transmission device
JP2016200218A (en) Planetary roller type power transmission device
JP2018040381A (en) Hypocycloid gear speed reduction device
JP2007056984A (en) Hypocycloid gear reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6803273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250