JP6802501B2 - Pinion shaft and its manufacturing method - Google Patents

Pinion shaft and its manufacturing method Download PDF

Info

Publication number
JP6802501B2
JP6802501B2 JP2019148276A JP2019148276A JP6802501B2 JP 6802501 B2 JP6802501 B2 JP 6802501B2 JP 2019148276 A JP2019148276 A JP 2019148276A JP 2019148276 A JP2019148276 A JP 2019148276A JP 6802501 B2 JP6802501 B2 JP 6802501B2
Authority
JP
Japan
Prior art keywords
pinion shaft
carbon
mass
surface layer
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019148276A
Other languages
Japanese (ja)
Other versions
JP2020029615A (en
Inventor
康浩 小竹
康浩 小竹
裕貴 島田
裕貴 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Publication of JP2020029615A publication Critical patent/JP2020029615A/en
Application granted granted Critical
Publication of JP6802501B2 publication Critical patent/JP6802501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主にプラネタリギア装置内に組み込まれるピニオンシャフトおよびその製造方法に関する。 The present invention mainly relates to a pinion shaft incorporated in a planetary gear device and a method for manufacturing the pinion shaft.

一般的に減速機に内蔵されているプラネタリギア(遊星歯車)には大小様々な複数の歯車が使用されており、その歯車の軸として代表的なものにピニオンシャフトがある。このピニオンシャフトの素材として、これまでは特許文献1に開示されている中炭素鋼や軸受鋼が使用されてきた。 Generally, a plurality of large and small gears are used for planetary gears (planetary gears) built in a speed reducer, and a pinion shaft is a typical shaft of the gears. As a material for this pinion shaft, medium carbon steel and bearing steel disclosed in Patent Document 1 have been used so far.

ピニオンシャフトは特許文献2および3に開示されているように高速回転および高荷重の過酷な環境下で使用されるため、その素材には相応の耐摩耗性や耐疲労特性など種々の特性が要求されていた。そのため、ピニオンシャフトの素材として多用されてきた中炭素鋼は、その表面に浸炭処理や窒化処理を施すことで表面硬度を上げる必要があった。 Since the pinion shaft is used in a harsh environment of high speed rotation and high load as disclosed in Patent Documents 2 and 3, the material is required to have various characteristics such as appropriate wear resistance and fatigue resistance. It had been. Therefore, the surface hardness of medium carbon steel, which has been widely used as a material for pinion shafts, needs to be increased by carburizing or nitriding the surface thereof.

特公平7−47795号公報Special Fair 7-47795 Gazette 特許第5168898号公報Japanese Patent No. 5168898 特開2015−105435号公報JP-A-2015-105435

しかし、ピニオンシャフトが使用される遊星歯車は長時間の使用によって300℃近い高温雰囲気に達し、常温での使用環境下と比較すると表面硬度が低下する結果、耐久性も大幅に低下する。 However, the planetary gears on which the pinion shaft is used reach a high temperature atmosphere of about 300 ° C. after long-term use, and as a result of the surface hardness being lowered as compared with the operating environment at room temperature, the durability is also significantly lowered.

加えて、近年では自然環境保護を目的に減速機内の潤滑油量を減らす傾向が顕著になり、300℃近い高温雰囲気での使用に対してピニオンシャフトの素材に要求される耐熱性が足りないという問題があった。 In addition, in recent years, the tendency to reduce the amount of lubricating oil in the speed reducer has become remarkable for the purpose of protecting the natural environment, and it is said that the heat resistance required for the material of the pinion shaft is insufficient for use in a high temperature atmosphere close to 300 ° C. There was a problem.

そこで、本発明は高温雰囲気での使用に対しても十分な耐熱性が維持できるピニオンシャフトおよびその製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a pinion shaft capable of maintaining sufficient heat resistance even when used in a high temperature atmosphere and a method for manufacturing the pinion shaft.

前述した課題を解決するために、本発明のピニオンシャフトは、少なくとも、質量%で炭素を0.10〜0.50%、ケイ素を0.40〜1.00%、マンガンを0.20〜1.00%、クロムを1.50〜4.00%、モリブデンを0.10〜1.00%の割合でそれぞれ含有して、残部が鉄および不可避不純物である鉄基合金製のピニオンシャフトにおいて、炭素および窒素を含有する表層部を設けて、その表層部中の炭素および窒素の総含有量を質量%で2.14%以上かつ炭素含有量は質量%で1.78%以上とする。 In order to solve the above-mentioned problems, the pinion shaft of the present invention contains at least 0.10 to 0.50% carbon, 0.40 to 1.00% silicon, and 0.25 to 1 manganese in mass%. In a pinion shaft made of an iron-based alloy containing .00%, carbon at 1.50 to 4.00%, and molybdenum at a ratio of 0.10 to 1.00%, with the balance being iron and unavoidable impurities. A surface layer portion containing carbon and nitrogen is provided, and the total content of carbon and nitrogen in the surface layer portion is 2.14% or more in mass% and the carbon content is 1.78% or more in mass% .

また、その表層部の最表面から0.1mmの深さの位置における硬さがビッカース硬さで750HV以上として、かつ表層部の残留オーステナイト量を20体積%以上としても構わない。さらに、表層部に存在する炭化物および炭窒化物が基地組織中に占める面積率は10〜25%の範囲として、粒径0.5μm以上の炭化物および炭窒化物の個数は1000μmあたり300個以上とすることもできる。 Further, the hardness at a depth of 0.1 mm from the outermost surface of the surface layer portion may be 750 HV or more in Vickers hardness, and the residual austenite amount of the surface layer portion may be 20% by volume or more. Further, the area ratio of the carbides and carbonitrides present in the surface layer portion in the matrix structure is in the range of 10 to 25%, and the number of carbides and carbonitrides having a particle size of 0.5 μm or more is 300 or more per 1000 μm 2. It can also be.

ピニオンシャフトの製造方法の発明については、少なくとも、質量%で炭素は0.10〜0.50%、ケイ素は0.40〜1.00%、マンガンは0.20〜1.00%、クロムは1.50〜4.00%、モリブデンは0.10〜1.00%の各割合で含有し、残部が鉄および不可避不純物である鉄基合金製のピニオンシャフト素材に対して浸炭窒化処理を行うことでピニオンシャフト素材に炭素および窒素を含有する表層部を形成し、表層部中に含有する炭素および窒素の総和を質量%で2.14%以上、かつ炭素含有量を質量%で1.78%以上にする第一工程、当該第一工程後にピニオンシャフト素材を230℃以下の雰囲気下で焼戻し処理を行う第二工程の各工程を含む製造方法とする。 Regarding the invention of the method for producing a pinion shaft, at least in mass%, carbon is 0.10 to 0.50%, silicon is 0.40 to 1.00%, manganese is 0.25 to 1.00%, and chromium is Carburizing and nitriding treatment is performed on a pinion shaft material made of an iron-based alloy, which contains 1.50 to 4.00% and molybdenum at 0.10 to 1.00%, and the balance is iron and unavoidable impurities. As a result, a surface layer portion containing carbon and nitrogen is formed in the pinion shaft material, the total amount of carbon and nitrogen contained in the surface layer portion is 2.14% or more in mass%, and the carbon content is 1.78 in mass%. The manufacturing method includes each step of the first step of increasing the percentage to or more, and the second step of tempering the pinion shaft material in an atmosphere of 230 ° C. or lower after the first step .

本発明のピニオンシャフトは、炭素含有量が質量%で0.10〜0.50%の範囲である、いわゆる中炭素鋼製のピニオンシャフトにおいて、所定の合金元素を添加し、その表層部における炭素と窒素の総含有量を所定の範囲に規定した。その結果、本発明のピニオンシャフトは高温雰囲気(300℃近傍)の使用に対して十分な耐熱性が維持できるという効果を奏する。 The pinion shaft of the present invention is a so-called medium carbon steel pinion shaft having a carbon content in the range of 0.10 to 0.50% by mass, to which a predetermined alloy element is added, and carbon in the surface layer portion thereof. And the total nitrogen content was specified within the prescribed range. As a result, the pinion shaft of the present invention has the effect of being able to maintain sufficient heat resistance for use in a high temperature atmosphere (near 300 ° C.).

実施例1の転動疲労試験で用いた試験機の構成図である。It is a block diagram of the testing machine used in the rolling fatigue test of Example 1. 実施例1の転動疲労試験結果であるワイブル分布図である。It is a Weibull distribution map which is the rolling fatigue test result of Example 1.

本発明であるピニオンシャフトの化学組成やミクロ組織などについて以下に説明する。まず本発明のピニオンシャフトの化学組成については、質量%で炭素を0.10〜0.50%、ケイ素を0.40〜1.00%、マンガンを0.20〜1.00%、クロムを1.50〜4.00%、モリブデンを0.10〜1.00%の割合でそれぞれ含有して、残部が鉄および不可避不純物とする鉄基合金(中炭素鋼)とする。また、同鋼に含有されるニッケルは0.20%以下、銅は0.15%以下としても構わない。 The chemical composition and microstructure of the pinion shaft of the present invention will be described below. First, regarding the chemical composition of the pinion shaft of the present invention, carbon is 0.10 to 0.50%, silicon is 0.40 to 1.00%, manganese is 0.25 to 1.00%, and chromium is used in mass%. An iron-based alloy (medium carbon steel) containing 1.50 to 4.00% and molybdenum at a ratio of 0.10 to 1.00%, with the balance being iron and unavoidable impurities. Further, nickel contained in the steel may be 0.20% or less, and copper may be 0.15% or less.

次に、本発明のピニオンシャフトのミクロ組織について説明する。同ピニオンシャフトの表層部(表面側)には、浸炭層および窒化層または浸炭窒化層が被覆されている。その表層部に含有する炭素と窒素の総含有量は質量%で1.80%以上とする。また、炭素の含有量は質量%で0.50%を超えて4.00%以下の範囲、窒素の含有量は質量%で0.10%以上0.5%以下の範囲でそれぞれ含有できる。この場合、ピニオンシャフトの表層部における炭素含有量は、質量%で少なくとも1.00%以上とする。 Next, the microstructure of the pinion shaft of the present invention will be described. The surface layer portion (surface side) of the pinion shaft is coated with a carburized layer and a nitrided layer or a carburized nitrided layer. The total content of carbon and nitrogen contained in the surface layer portion shall be 1.80% or more in mass%. Further, the carbon content can be contained in a mass% of more than 0.50% and 4.00% or less, and the nitrogen content can be contained in a mass% of 0.10% or more and 0.5% or less. In this case, the carbon content in the surface layer portion of the pinion shaft is at least 1.00% or more in mass%.

表層部に存在する炭化物または炭窒化物は周囲の基地組織よりも高硬度であり、ピニオンシャフトの耐摩耗性に有効である。しかし、それらの粒子径が粗大であると高負荷の環境下ではピニオンシャフトの組織内に存在する炭化物や炭窒化物を起点として亀裂が発生し、終にはピニオンシャフトの損傷を招く恐れがある。 The carbide or carbonitride present on the surface layer has a higher hardness than the surrounding matrix structure and is effective for the wear resistance of the pinion shaft. However, if their particle size is coarse, cracks may occur from the carbides and carbonitrides existing in the structure of the pinion shaft under a high load environment, and eventually the pinion shaft may be damaged. ..

そこで、ピニオンシャフトの表層部に存在する炭化物および炭窒化物については、その面積率を10%以上25%以下として、かつ粒径0.5μmの炭化物および炭窒化物の個数を1000μmあたり300個以上とする。 Therefore, regarding the carbides and carbonitrides existing on the surface layer of the pinion shaft, the area ratio is set to 10% or more and 25% or less, and the number of carbides and carbonitrides having a particle size of 0.5 μm is 300 per 1000 μm 2. That is all.

発明品と化学成分が異なる3種類の比較品を用いて、「ころ材」としての転がり疲れ特性の評価試験(転動疲労試験)を行なったので、その試験結果について説明する。転動疲労試験に使用した発明品1および3種類の比較品1〜3の化学成分(単位は質量%)を表1に示す。 An evaluation test (rolling fatigue test) of rolling fatigue characteristics as a "rolling material" was conducted using three types of comparative products having different chemical components from the invention product, and the test results will be described. Table 1 shows the chemical components (unit: mass%) of Invention 1 and 3 types of Comparative Products 1 to 3 used in the rolling fatigue test.

Figure 0006802501
Figure 0006802501

表1に示す化学成分の発明品1および3種類の比較品1〜3は、すべて同じ条件で製造した後に浸炭窒化処理を施して表面に浸炭窒化層を設けている。発明品1および比較品1〜3における浸炭窒化層に含有されるC量は1.0〜2.5質量%、N量は0.1〜0.3質量%の範囲とした。 The invention products 1 and the three types of comparative products 1 to 3 shown in Table 1 are all manufactured under the same conditions and then subjected to carburizing nitriding treatment to provide a carburized nitriding layer on the surface. The amount of C contained in the carburized nitrided layer in Invention 1 and Comparative Products 1 to 3 was 1.0 to 2.5% by mass, and the amount of N was in the range of 0.1 to 0.3% by mass.

転動疲労試験には図1に示す試験機を使用した。まず、直径φDの円盤状の試験片3を取り付けた油槽に所定量の異物を混入した潤滑油5を注入し、テーブル4を押し上げる。その後、保持器に支持された鋼球2をスラスト軸受1で受けることで所定の面圧Pを負荷する。その状態でモータ(図示なし)からの動力を伝達する軸10を回転させることで評価試験を行なう。試験条件は以下の条件で4〜9回の試験を実施し、ワイブル分布の累積破損率が10%となるL10寿命を求めて評価寿命を比較した。
・試験片寸法:直径(φD)61mm×厚さ6mm
・試験面圧(P):4.5GPa
・回転速度:1800rpm
・潤滑油剤:ナフテン系鉱油
・異物総量:20mg
The testing machine shown in FIG. 1 was used for the rolling fatigue test. First, the lubricating oil 5 mixed with a predetermined amount of foreign matter is injected into an oil tank to which a disk-shaped test piece 3 having a diameter of φD is attached, and the table 4 is pushed up. After that, the steel ball 2 supported by the cage is received by the thrust bearing 1 to load a predetermined surface pressure P. In that state, an evaluation test is performed by rotating a shaft 10 that transmits power from a motor (not shown). Test conditions were performed 4-9 times of the test under the following conditions, the cumulative failure rate of the Weibull distribution is compared to evaluate lifetime seeking 10% become L 10 life.
-Test piece dimensions: diameter (φD) 61 mm x thickness 6 mm
-Test surface pressure (P): 4.5 GPa
・ Rotation speed: 1800 rpm
・ Lubricating oil: Naphthenic acid mineral oil ・ Total amount of foreign matter: 20mg

本試験の結果をワイブル分布図として図2に示す。図2において、横軸は繰返し数(単位:回)、縦軸は累積破損率(単位:%)を示す。累積破損率が10%における繰返し数は、発明品1で4.1×10回であった。これに対して、比較品1〜3は全て繰返し数が2.3×10回以下であった。以上の試験結果より、発明品1の化学成分は、3種類の比較品1〜3の化学成分に対して転がり疲れ特性が優れていた。つまり、発明品であるピニオンシャフトは、他の化学成分のピニオンシャフトに対して転動寿命の向上が確認できた。 The results of this test are shown in FIG. 2 as a Weibull distribution map. In FIG. 2, the horizontal axis represents the number of repetitions (unit: times), and the vertical axis represents the cumulative damage rate (unit:%). Repeating cumulative failure rate at 10% was 4.1 × 10 6 times inventions 1. In contrast, all the comparative products 1 to 3 the number of repetition is less than or equal 2.3 × 10 6 times. From the above test results, the chemical composition of the invention product 1 was superior to the chemical components of the three types of comparative products 1 to 3 in rolling fatigue characteristics. That is, it was confirmed that the pinion shaft, which is an invention product, has an improved rolling life as compared with the pinion shaft having other chemical components.

次に、ピニオンシャフトの表面に施されている浸炭窒素化層のC量およびN量による高温雰囲気下での硬さの変化を測定したので、その結果について説明する。本試験に使用したピニオンシャフト素材の化学成分は実施例1の発明品と同じ化学成分とした。その上で、浸炭窒化層のC量とN量を変化させた複数の試験片(発明品11〜14、比較品11の計5水準の試験片)を用いた。 Next, the change in hardness in a high temperature atmosphere due to the amount of C and N of the carburized nitrogenized layer applied to the surface of the pinion shaft was measured, and the results will be described. The chemical composition of the pinion shaft material used in this test was the same as that of the invention of Example 1. Then, a plurality of test pieces (test pieces of a total of 5 levels of invention products 11 to 14 and comparative products 11) in which the C amount and N amount of the carburized nitride layer were changed were used.

本試験は、全ての試験片について常温(25℃)で硬さを測定する。そして、試験片を300℃で3時間の保持後に徐冷して、前述した要領で硬さを再度測定した。硬さの測定は、試験片の最表面から0.1mmの深さの位置にて測定した。各試験片のC量、N量、およびそれらの総和量(C+N量)、試験片5水準における常温時の硬さと300℃で保持して冷却後の硬さの変化を表2に示す。 In this test, the hardness of all test pieces is measured at room temperature (25 ° C). Then, the test piece was held at 300 ° C. for 3 hours and then slowly cooled, and the hardness was measured again in the same manner as described above. The hardness was measured at a depth of 0.1 mm from the outermost surface of the test piece. Table 2 shows the C amount and N amount of each test piece, their total amount (C + N amount), the hardness of the test piece at 5 levels at room temperature, and the change in hardness after cooling at 300 ° C.

Figure 0006802501
Figure 0006802501

発明品4水準(発明品11〜14)の試験結果は、表2に示す様に硬さの低下が3HV〜6HV程度であり、すべて10Hv未満の範囲に収まった。しかし、比較品11は25HVであり、300℃で保持後の硬さと常温時の硬さの差が10HVを越えていた。つまり、浸炭窒化層に含まれるC量とN量の総和が1.80%未満である比較品11は、他の発明品11〜14に比べて硬さが大きく低下した。以上の測定結果から、ピニオンシャフト素材の表面に設ける浸炭窒化層のC量とN量の総和を所定量以上とすることで高温雰囲気下でも硬さ低下の抑制を図ることができた。 As shown in Table 2, the test results of the four levels of the invention products (invention products 11 to 14) showed that the decrease in hardness was about 3 HV to 6 HV, all of which were within the range of less than 10 Hv. However, the comparative product 11 had a hardness of 25 HV, and the difference between the hardness after holding at 300 ° C. and the hardness at room temperature exceeded 10 HV. That is, the hardness of the comparative product 11 in which the total amount of C and N contained in the carburized nitrided layer was less than 1.80% was significantly lower than that of the other invention products 11-14. From the above measurement results, it was possible to suppress the decrease in hardness even in a high temperature atmosphere by setting the total amount of C and N of the carburized nitride layer provided on the surface of the pinion shaft material to a predetermined amount or more.

次に、ピニオンシャフト素材の焼戻し温度による浸炭窒化層の内部硬さと残留オーステナイト量(γR量:単位は体積%)の変化を確認した。本試験で使用した試験片は、実施例1で用いた本発明品の化学組成として、浸炭窒化層に含有するC量とN量の総和は実施例2で用いた発明品12に相当する量とした。本試験における焼戻し温度は、160℃〜250℃の範囲で任意の7水準を選定した。焼戻し温度160℃〜250℃の範囲におけるγR量の測定結果を表3に示す。 Next, changes in the internal hardness of the carburized nitrided layer and the amount of retained austenite (γR amount: unit is volume%) due to the tempering temperature of the pinion shaft material were confirmed. The test piece used in this test has the chemical composition of the product of the present invention used in Example 1, and the total amount of C and N contained in the carburized nitrided layer is an amount corresponding to the product 12 used in Example 2. And said. For the tempering temperature in this test, any 7 levels were selected in the range of 160 ° C to 250 ° C. Table 3 shows the measurement results of the amount of γR in the tempering temperature range of 160 ° C to 250 ° C.

Figure 0006802501
Figure 0006802501

焼戻し温度を変化させた計7水準において、表3に示す様に全ての試験片で浸炭窒化層の内部硬さは800HV前後(797HV〜819HV)であった。しかし、γR量は焼戻し温度でかなりのバラつきが発生した。具体的には、160℃の焼戻し温度では、γR量=36.5%、200〜230℃では、γR量=21.8〜27.8%、240〜250℃では、γR量=13%前後であった。 As shown in Table 3, the internal hardness of the carburized nitride layer was around 800 HV (797 HV to 819 HV) in all the test pieces at a total of 7 levels in which the tempering temperature was changed. However, the amount of γR varied considerably depending on the tempering temperature. Specifically, at a tempering temperature of 160 ° C, the amount of γR = 36.5%, at 200 to 230 ° C, the amount of γR = 21.8 to 27.8%, and at 240 to 250 ° C, the amount of γR = around 13%. Met.

焼戻し温度を230℃以下とした、γR量が20体積%以上の試験片は靭性を有する基地組織と高硬度の炭窒化物より成っており、耐摩耗性と疲労強度に優れる。一方、焼戻し温度を240℃以上とした、γR量が20体積%未満の試験片は基地組織の靭性が低く、基地組織中に微細な炭窒化物が析出する。 The test piece having a tempering temperature of 230 ° C. or less and having a γR amount of 20% by volume or more is composed of a tough matrix structure and high hardness carbonitride, and is excellent in wear resistance and fatigue strength. On the other hand, the test piece having a tempering temperature of 240 ° C. or higher and having a γR amount of less than 20% by volume has low toughness of the matrix structure, and fine carbonitride is precipitated in the matrix structure.

それらの微細な炭窒化物が一定量を超えて析出し、γR量が20体積%未満になると、亀裂に対する感受性が高くなり、フレーキング等の破損が発生しやすくなる。つまり、基地組織中のγR量を一定量以上に規定し、高硬度の炭窒化物を析出させることで、耐摩耗性と疲労強度の向上に寄与すると考える。なお、浸炭窒化層以外のγR量を10%未満とすることにより、高温環境下での残留オーステナイトの変態による寸法変化が少なく、シャフト材としての曲がり抑制に寄与できると考えられる。 When these fine carbonitrides are precipitated in an amount exceeding a certain amount and the amount of γR is less than 20% by volume, the sensitivity to cracks becomes high and damage such as flaking is likely to occur. That is, it is considered that the amount of γR in the matrix structure is defined to be a certain amount or more and the high hardness carbonitride is precipitated to contribute to the improvement of wear resistance and fatigue strength. By setting the amount of γR other than the carburized nitrided layer to less than 10%, it is considered that the dimensional change due to the transformation of retained austenite in a high temperature environment is small and it can contribute to the suppression of bending as a shaft material.

Claims (3)

少なくとも、質量%で、炭素は0.10〜0.50%、ケイ素は0.40〜1.00%、マンガンは0.20〜1.00%、クロムは1.50〜4.00%、モリブデンは0.10〜1.00%の各割合で含有し、残部が鉄および不可避不純物である鉄基合金製のピニオンシャフトであって、前記ピニオンシャフトには、炭素および窒素を含有する表層部を有しており、前記表層部中に含有する炭素および窒素の総和は質量%で2.14%以上であって、かつ炭素含有量は質量%で1.78%以上であることを特徴とするピニオンシャフト。 At least in mass%, carbon is 0.10 to 0.50%, silicon is 0.40 to 1.00%, manganese is 0.25 to 1.00%, chromium is 1.50 to 4.00%, A pinion shaft made of an iron-based alloy containing molybdenum at a ratio of 0.10 to 1.00% and the balance being iron and unavoidable impurities. The pinion shaft has a surface layer portion containing carbon and nitrogen. the has, characterized in that the surface layer portion sum of carbon and nitrogen contained in the I der 2.14% or more by mass%, and the carbon content is in weight percent 1.78% or more Pinion shaft. 前記表層部の最表面から0.1mmの深さの位置における硬さがビッカース硬さで750Hv以上であり、かつ前記表層部の残留オーステナイト量は20体積%以上であることを特徴とする請求項1に記載のピニオンシャフト。 The claim is characterized in that the hardness at a depth of 0.1 mm from the outermost surface of the surface layer portion is 750 Hv or more in Vickers hardness, and the residual austenite amount of the surface layer portion is 20% by volume or more. The pinion shaft according to 1. 少なくとも、質量%で炭素は0.10〜0.50%、ケイ素は0.40〜1.00%、マンガンは0.20〜1.00%、クロムは1.50〜4.00%、モリブデンは0.10〜1.00%の各割合で含有し、残部が鉄および不可避不純物である鉄基合金製のピニオンシャフト素材に対して浸炭窒化処理を行うことで前記ピニオンシャフト素材に炭素および窒素を含有する表層部を形成し、前記表層部中に含有する炭素および窒素の総和を質量%で2.14%以上、かつ炭素含有量を質量%で1.78%以上にする第一工程と、前記第一工程後に前記ピニオンシャフト素材を230℃以下の雰囲気下で焼戻し処理を行う第二工程を有することを特徴とするピニオンシャフトの製造方法。 At least in mass%, carbon is 0.10 to 0.50%, silicon is 0.40 to 1.00%, manganese is 0.25 to 1.00%, chromium is 1.50 to 4.00%, and molybdenum. Is contained in each ratio of 0.10 to 1.00%, and carbon and nitrogen are added to the pinion shaft material by carburizing and nitriding the pinion shaft material made of an iron-based alloy whose balance is iron and unavoidable impurities. The first step of forming a surface layer portion containing the above-mentioned material so that the total amount of carbon and nitrogen contained in the surface layer portion is 2.14% or more in mass% and the carbon content is 1.78% or more in mass%. A method for producing a pinion shaft, which comprises a second step of tempering the pinion shaft material in an atmosphere of 230 ° C. or lower after the first step .
JP2019148276A 2018-08-20 2019-08-13 Pinion shaft and its manufacturing method Active JP6802501B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154076 2018-08-20
JP2018154076 2018-08-20

Publications (2)

Publication Number Publication Date
JP2020029615A JP2020029615A (en) 2020-02-27
JP6802501B2 true JP6802501B2 (en) 2020-12-16

Family

ID=69623948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019148276A Active JP6802501B2 (en) 2018-08-20 2019-08-13 Pinion shaft and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6802501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230383790A1 (en) * 2020-10-30 2023-11-30 Ntn Corporation Rolling member and rolling bearing
JP7177883B2 (en) * 2021-01-12 2022-11-24 Ntn株式会社 Rolling parts and rolling bearings
JP6974642B1 (en) * 2020-10-30 2021-12-01 Ntn株式会社 Rolling members and rolling bearings

Also Published As

Publication number Publication date
JP2020029615A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6802501B2 (en) Pinion shaft and its manufacturing method
JP3326834B2 (en) Rolling bearing
TWI485267B (en) Bearing steel with excellent rolling fatigue characteristics, and manufacturing method thereof
JPWO2014104113A1 (en) Carburizing steel
JP6722511B2 (en) Carburized Sintered Steel, Carburized Sintered Member and Manufacturing Methods Thereof
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP5886119B2 (en) Case-hardened steel
KR20130140193A (en) Steel with excellent rolling fatigue characteristics
JP5206271B2 (en) Carbonitriding parts made of steel
JP4998054B2 (en) Rolling bearing
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JPH11323487A (en) Steel for machine structural use, excellent in machinability and grain coarsening resistance
JP2002180203A (en) Needle bearing components, and method for producing the components
JP4752635B2 (en) Method for manufacturing soft nitrided parts
WO1999024728A1 (en) Rolling bearing and method of producing the same
CN106103777B (en) Vacuum carburization steel and its manufacturing method
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
JP2002212672A (en) Steel member
JP6225613B2 (en) Case-hardened steel
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP5272609B2 (en) Carbonitriding parts made of steel
JP2022170056A (en) steel
JP2006299313A (en) Rolling supporter
JP2021006659A (en) Steel component and method for producing the same
JP5077814B2 (en) Shaft and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6802501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150