JP6802450B2 - Absorption / heat dissipation semiconductor module, defroster and snow melting device - Google Patents

Absorption / heat dissipation semiconductor module, defroster and snow melting device Download PDF

Info

Publication number
JP6802450B2
JP6802450B2 JP2017001749A JP2017001749A JP6802450B2 JP 6802450 B2 JP6802450 B2 JP 6802450B2 JP 2017001749 A JP2017001749 A JP 2017001749A JP 2017001749 A JP2017001749 A JP 2017001749A JP 6802450 B2 JP6802450 B2 JP 6802450B2
Authority
JP
Japan
Prior art keywords
insulating layer
semiconductor module
absorption
heat dissipation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001749A
Other languages
Japanese (ja)
Other versions
JP2018113296A (en
Inventor
秀雄 中庄谷
秀雄 中庄谷
Original Assignee
テンソー電磁技術工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テンソー電磁技術工業株式会社 filed Critical テンソー電磁技術工業株式会社
Priority to JP2017001749A priority Critical patent/JP6802450B2/en
Publication of JP2018113296A publication Critical patent/JP2018113296A/en
Application granted granted Critical
Publication of JP6802450B2 publication Critical patent/JP6802450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、吸/放熱半導体モジュールと、その半導体モジュールを用いて構成される吸/放熱半導体装置、解凍装置、融雪装置に関する。 The present invention relates to a heat absorbing / radiating semiconductor module, and an absorbing / radiating semiconductor device, a defrosting device, and a snow melting device configured by using the semiconductor module.

解凍装置に係る従来技術の例として、次の特許文献には、冷凍された食材を解凍する解凍器において、ケースに支持された解凍板の裏面にフィン状の突起を設け、そこにケース外の空気を強制的に供給して解凍板から食材への熱の伝導を促進することが記載されている。 As an example of the prior art relating to a thawing device, the following patent document states that in a thawing device for thawing frozen foodstuffs, fin-shaped protrusions are provided on the back surface of a thawing plate supported by a case, and the outside of the case is provided there. It is described that air is forcibly supplied to promote the conduction of heat from the thaw plate to the food.

特開2015−202092号公報JP-A-2015-202092

しかしながら前記特許文献に記載の解凍器は、器外から空気を吸込んで解凍板の裏面側に送るための送風装置やその空気の通路となるケース等を備えるために大型化してしまう、又送風装置を作動させるための電源を必要とする等の問題があった。本発明はこのような問題に着目してなされたものであって、外部電源なしで動作する吸/放熱半導体モジュールと、その応用製品として解凍装置、融雪装置を提供することを目的としている。 However, the defroster described in the patent document is enlarged because it is provided with a blower for sucking air from the outside of the device and sending it to the back surface side of the thaw plate, a case serving as an air passage, and the like. There was a problem such as the need for a power supply to operate. The present invention has been made focusing on such a problem, and an object of the present invention is to provide an absorption / heat dissipation semiconductor module that operates without an external power source, and a defrosting device and a snow melting device as its application products.

本発明による吸/放熱半導体モジュールは、P、N半導体を導電接続部材で交互に直列接続して内部回路を形成し、この内部回路の終端を接続させるとともに、それらの導電接続部材を交互に表側絶縁層と裏側絶縁層とに接合させるようにして、前記内部回路の表、
裏面に前記表側絶縁層と前記裏側絶縁層とを被せた構成にし、
前記表側絶縁層が放熱作用をなし、かつ前記裏側絶縁層が吸熱作用をなすように前記内部回路の終端にダイオード素子を介在させている。
前記裏側絶縁層の外側に電熱体を配置させ、該電熱体を前記内部回路の終端に介在させてもよい。
本発明による吸/放熱半導体装置は、前記吸/放熱半導体モジュールを2以上、整列させて上下に積層させてなる。
本発明による解凍装置は、前記吸/放熱半導体モジュールを備えている。
本発明による融雪装置は、前記吸/放熱半導体モジュールを備えている。
In the absorption / heat dissipation semiconductor module according to the present invention, P and N semiconductors are alternately connected in series by conductive connecting members to form an internal circuit, the ends of the internal circuits are connected, and the conductive connecting members are alternately connected to the front side. The front side of the internal circuit, which is joined to the insulating layer and the backside insulating layer,
The back surface is covered with the front-side insulating layer and the back-side insulating layer .
A diode element is interposed at the end of the internal circuit so that the front-side insulating layer has a heat-dissipating action and the back-side insulating layer has an endothermic action .
An electric heater may be arranged outside the backside insulating layer, and the electric heater may be interposed at the end of the internal circuit.
The absorption / heat dissipation semiconductor device according to the present invention is formed by aligning two or more of the absorption / heat dissipation semiconductor modules and stacking them one above the other.
The defrosting device according to the present invention includes the absorption / heat dissipation semiconductor module.
The snow melting device according to the present invention includes the absorption / heat dissipation semiconductor module.

本発明による吸/放熱半導体モジュールは、表面と裏面との間に温度差が与えられると、ゼーベック効果によって、前記内部回路に自発的に電流が流れるので、外部電源等なしで動作する。そのため解凍装置、融雪装置等、この半導体モジュールの応用製品が簡単、かつコンパクトに構成できる。 When a temperature difference is applied between the front surface and the back surface, the absorption / heat dissipation semiconductor module according to the present invention operates without an external power source or the like because a current spontaneously flows through the internal circuit due to the Seebeck effect. Therefore, application products of this semiconductor module such as a defrosting device and a snow melting device can be easily and compactly configured.

実施形態の一例とされる吸/放熱半導体モジュールの分解図である。It is an exploded view of the absorption / heat dissipation semiconductor module which is an example of an embodiment. 図1に示した吸/放熱半導体モジュールの正面図である。It is a front view of the absorption / heat dissipation semiconductor module shown in FIG. (a)、(b)はいずれも前記半導体モジュールを複数枚積層してなる吸/放熱半導体装置の斜視図である(A) and (b) are both perspective views of an absorption / heat dissipation semiconductor device in which a plurality of the semiconductor modules are laminated. 実施形態の他例とされる吸/放熱半導体モジュールの分解図である。It is an exploded view of the absorption / heat dissipation semiconductor module which is another example of an embodiment. 図4に示した吸/放熱半導体モジュールの正面図である。It is a front view of the absorption / heat dissipation semiconductor module shown in FIG.

図1は実施形態の一例とされる吸/放熱半導体モジュールの分解図、図2はその吸/放熱半導体モジュールの正面図である。 FIG. 1 is an exploded view of an absorption / heat dissipation semiconductor module as an example of an embodiment, and FIG. 2 is a front view of the absorption / heat dissipation semiconductor module.

半導体モジュール1は、平坦なパネル形状であり、その表面、裏面はそれぞれ表面絶縁層10、裏面絶縁層11になっている。表面絶縁層10と裏面絶縁層11との間には、P、N半導体12、13が導電接続部材14によって交互に直列接続されて内部回路を形成している。内部回路の終端は接続されてループ状の閉回路になっている。導電性接続部材14は例えば金属片等であって、これらを交互に表側絶縁層10と裏側絶縁層11とに接合させるようにして、前記内部回路の表、裏面に表側絶縁層10と裏側絶縁層11とを被せた構成になっている。このような基本構成とされた半導体モジュール1は、後述のように、表面と裏面との間に温度差が与えられると、ゼーベック効果によってこの内部回路に電流が流れるので、外部電源なしで自発的に動作する。又特別な制御回路等も必要とされない。そのため例えば解凍装置等の半導体モジュール1の応用製品が簡単かつコンパクトに構成できる。 The semiconductor module 1 has a flat panel shape, and its front surface and back surface are a front surface insulating layer 10 and a back surface insulating layer 11, respectively. Between the front surface insulating layer 10 and the back surface insulating layer 11, P and N semiconductors 12 and 13 are alternately connected in series by conductive connecting members 14 to form an internal circuit. The end of the internal circuit is connected to form a loop-shaped closed circuit. The conductive connecting member 14 is, for example, a metal piece or the like, and these are alternately joined to the front-side insulating layer 10 and the back-side insulating layer 11, so that the front-side insulating layer 10 and the back-side insulating layer are insulated on the front and back surfaces of the internal circuit. It is configured to cover the layer 11. As will be described later, in the semiconductor module 1 having such a basic configuration, when a temperature difference is applied between the front surface and the back surface, a current flows through this internal circuit due to the Seebeck effect, so that the semiconductor module 1 is spontaneous without an external power supply. Works on. Moreover, no special control circuit or the like is required. Therefore, for example, an applied product of the semiconductor module 1 such as a defrosting device can be easily and compactly configured.

表面絶縁層10、裏面絶縁層11は例えばアルミナ等のセラミックからなる。半導体モジュール1は更にその外表面全体、又は表面絶縁層10、裏面絶縁層11の間隙を含む外周面全体が樹脂等によって防水処理されていてもよい。 The front surface insulating layer 10 and the back surface insulating layer 11 are made of ceramic such as alumina. Further, the entire outer surface of the semiconductor module 1 or the entire outer peripheral surface including the gap between the front surface insulating layer 10 and the back surface insulating layer 11 may be waterproofed with a resin or the like.

半導体12、13はいずれも微小な長方体形状である。内部回路は途中で交差せずに一筆書できる経路によって全ての半導体12、13を直列接続している。そのような経路の一例を破線によって示している。直列接続の各接続点では、半導体12、13が導電接続部材14を介して電気接続されており、この導電接続部材14が表面絶縁層10又は裏面絶縁層11に接合されている。この接合は、導電接続部材14と、表面絶縁層10又は裏面絶縁層11との間で良好な熱伝導がなされる方法によるものとする。 The semiconductors 12 and 13 all have a minute rectangular parallelepiped shape. The internal circuit connects all semiconductors 12 and 13 in series by a path that can be written in one stroke without intersecting in the middle. An example of such a route is shown by a broken line. At each connection point of the series connection, the semiconductors 12 and 13 are electrically connected via the conductive connecting member 14, and the conductive connecting member 14 is joined to the front surface insulating layer 10 or the back surface insulating layer 11. This bonding is based on a method in which good heat conduction is achieved between the conductive connecting member 14 and the front surface insulating layer 10 or the back surface insulating layer 11.

半導体モジュール1は、前記の通り、その表面と裏面との間に温度差が与えられると、半導体12、13の各々にゼーベック効果による起電力が生じて内部回路に自発的な電流が流れる。 As described above, when a temperature difference is applied between the front surface and the back surface of the semiconductor module 1, electromotive force is generated in each of the semiconductors 12 and 13 due to the Seebeck effect, and a spontaneous current flows in the internal circuit.

前記作用をより詳細に説明する。半導体12、13の上下両端に温度差が与えられると、各半導体12、13では高温部分に多くのキャリアーが生じ、このキャリアーが低温部分に拡散していく現象が生じる。半導体12のキャリアーは正孔であり、半導体13のキャリアーは電子である。そのため低温側の接続点では半導体12から半導体13に向けて電流が流れ、逆に高温側の接続点は、半導体13から半導体12に向けて電流が流れることになる。又高温部分でキャリアーが生じる際にエネルギーが吸収され、低温部分でキャリアーが消滅する際にそのエネルギーが放出されることも同時に起きる。つまり半導体モジュール1は、その表面と裏面との間に温度差が与えられると、半導体12、13からなる内部回路に電流が流れ、かつ高温側の面で吸熱しその熱を低温側の面で放熱するという特異な吸/放熱作用をなす。 The above action will be described in more detail. When a temperature difference is given to the upper and lower ends of the semiconductors 12 and 13, a large number of carriers are generated in the high temperature portion of each of the semiconductors 12 and 13, and a phenomenon occurs in which the carriers diffuse to the low temperature portion. The carriers of the semiconductor 12 are holes, and the carriers of the semiconductor 13 are electrons. Therefore, a current flows from the semiconductor 12 to the semiconductor 13 at the connection point on the low temperature side, and a current flows from the semiconductor 13 to the semiconductor 12 at the connection point on the high temperature side. At the same time, energy is absorbed when carriers are generated in the high temperature portion, and the energy is released when the carriers disappear in the low temperature portion. That is, when a temperature difference is applied between the front surface and the back surface of the semiconductor module 1, a current flows through the internal circuit composed of the semiconductors 12 and 13, and heat is absorbed by the surface on the high temperature side and the heat is absorbed by the surface on the low temperature side. It has a unique endothermic / heat dissipation effect of dissipating heat.

前記のような特異な吸/放熱作用を活かす半導体モジュール1の用途としては、例えば冷凍された食品を解凍する解凍装置が考えられる。具体的には、半導体モジュール1によって構成された解凍装置をテーブルにセットして、その表面に解凍すべき食品等を載せる。すると解凍装置に前記吸/放熱作用が生じて食品等の解凍が促進される(自然解凍よりも早く解凍できる)。ここで特筆すべきは半導体モジュール1が外部電源も、特段の制御も必要としない点である。又食品が解凍されると、前記吸/放熱作用はやがて自然停止するので食品が熱くなるおそれもない。 As an application of the semiconductor module 1 utilizing the peculiar absorption / heat dissipation action as described above, for example, a thawing device for thawing frozen food can be considered. Specifically, a defrosting device composed of the semiconductor module 1 is set on a table, and food or the like to be defrosted is placed on the surface thereof. Then, the absorption / heat dissipation action is generated in the thawing device, and thawing of foods and the like is promoted (thawing can be performed faster than natural thawing). It should be noted here that the semiconductor module 1 does not require an external power supply or special control. Further, when the food is thawed, the absorption / heat dissipation action is stopped spontaneously, so that the food does not become hot.

図3(a)、(b)はいずれも前記半導体モジュールを複数枚積層してなる吸/放熱半導体装置の斜視図である。半導体装置2を構成する半導体モジュール1の数に特段の制限はない。又半導体装置2の外表面全体、又は外周面全体が樹脂等によって防水処理されていてもよい。 3 (a) and 3 (b) are both perspective views of an absorption / heat dissipation semiconductor device in which a plurality of the semiconductor modules are laminated. There is no particular limitation on the number of semiconductor modules 1 constituting the semiconductor device 2. Further, the entire outer surface or the entire outer peripheral surface of the semiconductor device 2 may be waterproofed with a resin or the like.

図3(a)、(b)に示すように半導体モジュール1を複数枚積層すれば、半導体装置2の表面と裏面との温度差を、半導体モジュール1の各々が分担することになる。前記の吸/放熱作用ではその前提となる温度差に最適な範囲があるので、半導体モジュール1の各々が担う温度差を調節することは、半導体装置2の使用環境等によっては非常に有効である。 If a plurality of semiconductor modules 1 are stacked as shown in FIGS. 3A and 3B, each of the semiconductor modules 1 shares the temperature difference between the front surface and the back surface of the semiconductor device 2. Since the above-mentioned absorption / dissipation action has an optimum range for the temperature difference that is the premise, it is very effective to adjust the temperature difference carried by each of the semiconductor modules 1 depending on the usage environment of the semiconductor device 2. ..

図3(a)に示す例では、前記半導体モジュールが複数枚積層されている。モジュール間はそこに気泡を含めないように接着剤等で結合させるとよい。この構成では前記半導体モジュール1をそのまま積層しているので製造が容易であるという効果がある。 In the example shown in FIG. 3A, a plurality of the semiconductor modules are stacked. It is advisable to bond the modules with an adhesive or the like so as not to include air bubbles there. In this configuration, since the semiconductor modules 1 are laminated as they are, there is an effect that the manufacturing is easy.

図3(a)に示す例では、中間部に配置される半導体モジュール1の表面絶縁層10、裏面絶縁層11が、その上下に隣接するモジュールと共用されている。この構成では、絶縁層10、11の数が少なくなるので、吸/放熱作用が迅速になるという効果がある。ただし製造は前記よりも難しくなると考えられる。 In the example shown in FIG. 3A, the front surface insulating layer 10 and the back surface insulating layer 11 of the semiconductor module 1 arranged in the intermediate portion are shared with the modules adjacent to the upper and lower surfaces thereof. In this configuration, since the number of the insulating layers 10 and 11 is reduced, there is an effect that the absorption / heat dissipation action becomes quick. However, manufacturing is considered to be more difficult than described above.

図4は実施形態の他例とされる半導体モジュールの分解図、図5はその半導体モジュールの正面図である。
この例では、二種類の半導体12、13が交互に直列接続されて形成された内部回路の終端に、ダイオード素子15と電熱体16とを介在させている。ダイオード素子15は一例としてチップタイプとしており、そのアノード、カソード端子は導電接続部材14に接続されている。ダイオード素子15は、表面絶縁層10に接合されている接続点が放熱作用をなし、かつ裏面絶縁層11に接合されている接続点が吸熱作用をなすように内部回路の電流方向を規制するように向けられている。なおダイオード素子15は、表面絶縁層10と裏面絶縁層11との間に配置せず外側に配置してもよい。
電熱体16は、裏面絶縁層11の外側面全体に広がるように配置されている。具体的には、導電接続部材14に接続された導電線18が裏面絶縁層11の縁部に形成された切欠部又は孔部11aから導出されており、電熱体16はその導電線18に接続されて、裏面絶縁層11の外側面全体に広がっている(一点鎖線参照)。電熱体16はニクロム線等で予め形成したパターンを裏面絶縁層11に貼り付けたものでもよいし、導電性塗料等によって裏面絶縁層11に印刷形成したものでもよい。
更に、電熱体16が配置された裏面絶縁層11の全体を覆うように断熱層17が形成されている。断熱層17は電熱体16の発熱を外部に逃さないためのものである。断熱層17の素材等は特に制限されない。例えば断熱層17として発泡スチロール等を用いていてもよい。なお半導体モジュール1は更にその外表面全体、又は外周面全体が樹脂等によって防水処理されていてもよい。
FIG. 4 is an exploded view of a semiconductor module as another example of the embodiment, and FIG. 5 is a front view of the semiconductor module.
In this example, a diode element 15 and an electric heater 16 are interposed at the end of an internal circuit formed by alternately connecting two types of semiconductors 12 and 13 in series. The diode element 15 is a chip type as an example, and its anode and cathode terminals are connected to the conductive connecting member 14. The diode element 15 regulates the current direction of the internal circuit so that the connection point bonded to the front surface insulating layer 10 has a heat dissipation effect and the connection point bonded to the back surface insulating layer 11 has an endothermic effect. Is aimed at. The diode element 15 may not be arranged between the front surface insulating layer 10 and the back surface insulating layer 11 but may be arranged outside.
The electric heating body 16 is arranged so as to spread over the entire outer surface of the back surface insulating layer 11. Specifically, the conductive wire 18 connected to the conductive connecting member 14 is derived from the notch or hole 11a formed at the edge of the back surface insulating layer 11, and the electric heating body 16 is connected to the conductive wire 18. It spreads over the entire outer surface of the back surface insulating layer 11 (see the alternate long and short dash line). The electric heating body 16 may be a pattern formed in advance with a nichrome wire or the like attached to the back surface insulating layer 11, or may be printed and formed on the back surface insulating layer 11 with a conductive paint or the like.
Further, the heat insulating layer 17 is formed so as to cover the entire back surface insulating layer 11 on which the electric heating body 16 is arranged. The heat insulating layer 17 is for preventing the heat generated by the electric heating body 16 from escaping to the outside. The material of the heat insulating layer 17 is not particularly limited. For example, Styrofoam or the like may be used as the heat insulating layer 17. The entire outer surface or the entire outer peripheral surface of the semiconductor module 1 may be further waterproofed with a resin or the like.

この半導体モジュール1は、内部回路にダイオード素子15が挿入されているので、ゼーベック効果による電流が許容されるのは、表面が低温、裏面が高温の場合のときのみである。この電流によって電熱体16が発熱し、その熱が半導体モジュール1の裏面側から吸熱されて表面から放熱される。つまり本実施形態では、半導体モジュール1は表面と裏面との温度差が小さい場合でも確実に作動する。なおダイオード素子15は、表面に熱が与えられたときに、その熱と電熱体16の発熱とによって半導体モジュール1全体が高温になってしまう状況を防止する目的がある。 Since the diode element 15 is inserted in the internal circuit of the semiconductor module 1, the current due to the Seebeck effect is allowed only when the front surface is low temperature and the back surface is high temperature. This current causes the electric heating body 16 to generate heat, and the heat is absorbed from the back surface side of the semiconductor module 1 and dissipated from the front surface. That is, in the present embodiment, the semiconductor module 1 operates reliably even when the temperature difference between the front surface and the back surface is small. The diode element 15 has an object of preventing a situation in which the entire semiconductor module 1 becomes hot due to the heat generated by the electric heating body 16 when heat is applied to the surface of the diode element 15.

本実施形態の半導体モジュール1の好ましい用途としては、例えば融雪装置(融雪瓦)が考えられる。具体的には、融雪装置の表面側に半導体モジュール1を組み込めばよい。そうすれば気温が低いときでも外部電源なしで融雪装置上に積もった雪を融雪できるという効果が得られる。なおこの半導体モジュール1はもちろん解凍装置にも応用できる。 As a preferable application of the semiconductor module 1 of the present embodiment, for example, a snow melting device (snow melting tile) can be considered. Specifically, the semiconductor module 1 may be incorporated on the surface side of the snow melting device. Then, even when the temperature is low, the effect of melting the snow accumulated on the snow melting device without an external power source can be obtained. The semiconductor module 1 can of course be applied to a defrosting device.

1 吸/放熱半導体モジュール
10 表面絶縁層
11 裏面絶縁層
12、13 P、N半導体
14 導電接続部材
15 ダイオード素子
16 電熱体
1 Absorption / heat dissipation semiconductor module 10 Front surface insulation layer 11 Back surface insulation layer 12, 13 P, N semiconductor 14 Conductive connection member 15 Diode element 16 Electric heater

Claims (5)

P、N半導体を導電接続部材で交互に直列接続して内部回路を形成し、この内部回路の終端を接続させるとともに、それらの導電接続部材を交互に表側絶縁層と裏側絶縁層とに接合させるようにして、前記内部回路の表、裏面に前記表側絶縁層と前記裏側絶縁層とを被せた構成にし、
前記表側絶縁層が放熱作用をなし、かつ前記裏側絶縁層が吸熱作用をなすように前記内部回路の終端にダイオード素子を介在させた吸/放熱半導体モジュール。
P and N semiconductors are alternately connected in series with conductive connecting members to form an internal circuit, the ends of the internal circuit are connected, and the conductive connecting members are alternately joined to the front side insulating layer and the back side insulating layer. In this way, the front and back surfaces of the internal circuit are covered with the front-side insulating layer and the back-side insulating layer .
An endothermic / heat-dissipating semiconductor module in which a diode element is interposed at the end of the internal circuit so that the front-side insulating layer has a heat-dissipating action and the back-side insulating layer has a heat-absorbing action.
前記裏側絶縁層の外側に電熱体を配置させ、該電熱体を前記内部回路の終端に介在させている請求項1に記載の吸/放熱半導体モジュール。The absorption / heat dissipation semiconductor module according to claim 1, wherein an electric heating element is arranged outside the backside insulating layer, and the electric heating element is interposed at the end of the internal circuit. 請求項1に記載の吸/放熱半導体モジュールを2以上、整列させて上下に積層させてなる吸/放熱半導体装置。An absorption / heat dissipation semiconductor device in which two or more absorption / heat dissipation semiconductor modules according to claim 1 are aligned and laminated one above the other. 請求項1又は請求項2に記載の吸/放熱半導体モジュールを備えたことを特徴とする解凍装置。A defrosting device including the absorption / heat dissipation semiconductor module according to claim 1 or 2. 請求項2記載の吸/放熱半導体モジュールを備えたことを特徴とする融雪装置。A snow melting device including the heat absorbing / radiating semiconductor module according to claim 2.
JP2017001749A 2017-01-10 2017-01-10 Absorption / heat dissipation semiconductor module, defroster and snow melting device Active JP6802450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001749A JP6802450B2 (en) 2017-01-10 2017-01-10 Absorption / heat dissipation semiconductor module, defroster and snow melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001749A JP6802450B2 (en) 2017-01-10 2017-01-10 Absorption / heat dissipation semiconductor module, defroster and snow melting device

Publications (2)

Publication Number Publication Date
JP2018113296A JP2018113296A (en) 2018-07-19
JP6802450B2 true JP6802450B2 (en) 2020-12-16

Family

ID=62912431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001749A Active JP6802450B2 (en) 2017-01-10 2017-01-10 Absorption / heat dissipation semiconductor module, defroster and snow melting device

Country Status (1)

Country Link
JP (1) JP6802450B2 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121846U (en) * 1983-02-04 1984-08-16 オムロン株式会社 photoelectric converter
JP3655968B2 (en) * 1995-11-06 2005-06-02 株式会社エコ・トゥエンティーワン Thawing and refrigeration equipment
JPH10205071A (en) * 1997-01-20 1998-08-04 Kubota Corp Roofing material
JP2001297977A (en) * 2000-04-17 2001-10-26 Ferrotec Corp Quick heating and cooling plate
JP2002062039A (en) * 2000-08-10 2002-02-28 Ikuta Sangyo:Kk Thawing/cold storage antibacterial device for frozen foods, or the like
JP4178746B2 (en) * 2000-12-04 2008-11-12 株式会社Ihi Industrial furnace thermoelectric generator
JP2003092435A (en) * 2001-09-17 2003-03-28 Komatsu Ltd Thermoelectric module and its manufacturing method
JP3612514B2 (en) * 2001-11-22 2005-01-19 Necパーソナルプロダクツ株式会社 Snow melting equipment
JP4255691B2 (en) * 2002-12-27 2009-04-15 独立行政法人物質・材料研究機構 Electronic component cooling device using thermoelectric conversion material
US8481843B2 (en) * 2003-09-12 2013-07-09 Board Of Trustees Operating Michigan State University Silver-containing p-type semiconductor
CN100452466C (en) * 2003-09-12 2009-01-14 密歇根州州立大学托管委员会 Silver-containing p-type semiconductor
JP2009105100A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Temperature element and temperature detecting module, and temperature detection method, heating/cooling module, and temperature control method therefor
JP2009141079A (en) * 2007-12-05 2009-06-25 Jr Higashi Nippon Consultants Kk Thermoelectric element module
EP2641282A4 (en) * 2010-11-16 2014-07-02 Eletron Holding Llc Systems, methods and/or apparatus for thermoelectric energy generation
JP2016127033A (en) * 2014-12-26 2016-07-11 基弘 上野 Thermal power generation device and thermal power generation method using the same, and thermal power generation system

Also Published As

Publication number Publication date
JP2018113296A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
US9516790B2 (en) Thermoelectric cooler/heater integrated in printed circuit board
KR102281065B1 (en) Cooling thermoelectric moudule and device using the same
JP6021290B2 (en) Heat dissipation structure
JP6380037B2 (en) Semiconductor device and electronic component using the same
CN106576423B (en) Circuit carrier with heat conducting element
CN105895794B (en) Heat conversion device
JP5788501B2 (en) Thermoelectric element
JP6862896B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JPWO2016059702A1 (en) Semiconductor module
CN103794580B (en) A kind of insulation interconnection heat sink and power module
JP6802450B2 (en) Absorption / heat dissipation semiconductor module, defroster and snow melting device
JP2006216642A (en) Thermoelement
JP2012532468A (en) Module having a plurality of thermoelectric elements
KR101396534B1 (en) Thermoelectric control element and manufacturing method thereof
JP2003318455A (en) Peltier element and its manufacturing method
KR102336649B1 (en) Thermoelectric module having single crystal thermoelectric material and fabrication method for thereof
JP2005174985A (en) Thermoelement
KR102103139B1 (en) Cool and hot package using thermoelectric device
JP6450933B2 (en) Semiconductor device
JP6336106B2 (en) Heat dissipation structure
JP2004186538A (en) Thermoelectric conversion element and its manufacturing method
TWI624087B (en) Layered structure of green energy chip device
KR101543106B1 (en) Thermoelectric module
KR101063920B1 (en) manufacturing method of bare type thermoelectric module
JP2006093440A (en) Thermoelectric conversion device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6802450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250