JP6802102B2 - Sealed honeycomb structure - Google Patents

Sealed honeycomb structure Download PDF

Info

Publication number
JP6802102B2
JP6802102B2 JP2017062752A JP2017062752A JP6802102B2 JP 6802102 B2 JP6802102 B2 JP 6802102B2 JP 2017062752 A JP2017062752 A JP 2017062752A JP 2017062752 A JP2017062752 A JP 2017062752A JP 6802102 B2 JP6802102 B2 JP 6802102B2
Authority
JP
Japan
Prior art keywords
inflow
cell
honeycomb structure
diameter
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017062752A
Other languages
Japanese (ja)
Other versions
JP2017185484A (en
Inventor
佑一 浜崎
佑一 浜崎
隆弘 近藤
隆弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US15/471,343 priority Critical patent/US10328376B2/en
Priority to DE102017003047.2A priority patent/DE102017003047A1/en
Priority to CN201710198393.5A priority patent/CN107269347B/en
Publication of JP2017185484A publication Critical patent/JP2017185484A/en
Application granted granted Critical
Publication of JP6802102B2 publication Critical patent/JP6802102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides

Description

本発明は、ウォールフロー型排ガスフィルタ用の目封止ハニカム構造体に関する。更に詳しくは、自動車エンジン等のエンジンからの排ガスに含まれる粒子状物質の除去、及び/又は窒素酸化物等の有毒ガスの浄化に好適に用いられる、目封止ハニカム構造体に関する。 The present invention relates to a sealing honeycomb structure for a wall flow type exhaust gas filter. More specifically, the present invention relates to a sealing honeycomb structure that is suitably used for removing particulate matter contained in exhaust gas from an engine such as an automobile engine and / or purifying a toxic gas such as nitrogen oxide.

様々な産業において、動力源として内燃機関が用いられている。一方で、内燃機関が燃料の燃焼時に排出する排ガスには、窒素酸化物等の有毒ガスと共に、煤や灰等の粒子状物質(以下、「PM」ということがある)を大気中に放出する。特に、ディーゼルエンジンから排出されるPMの除去に関する規制は世界的に厳しくなっており、PMを除去するためのフィルタ(以下、「DPF」ということがある)として、ハニカム構造を有するウォールフロー型ガス浄化フィルタが用いられている。 Internal combustion engines are used as a power source in various industries. On the other hand, in the exhaust gas emitted by the internal combustion engine when burning fuel, particulate matter such as soot and ash (hereinafter sometimes referred to as "PM") is released into the atmosphere together with toxic gas such as nitrogen oxides. .. In particular, regulations regarding the removal of PM emitted from diesel engines are becoming stricter worldwide, and a wall-flow type gas having a honeycomb structure is used as a filter for removing PM (hereinafter sometimes referred to as "DPF"). A purification filter is used.

上記DPFは、多孔質の隔壁によって流体の流路となる複数のセルが区画形成されたものであり、セルを交互に目封止することで、上記多孔質の隔壁がPMを除去するフィルタの役目を果たす構造となっている。 The DPF is a filter in which a plurality of cells serving as a fluid flow path are partitioned by a porous partition wall, and the cells are alternately sealed to remove PM from the porous partition wall. It has a structure that fulfills its role.

具体的には、上記DPFの流入側端面からPMを含有する排ガスを流入させ、多孔質の隔壁でPMを捕集することによって濾過した後に、浄化された排ガスを流出側端面から排出するハニカム構造体が従来用いられてきた。しかし、排ガスの流入に伴ってPMが隔壁上に堆積し、排ガスの流入セルを閉塞させるという問題があった。このようにセルが閉塞すると、DPFの圧力損失が急激に大きくなるという問題が生じる。 Specifically, a honeycomb structure in which exhaust gas containing PM is introduced from the inflow side end face of the DPF, filtered by collecting PM with a porous partition wall, and then the purified exhaust gas is discharged from the outflow side end face. The body has been used conventionally. However, there is a problem that PM is deposited on the partition wall with the inflow of the exhaust gas and blocks the inflow cell of the exhaust gas. When the cell is closed in this way, there arises a problem that the pressure loss of the DPF suddenly increases.

そこで、このようなセルの閉塞を抑制するために、流入セルの濾過面積及び開口率を高めることが重要となる。しかし、流入セルと流出セルとで異なる断面積や断面形状を有する場合、セルを形成する隔壁の厚さが、隔壁同士が交差する部分の一部で薄くなる場合があり、強度が弱くなる。このため、DPFに堆積したPMを燃焼除去することによって再生する際に、薄くなった隔壁の交点部の一部に熱応力が集中し、クラックが発生するという問題があった。 Therefore, in order to suppress such cell blockage, it is important to increase the filtration area and aperture ratio of the inflow cell. However, when the inflow cell and the outflow cell have different cross-sectional areas and cross-sectional shapes, the thickness of the partition wall forming the cell may be thinned at a part of the portion where the partition walls intersect with each other, and the strength is weakened. Therefore, when the PM deposited on the DPF is regenerated by burning and removing it, there is a problem that thermal stress is concentrated on a part of the intersection of the thinned partition walls and cracks are generated.

このような問題を解決するため、流入セルの濾過面積及び開口率を高めつつ、流出セルの開口径を大きく保つことにより、初期及びPM堆積時の圧力損失を低く抑えることが可能で、且つ耐熱衝撃性の高いウォールフロー型DPFが提案されている(特許文献1)。 In order to solve such a problem, it is possible to suppress the pressure loss at the initial stage and during PM deposition by keeping the opening diameter of the outflow cell large while increasing the filtration area and opening ratio of the inflow cell, and the heat resistance. A wall flow type DPF having high impact resistance has been proposed (Patent Document 1).

また、特許文献1では、薄くなった隔壁の交点部の全てに略円弧状のR部を設けることにより、クラック発生を防止する技術が記載されている。この他、セルの対向する隅角部に略円弧状のR部を配設することによる、隔壁の交点部における亀裂発生を防止する技術が提案されている(特許文献2)。 Further, Patent Document 1 describes a technique for preventing the occurrence of cracks by providing substantially arcuate R portions at all the intersections of the thinned partition walls. In addition, a technique has been proposed in which a substantially arc-shaped R portion is arranged at the opposite corners of the cell to prevent the occurrence of cracks at the intersections of the partition walls (Patent Document 2).

特開2014−200741号公報Japanese Unexamined Patent Publication No. 2014-200741 特開2003−269131号公報Japanese Unexamined Patent Publication No. 2003-269131

しかし、例えば図5に示す従来のDPFのように、4つの流入セルの頂点が集まる隔壁の交点部は、応力が集中しやすい構造である。したがって、当該DPFをウォールフロー型ガス浄化フィルタとして自動車エンジンの排気系に用いた場合、自動車の走行中に、振動に加えて、PM燃焼、例えば、スス燃焼による急加熱及び急冷却による熱応力が発生することがある。そして、このような熱応力が発生した場合に、DPFにクラックが発生する可能性が更に高まるという問題がある。 However, as in the conventional DPF shown in FIG. 5, for example, the intersection of the partition walls where the vertices of the four inflow cells gather has a structure in which stress is easily concentrated. Therefore, when the DPF is used as a wall flow type gas purification filter in the exhaust system of an automobile engine, in addition to vibration, thermal stress due to PM combustion, for example, rapid heating and rapid cooling due to soot combustion, is generated while the automobile is running. It may occur. Then, when such thermal stress is generated, there is a problem that the possibility of cracking in the DPF is further increased.

従来のDPFの代表的なクラックの模式図を図6に示す。流入セルの頂点同士を結ぶクラックは、一般にスス漏れへの寄与度は小さいと考えられている。しかし、当該クラックが進展し、流出セルまで到達した場合には、スス漏れが発生してしまう可能性があるため、これを防ぐ必要がある。図5は、従来のセグメント型の目封止ハニカム構造体の流入側端面を模式的に表した平面図である。図6は、図5の従来の目封止ハニカム構造体の拡大図であって、代表的なクラックを模式的に表した図である。 A schematic diagram of a typical crack of a conventional DPF is shown in FIG. Cracks connecting the vertices of inflow cells are generally considered to have a small contribution to soot leakage. However, if the crack progresses and reaches the outflow cell, soot leakage may occur, and it is necessary to prevent this. FIG. 5 is a plan view schematically showing the inflow side end face of the conventional segment type sealing honeycomb structure. FIG. 6 is an enlarged view of the conventional eye-sealing honeycomb structure of FIG. 5, and is a diagram schematically showing typical cracks.

上記クラックの発生を防ぐ手段として、特許文献2に開示のように、従来はセルの補強が行われてきた。しかし、従来のように隔壁の交点部の全てに補強部を設けた場合には、クラックの発生の問題は解決できるが、セルの開口面積が小さくなるため、圧力損失が増大したり、アッシュ(Ash)の堆積容量(アッシュキャパシティ)が減少するという問題があった。また、従来のDPFでは、熱容量が大きくなるため、ライトオフ性能(Light−off performance)が悪化するというデメリットが存在した。なお、ライトオフ性能とは、DPFに担持された触媒の浄化性能が発現する温度特性のことを意味する。 As disclosed in Patent Document 2, as a means for preventing the occurrence of the crack, the cell has been conventionally reinforced. However, when the reinforcing portions are provided at all the intersections of the partition walls as in the conventional case, the problem of crack generation can be solved, but the opening area of the cell becomes smaller, so that the pressure loss increases and the ash (ash ( There was a problem that the accumulated capacity (ash capacity) of Ash) decreased. Further, in the conventional DPF, since the heat capacity becomes large, there is a demerit that the light-off performance (Light-off performance) deteriorates. The light-off performance means a temperature characteristic in which the purification performance of the catalyst supported on the DPF is exhibited.

本発明は、このような従来技術の有する問題点に鑑みてなされたものである。本発明は、開口面積の減少や圧力損失の増大、アッシュキャパシティの減少を最大限に抑制しつつ、機械的強度及び耐熱衝撃性を向上させることが可能な、目封止ハニカム構造体を提供する。 The present invention has been made in view of the problems of the prior art. The present invention provides a mesh-sealing honeycomb structure capable of improving mechanical strength and thermal shock resistance while maximally suppressing a decrease in opening area, an increase in pressure loss, and a decrease in ash capacity. To do.

本発明によれば、以下に示す目封止ハニカム構造体が提供される。 According to the present invention, the following eye-sealing honeycomb structure is provided.

[1] 流入側端面から流出側端面まで延びる流体の流路となる複数のセルを区画形成する多孔質の隔壁を有するハニカム構造部と、前記流出側端面における所定の流入セルの開口部に配設された流入側目封止部と、前記流入側端面における残余の流出セルの開口部に配設された流出側目封止部と、を備え、
前記ハニカム構造部の前記セルの延びる方向に直交する断面において、前記流入セルが、前記流出セルを取り囲むように配設され、且つ、前記流入セルの数が前記流出セルの数よりも多く、
隣接する前記流入セル同士を区画する隔壁の交点部を複数有し、
前記交点部の全数の60%以上において、
前記交点部に内接する円の直径Dと、隣接する前記流入セルと前記流出セルとを区画する隔壁に内接する円の直径Dと、の間の関係が、下記式(1)のとおりである、目封止ハニカム構造体であって、
隣接する前記流入セル同士を区画する隔壁の交点部においてのみ、前記直径D と前記直径D との間の関係が、下記式(1)のとおりである、目封止ハニカム構造体
[1] Arranged in a honeycomb structure portion having a porous partition wall forming a plurality of cells serving as a flow path of a fluid extending from an inflow side end face to an outflow side end face, and an opening of a predetermined inflow cell in the outflow side end face. An inflow-side eye-sealing portion provided and an outflow-side eye-sealing portion disposed in the opening of the residual outflow cell on the inflow-side end face are provided.
In the cross section of the honeycomb structure portion orthogonal to the extending direction of the cells, the inflow cells are arranged so as to surround the outflow cells, and the number of the inflow cells is larger than the number of the outflow cells.
It has a plurality of intersections of partition walls that partition adjacent inflow cells.
At 60% or more of the total number of intersections,
The relationship between the diameter D 1 of the circle inscribed in the intersection and the diameter D 0 of the circle inscribed in the partition wall separating the adjacent inflow cell and the outflow cell is as shown in the following equation (1). It is an eye-sealing honeycomb structure .
A mesh-sealing honeycomb structure in which the relationship between the diameter D 1 and the diameter D 0 is as shown in the following formula (1) only at the intersection of the partition walls that partition the adjacent inflow cells .

式(1):D/(√2×D)=1.20〜1.80 Equation (1): D 1 / (√2 × D 0 ) = 1.20 to 1.80

[2] 前記交点部の全数において、前記交点部に内接する円の直径Dと、隣接する前記流入セルと前記流出セルとを区画する隔壁に内接する円の直径Dと、の間の関係が、前記式(1)のとおりである、前記[1]に記載の目封止ハニカム構造体。 [2] In the total number of the intersections, between the diameter D 1 of the circle inscribed in the intersection and the diameter D 0 of the circle inscribed in the partition wall separating the adjacent inflow cell and the outflow cell. The eye-sealing honeycomb structure according to the above [1], wherein the relationship is as shown in the above formula (1).

[3] 前記流入セルに内接し、且つ当該流入セルの前記交点部側の隔壁と接する円の直径Dが、0.20〜0.80mmである、前記[1]又は[2]に記載の目封止ハニカム構造体。 [3] The above-mentioned [1] or [2], wherein the diameter D 2 of the circle inscribed in the inflow cell and in contact with the partition wall on the intersection side of the inflow cell is 0.25 to 0.80 mm. Sealed honeycomb structure.

本発明の目封止ハニカム構造体は、複数の流入セルの頂点が集まる隔壁の交点部の角部にのみ、選択的に補強部を設けている。これによって、開口面積の減少や圧力損失の増大、アッシュキャパシティの減少及びライトオフ性能の悪化を最大限に抑制しつつ、DPFの機械的強度及び耐熱衝撃性を向上させることができる。 In the sealing honeycomb structure of the present invention, reinforcing portions are selectively provided only at the corners of the intersections of the partition walls where the vertices of a plurality of inflow cells gather. As a result, the mechanical strength and thermal impact resistance of the DPF can be improved while maximally suppressing a decrease in opening area, an increase in pressure loss, a decrease in ash capacity, and a deterioration in light-off performance.

本発明の実施形態の目封止ハニカム構造体の斜視図である。It is a perspective view of the eye-sealing honeycomb structure of embodiment of this invention. 図1に示す目封止ハニカム構造体の流入側端面の一部を模式的に表した平面図である。It is a top view which represented a part of the end face on the inflow side of the sealing honeycomb structure shown in FIG. 図2のA−A’線に沿った断面図である。It is sectional drawing which follows the AA' line of FIG. 図2の流入側端面の拡大を模式的に表した平面図である。It is a top view which represented the enlargement of the end face on the inflow side of FIG. 従来のセグメント型の目封止ハニカム構造体の流入側端面を模式的に表した平面図である。It is a top view which represented typically the inflow side end face of the conventional segment type eye-sealing honeycomb structure. 図5の従来の目封止ハニカム構造体の拡大図であって、代表的なクラックを模式的に表した図である。FIG. 5 is an enlarged view of a conventional eye-sealing honeycomb structure of FIG. 5, which schematically shows typical cracks. 図5の従来の目封止ハニカム構造体の拡大図であり、交点部に内接する円を説明する図である。It is an enlarged view of the conventional eye-sealing honeycomb structure of FIG. 5, and is the figure explaining the circle inscribed in the intersection part.

以下、本発明の実施形態について説明する。しかし、本発明は以下の実施形態に限定されるものではない。したがって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良等が加えられ得ることが理解されるべきである。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. Therefore, it should be understood that the following embodiments can be appropriately modified, improved, or the like based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention.

図1〜図4は、本発明の実施形態の目封止ハニカム構造体を模式的に表した図である。ここで、本実施形態の目封止ハニカム構造体100は、複数のハニカムセグメントを互いに接合したセグメント型ハニカム構造体であっても、隔壁と外周壁とが一体成形された一体型ハニカム構造体のいずれであってもよい。図1は、本発明の実施形態の目封止ハニカム構造体の斜視図である。図2は、図1に示す目封止ハニカム構造体の流入側端面の一部を模式的に表した平面図である。図3は、図2のA−A’線に沿った断面図である。図4は、図2の流入側端面6aの拡大を模式的に表した平面図である。 1 to 4 are views schematically showing a mesh-sealing honeycomb structure according to an embodiment of the present invention. Here, the eye-sealing honeycomb structure 100 of the present embodiment is an integral honeycomb structure in which the partition wall and the outer peripheral wall are integrally molded even if the honeycomb structure is a segment type honeycomb structure in which a plurality of honeycomb segments are joined to each other. It may be either. FIG. 1 is a perspective view of the eye-sealing honeycomb structure according to the embodiment of the present invention. FIG. 2 is a plan view schematically showing a part of the inflow side end face of the sealing honeycomb structure shown in FIG. FIG. 3 is a cross-sectional view taken along the line AA'of FIG. FIG. 4 is a plan view schematically showing an enlargement of the inflow side end surface 6a of FIG.

本実施形態の目封止ハニカム構造体100は、ハニカム構造部9と、流入側目封止部3aと、流出側目封止部3bと、を備えたものである。ハニカム構造部9は、複数個のハニカムセグメント7から構成されている。複数個のハニカムセグメント7のそれぞれは、流入側端面6aから流出側端面6bまで延びる流体の流路となる複数のセル2a、2bを区画形成する多孔質の隔壁1を有するものである。複数個のハニカムセグメント7の側面の相互間には、接合層8が配設されており、この接合層8によって複数個のハニカムセグメント7が接合されることにより、ハニカム構造部9が形成されている。ハニカム構造部9の外周には、複数個のハニカムセグメント7が接合した接合体を囲繞するように、外周壁11が配設されている。 The eye-sealing honeycomb structure 100 of the present embodiment includes a honeycomb structure portion 9, an inflow side eye sealing portion 3a, and an outflow side eye sealing portion 3b. The honeycomb structure portion 9 is composed of a plurality of honeycomb segments 7. Each of the plurality of honeycomb segments 7 has a porous partition wall 1 that partitions a plurality of cells 2a and 2b that serve as a flow path for a fluid extending from the inflow side end face 6a to the outflow side end face 6b. A bonding layer 8 is disposed between the side surfaces of the plurality of honeycomb segments 7, and the honeycomb structure portion 9 is formed by joining the plurality of honeycomb segments 7 by the bonding layer 8. There is. An outer peripheral wall 11 is arranged on the outer periphery of the honeycomb structure portion 9 so as to surround a joined body in which a plurality of honeycomb segments 7 are joined.

流入側目封止部3aは、流出側端面6bにおける所定の流入セル2aの開口部に配設されたものである。流出側目封止部3bは、流入側端面6aにおける残余の流出セル2bの開口部に配設されたものである。 The inflow side sealing portion 3a is arranged in the opening of a predetermined inflow cell 2a in the outflow side end surface 6b. The outflow side eye sealing portion 3b is arranged in the opening of the residual outflow cell 2b in the inflow side end surface 6a.

目封止ハニカム構造体100は、ハニカム構造部9のセル2の延びる方向に直交する断面において、流入セル2aが、流出セル2bを取り囲むように配設されたものである。また、目封止ハニカム構造体100は、流入セル2aの数が流出セル2bの数よりも多くなるように構成されている。目封止ハニカム構造体100は、隣接する流入セル2a同士を区画する隔壁1の交点部4を複数有する。そして、目封止ハニカム構造体100は、隣接する流入セル2a同士を区画する隔壁1の交点部4の全数の60%以上において、以下のような構成を有する。まず、上記した交点部4に内接する円の直径Dと、隣接する流入セル2aと流出セル2bとを区画する隔壁1に内接する円の直径Dと、の間の関係が、下記式(1)を満たすものである。ここで、「隣接する流入セル2a同士を区画する隔壁1の交点部4」とは、「隣接する流入セル2a同士を区画する隔壁1のみが交差する交点部4」のことをいう。即ち、「隣接する流入セル2a同士を区画する隔壁1の交点部4」とは、その交点を基点として延びる隔壁1が、隣接する流入セル2a同士のみを区画する隔壁1である部位のことをいう。以下、特に断りのない限り、単に、「交点部4」という場合は、上述した「隣接する流入セル2a同士を区画する隔壁1のみが交差する交点部4」のことを意味する。 In the sealing honeycomb structure 100, the inflow cell 2a is arranged so as to surround the outflow cell 2b in a cross section orthogonal to the extending direction of the cell 2 of the honeycomb structure portion 9. Further, the sealing honeycomb structure 100 is configured so that the number of inflow cells 2a is larger than the number of outflow cells 2b. The sealing honeycomb structure 100 has a plurality of intersections 4 of partition walls 1 that partition adjacent inflow cells 2a from each other. The sealing honeycomb structure 100 has the following configuration in 60% or more of the total number of the intersections 4 of the partition walls 1 that partition the adjacent inflow cells 2a. First, the relationship between the diameter D 1 of the circle inscribed in the intersection 4 and the diameter D 0 of the circle inscribed in the partition wall 1 partitioning the adjacent inflow cell 2a and outflow cell 2b is expressed by the following equation. It satisfies (1). Here, the "intersection portion 4 of the partition wall 1 that partitions the adjacent inflow cells 2a" means the "intersection portion 4 where only the partition walls 1 that partition the adjacent inflow cells 2a intersect". That is, the "intersection portion 4 of the partition wall 1 that partitions the adjacent inflow cells 2a" refers to a portion where the partition wall 1 extending from the intersection is the partition wall 1 that partitions only the adjacent inflow cells 2a. Say. Hereinafter, unless otherwise specified, the term "intersection portion 4" simply means the above-mentioned "intersection portion 4 in which only the partition walls 1 that partition the adjacent inflow cells 2a intersect".

式(1):D/(√2×D)=1.20〜1.80 Equation (1): D 1 / (√2 × D 0 ) = 1.20 to 1.80

ここで、図4を参照しながら本実施形態を説明する。流入セル2aが、流出セル2bを取り囲むように配設されというのは、例えば、一つの流出セル2bの周りに、複数の流入セル2aが取り囲むように配設された状態を意味する。なお、目封止ハニカム構造体100の流入側端面6aの最外周に配設されたセル2に関しては、流入セル2aが、流出セル2bを取り囲むように配設されていないことがある。また、各ハニカムセグメント7においても、最外周に配設されたセル2に関しては、流入セル2aが、流出セル2bを取り囲むように配設されていないことがある。ここで、図4では、セル形状が四角形の流出セル2bが、流出セル2bよりもセル形状の小さい五角形の流入セル2aによって取り囲まれている。なお、流出セル2bのセル形状及び流入セル2aのセル形状は特に制限は無く、流出セル2bを流入セル2aで取り囲むように配設することが可能な形状であればよい。例えば、セル形状としては、四角形、五角形、六角形等の多角形が考えられるが、これらに限定されない。また、1つの流出セル2bと1つの流入セル2aの大きさ(別言すれば、セルの断面積)については、同じであっても異なっていてもよい。ここで、「セル形状」とは、ハニカム構造部のセルの延びる方向に直交する断面における、セルの形状のことをいう。 Here, the present embodiment will be described with reference to FIG. The fact that the inflow cell 2a is arranged so as to surround the outflow cell 2b means, for example, a state in which a plurality of inflow cells 2a are arranged so as to surround one outflow cell 2b. Regarding the cells 2 arranged on the outermost circumference of the inflow side end surface 6a of the sealing honeycomb structure 100, the inflow cells 2a may not be arranged so as to surround the outflow cells 2b. Further, also in each honeycomb segment 7, the inflow cell 2a may not be arranged so as to surround the outflow cell 2b with respect to the cell 2 arranged on the outermost circumference. Here, in FIG. 4, the outflow cell 2b having a quadrangular cell shape is surrounded by a pentagonal inflow cell 2a having a smaller cell shape than the outflow cell 2b. The cell shape of the outflow cell 2b and the cell shape of the inflow cell 2a are not particularly limited as long as they can be arranged so as to surround the outflow cell 2b with the inflow cell 2a. For example, the cell shape may be a polygon such as a quadrangle, a pentagon, or a hexagon, but the cell shape is not limited to these. Further, the sizes of one outflow cell 2b and one inflow cell 2a (in other words, the cross-sectional area of the cells) may be the same or different. Here, the "cell shape" refers to the shape of the cell in the cross section orthogonal to the extending direction of the cell in the honeycomb structure portion.

また、隣接する流入セル2a同士を区画する隔壁1の交点部4というのは、流出セル2bを取り囲むように配設された複数の流入セル2a同士を区画する隔壁1のみが交差する交点部4を意味する。なお、図1及び図2に示すように、目封止ハニカム構造体100の外周壁の付近において、流入セル2aの形状が一部潰れた形状となる場合がある。このようなセル形状が一部潰れた形状となった流入セル2aについても、一つの流入セル2aとして数える。 Further, the intersection portion 4 of the partition wall 1 that partitions the adjacent inflow cells 2a is the intersection portion 4 where only the partition wall 1 that partitions the plurality of inflow cells 2a arranged so as to surround the outflow cell 2b intersects. Means. As shown in FIGS. 1 and 2, the shape of the inflow cell 2a may be partially crushed in the vicinity of the outer peripheral wall of the sealing honeycomb structure 100. An inflow cell 2a in which such a cell shape is partially crushed is also counted as one inflow cell 2a.

次に、交点部4に内接する円の直径Dとは、図4に示すように、隔壁1の交点部4に内接している円の直径である。なお、「交点部4に内接する円」とは、隔壁1の交点部4において、交点部4に面している流入セル2aのうちの過半数の流入セル2aと接する内接円とする。そして、「交点部4に内接する円の直径D」は、過半数の流入セル2aと接する内接円が複数存在する場合には、その直径が最大となる内接円の直径とする。 Next, the diameter D 1 of the circle inscribed in the intersection portion 4 is the diameter of the circle inscribed in the intersection portion 4 of the partition wall 1, as shown in FIG. The "circle inscribed in the intersection 4" is an inscribed circle in the intersection 4 of the partition wall 1 that is inscribed in the inflow cell 2a, which is a majority of the inflow cells 2a facing the intersection 4. The "diameter D 1 of the circle inscribed in the intersection 4" is the diameter of the inscribed circle having the maximum diameter when there are a plurality of inscribed circles in contact with the majority of the inflow cells 2a.

また、隣接する流入セル2aと流出セル2bとを区画する隔壁1に内接する円の直径Dとは、図4に示すように、流入セル2aと流出セル2bとを区画する隔壁の交点部以外の隔壁1に内接する円の直径である。別言すれば、向かい合った流入セル2aと流出セル2bの角部を除く部分に外接する円の直径を意味する。以下、「隣接する流入セル2aと流出セル2bとを区画する隔壁1に内接する円の直径D」を、単に、「隔壁1に内接する円の直径D」ということがある。隣接する流入セル2aと流出セル2bとを区画する隔壁1に内接する円の直径Dは、以下のようにして求めることができる。まず、目封止ハニカム構造体100の流入側端面6aにおいて、隣接する流入セル2aと流出セル2bとを区画する隔壁1のうちの5か所を無作為に選択する。そして、選択した5か所の隔壁1に対して、仮想的に内接円を描き、その内接円の直径を求める。5か所の内接円の直径の平均値を、円の直径Dとする。 Further, as shown in FIG. 4, the diameter D 0 of the circle inscribed in the partition wall 1 that partitions the adjacent inflow cell 2a and the outflow cell 2b is the intersection of the partition walls that partition the inflow cell 2a and the outflow cell 2b. It is the diameter of the circle inscribed in the partition wall 1 other than the above. In other words, it means the diameter of a circle circumscribing the portions of the inflow cell 2a and the outflow cell 2b that face each other except for the corners. Hereinafter, "the diameter D 0 of the circle inscribed in the partition wall 1 that partitions the adjacent inflow cell 2a and the outflow cell 2b" may be simply referred to as "the diameter D 0 of the circle inscribed in the partition wall 1." The diameter D 0 of the circle inscribed in the partition wall 1 that separates the adjacent inflow cell 2a and the outflow cell 2b can be obtained as follows. First, at the inflow side end surface 6a of the sealing honeycomb structure 100, five of the partition walls 1 that partition the adjacent inflow cells 2a and outflow cells 2b are randomly selected. Then, an inscribed circle is virtually drawn for the five selected partition walls 1, and the diameter of the inscribed circle is obtained. Let the average value of the diameters of the five inscribed circles be the diameter D 0 of the circles.

ここで、式(1)中の√2×Dについて説明する、式(1)中の√2×Dは、図7に示すような、補強部を配設していない従来の目封止ハニカム構造体において、流入セル2a同士を区画する隔壁1の交点部4に内接する円の直径の値を示している。図7は、図5の従来の目封止ハニカム構造体の拡大図であり、交点部に内接する円を説明する図である。本実施形態の目封止ハニカム構造体100は、隣接する流入セル2a同士を区画する隔壁1の交点部4に内接する円の直径Dが、補強部を配設していない従来の目封止ハニカム構造体の「同様箇所の交点部に内接する円の直径」よりも大きいという特徴を有する。 Will now be described √2 × D 0 in formula (1), √2 × D 0 in formula (1), such as shown in FIG. 7, a conventional eye seal which is not provided with the reinforcing portion In the stop honeycomb structure, the value of the diameter of the circle inscribed in the intersection 4 of the partition wall 1 that partitions the inflow cells 2a is shown. FIG. 7 is an enlarged view of the conventional eye-sealing honeycomb structure of FIG. 5, and is a diagram for explaining a circle inscribed in the intersection. It plugged honeycomb structure 100 of the present embodiment, the diameter D 1 of the circle inscribed in the intersection portion 4 of the partition walls 1 defining the inflow cells 2a with adjacent, conventional eye seal which is not provided with the reinforcing portion It is characterized by being larger than the "diameter of the circle inscribed at the intersection of similar points" of the stop honeycomb structure.

上記式(1)の条件を満たす交点部4の数は、交点部4の全数を100%とした場合の少なくとも60%であり、より好ましくは100%である。上記条件を満たす交点部4の数が60%未満となった場合には、耐熱衝撃性が著しく低下する。 The number of intersections 4 satisfying the condition of the above formula (1) is at least 60%, more preferably 100%, when the total number of intersections 4 is 100%. When the number of intersections 4 satisfying the above conditions is less than 60%, the thermal shock resistance is remarkably lowered.

上記式(1)における「D/(√2×D)」の値が、1.20未満である場合には、十分な耐熱衝撃性を得られることができない。また、上記式(1)における「D/(√2×D)」の値が、1.80を超える場合には、圧力損失の増加、ライトオフ性能の悪化、アッシュ容量が減少してしまう。 If the value of "D 1 / (√2 x D 0 )" in the above formula (1) is less than 1.20, sufficient thermal shock resistance cannot be obtained. Further, when the value of "D 1 / (√2 × D 0 )" in the above equation (1) exceeds 1.80, the pressure loss increases, the write-off performance deteriorates, and the ash capacity decreases. It ends up.

また、隣接する流入セル2a同士を区画する隔壁1の交点部4においてのみ、交点部4に内接する円の直径(D)と、隣接する流入セル2aと流出セル2bとを区画する隔壁1に内接する円の直径(D)と、の間の関係が、式(1)を満たす。これは、隔壁の交点部の全てに補強部を配設する従来技術とは異なり、図1〜図4に示すように、本発明では隣接する流入セル2a同士を区画する隔壁1の交点部4においてのみ補強部を配設することを意味する。このような補強部を作製する方法としては、例えば、従来公知の方法により、押出成形時の口金の形状を変更する方法を挙げることができる。また、所定の流入セル2aの所定の角部にスラリーを流入させることによって、Rを有する角部を形成することによって、上記した補強部を作製してもよい。なお、「補強部を有する」とは、隣接する流入セル2a同士を区画する隔壁1の交点部4が、上記式(1)の関係を満たすことを意味する。また、上述した「隣接する流入セル2a同士を区画する隔壁1の交点部4においてのみ・・・式(1)を満たす。」とは、それ以外の他の交点部については、式(1)の関係を満たさなくてもよいことを意味する。ここで、上記式(1)の関係を満たさないとは、例えば従来技術のようにD=√2×Dの関係や、「D/(√2×D)」の値が1.20未満であってもよいことを意味する。ただし、上記式(1)は、製造公差を含んでいないことに留意されたい。 Further, only at the intersection 4 of the partition wall 1 that partitions the adjacent inflow cells 2a, the diameter (D 1 ) of the circle inscribed in the intersection 4 and the partition wall 1 that partitions the adjacent inflow cells 2a and the outflow cells 2b. The relationship between the diameter of the circle inscribed in (D 0 ) and the equation (1) is satisfied. This is different from the conventional technique in which the reinforcing portions are arranged at all the intersections of the partition walls, and as shown in FIGS. 1 to 4, in the present invention, the intersections 4 of the partition walls 1 that partition the adjacent inflow cells 2a from each other. It means that the reinforcing portion is arranged only in. As a method for producing such a reinforcing portion, for example, a method of changing the shape of the base during extrusion molding by a conventionally known method can be mentioned. Further, the above-mentioned reinforcing portion may be produced by forming the corner portion having R by flowing the slurry into the predetermined corner portion of the predetermined inflow cell 2a. In addition, "having a reinforcing portion" means that the intersection portion 4 of the partition wall 1 that partitions the adjacent inflow cells 2a satisfies the relationship of the above formula (1). Further, the above-mentioned "only at the intersection 4 of the partition wall 1 that partitions the adjacent inflow cells 2a ... Satisfies the equation (1)" means that the other intersections are the equation (1). It means that it is not necessary to satisfy the relationship of. Here, if the relationship of the above equation (1) is not satisfied, for example, the relationship of D 1 = √2 × D 0 or the value of “D 1 / (√2 × D 0 )” is 1 as in the prior art. It means that it may be less than .20. However, it should be noted that the above equation (1) does not include manufacturing tolerances.

また、流入セル2aに内接し、且つこの流入セル2aの交点部4側の隔壁1と接する円の直径Dは、0.20〜0.80mmであることが好ましい。ここで、流入セル2aに内接し、且つこの流入セル2aの交点部4側の隔壁1と接する円の直径Dを、図4に示す。図4に示すように、直径Dとなる円は、流入セル2a内に存在しており、且つ、交点部4の隔壁1と接する円である。このような円の直径が、上記した「直径D」である。ここで、直径Dが0.20mmより小さくなる場合は、十分な耐熱衝撃性を得られることができないことがある。 Further, the diameter D 2 of the circle inscribed in the inflow cell 2a and in contact with the partition wall 1 on the intersection 4 side of the inflow cell 2a is preferably 0.20 to 0.80 mm. Here, FIG. 4 shows the diameter D 2 of a circle inscribed in the inflow cell 2a and in contact with the partition wall 1 on the intersection 4 side of the inflow cell 2a. As shown in FIG. 4, the circle having the diameter D 2 is a circle that exists in the inflow cell 2a and is in contact with the partition wall 1 of the intersection portion 4. The diameter of such a circle is the above-mentioned "diameter D 2 ". Here, when the diameter D 2 is smaller than 0.20 mm, sufficient thermal shock resistance may not be obtained.

本実施形態の目封止ハニカム構造体100においては、ハニカム構造部9が以下のように構成されたものを好適例の1つとして挙げることができる。流入セル2aにおいて、幾何学的表面積GSAが、10〜30cm/cmであることが好ましく、12〜18cm/cmであることが更に好ましい。ここで、上述した「幾何学的表面積GSA」とは、流入セル2aの全内表面積(S)を、ハニカム構造部9の全容積(V)で除した値(S/V)のことをいう。一般に、フィルタの濾過面積が大きいほど、隔壁へのPM堆積厚さを低減できるため、上述した幾何学的表面積GSAの数値範囲とすることにより、目封止ハニカム構造体の圧力損失を低く抑えることができる。よって、流入セル2aの幾何学的表面積GSAが10cm/cmより小さいと、PM堆積時の圧力損失の増加につながるため好ましくない。また、30cm/cmより大きいと、初期の圧力損失が増加するため好ましくない。 In the eye-sealing honeycomb structure 100 of the present embodiment, one in which the honeycomb structure portion 9 is configured as follows can be mentioned as one of the preferable examples. In the inflow cell 2a, the geometric surface area GSA is preferably 10 to 30 cm 2 / cm 3 , and even more preferably 12 to 18 cm 2 / cm 3 . Here, the above-mentioned "geometric surface area GSA" means a value (S / V) obtained by dividing the total internal surface area (S) of the inflow cell 2a by the total volume (V) of the honeycomb structure portion 9. .. In general, the larger the filtration area of the filter, the smaller the thickness of PM deposited on the partition wall. Therefore, the pressure loss of the sealing honeycomb structure can be kept low by setting the geometric surface area GSA in the numerical range described above. Can be done. Therefore, if the geometric surface area GSA of the inflow cell 2a is smaller than 10 cm 2 / cm 3 , it is not preferable because it leads to an increase in pressure loss during PM deposition. Further, if it is larger than 30 cm 2 / cm 3 , the initial pressure loss increases, which is not preferable.

本実施形態の目封止ハニカム構造体100においては、流入セル2aのセル断面開口率が20〜70%であることが好ましく、25〜65%であることが更に好ましい。流入セル2aのセル断面開口率が20%よりも小さいと、初期の圧力損失が増加するため好ましくない。また、70%より大きいと、濾過流速が速くなるためPMの捕集効率が低下し、更に隔壁1の強度が不足するため好ましくない。ここで、「流入セル2aのセル断面開口率」とは、ハニカム構造部9の中心軸方向に垂直な断面における、以下のような比率を意味する。即ち、「ハニカム構造部9を形成する隔壁1全体の断面積」と「全てのセル2(流入セル2aと流出セル2bの全て)の断面積の総和」との合計に対する、「流入セル2aの断面積の総和」の比率を意味する。 In the sealing honeycomb structure 100 of the present embodiment, the cell cross-sectional aperture ratio of the inflow cell 2a is preferably 20 to 70%, more preferably 25 to 65%. If the cell cross-sectional aperture ratio of the inflow cell 2a is smaller than 20%, the initial pressure loss increases, which is not preferable. On the other hand, if it is larger than 70%, the filtration flow rate becomes high, the PM collection efficiency is lowered, and the strength of the partition wall 1 is insufficient, which is not preferable. Here, the "cell cross-sectional aperture ratio of the inflow cell 2a" means the following ratio in the cross section perpendicular to the central axis direction of the honeycomb structure portion 9. That is, "the total cross-sectional area of the inflow cell 2a (all of the inflow cell 2a and the outflow cell 2b)" with respect to the "cross-sectional area of the entire partition wall 1 forming the honeycomb structure portion 9". It means the ratio of "total cross-sectional area".

本実施形態の目封止ハニカム構造体100においては、複数のセル2(流入セル2a、流出セル2b)のそれぞれの水力直径が、0.5〜2.5mmであることが好ましく、0.8〜2.2mmであることが更に好ましい。複数のセルのそれぞれの水力直径が0.5mmより小さいと、初期の圧力損失が増加するため好ましくない。また、2.5mmより大きいと、排ガスと隔壁1との接触面積が減少し、浄化効率が低下するため好ましくない。ここで、複数のセルのそれぞれの水力直径とは、各セル2の断面積及び周長に基づき、4×(断面積)/(周長)によって計算される値である。セル2の断面積とは、ハニカム構造部9の中心軸方向に垂直な断面に現れるセルの形状(別言すれば、断面形状)の面積を指す。セルの周長とは、そのセルの断面形状の周囲の長さ(別言すれば、当該断面を囲む閉じた線の長さ)を指す。 In the sealing honeycomb structure 100 of the present embodiment, the hydraulic diameters of the plurality of cells 2 (inflow cell 2a, outflow cell 2b) are preferably 0.5 to 2.5 mm, preferably 0.8. It is more preferably ~ 2.2 mm. If the hydraulic diameter of each of the plurality of cells is smaller than 0.5 mm, the initial pressure loss increases, which is not preferable. On the other hand, if it is larger than 2.5 mm, the contact area between the exhaust gas and the partition wall 1 is reduced, and the purification efficiency is lowered, which is not preferable. Here, the hydraulic diameter of each of the plurality of cells is a value calculated by 4 × (cross-sectional area) / (perimeter) based on the cross-sectional area and the perimeter of each cell 2. The cross-sectional area of the cell 2 refers to the area of the cell shape (in other words, the cross-sectional shape) that appears in the cross section perpendicular to the central axis direction of the honeycomb structure portion 9. The perimeter of a cell refers to the length around the cross-sectional shape of the cell (in other words, the length of the closed line surrounding the cross section).

初期の圧力損失、PM堆積時の圧力損失、及び捕集効率のトレードオフに鑑み、本実施形態の目封止ハニカム構造体100においては、以下のような構成を好適例として挙げることができる。流入セル2aの幾何学的表面積GSAが10〜30cm/cmであること、流入セル2aのセル断面開口率が20〜70%であること、及び複数のセル2のそれぞれの水力直径が0.5〜2.5mmであること、を同時に満たすことが好ましい。また、流入セル2aの幾何学的表面積GSAが12〜18cm/cmであること、流入セル2aのセル断面開口率が25〜65%であること、及び複数のセル2のそれぞれの水力直径が0.8〜2.2mmであること、を同時に満たすことが更に好ましい。 In view of the trade-off between the initial pressure loss, the pressure loss during PM deposition, and the collection efficiency, the following configurations can be given as preferable examples in the sealing honeycomb structure 100 of the present embodiment. The geometric surface area GSA of the inflow cell 2a is 10 to 30 cm 2 / cm 3 , the cell cross-sectional aperture ratio of the inflow cell 2a is 20 to 70%, and the hydraulic diameter of each of the plurality of cells 2 is 0. It is preferable that the thickness is 5 to 2.5 mm at the same time. Further, the geometric surface area GSA of the inflow cell 2a is 12 to 18 cm 2 / cm 3 , the cell cross-sectional aperture ratio of the inflow cell 2a is 25 to 65%, and the hydraulic diameter of each of the plurality of cells 2. It is more preferable that the value is 0.8 to 2.2 mm at the same time.

本実施形態の目封止ハニカム構造体100においては、隔壁1に触媒が担持されていてもよい。隔壁1に触媒を担持するとは、隔壁1の表面及び隔壁1の形成された細孔の内壁に、触媒がコーティングされることをいう。触媒の種類としては、SCR触媒(ゼオライト、チタニア、バナジウム)や、Pt、Ph、Pdのうち少なくとも2種類の貴金属と、アルミナ、セリア、ジルコニアの少なくとも1種を含む三元触媒等が挙げられる。このような触媒を担持することにより、直接噴射式ガソリンエンジンやディーゼルエンジン等から排出される排ガスに含まれるNOx、CO、CH等を無毒化できるとともに、隔壁1の表面に堆積したPMを触媒作用により燃焼除去させ易くすることが可能となる。 In the sealing honeycomb structure 100 of the present embodiment, the catalyst may be supported on the partition wall 1. Supporting the catalyst on the partition wall 1 means that the surface of the partition wall 1 and the inner wall of the pores formed by the partition wall 1 are coated with the catalyst. Examples of the type of catalyst include SCR catalysts (zeolite, titania, vanadium), three-way catalysts containing at least two noble metals among Pt, Ph and Pd, and at least one of alumina, ceria and zirconia. By supporting such a catalyst, NOx, CO, CH, etc. contained in the exhaust gas discharged from the direct injection type gasoline engine, diesel engine, etc. can be detoxified, and PM deposited on the surface of the partition wall 1 can be catalyzed. This makes it possible to easily remove the combustion.

本実施形態の目封止ハニカム構造体100に触媒を担持させる方法は、特に限定されず、当業者が通常行う方法を採用することができる。具体的には、触媒スラリーをウォッシュコートして乾燥、焼成する方法等が挙げられる。 The method of supporting the catalyst on the sealing honeycomb structure 100 of the present embodiment is not particularly limited, and a method usually performed by those skilled in the art can be adopted. Specific examples thereof include a method in which the catalyst slurry is wash-coated, dried, and fired.

本実施形態の目封止ハニカム構造体100の製造方法に特に制限はないが、例えば、以下のような方法により製造することができる。ハニカム構造部9の原料粉末として、前述の好適な材料の中から選ばれた材料に、バインダを添加し、更に界面活性剤及び水を添加し、可塑性の坏土を作製する。原料粉末としては、例えば、炭化珪素粉末を使用することができる。バインダとしては、例えば、メチルセルロース及びヒドロキシプロポキシルメチルセルロース等をすることができる。この坏土を押出成形することにより、所定の断面形状の隔壁1及びセル2を有するハニカム構造部9の成形体を得る。これを、例えばマイクロ波及び熱風で乾燥する。その後、ハニカム構造部9の製造に用いた材料と同様の材料で目封止することで目封止部3(流入側目封止部3a、流出側目封止部3b)を配設し、更に乾燥する。その後、例えば窒素雰囲気中で加熱脱脂し、その後アルゴン等の不活性雰囲気中で焼成することにより本実施形態の目封止ハニカム構造体100を得ることができる。焼成温度及び焼成雰囲気は原料により異なり、当業者であれば、選択された材料に最適な焼成温度及び焼成雰囲気を選択することができる。 The method for producing the mesh-sealed honeycomb structure 100 of the present embodiment is not particularly limited, and for example, it can be produced by the following method. As the raw material powder of the honeycomb structure portion 9, a binder is added to a material selected from the above-mentioned suitable materials, and a surfactant and water are further added to prepare a plastic clay. As the raw material powder, for example, silicon carbide powder can be used. As the binder, for example, methyl cellulose, hydroxypropoxyl methyl cellulose and the like can be used. By extrusion molding this clay, a molded body of a honeycomb structure portion 9 having a partition wall 1 and a cell 2 having a predetermined cross-sectional shape is obtained. This is dried, for example, with microwaves and hot air. After that, by sealing with the same material as the material used for manufacturing the honeycomb structure portion 9, the eye sealing portion 3 (inflow side eye sealing portion 3a, outflow side eye sealing portion 3b) is arranged. Further dry. Then, for example, by heating and degreasing in a nitrogen atmosphere and then firing in an inert atmosphere such as argon, the sealing honeycomb structure 100 of the present embodiment can be obtained. The firing temperature and firing atmosphere differ depending on the raw material, and a person skilled in the art can select the optimum firing temperature and firing atmosphere for the selected material.

本実施形態において、ハニカム構造部9を構成する隔壁ならびに外周壁の材料には特に制限はないが、強度、耐熱性、耐久性等の観点から、主成分は酸化物、又は非酸化物の各種セラミックスや金属等であることが好ましい。セラミックスとしては、コージェライト、ムライト、アルミナ、スピネル、炭化珪素、窒化珪素、及びチタン酸アルミニウム等が挙げられる。金属としては、Fe−Cr−Al系金属、及び金属珪化物等が挙げられる。これらの材料から選択された、1種類又は2種類以上を主成分として用いることが好ましい。高強度、高耐熱性の観点から、アルミナ、ムライト、チタン酸アルミニウム、コージェライト、炭化珪素、及び窒化珪素からなる群から選ばれた1又は2種類以上を主成分とすることが特に好ましい。ここで、「主成分とする」というときは、ハニカム構造部9の少なくとも50質量%以上、好ましくは70質量%以上、更に好ましくは80質量%以上を構成することを意味する。 In the present embodiment, the materials of the partition wall and the outer peripheral wall constituting the honeycomb structure portion 9 are not particularly limited, but from the viewpoint of strength, heat resistance, durability, etc., the main component is various oxides or non-oxides. It is preferably ceramics or metal. Examples of the ceramics include cordierite, mullite, alumina, spinel, silicon carbide, silicon nitride, aluminum titanate and the like. Examples of the metal include Fe-Cr-Al-based metals and metal silicified products. It is preferable to use one or more selected from these materials as the main component. From the viewpoint of high strength and high heat resistance, it is particularly preferable to use one or more kinds selected from the group consisting of alumina, mullite, aluminum titanate, corderite, silicon carbide, and silicon nitride as the main component. Here, the term "main component" means that the honeycomb structure 9 is composed of at least 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.

目封止部3(流入側目封止部3a及び流出側目封止部3b)の材料にも特に制限はないが、上記ハニカム構造部9と同一であることが好ましい。 The material of the eye sealing portion 3 (inflow side eye sealing portion 3a and outflow side eye sealing portion 3b) is not particularly limited, but is preferably the same as that of the honeycomb structure portion 9.

隔壁1の厚さについては、100〜410μmであることが好ましく、150〜360μmであることが更に好ましい。100μmより薄いと、ハニカム基材の強度が低下することがある。410μmより厚いと、捕集性能が低下し、圧力損失が増大することがある。また、ディーゼルエンジンから排出される排ガスを処理する場合には、ディーゼルエンジンから排出される排ガス中のPM量が比較的多いため、通常、セル数を少なくする(セル密度を小さくする)傾向がある。そのため、隔壁1の厚さを150〜360μmとすることが、強度と捕集性能のバランスをよくするために好ましい。隔壁の厚さは、ハニカム基材の軸方向の断面を顕微鏡観察する方法で測定した値である。 The thickness of the partition wall 1 is preferably 100 to 410 μm, more preferably 150 to 360 μm. If it is thinner than 100 μm, the strength of the honeycomb base material may decrease. If it is thicker than 410 μm, the collection performance may decrease and the pressure loss may increase. Further, when treating the exhaust gas discharged from the diesel engine, since the amount of PM in the exhaust gas discharged from the diesel engine is relatively large, there is usually a tendency to reduce the number of cells (decrease the cell density). .. Therefore, it is preferable that the thickness of the partition wall 1 is 150 to 360 μm in order to improve the balance between strength and collection performance. The thickness of the partition wall is a value measured by a method of observing the axial cross section of the honeycomb base material under a microscope.

(実施例1)
炭化珪素粉末80質量部と、Si粉末20質量部とを混合して、混合粉末を得た。この混合粉末に、バインダ、造孔材、及び水を添加して、成形原料とした。次に、成形原料を混練して円柱状の坏土を作製した。
(Example 1)
80 parts by mass of silicon carbide powder and 20 parts by mass of Si powder were mixed to obtain a mixed powder. A binder, a pore-forming material, and water were added to this mixed powder to obtain a molding raw material. Next, the molding raw materials were kneaded to prepare a columnar clay.

次に、所定の押出成形金型を用いて坏土を押出成形し、正方形の流出セルの周りを五角形の流入セルが取り囲んだ形のハニカム成形体を得た。ハニカム成形体は、16個作製した。 Next, the clay was extruded using a predetermined extrusion mold to obtain a honeycomb molded body in which a pentagonal inflow cell surrounded a square outflow cell. 16 honeycomb molded bodies were produced.

次に、ハニカム成形体をマイクロ波乾燥機で乾燥し、更に熱風乾燥機で完全に乾燥させた後、ハニカム成形体の両端面を切断し、所定の寸法に整えた。次に、ハニカム成形体の流入側端面全域を覆うようにフィルムを被せ、流出セルとなるセルの開口部に該当するフィルムの箇所に穿孔部を開けた。次に、ハニカム成形体のフィルムを施した側の端部を、セラミックス原料を含むスラリー状の目封止材料に浸漬することによって、流入側端面における流出セルに目封止材料を充填した。さらに、流出側端面において、同様にして、流入セルに目封止材料を充填した。 Next, the honeycomb molded body was dried with a microwave dryer, and further dried completely with a hot air dryer, and then both end faces of the honeycomb molded body were cut and adjusted to a predetermined size. Next, a film was covered so as to cover the entire inflow side end face of the honeycomb molded body, and a perforated portion was opened at the position of the film corresponding to the opening of the cell to be the outflow cell. Next, the end portion of the honeycomb molded product on the film-coated side was immersed in a slurry-like sealing material containing a ceramic raw material to fill the outflow cell on the inflow side end face with the sealing material. Further, on the outflow side end face, the inflow cell was similarly filled with a sealing material.

次に、ハニカム乾燥体について、400℃で5時間加熱することにより脱脂を行い、更に、アルゴン雰囲気下において、1450℃で2時間加熱することにより焼成を行い、ハニカム焼成体を得た。ハニカム焼成体は、全体形状が四角柱状であった。 Next, the dried honeycomb body was degreased by heating at 400 ° C. for 5 hours, and further fired by heating at 1450 ° C. for 2 hours in an argon atmosphere to obtain a honeycomb fired body. The entire shape of the honeycomb fired body was a square columnar shape.

次に、得られた16個のハニカム焼成体を、互いの側面同士が対向するように隣接して配置された状態で接合材によって接合し、ハニカム接合体を作製した。ハニカム接合体は、その端面において、縦方向に4個、横方向に4個の合計16個のハニカム焼成体は配列するように接合して作製した。 Next, the obtained 16 honeycomb fired bodies were joined by a joining material in a state where the side surfaces of the obtained honeycomb bodies were arranged adjacent to each other so as to face each other to prepare a honeycomb bonded body. The honeycomb bonded body was produced by joining so that a total of 16 honeycomb fired bodies, four in the vertical direction and four in the horizontal direction, were arranged on the end face thereof.

次に、ハニカム接合体の外周部を研削によって加工して、ハニカム接合体のセルの延びる方向に垂直な断面の形状を円形にした。その後、研削加工したハニカム接合体の最外周に、セラミックス原料を含む外周コート材を塗工した。 Next, the outer peripheral portion of the honeycomb joint was processed by grinding to form a circular cross section perpendicular to the extending direction of the cells of the honeycomb joint. After that, an outer peripheral coating material containing a ceramic raw material was applied to the outermost periphery of the ground honeycomb joint.

このようにして、実施例1の目封止ハニカム構造体を作製した。得られた目封止ハニカム構造体は、中心軸に直交する断面の直径が143.8mmであり、中心軸方向の長さが152.4mmの円筒形であった。隔壁の厚さは、0.3mmであり、セル密度は、208セル/cmであった。 In this way, the mesh-sealed honeycomb structure of Example 1 was produced. The obtained eye-sealing honeycomb structure had a cylindrical shape having a cross-sectional diameter of 143.8 mm orthogonal to the central axis and a length of 152.4 mm in the central axis direction. The thickness of the partition wall was 0.3 mm, and the cell density was 208 cells / cm 2 .

表1に、隔壁厚さ[mm]、a[mm]、b[mm]、セル密度[セル/cm]を示す。ここで、a[mm]とは、図4において、符号aにて示される範囲の長さのことをいう。即ち、a[mm]とは、流入セル2aと流出セル2bとを区画し、且つ1つの流出セル2bを挟んで対向する、平行に配置された2つの隔壁1の間の距離を意味する。また、b[mm]とは、図4において、符号bにて示される範囲の長さのことをいう。即ち、b[mm]とは、流入セル2aと流出セル2bとを区画し、且つ1つの流入セル2aを挟んで対向する、平行に配置された2つの隔壁1の間の距離を意味する。a[mm]、及びb[mm]のそれぞれにおいて、2つの隔壁1の間の距離は、各隔壁1の厚さ方向の中間地点からの、相互間の距離とする。 Table 1 shows the partition wall thickness [mm], a [mm], b [mm], and cell density [cell / cm 2 ]. Here, a [mm] refers to the length of the range indicated by the reference numeral a in FIG. That is, a [mm] means a distance between two parallel partition walls 1 that partition the inflow cell 2a and the outflow cell 2b and face each other with one outflow cell 2b in between. Further, b [mm] means the length of the range indicated by the reference numeral b in FIG. That is, b [mm] means the distance between the two parallel partition walls 1 that partition the inflow cell 2a and the outflow cell 2b and face each other with the inflow cell 2a in between. In each of a [mm] and b [mm], the distance between the two partition walls 1 is the distance between the two partition walls 1 from the intermediate point in the thickness direction of each partition wall 1.

また、表1に、「流入セルと流出セルとを区画する隔壁に内接する円の直径D[mm]」、「流入セル同士を区画する隔壁の交点部に内接する円の直径D[mm]」、及び「D/(√2×D)の値」を示す。また、表1に、「式(1)を満たす交点部の比率」を示す。ここで、「式(1)を満たす交点部の比率」とは、隣接する流入セル同士を区画する隔壁の交点部において、「D/(√2×D)=1.20〜1.80」の関係を満たす交点部の個数の比率のことである。 In addition, Table 1 shows "the diameter D 0 [mm] of the circle inscribed in the partition wall separating the inflow cell and the outflow cell" and "the diameter D 1 [the diameter of the circle inscribed in the intersection of the partition walls separating the inflow cells. mm] ”and“ value of D 1 / (√2 × D 0 ) ”. Further, Table 1 shows "the ratio of the intersections satisfying the equation (1)". Here, the “ratio of intersections satisfying the equation (1)” means “D 1 / (√2 × D 0 ) = 1.20 to 1. ” at the intersections of the partition walls that partition adjacent inflow cells. It is the ratio of the number of intersections satisfying the relationship of "80".

また、表1に、「流入セルに内接し、交点部側の隔壁と接する円の直径D[mm]」を示す。 Further, Table 1 shows "the diameter D 2 [mm] of the circle inscribed in the inflow cell and in contact with the partition wall on the intersection side".

以下、本実施例において、「流入セルと流出セルとを区画する隔壁に内接する円の直径D[mm]」を、「内接円の直径D[mm]」ということがある。また、「流入セル同士を区画する隔壁の交点部に内接する円の直径D[mm]」を、「内接円の直径D[mm]」ということがある。更に、「流入セルに内接し、交点部側の隔壁と接する円の直径D[mm]」を、「内接円の直径D[mm]」ということがある。 Hereinafter, in the present embodiment, "the diameter D 0 [mm] of the circle inscribed in the partition wall separating the inflow cell and the outflow cell" may be referred to as "the diameter D 0 [mm] of the inscribed circle". Further, "the diameter D 1 [mm] of the circle inscribed at the intersection of the partition walls separating the inflow cells" may be referred to as "the diameter D 1 [mm] of the inscribed circle". Further, "the diameter D 2 [mm] of the circle inscribed in the inflow cell and in contact with the partition wall on the intersection side" may be referred to as "the diameter D 2 [mm] of the inscribed circle".

(実施例2〜12)
「内接円の直径D[mm]」、「内接円の直径D[mm]」、「内接円の直径D[mm]」、及び「式(1)を満たす交点部の比率」を、表1又は表2に示すように変更して、実施例2〜12の目封止ハニカム構造体を製造した。
(Examples 2 to 12)
"Inscribed circle diameter D 0 [mm]", "Inscribed circle diameter D 1 [mm]", "Inscribed circle diameter D 2 [mm]", and "Intersections satisfying equation (1)" The "ratio" was changed as shown in Table 1 or Table 2 to produce the mesh-sealed honeycomb structure of Examples 2 to 12.

(比較例1〜4)
「内接円の直径D[mm]」、「内接円の直径D[mm]」、「内接円の直径D[mm]」、及び「式(1)を満たす交点部の比率」を、表1又は表2に示すように変更して、比較例1〜4の目封止ハニカム構造体を製造した。
(Comparative Examples 1 to 4)
"Inscribed circle diameter D 0 [mm]", "Inscribed circle diameter D 1 [mm]", "Inscribed circle diameter D 2 [mm]", and "Intersections satisfying equation (1)" The "ratio" was changed as shown in Table 1 or Table 2 to produce the mesh-sealed honeycomb structures of Comparative Examples 1 to 4.

比較例1の目封止ハニカム構造体は、隣接する流入セル同士を区画する隔壁の交点部において、D=√2×Dであることを除き、実施例1と同様にして目封止ハニカム構造体を作製した。即ち、比較例1の目封止ハニカム構造体は、「D/(√2×D)の値」が、1.00である。 The sealing honeycomb structure of Comparative Example 1 is sealing in the same manner as in Example 1 except that D 1 = √2 × D 0 at the intersection of the partition walls that partition the adjacent inflow cells. A honeycomb structure was produced. That is, the “value of D 1 / (√2 × D 0 )” of the sealing honeycomb structure of Comparative Example 1 is 1.00.

実施例1〜12及び比較例1〜4の目封止ハニカム構造体について、以下の方法で、「耐熱衝撃性」、「ライトオフ性能」、「入口開口率」、及び「PM堆積時の圧力損失」についての評価を行った。結果を、表1及び表2に示す。 For the sealing honeycomb structures of Examples 1 to 12 and Comparative Examples 1 to 4, "heat-resistant impact resistance", "light-off performance", "inlet opening ratio", and "pressure during PM deposition" were carried out by the following methods. We evaluated "loss". The results are shown in Tables 1 and 2.

[耐熱衝撃性]
加熱加振試験により耐熱衝撃性を評価した。具体的には、作製した目封止ハニカム構造体の流出側端面から130mmの範囲を、三菱樹脂社製のMAFTEC(商品名)によって把持した。このようにして流出側端面を把持した目封止ハニカム構造体に、振動数100Hz、加速度30Gの振動を与えながら、プロパンバーナで加熱した空気を流し、100時間試験した。加熱加振試験における加熱された空気の条件は、流量2Nm/min、温度150〜800℃(1サイクル20分)とした。加熱加振試験後、目封止ハニカム構造体の隔壁に破損が生じているか否か、目視にて確認した。目封止ハニカム構造体の隔壁に破損が確認されない場合を「良」とし、軽微な破損が確認された場合を「可」とし、重度の破損が確認された場合を「不可」と評価した。結果を表1及び表2に示す。
[Heat-resistant impact resistance]
The thermal shock resistance was evaluated by a heating and vibration test. Specifically, a range of 130 mm from the outflow side end face of the produced eye-sealing honeycomb structure was gripped by MAFTEC (trade name) manufactured by Mitsubishi Plastics. Air heated by a propane burner was flowed through the eye-sealing honeycomb structure gripping the end face on the outflow side while applying vibration having a frequency of 100 Hz and an acceleration of 30 G, and the test was conducted for 100 hours. The conditions of the heated air in the heating vibration test were a flow rate of 2 Nm 3 / min and a temperature of 150 to 800 ° C. (1 cycle 20 minutes). After the heating and vibration test, it was visually confirmed whether or not the partition wall of the sealing honeycomb structure was damaged. The case where no damage was confirmed in the partition wall of the sealing honeycomb structure was evaluated as "good", the case where slight damage was confirmed was evaluated as "possible", and the case where severe damage was confirmed was evaluated as "impossible". The results are shown in Tables 1 and 2.

[ライトオフ性能(200℃到達時間[秒])]
ライトオフ性能の評価は、目封止ハニカム構造体をDPFとして用い、このDPFに400℃の燃焼ガスを流入させ、DPFの流出側端部が200℃に到達する時間を計測することによって行った。具体的には、まず、得られた目封止ハニカム構造体の外周に、保持材としてセラミック製非熱膨張性マットを巻き、SUS409のステンレス鋼製のキャニング用缶体に押し込んで、キャニング構造体とした。更に、キャニング構造体の流出側端部にKタイプのシース熱電対を設置した。その後、ディーゼル燃料の燃焼により、400℃の燃焼ガスを流入させ、事前に設置した熱電対の温度をモニターし、それが200℃に到達する時間[秒]を測定した。なお、ディーゼル燃料としては、軽油を用いた。ライトオフ性能評価では、比較例1の目封止ハニカム構造体の200℃到達時間[秒]を基準(Base)とし、以下のように評価を行った。Baseに対して、200℃到達時間[秒]が+0.5秒以下の場合を「良」とした。Baseに対して、200℃到達時間[秒]が+0.5秒超で、且つ+1秒以下の場合を「可」とした。Baseに対して、200℃到達時間[秒]が+1秒超の場合を「不可」とした。
[Light-off performance (200 ° C arrival time [seconds])]
The light-off performance was evaluated by using a sealing honeycomb structure as a DPF, injecting combustion gas at 400 ° C into the DPF, and measuring the time required for the outflow side end of the DPF to reach 200 ° C. .. Specifically, first, a ceramic non-thermally expandable mat is wrapped around the outer periphery of the obtained eye-sealing honeycomb structure as a holding material and pushed into a stainless steel can for SUS409 to form the canning structure. And said. Further, a K-type sheath thermocouple was installed at the outflow side end of the canning structure. Then, by burning diesel fuel, a combustion gas at 400 ° C. was flowed in, the temperature of a thermocouple installed in advance was monitored, and the time [seconds] for the thermocouple to reach 200 ° C. was measured. Light oil was used as the diesel fuel. In the light-off performance evaluation, the 200 ° C. arrival time [seconds] of the sealing honeycomb structure of Comparative Example 1 was used as a reference (Base), and the evaluation was performed as follows. The case where the 200 ° C. arrival time [seconds] was +0.5 seconds or less with respect to Base was regarded as “good”. When the time to reach 200 ° C. [seconds] was more than +0.5 seconds and less than +1 second with respect to Base, it was regarded as "OK". When the time to reach 200 ° C. [seconds] was more than +1 second with respect to Base, it was regarded as "impossible".

[入口開口率]
目封止ハニカム構造体の断面の面積に対する、流入側端面における流入セルが占める面積の比率[%]を測定した。この面積の比率[%]を、目封止ハニカム構造体の入口開口率[%]とした。入口開口率の評価では、比較例1の目封止ハニカム構造体の入口開口率[%]を基準(Base)とし、以下のように評価を行った。Baseに対して、入口開口率[%]が+1%以下の場合を「良」とした。Baseに対して、入口開口率[%]が1%超で、且つ+2%以下の場合を「可」とした。Baseに対して、入口開口率[%]が+2%超の場合を「不可」とした。
[Entrance opening ratio]
The ratio [%] of the area occupied by the inflow cell on the inflow side end face to the cross-sectional area of the sealing honeycomb structure was measured. The ratio [%] of this area was defined as the inlet opening ratio [%] of the sealing honeycomb structure. In the evaluation of the inlet aperture ratio, the inlet aperture ratio [%] of the sealing honeycomb structure of Comparative Example 1 was used as a reference (Base), and the evaluation was performed as follows. The case where the entrance opening ratio [%] was + 1% or less with respect to Base was regarded as “good”. The case where the entrance opening ratio [%] was more than 1% and + 2% or less with respect to Base was regarded as "OK". When the entrance opening ratio [%] was more than + 2% with respect to Base, it was regarded as "impossible".

[PM堆積時の圧力損失]
目封止ハニカム構造体に、スス含有燃焼ガスを流して、目封止ハニカム構造体にススを堆積させ、スス堆積量が4g/Lとなった際の流入側と流出側における圧力差から、目封止ハニカム構造体のPM堆積時の圧力損失を測定した。具体的には、まず、軽油を、酸素欠乏状態で燃焼させることで、ススを生じた燃焼ガスを発生させた。そして、スス発生量10g/h、流量2.4Nm/min、温度200℃の燃焼ガスに対して、希釈空気を追加して調整することで、PM堆積時の圧力損失評価用のスス含有燃焼ガスを作製した。このスス含有燃焼ガスを、目封止ハニカム構造体に流し、目封止ハニカム構造体へのスス堆積量が4g/Lとなった時点で、この目封止ハニカム構造体の流入側及び流出側の圧力を測定し、その圧力差を、目封止ハニカム構造体のPM堆積時の圧力損失値とした。PM堆積時の圧力損失の評価では、比較例1の目封止ハニカム構造体の圧力損失値を基準(Base)とし、以下のように評価を行った。Baseに対して、圧力損失値の増加が+4%以下の場合を「良」とした。Baseに対して、圧力損失値の増加が+4%を超え、且つ+8%以下の場合を「可」とした。Baseに対して、圧力損失値の増加が+8%を超える場合を「不可」とした。
[Pressure loss during PM deposition]
Soot-containing combustion gas is passed through the sealing honeycomb structure to deposit soot on the sealing honeycomb structure, and the pressure difference between the inflow side and the outflow side when the soot deposition amount becomes 4 g / L is determined. The pressure loss during PM deposition of the sealing honeycomb structure was measured. Specifically, first, light oil was burned in an oxygen-deficient state to generate soot-generated combustion gas. Then, by adding diluted air to the combustion gas having a soot generation amount of 10 g / h, a flow rate of 2.4 Nm 3 / min, and a temperature of 200 ° C., soot-containing combustion for pressure loss evaluation during PM deposition is performed. Gas was produced. This soot-containing combustion gas is allowed to flow through the sealing honeycomb structure, and when the amount of soot deposited on the sealing honeycomb structure reaches 4 g / L, the inflow side and the outflow side of the sealing honeycomb structure The pressure was measured, and the pressure difference was taken as the pressure loss value during PM deposition of the sealing honeycomb structure. In the evaluation of the pressure loss during PM deposition, the pressure loss value of the sealing honeycomb structure of Comparative Example 1 was used as a reference (Base), and the evaluation was performed as follows. When the increase in pressure loss value was + 4% or less with respect to Base, it was regarded as "good". When the increase in the pressure loss value exceeded + 4% and was + 8% or less with respect to Base, it was regarded as “OK”. When the increase in pressure loss value exceeds + 8% with respect to Base, it is regarded as "impossible".

(結果)
表1及び表2に示すように、実施例1〜12の目封止ハニカム構造体は、「耐熱衝撃性」、「ライトオフ性能」、「入口開口率」、及び「PM堆積時の圧力損失」の全ての評価において、「可」以上の評価結果であった。特に、実施例1〜12及び比較例1の目封止ハニカム構造体の評価結果から、「内接円の直径D[mm]」が、「内接円の直径D[mm]」の√2倍より大きいと、目封止ハニカム構造体の耐熱衝撃性が向上することが判明した。また、比較例2及び3のように、D/(√2×D)の値が1.20〜1.80以外の場合には、「ライトオフ性能」や「入口開口率」の評価において、不可という結果となった。したがって、D1/(√2×D)の値を1.20〜1.80とした場合に、「耐熱衝撃性」、「ライトオフ性能」、「入口開口率」、及び「PM堆積時の圧力損失」の全てが、比較例1に対して向上することが分かった。
(result)
As shown in Tables 1 and 2, the sealing honeycomb structures of Examples 1 to 12 have "heat impact resistance", "light-off performance", "inlet opening ratio", and "pressure loss during PM deposition". In all the evaluations of "", the evaluation result was "OK" or higher. In particular, from the evaluation results of the eye-sealing honeycomb structures of Examples 1 to 12 and Comparative Example 1, "the diameter of the inscribed circle D 1 [mm]" is "the diameter of the inscribed circle D 0 [mm]". It was found that when it was larger than √2 times, the thermal impact resistance of the sealing honeycomb structure was improved. Further, when the value of D 1 / (√2 × D 0 ) is other than 1.20 to 1.80 as in Comparative Examples 2 and 3, "light-off performance" and "entrance aperture ratio" are evaluated. The result was that it was not possible. Therefore, when the value of D1 / (√2 × D 0 ) is set to 1.20 to 1.80, “heat resistance”, “light-off performance”, “entrance aperture ratio”, and “at the time of PM deposition” It was found that all of the "pressure loss" was improved as compared with Comparative Example 1.

また、式(1)を満たす交点部の比率は、その比率が減少するに従って、目封止ハニカム構造体の耐熱衝撃性が低下し、60%を下回った場合には、耐熱衝撃性が大きく低下することが分かった。 Further, as for the ratio of the intersections satisfying the formula (1), the heat impact resistance of the sealing honeycomb structure decreases as the ratio decreases, and when it is less than 60%, the heat impact resistance greatly decreases. I found out that

更に、「内接円の直径D[mm]」は、0.20〜0.80mmであると、「ライトオフ性能」、「入口開口率」、及び「PM堆積時の圧力損失」の評価が良好であったが、0.80mmを超えると、それぞれの評価が低下することが分かった。 Further, when the "diameter D 2 [mm] of the inscribed circle" is 0.20 to 0.80 mm, the "light-off performance", the "inlet aperture ratio", and the "pressure loss during PM deposition" are evaluated. Was good, but it was found that when it exceeded 0.80 mm, each evaluation deteriorated.

本発明の目封止ハニカム構造体は、排ガスの浄化用フィルタとして利用することができる。また、本発明の目封止ハニカム構造体の隔壁に触媒を担持させた、触媒担体としても利用することができる。 The sealing honeycomb structure of the present invention can be used as a filter for purifying exhaust gas. It can also be used as a catalyst carrier in which a catalyst is supported on the partition wall of the sealable honeycomb structure of the present invention.

1:隔壁、2:セル、2a:流入セル、2b:流出セル、3:目封止部、3a:流入側目封止部、3b:流出側目封止部、4:交点部、6a:流入側端面、6b:流出側端面、7:ハニカムセグメント、8:接合層、9:ハニカム構造部、11:外周壁、100:目封止ハニカム構造体、C:クラック、D,D:円の直径。 1: Partition, 2: Cell, 2a: Inflow cell, 2b: Outflow cell, 3: Sealing part, 3a: Inflow side eye sealing part, 3b: Outflow side eye sealing part, 4: Intersection part, 6a: Inflow side end face, 6b: Outflow side end face, 7: Honeycomb segment, 8: Bonding layer, 9: Honeycomb structure, 11: Outer wall, 100: Sealed honeycomb structure, C: Crack, D 0 , D 1 : The diameter of the circle.

Claims (3)

流入側端面から流出側端面まで延びる流体の流路となる複数のセルを区画形成する多孔質の隔壁を有するハニカム構造部と、前記流出側端面における所定の流入セルの開口部に配設された流入側目封止部と、前記流入側端面における残余の流出セルの開口部に配設された流出側目封止部と、を備え、
前記ハニカム構造部の前記セルの延びる方向に直交する断面において、前記流入セルが、前記流出セルを取り囲むように配設され、且つ、前記流入セルの数が前記流出セルの数よりも多く、
隣接する前記流入セル同士を区画する隔壁の交点部を複数有し、
前記交点部の全数の60%以上において、
前記交点部に内接する円の直径Dと、隣接する前記流入セルと前記流出セルとを区画する隔壁に内接する円の直径Dと、の間の関係が、下記式(1)のとおりである、目封止ハニカム構造体であって、
隣接する前記流入セル同士を区画する隔壁の交点部においてのみ、前記直径D と前記直径D との間の関係が、下記式(1)のとおりである、目封止ハニカム構造体
式(1):D/(√2×D)=1.20〜1.80
It is arranged in a honeycomb structure portion having a porous partition wall that partitions a plurality of cells serving as a flow path of a fluid extending from an inflow side end face to an outflow side end face, and an opening of a predetermined inflow cell in the outflow side end face. An inflow-side eye-sealing portion and an outflow-side eye-sealing portion disposed in the opening of the residual outflow cell on the inflow-side end face are provided.
In the cross section of the honeycomb structure portion orthogonal to the extending direction of the cells, the inflow cells are arranged so as to surround the outflow cells, and the number of the inflow cells is larger than the number of the outflow cells.
It has a plurality of intersections of partition walls that partition adjacent inflow cells.
At 60% or more of the total number of intersections,
The relationship between the diameter D 1 of the circle inscribed in the intersection and the diameter D 0 of the circle inscribed in the partition wall separating the adjacent inflow cell and the outflow cell is as shown in the following equation (1). It is an eye-sealing honeycomb structure .
A mesh-sealing honeycomb structure in which the relationship between the diameter D 1 and the diameter D 0 is as shown in the following formula (1) only at the intersection of the partition walls that partition the adjacent inflow cells .
Equation (1): D 1 / (√2 × D 0 ) = 1.20 to 1.80
前記交点部の全数において、前記交点部に内接する円の直径Dと、隣接する前記流入セルと前記流出セルとを区画する隔壁に内接する円の直径Dと、の間の関係が、前記式(1)のとおりである、請求項1に記載の目封止ハニカム構造体。 In the total number of the intersections, the relationship between the diameter D 1 of the circle inscribed in the intersection and the diameter D 0 of the circle inscribed in the partition partitioning the adjacent inflow cell and the outflow cell is The mesh-sealing honeycomb structure according to claim 1, which is as described in the formula (1). 前記流入セルに内接し、且つ当該流入セルの前記交点部側の隔壁と接する円の直径Dが、0.20〜0.80mmである、請求項1又は2に記載の目封止ハニカム構造体。 The mesh-sealed honeycomb structure according to claim 1 or 2, wherein the diameter D 2 of the circle inscribed in the inflow cell and in contact with the partition wall on the intersection side of the inflow cell is 0.25 to 0.80 mm. body.
JP2017062752A 2016-03-30 2017-03-28 Sealed honeycomb structure Active JP6802102B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/471,343 US10328376B2 (en) 2016-03-30 2017-03-28 Plugged honeycomb structure
DE102017003047.2A DE102017003047A1 (en) 2016-03-30 2017-03-29 Locked honeycomb structure
CN201710198393.5A CN107269347B (en) 2016-03-30 2017-03-29 Sealed honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069757 2016-03-30
JP2016069757 2016-03-30

Publications (2)

Publication Number Publication Date
JP2017185484A JP2017185484A (en) 2017-10-12
JP6802102B2 true JP6802102B2 (en) 2020-12-16

Family

ID=60044395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062752A Active JP6802102B2 (en) 2016-03-30 2017-03-28 Sealed honeycomb structure

Country Status (2)

Country Link
JP (1) JP6802102B2 (en)
CN (1) CN107269347B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814266B2 (en) * 2017-11-24 2020-10-27 Ngk Insulators, Ltd. Honeycomb filter
JP7061491B2 (en) * 2018-03-27 2022-04-28 日本碍子株式会社 Honeycomb structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720953B1 (en) * 1994-06-08 1996-08-30 Tami Ind Multichannel inorganic element for the filtration of a fluid.
JP4161292B2 (en) * 2002-03-13 2008-10-08 日立金属株式会社 Ceramic honeycomb structure
JPWO2003084640A1 (en) * 2002-04-09 2005-08-11 イビデン株式会社 Honeycomb filter for exhaust gas purification
JP3945452B2 (en) * 2003-05-30 2007-07-18 株式会社デンソー Manufacturing method of exhaust gas purification filter
FR2928562B1 (en) * 2008-03-11 2010-08-13 Saint Gobain Ct Recherches FILTRATION STRUCTURE OF A GAS WITH VARIABLE WALL THICKNESS
JP5916487B2 (en) * 2012-04-05 2016-05-11 住友化学株式会社 Honeycomb structure
JP6140509B2 (en) * 2013-04-04 2017-05-31 日本碍子株式会社 Wall flow type exhaust gas purification filter
WO2016013513A1 (en) * 2014-07-23 2016-01-28 イビデン株式会社 Honeycomb filter

Also Published As

Publication number Publication date
CN107269347B (en) 2020-09-11
CN107269347A (en) 2017-10-20
JP2017185484A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6140509B2 (en) Wall flow type exhaust gas purification filter
KR100874398B1 (en) Honeycomb Structure
CN106481390B (en) Plugged honeycomb structure and plugged honeycomb unit
JP6246683B2 (en) Honeycomb filter
JP6530680B2 (en) Plugged honeycomb structure and plugged honeycomb segment
KR20040030891A (en) Honeycomb structural body and method of manufacturing the structural body
JP2003227327A (en) Honeycomb structure
JP6847724B2 (en) Sealed honeycomb structure
JP6767235B2 (en) Sealed honeycomb structure
KR20130135929A (en) Sealed honeycomb structure
JP6169227B1 (en) Honeycomb filter
CN110307060B (en) Honeycomb structure
US10765986B2 (en) Plugged honeycomb structure
US10857499B2 (en) Plugged honeycomb structure
JP6862245B2 (en) Honeycomb filter
JP6802075B2 (en) Honeycomb structure
JP6802102B2 (en) Sealed honeycomb structure
US10850223B2 (en) Plugged honeycomb structure
JP2008104944A (en) Honeycomb filter
JP6887300B2 (en) Honeycomb filter
US10328376B2 (en) Plugged honeycomb structure
JP2016168561A (en) Honeycomb structure
CN110284943B (en) Honeycomb structure
JP2009178705A (en) Plugged honeycomb structure
JP7202236B2 (en) honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201126

R150 Certificate of patent or registration of utility model

Ref document number: 6802102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150