JP6801231B2 - Beam evaluation method - Google Patents

Beam evaluation method Download PDF

Info

Publication number
JP6801231B2
JP6801231B2 JP2016104172A JP2016104172A JP6801231B2 JP 6801231 B2 JP6801231 B2 JP 6801231B2 JP 2016104172 A JP2016104172 A JP 2016104172A JP 2016104172 A JP2016104172 A JP 2016104172A JP 6801231 B2 JP6801231 B2 JP 6801231B2
Authority
JP
Japan
Prior art keywords
bending
shear
design
opening
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016104172A
Other languages
Japanese (ja)
Other versions
JP2017210785A (en
Inventor
浅井 英克
英克 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2016104172A priority Critical patent/JP6801231B2/en
Publication of JP2017210785A publication Critical patent/JP2017210785A/en
Application granted granted Critical
Publication of JP6801231B2 publication Critical patent/JP6801231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

本発明は、梁の評価方法に関する。 The present invention relates to a beam evaluation method.

従来、構造物の鉄骨梁に設備配管などのスリーブを通すために、開口が鉄骨梁のウエブに設けられているが、強度上の問題から開口の周囲を補強する必要がある。例えば特許文献1に記載されているように、梁軸方向に対して45°に斜めな4本の補強斜材によってウエブの開口を取り囲んでこれら補強斜材を正方形状に組み合わせるように、これら補強斜材をウエブに接合し、ウエブの開口により失われるせん断力負担分を補強斜材の軸力で伝達することによって、鉄骨梁を補強することが行われている。 Conventionally, an opening is provided in the web of the steel beam in order to pass a sleeve such as equipment piping through the steel beam of the structure, but it is necessary to reinforce the circumference of the opening due to a problem in strength. For example, as described in Patent Document 1, these reinforcing diagonal members are reinforced so as to surround the opening of the web with four reinforcing diagonal members oblique to the beam axis direction at 45 ° and combine these reinforcing diagonal members in a square shape. Steel beams are reinforced by joining the diagonal members to the web and transmitting the shear force burden lost by the opening of the web with the axial force of the reinforcing diagonal members.

特開2003−147901号公報Japanese Unexamined Patent Publication No. 2003-147901

ところが、特許文献1の技術では、せん断力のみを考慮して補強材を設置するので、曲げモーメントに対して補強材の厚さ及び幅を過剰に設計することになってしまい、補強材の材料費が増えてしまう場合がある。或いは、曲げモーメントに対して、補強材の厚さ又は幅が不足する場合がある。
そこで、本発明は、上記事情に鑑みてなされたものであって、鉄骨梁の開口の周囲を補強する補強材の厚さ及び幅を過剰に設計しないようにするとともに、補強材の厚さ又は幅が不足することに伴う開口補強部の耐力不足を防止することを目的とする。
However, in the technique of Patent Document 1, since the reinforcing material is installed in consideration of only the shearing force, the thickness and width of the reinforcing material are excessively designed with respect to the bending moment, and the material of the reinforcing material is used. The cost may increase. Alternatively, the thickness or width of the reinforcing material may be insufficient with respect to the bending moment.
Therefore, the present invention has been made in view of the above circumstances, and the thickness and width of the reinforcing material for reinforcing the periphery of the opening of the steel frame beam should not be excessively designed, and the thickness of the reinforcing material or the thickness of the reinforcing material or The purpose is to prevent insufficient yield strength of the opening reinforcing portion due to insufficient width.

上記課題を解決するために、本発明の梁の評価方法は、梁軸方向に延在する鉛直な縦板部(21)と、前記縦板部(21)の上下に設けられた水平な横板部(22,23)と、前記縦板部(21)に形成された開口(24)とを有した鉄骨梁本体(2)と、前記開口(24)の上下において前記梁軸方向に延在するように前記縦板部(21)に接合された曲げ補強部(31,41)と、前記開口(24)の前記梁軸方向両側において前記梁軸方向に対して斜めな方向に延在するように前記縦板部(21)に接合されたせん断補強部(32,33,42,43)と、を備える梁(1)を評価する方法において、前記曲げ補強部(31,41)と前記せん断補強部(32,33,42,43)の幅(Bb,Bs)及び厚さ(tb,ts)を設定する設定工程(S2)と、前記設定工程において設定した前記曲げ補強部(31,41)と前記せん断補強部(32,33,42,43)の幅(Bb,Bs)及び厚さ(tb,ts)に基づいて、前記梁(1)の前記開口(24)の部分の曲げ耐力とせん断耐力との関係(線ABC)を定める工程(S3,S4)と、前記梁(1)に想定する設計用せん断力(Qd)と設計用曲げモーメント(Md)を定める設定工程(S1)と、前記設計用せん断力及び前記設計用曲げモーメントを前記関係と比較する比較工程(S5)と、を備え、前記関係を定める工程は、前記設定工程において設定した前記せん断補強部(32,33,42,43)の幅(Bs)及び厚さ(ts)に基づいて、前記梁(1)の前記開口(24)の部分のせん断耐力(Qc)を計算する第一計算工程(S3)と、前記設定工程において設定した前記曲げ補強部(31,41)の幅(Bb)及び厚さ(tb)に基づいて、せん断力が前記梁の前記開口の部分に作用しない場合の前記梁(1)の前記開口(24)の部分の第一曲げ耐力(Mc1)を計算するとともに、前記せん断耐力(Qc)に相当するせん断力が前記梁の開口の部分に作用する場合の前記梁(1)の前記開口(24)の部分の第二曲げ耐力(Mc2)を計算する第二計算工程(S3)と、前記第二曲げ耐力(Mc2)と前記第一曲げ耐力(Mc1)の差(Mc2−Mc1)を前記せん断耐力(Qc)で除することで得られた商((Mc2−Mc1)/Qc)を傾きとし、前記第一曲げ耐力(Mc1)を切片とした一次関数(線AB)を定める工程(S4)と、を有し、前記比較工程(S5)は、前記設計用せん断力(Qd)と前記せん断耐力(Qc)とを比較するとともに、前記設計用せん断力(Qd)を前記一次関数(線AB)に当て嵌めることで得られた曲げ耐力(Mc)と前記設計用曲げモーメント(Md)とを比較する工程(S5)を有することを特徴とする。 In order to solve the above problems, the beam evaluation method of the present invention includes a vertical vertical plate portion (21) extending in the beam axial direction and horizontal horizontal plates provided above and below the vertical plate portion (21). A steel beam body (2) having a plate portion (22, 23) and an opening (24) formed in the vertical plate portion (21), and extending in the beam axial direction above and below the opening (24). Bending reinforcing portions (31, 41) joined to the vertical plate portion (21) so as to exist, and extending in a direction oblique to the beam axial direction on both sides of the opening (24) in the beam axial direction. In a method of evaluating a beam (1) including a shear reinforcing portion (32, 33, 42, 43) joined to the vertical plate portion (21) so as to be provided with the bending reinforcing portion (31, 41). A setting step (S2) for setting the width (B b , B s ) and a thickness (t b , t s ) of the shear reinforcing portion (32, 33, 42, 43) and the bending set in the setting step. Of the beam (1), based on the width (B b , B s ) and thickness (t b , t s ) of the reinforcing portion (31, 41) and the shear reinforcing portion (32, 33, 42, 43). Steps (S3, S4) for determining the relationship (line ABC) between the bending strength and shearing strength of the opening (24), and the design shearing force ( Qd ) and design bending assumed for the beam (1). the moment setting step (S1) defining a (M d), e Bei the comparing step (S5), the a bending moment for said design for shear force and the design is compared with the relationship, the step of determining the pre-Symbol relationship, based on the width (Bs) and the thickness (t s) of the shear reinforcement unit, which is set at the setting step (32,33,42,43), the shear of the portion of the opening (24) of the beam (1) Shearing based on the first calculation step (S3) for calculating the strength (Q c ) and the width (B b ) and thickness (t b ) of the bending reinforcement portion (31, 41) set in the setting step. The first bending strength (M c1 ) of the opening (24) portion of the beam (1) when the force does not act on the opening portion of the beam is calculated and corresponds to the shear strength (Q c ). The second calculation step (S3) for calculating the second bending force (M c2 ) of the opening (24) portion of the beam (1) when the shearing force to be applied acts on the opening portion of the beam, and the above. The quotient ((M c2 -M) obtained by dividing the difference (M c2- M c1 ) between the second bending strength (M c2 ) and the first bending strength (M c1 ) by the shear strength (Q c ). c1 ) / Q c ) and the first bending strength (M c1 ) as a section to determine a linear function (line AB), and the comparison step (S5) is the design. Bending proof stress (M) obtained by comparing the shearing force (Q d ) and the shearing proof stress (Q c ) and applying the design shearing force (Q d ) to the linear function (line AB). It is characterized by having a step (S5) of comparing c ) with the design bending moment (M d ).

以上の評価方法では、曲げ補強部とせん断補強部の幅及び厚さに基づいて、梁の開口の部分の曲げ耐力とせん断耐力との関係を定めた上で、その関係を設計用せん断力及び設計用曲げモーメントと比較することで、梁を評価する。そのような比較の結果、設計用せん断力及び設計用曲げモーメントがその関係を充足する場合、つまり、設計用せん断力がせん断耐力以下であり、且つ、設計用曲げモーメントが曲げ耐力以下である場合、設定した曲げ補強部とせん断補強部の幅及び厚さが適切であるとして、梁を評価する。つまり、せん断力のみならず、曲げモーメントも考慮して、曲げ補強部とせん断補強部の幅及び厚さを適切に評価することになる。よって、曲げ補強部とせん断補強部の幅及び厚さを過不足なく設計することができる。 In the above evaluation method, the relationship between the bending strength and the shearing strength of the opening portion of the beam is determined based on the width and thickness of the bending reinforcing portion and the shear reinforcing portion, and then the relationship is determined as the design shearing force and the shearing strength. Evaluate the beam by comparing it with the design bending moment. As a result of such comparison, when the design shear force and the design bending moment satisfy the relationship, that is, when the design shear force is less than or equal to the shear strength and the design bending moment is less than or equal to the bending strength. , Evaluate the beam as the width and thickness of the set bending and shearing reinforcements are appropriate. That is, the width and thickness of the bending reinforcing portion and the shear reinforcing portion are appropriately evaluated in consideration of not only the shearing force but also the bending moment. Therefore, the width and thickness of the bending reinforcing portion and the shear reinforcing portion can be designed without excess or deficiency.

本発明によれば、せん断力及び曲げモーメントの両方を考慮して、曲げ補強部とせん断補強部の幅及び厚さを適切に評価することになるので、曲げ補強部とせん断補強部の幅及び厚さを過不足なく設計することができる。そのため、曲げ補強部とせん断補強部の材料費の増大を抑えることができるとともに、梁の開口の部分の耐力が不足することを防止できる。 According to the present invention, the width and thickness of the bending reinforcing portion and the shear reinforcing portion are appropriately evaluated in consideration of both the shearing force and the bending moment. The thickness can be designed without excess or deficiency. Therefore, it is possible to suppress an increase in the material cost of the bending reinforcing portion and the shear reinforcing portion, and it is possible to prevent the bearing capacity of the opening portion of the beam from being insufficient.

図1は、評価・設計される梁の側面図である。FIG. 1 is a side view of the beam to be evaluated and designed. 図2は、II−II断面図である。FIG. 2 is a sectional view taken along line II-II. 図3は、別例の梁の断面図である。FIG. 3 is a cross-sectional view of another example beam. 図4は、更に別例の梁の側面図である。FIG. 4 is a side view of a beam of another example. 図5は、V−V断面図である。FIG. 5 is a VV cross-sectional view. 図6は、梁の評価方法及び設計方法の工程順序を示したフローチャートである。FIG. 6 is a flowchart showing the process sequence of the beam evaluation method and the design method. 図7は、せん断力がせん断補強部に作用した場合に、そのせん断力をせん断補強部の延在方向の軸力で受け持った状態を示す説明図である。FIG. 7 is an explanatory view showing a state in which when a shear force acts on a shear reinforcing portion, the shearing force is taken over by an axial force in the extending direction of the shear reinforcing portion. 図8は、曲げモーメントが曲げ補強部に作用した場合に、その曲げモーメントを曲げ補強部の延在方向の軸力で受け持った状態を示す説明図である。FIG. 8 is an explanatory view showing a state in which when a bending moment acts on the bending reinforcing portion, the bending moment is taken over by the axial force in the extending direction of the bending reinforcing portion. 図9は、梁の評価に利用する比較判定式を線で表したグラフである。FIG. 9 is a graph showing a comparative judgment formula used for beam evaluation as a line. 図10は、図9のグラフに具体的な数値を当て嵌めて、設計用せん断力がせん断耐力以下であり、設計用曲げモーメントが曲げ耐力以下であることを説明するための図である。FIG. 10 is a diagram for applying specific numerical values to the graph of FIG. 9 to explain that the design shear force is less than or equal to the shear strength and the design bending moment is less than or equal to the bending strength.

以下、図面を参照して、本発明の実施形態について説明する。以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are provided with various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.

1. 梁について
図1は、評価・設計される梁1の側面図であり、図2は、II−II断面図である。図1及び図2に示す梁1は、評価・設計の際に利用する構造計算モデルである。この梁1は、隣り合う柱の間に概ね水平に架設されるとともにH形鋼からなる鉄骨梁本体2と、鉄骨梁本体2のウエブ21に設けられた円形状の開口24を囲うように鉄骨梁本体2のウエブ21に接合された上下一対の鋼製補強材3,4と、を備える。鋼製補強材3,4とウエブ21の接合は、例えば隅肉溶接等の溶接又はボルト結合によるものである。
1. 1. About the beam FIG. 1 is a side view of the beam 1 to be evaluated and designed, and FIG. 2 is a sectional view taken along line II-II. The beam 1 shown in FIGS. 1 and 2 is a structural calculation model used at the time of evaluation / design. The beam 1 is erected substantially horizontally between adjacent columns and is a steel frame so as to surround a steel beam main body 2 made of H-shaped steel and a circular opening 24 provided in the web 21 of the steel beam main body 2. A pair of upper and lower steel reinforcing members 3 and 4 joined to the web 21 of the beam main body 2 are provided. The joining of the steel reinforcing members 3 and 4 and the web 21 is by welding such as fillet welding or bolt connection.

鉄骨梁本体2は、梁軸方向(梁の長手方向)に帯板状に延びた鉛直なウエブ(縦板部)21と、梁軸方向に帯板状に延びた上下一対の水平なフランジ(横板部)22,23とを有し、梁軸方向に直交する断面形状がH形を成している。ウエブ21には、開口24が貫通するよう形成されている。 The steel beam main body 2 has a vertical web (vertical plate portion) 21 extending in a strip shape in the beam axial direction (longitudinal direction of the beam) and a pair of upper and lower horizontal flanges extending in a strip shape in the beam axial direction. Horizontal plate portions) 22 and 23, and the cross-sectional shape orthogonal to the beam axis direction is H-shaped. The web 21 is formed so as to penetrate the opening 24.

鋼製補強材3は、開口24の上側において梁軸方向に延在した曲げ補強部31と、開口24の上半分の梁軸方向両側において梁軸方向に対して斜めの方向に延在する帯状のせん断補強部32,33とを有する。曲げ補強部31とせん断補強部32,33は一体形成された状態にある。 The steel reinforcing member 3 has a bending reinforcing portion 31 extending in the beam axial direction on the upper side of the opening 24 and a strip-shaped extending in a diagonal direction with respect to the beam axial direction on both sides of the upper half of the opening 24 in the beam axial direction. It has shear reinforcing portions 32 and 33 of the above. The bending reinforcing portion 31 and the shear reinforcing portions 32 and 33 are integrally formed.

曲げ補強部31は等脚台形板状に形成され、曲げ補強部31の上底31a及び下底31bが梁軸方向に対して平行であり、上底31aが下底31bよりも短く、一対の脚31c,31dの間隔は下に向かって漸増する。上底31aと下底31bの中点を通る直線は鉛直方向に延在するとともに、開口24の中心点を通る。ここで、曲げ補強部31の延在方向は、互いに平行な上底31a及び下底31bが延びる方向を指すものとする。 The bending reinforcement portion 31 is formed in an isosceles trapezoidal plate shape, the upper base 31a and the lower bottom 31b of the bending reinforcement portion 31 are parallel to the beam axial direction, the upper base 31a is shorter than the lower base 31b, and a pair. The distance between the legs 31c and 31d gradually increases downward. The straight line passing through the midpoints of the upper base 31a and the lower base 31b extends in the vertical direction and passes through the center point of the opening 24. Here, the extending direction of the bending reinforcing portion 31 is defined as the direction in which the upper base 31a and the lower base 31b parallel to each other extend.

せん断補強部32,33は、これらの間に開口24の上半分が位置するように、曲げ補強部31の下底31bの両側部から下広がりに延出する。せん断補強部32,33は帯板状に形成され、平行二辺のうち一方の長辺32a,33aが曲げ補強部31の脚31c,31dと一直線状になっており、他方の長辺32b,33bと曲げ補強部31の下底31bの成す角は鈍角であり、下側の短辺32c,33cは曲げ補強部31の下底31bに対して平行である。ここで、せん断補強部32の延在方向は互いに平行な長辺32a,32bを指すものとし、せん断補強部33の延在方向についても同様である。 The shear reinforcing portions 32 and 33 extend downward from both sides of the lower base 31b of the bending reinforcing portion 31 so that the upper half of the opening 24 is located between them. The shear reinforcing portions 32 and 33 are formed in a strip shape, and one of the two parallel sides, 32a and 33a, is linear with the legs 31c and 31d of the bending reinforcing portion 31, and the other long side 32b, The angle formed by 33b and the lower bottom 31b of the bending reinforcing portion 31 is an obtuse angle, and the lower short sides 32c and 33c are parallel to the lower bottom 31b of the bending reinforcing portion 31. Here, the extending direction of the shear reinforcing portion 32 refers to the long sides 32a and 32b parallel to each other, and the same applies to the extending direction of the shear reinforcing portion 33.

鋼製補強材3は、開口24の中心を通る鉛直線に関して、梁軸方向に対称な形状である。そのため、せん断補強部32の幅(長辺32aと長辺32bの間隔)とせん断補強部33の幅(長辺32aと長辺32bの間隔)は互いに等しい上、梁軸方向に対するせん断補強部32の延在方向の成す角は梁軸方向に対するせん断補強部33の延在方向の成す角に等しい。 The steel reinforcing member 3 has a shape symmetrical with respect to the vertical straight line passing through the center of the opening 24 in the beam axis direction. Therefore, the width of the shear reinforcing portion 32 (distance between the long side 32a and the long side 32b) and the width of the shear reinforcing portion 33 (distance between the long side 32a and the long side 32b) are equal to each other, and the shear reinforcing portion 32 in the beam axial direction. The angle formed in the extending direction of is equal to the angle formed in the extending direction of the shear reinforcing portion 33 with respect to the beam axis direction.

鋼製補強材4は、開口24の下側において梁軸方向に延在した曲げ補強部41と、開口24の下半分の梁軸方向両側において梁軸方向に対して斜めの方向に延在する帯状のせん断補強部42,43とを有する。下側の鋼製補強材4と上側の鋼製補強材3は開口24の中心を通る水平線に関して互いに対称であるので、下側の鋼製補強材4の詳細な説明を省略する。なお、せん断補強部43の延在方向とせん断補強部32の延在方向は互いに平行であり、せん断補強部33の延在方向とせん断補強部42の延在方向は互いに平行である。 The steel reinforcing member 4 extends in a bending reinforcing portion 41 extending in the beam axial direction under the opening 24 and in a direction oblique to the beam axial direction on both sides of the lower half of the opening 24 in the beam axial direction. It has strip-shaped shear reinforcing portions 42 and 43. Since the lower steel reinforcing material 4 and the upper steel reinforcing material 3 are symmetrical with respect to the horizontal line passing through the center of the opening 24, detailed description of the lower steel reinforcing material 4 will be omitted. The extending direction of the shear reinforcing portion 43 and the extending direction of the shear reinforcing portion 32 are parallel to each other, and the extending direction of the shear reinforcing portion 33 and the extending direction of the shear reinforcing portion 42 are parallel to each other.

図1及び図2に示す例では、鋼製補強材3,4がウエブ21の片面に接合されている。それに対して、図3に示す例では、鋼製補強材3,4がウエブ21の両面に接合されている。この場合、図3の矢印aの方向に向かって平行投影した場合、一方の鋼製補強材3の外縁と他方の鋼製補強材3の外縁が重なる。鋼製補強材4についても同様である。 In the examples shown in FIGS. 1 and 2, the steel reinforcing members 3 and 4 are joined to one side of the web 21. On the other hand, in the example shown in FIG. 3, the steel reinforcing members 3 and 4 are joined to both sides of the web 21. In this case, when parallel projection is performed in the direction of the arrow a in FIG. 3, the outer edge of one steel reinforcing material 3 and the outer edge of the other steel reinforcing material 3 overlap. The same applies to the steel reinforcing material 4.

図1及び図2に示す例では、曲げ補強部31とせん断補強部32,33が一体形成された状態にあり、曲げ補強部41とせん断補強部42,43が一体形成された状態にある。それに対して、図4及び図5に示す例では、曲げ補強部31とせん断補強部32,33が別体であり、曲げ補強部41とせん断補強部42,43が別体であり、曲げ補強部31,41がウエブ21の一方の面に接合され、せん断補強部32,33,42,43がウエブ21の他方の面に接合されている。ここで、曲げ補強部31,41は、梁軸方向に平行な長辺及び梁成方向に平行な短辺を有する長方形板状であり、曲げ補強部31,41の延在方向は、互いに平行な長辺が延びる方向を指す。また、せん断補強部32,33,42,43は、梁軸方向に対して斜めの長辺を有する直方体板状であり、せん断補強部32,33,42,43の延在方向は、互いに平行な長辺が延びる方向を指す。 In the examples shown in FIGS. 1 and 2, the bending reinforcing portion 31 and the shear reinforcing portions 32 and 33 are integrally formed, and the bending reinforcing portion 41 and the shear reinforcing portions 42 and 43 are integrally formed. On the other hand, in the examples shown in FIGS. 4 and 5, the bending reinforcing portion 31 and the shear reinforcing portions 32 and 33 are separate bodies, and the bending reinforcing portion 41 and the shear reinforcing portions 42 and 43 are separate bodies. The portions 31, 41 are joined to one surface of the web 21, and the shear reinforcing portions 32, 33, 42, 43 are joined to the other surface of the web 21. Here, the bending reinforcing portions 31 and 41 have a rectangular plate shape having a long side parallel to the beam axis direction and a short side parallel to the beam forming direction, and the extending directions of the bending reinforcing portions 31 and 41 are parallel to each other. Refers to the direction in which the long side extends. Further, the shear reinforcing portions 32, 33, 42, 43 have a rectangular parallelepiped shape having long sides oblique to the beam axis direction, and the extending directions of the shear reinforcing portions 32, 33, 42, 43 are parallel to each other. Refers to the direction in which the long side extends.

図1、図3、図4の何れの例でも、鉄骨梁本体2のウエブ21に開口24が形成されているので、以上のような梁1を設計する際に想定し得る設計用せん断力Qd [kN]及び設計用曲げモーメントMd [kN・m]が梁1の開口24の部分に作用した場合、設計用せん断力Qd及び設計用曲げモーメントMdを鉄骨梁本体2のみでは負担することができない場合がる。そのため、鉄骨梁本体2の開口24の部分を補強するべく、以上のように補強部31,32,33,41、42,43が鉄骨梁本体2に設けられ、設計用曲げモーメントMdを鉄骨梁本体2及び曲げ補強部31,41で負担し、設計用せん断力Qdを鉄骨梁本体2及びせん断補強部32,33,42,43で負担する。それゆえ、梁1を設計する際に、補強部31,32,33,41,42,43による鉄骨梁本体2の補強、つまり梁1の強度が適切であるか否かを以下の方法によって評価して、梁1の各部の寸法及び降伏点(表1参照)を数値として決定する。なお、せん断力及び曲げモーメントが梁1の開口24の部分に作用するとは、そのせん断力及び曲げモーメントが開口24の三次元的中心点(三次元的中心点とは、側面視における開口24の中心点を通って梁軸方向に直交する鉛直断面における開口24の中心点のことをいう。以下、同じ。)に作用すると仮定した場合に、そのせん断力及び曲げモーメントを開口24の周辺部が負担することをいう。従って、梁1の開口24の部分のせん断耐力とは、そのせん断耐力を超えたせん断力が開口24の三次元的中心点に作用したと仮定した場合に、そのせん断力を開口24の周辺部が負担すると、梁1の開口24の周辺部が破壊するこという。また、梁1の開口24の部分の曲げ耐力とは、その曲げ耐力を超えた曲げモーメントが開口24の三次元的中心点に作用したと仮定した場合に、その曲げモーメントを開口24の周辺部が負担すると、梁1の開口24の周辺部が破壊するこという。 In any of the examples of FIGS. 1, 3 and 4, since the opening 24 is formed in the web 21 of the steel beam main body 2, the design shear force Q that can be assumed when designing the beam 1 as described above When d [kN] and the design bending moment M d [kN · m] act on the opening 24 of the beam 1, the design shear force Q d and the design bending moment M d are borne by the steel beam body 2 alone. You may not be able to. Therefore, in order to reinforce the opening 24 portion of the steel beam main body 2, the reinforcing portions 31, 32, 33, 41, 42, 43 are provided in the steel beam main body 2 as described above, and the design bending moment M d is set to the steel frame. borne by the beam body 2 and the bending reinforcement portion 31 and 41, bear the design for shear force Q d in steel beams body 2 and shear reinforcement unit 32,33,42,43. Therefore, when designing the beam 1, the reinforcement of the steel beam body 2 by the reinforcing portions 31, 32, 33, 41, 42, 43, that is, whether or not the strength of the beam 1 is appropriate is evaluated by the following method. Then, the dimensions and yield points (see Table 1) of each part of the beam 1 are determined as numerical values. It should be noted that the shearing force and bending moment acting on the portion of the opening 24 of the beam 1 means that the shearing force and bending moment are the three-dimensional center points of the opening 24 (the three-dimensional center point is the opening 24 in the side view). The center point of the opening 24 in the vertical cross section that passes through the center point and is orthogonal to the beam axis direction. The same shall apply hereinafter), and the shear force and bending moment are applied to the peripheral portion of the opening 24. It means to bear. Therefore, the shear strength of the portion of the opening 24 of the beam 1 is the shear strength of the peripheral portion of the opening 24, assuming that the shear strength exceeding the shear strength acts on the three-dimensional center point of the opening 24. Is said to destroy the peripheral portion of the opening 24 of the beam 1. Further, the bending strength of the portion of the opening 24 of the beam 1 means that, assuming that a bending moment exceeding the bending strength acts on the three-dimensional center point of the opening 24, the bending moment is applied to the peripheral portion of the opening 24. Is said to destroy the peripheral portion of the opening 24 of the beam 1.

2. 梁の評価及び設計
以下、図6を参照して、梁1の評価方法及び設計方法について詳細に説明する。ここで、梁1の各部の寸法及び降伏点を表す記号は表1及び図1〜図5のように定義する。
2. 2. Evaluation and Design of Beams Hereinafter, the evaluation method and design method of the beam 1 will be described in detail with reference to FIG. Here, symbols representing the dimensions and yield points of each part of the beam 1 are defined as shown in Table 1 and FIGS. 1 to 5.

Figure 0006801231
Figure 0006801231

ここで、用いる鉄骨梁本体2が予め決まっているものとするので、以下のように梁1の評価及び設計をする際には、鉄骨梁本体2の梁成D,フランジ22,23の幅B,ウエブ21の厚さtw,フランジ22,23の厚さtf,開口24の直径φ,フランジ22,23の降伏点σyf及びウエブ21の降伏点σywは数値(設計値)として予め設定されている。また、用いる補強部31,32,33,41,42,43の位置及び材料が予め決まっているものとするので、距離Hb,曲げ補強部31,41の降伏点σyb,せん断補強部32,33,42,43の降伏点σys及び成す角θは数値(設計値)として予め設定されている。従って、以下に説明する梁1の評価とは、想定する設計用せん断力Qd 及び設計用曲げモーメントMdが梁1の開口24の部分に作用した場合に、梁1が設計用せん断力Qd 及び設計用曲げモーメントMdに耐え得るのに曲げ補強部31,41の幅Bb,曲げ補強部31,41の厚さtb,せん断補強部32,33,42,43の幅Bs及びせん断補強部32,33,42,43の厚さtsが適切であるか否かを評価することである。また、以下に説明する梁1の設計とは、想定する設計用せん断力Qd 及び設計用曲げモーメントMdが梁1の開口24の部分に作用した場合に、梁1が設計用せん断力Qd 及び設計用曲げモーメントMdに耐え得るように、曲げ補強部31,41の幅Bb,曲げ補強部31,41の厚さtb,せん断補強部32,33,42,43の幅Bs及びせん断補強部32,33,42,43の厚さtsの数値を決定することである。 Here, since it is assumed that the steel beam main body 2 to be used is determined in advance, when evaluating and designing the beam 1 as described below, the beam formation D of the steel beam main body 2 and the widths B of the flanges 22 and 23 are B. , the thickness t w of the web 21, the thickness t f of the flange 22, the diameter of the aperture 24 phi, the yield point sigma yw yield point sigma yf and webs 21 of the flange 22, 23 in advance as numeric (design value) It is set. Further, since the positions and materials of the reinforcing portions 31, 32, 33, 41, 42 , 43 to be used are determined in advance, the distance H b , the yield point σ yb of the bending reinforcing portions 31, 41, and the shear reinforcing portion 32 , 33, 42, 43 yield points σ ys and the angle θ formed are preset as numerical values (design values). Therefore, the evaluation of the beam 1 described below means that the beam 1 has a design shear force Q when the assumed design shear force Q d and the design bending moment M d act on the opening 24 of the beam 1. Width B b of bending reinforcements 31, 41, thickness t b of bending reinforcements 31, 41, width B s of shear reinforcements 32, 33, 42, 43 to withstand d and design bending moment M d And it is to evaluate whether or not the thickness t s of the shear reinforcing part 32, 33, 42, 43 is appropriate. Further, in the design of the beam 1 described below, when the assumed design shear force Q d and the design bending moment M d act on the opening 24 portion of the beam 1, the beam 1 has the design shear force Q. The width B b of the bending reinforcing portions 31 and 41, the thickness t b of the bending reinforcing portions 31 and 41, and the width B of the shear reinforcing portions 32, 33, 42, 43 so as to withstand d and the design bending moment M d. It is to determine the numerical value of the thickness t s of s and the shear reinforcing portions 32, 33, 42, 43.

なお、図3に示すように、ウエブ21の両面に鋼製補強材3が接合されている場合には、両面の曲げ補強部31の厚さの和をtbとする。曲げ補強部41及びせん断補強部32,33,42,43についても同様である。 As shown in FIG. 3, when the steel reinforcing members 3 are joined to both sides of the web 21, the sum of the thicknesses of the bending reinforcing portions 31 on both sides is t b . The same applies to the bending reinforcing portion 41 and the shear reinforcing portions 32, 33, 42, 43.

(A)ステップS1:設計用せん断力Qd及び設計用曲げモーメントMdの設定
梁1に関する構造計算書等に基づいて、梁1の開口24の部分に作用し得る設計用せん断力Qd及び設計用曲げモーメントMdの数値を設定する。ここで、構造計算書には、梁1が設けられる建物等の構造物の仕様(高さ、重量、梁1の階数、梁1の位置、梁1のスパン等)が記載されているとともに、構造物の各部(梁1を含む)に作用する設計用荷重が記載されているので、設計用荷重から梁1の開口24の部分に作用し得る設計用せん断力Qd及び設計用曲げモーメントMdの数値を解析により算出して、設定することができる。
(A) Step S1: Setting of design shear force Q d and design bending moment M d Design shear force Q d and that can act on the opening 24 of the beam 1 based on the structural calculation sheet related to the beam 1. Set the value of the design bending moment M d . Here, the structural calculation sheet describes the specifications (height, weight, number of floors of the beam 1, the position of the beam 1, the span of the beam 1, etc.) of the structure such as the building where the beam 1 is provided. Since the design load acting on each part of the structure (including the beam 1) is described, the design shear force Q d and the design bending moment M that can act on the opening 24 portion of the beam 1 from the design load are described. The numerical value of d can be calculated and set by analysis.

(B)ステップS2:梁1の各部の寸法及び降伏点の設定
梁1の各部の寸法(表1のD,B,tw,tf,φ,Bb,tb,Hb,Bs,ts,θ)及び降伏点(表1のσyf,σyw,σyb,σys)の数値を設定する。なお、上述したように、D,B,tw,tf,φ,Hb,σyf,σyw,σyb,σys及びθsは予め決められた数値であるが、Bb,tb,Bs及びtsは仮に設定する数値である。
(B) Step S2: Setting the dimensions and yield point of each part of the beam 1 Dimensions of each part of the beam 1 (D, B, t w , t f , φ, B b , t b , H b , B s in Table 1) , T s , θ) and the yield point (σ yf , σ yw , σ yb , σ ys in Table 1). As described above, D, B, t w, t f, φ, H b, σ yf, σ yw, σ yb, σ ys and theta s but is a numerical value predetermined, B b, t b , B s and t s are tentatively set numerical values.

(C)ステップS3:せん断耐力Qc及び曲げ耐力Mc1,Mc2の計算
以下に説明する通り、梁1の各部の寸法(表1のD,B,tw,tf,φ,Bb,tb,Hb,Bs,ts,θ)及び降伏点(表1のσyf,σyw,σyb,σys)に基づいてせん断耐力Qc [kN]、第一曲げ耐力Mc1 [kN・m],第二曲げ耐力Mc2 [kN・m]の数値を計算する。ここで、第一曲げ耐力Mc1はせん断力が梁1の開口24の部分に作用しない場合の開口24の部分の曲げ耐力であり、第二曲げ耐力Mc2はせん断耐力Qcに相当するせん断力が梁1の開口24の部分に作用する場合の開口24の部分の曲げ耐力である。
(C) Step S3: Calculation of shear strength Q c and bending strength M c1 and M c2 As explained below, the dimensions of each part of the beam 1 (D, B, t w , t f , φ, B b in Table 1 ). , T b , H b , B s , t s , θ) and yield strengthyf , σ yw , σ yb , σ ys in Table 1), shear strength Q c [kN], first bending strength M Calculate the values of c1 [kN ・ m] and second bending strength M c2 [kN ・ m]. Here, the first bending proof stress M c1 is the bending proof stress of the opening 24 portion when the shearing force does not act on the opening 24 portion of the beam 1, and the second bending proof stress M c 2 is the shear corresponding to the shear strength Q c. This is the bending strength of the opening 24 when a force acts on the opening 24 of the beam 1.

・せん断耐力Qcについて(図7参照)
次式(1)により、開口24を有する鉄骨梁本体2のせん断耐力Qcg [kN]を計算する。

Figure 0006801231
・ Shear strength Q c (see Fig. 7)
The shear strength Q cg [kN] of the steel beam body 2 having the opening 24 is calculated by the following equation (1).
Figure 0006801231

図7に示すようにせん断力がせん断補強部32,33,42,43に作用した場合に、そのせん断力をせん断補強部32,33,42,43の延在方向の軸力で受け持つとすると、せん断補強部32,33,42,43の延在方向における軸耐力Pys [kN]がBs×ts×σysであるので、次式(2)によりせん断補強部32,33,42,43のせん断耐力Qcr [kN]を計算する。

Figure 0006801231
As shown in FIG. 7, when a shear force acts on the shear reinforcing portions 32, 33, 42, 43, it is assumed that the shear force is taken over by the axial force in the extending direction of the shear reinforcing portions 32, 33, 42, 43. Since the axial force force P ys [kN] of the shear reinforcing portions 32, 33, 42, 43 in the extending direction is B s × t s × σ ys , the shear reinforcing portions 32, 33, 42 according to the following equation (2). , 43 Shear strength Q cr [kN] is calculated.
Figure 0006801231

そして、鉄骨梁本体2のせん断耐力Qcgとせん断補強部32,33,42,43のせん断耐力Qcrの和を求める。その和は、梁1の開口24の部分のせん断耐力Qcである。

Figure 0006801231
Then, the sum of the shear strength Q cg of the steel beam body 2 and the shear strength Q cr of the shear reinforcing portions 32, 33, 42, 43 is obtained. The sum is a shear strength Q c of the portion of the opening 24 of the beam 1.
Figure 0006801231

・曲げ耐力Mc1,Mc2について(図8参照)
次式(4)により、開口24を有する鉄骨梁本体2の曲げ耐力Mc1g [kN・m]を計算する。

Figure 0006801231
ここで、
Figure 0006801231
である。 ・ Bending strength M c1 and M c2 (see Fig. 8)
The bending strength M c1g [kN · m] of the steel beam body 2 having the opening 24 is calculated by the following equation (4).
Figure 0006801231
here,
Figure 0006801231
Is.

図8に示すように曲げモーメントが曲げ補強部31,41に作用した場合に、その曲げモーメントを曲げ補強部31,41の延在方向の軸力で受け持つとすると、曲げ補強部31,41の延在方向における軸耐力Pyb [kN]がBb×tb×σybであるので、次式(5)により、曲げ補強部31,41の曲げ耐力Mc1r [kN・m]を計算する。

Figure 0006801231
ここで、
Figure 0006801231
である。 As shown in FIG. 8, when a bending moment acts on the bending reinforcing portions 31 and 41, assuming that the bending moment is handled by the axial force in the extending direction of the bending reinforcing portions 31 and 41, the bending reinforcing portions 31 and 41 Since the axial proof stress P yb [kN] in the extending direction is B b × t b × σ yb , the bending proof stress M c1r [kN · m] of the bending reinforcing portions 31 and 41 is calculated by the following equation (5). ..
Figure 0006801231
here,
Figure 0006801231
Is.

そして、鉄骨梁本体2の曲げ耐力Mc1gと曲げ補強部31,41の曲げ耐力Mc1rの和を求める。その和は、せん断力が梁1の開口24の部分に作用しない場合の梁1の開口24の部分の第一曲げ耐力Mc1である。

Figure 0006801231
Then, the sum of the bending strength M c1g of the steel beam body 2 and the bending strength M c1r of the bending reinforcing portions 31 and 41 is obtained. The sum is the first bending strength M c1 of the opening 24 portion of the beam 1 when the shearing force does not act on the opening 24 portion of the beam 1.
Figure 0006801231

一方、曲げ耐力Mc1からウエブ21及び曲げ補強部31,41の寄与分を控除すれば、せん断耐力Qcに相当するせん断力が梁1の開口24の部分に作用する場合の第二曲げ耐力Mc2 [kN・m]を求められるので、次式(7)により第二曲げ耐力Mc2を計算する。

Figure 0006801231
On the other hand, if the contributions of the web 21 and the bending reinforcing portions 31 and 41 are subtracted from the bending strength M c1 , the second bending strength when the shear force corresponding to the shear strength Q c acts on the opening 24 of the beam 1. Since M c2 [kN · m] can be obtained, the second bending strength M c2 is calculated by the following equation (7).
Figure 0006801231

(D)ステップS4:比較判定式の設定
上記ステップS3において計算した梁1の開口24の部分のせん断耐力Qcから、せん断力Q[kN]に関する比較判定式を次式(8)のように設定する。

Figure 0006801231
(D) Step S4: Setting of comparison judgment formula From the shear strength Q c of the opening 24 portion of the beam 1 calculated in step S3 above, the comparison judgment formula regarding the shear force Q [kN] is as shown in the following formula (8). Set.
Figure 0006801231

この比較判定式(8)は、梁1の開口24の部分に作用するせん断力Qがせん断耐力Qc以下であれば、梁1がそのせん断力Qに耐え得ることを表す。 This comparative determination formula (8) indicates that if the shear force Q acting on the portion of the opening 24 of the beam 1 is equal to or less than the shear strength Q c , the beam 1 can withstand the shear strength Q.

せん断耐力Qc及び曲げ耐力Mc1,Mc2とから、曲げモーメントM [kN・m]に関する比較判定式を次式(9)のように設定する。

Figure 0006801231
From the shear strength Q c and the bending strengths M c1 and M c2 , the comparative judgment formula for the bending moment M [kN · m] is set as in the following formula (9).
Figure 0006801231

この比較判定式(9)において、変数Mcはせん断力Qが梁1の開口24の部分に作用する場合の梁1の開口24の部分の曲げ耐力を表し、変数Mcはせん断力Qを独立変数としたせん断力Qの一次関数である。比較判定式(9)は、梁1の開口24の部分に作用するせん断力Qと、そのせん断力Qが梁1の開口24の部分に作用した場合の梁1の開口24の部分の曲げ耐力Mcとの関係を表したものである。つまり、この比較判定式(9)は、せん断力Qが梁1の開口24の部分に作用した場合に、梁1の開口24の部分に作用する曲げモーメントMがそのせん断力Qから定まる曲げ耐力Mc以下であれば、梁1がその曲げモーメントMに耐え得ることを表す。 In this comparative determination formula (9), the variable M c represents the bending strength of the opening 24 portion of the beam 1 when the shear force Q acts on the opening 24 portion of the beam 1, and the variable M c represents the shear force Q. It is a linear function of the shear force Q as an independent variable. In the comparative judgment formula (9), the shearing force Q acting on the opening 24 portion of the beam 1 and the bending strength of the opening 24 portion of the beam 1 when the shearing force Q acts on the opening 24 portion of the beam 1. It shows the relationship with M c . That is, in this comparative determination formula (9), when the shearing force Q acts on the opening 24 of the beam 1, the bending moment M acting on the opening 24 of the beam 1 is determined from the shearing force Q. If it is M c or less, it means that the beam 1 can withstand the bending moment M.

ここで、図9に示すように、変数としてのせん断力Qを横軸により表し、変数としての曲げモーメントMを縦軸により表す直交座標系のグラフに点A(0,Mc1)、点B(Qc,Mc2)及び点C(Qc,0)をプロットすると、線BCの左側の領域が比較判定式(8)を表し、線ABの下側の領域が比較判定式(9)を表す。線ABCは、せん断耐力Qc及び曲げ耐力Mc1,Mc2に基づいて定められた曲げせん断耐力曲線であり、その曲げせん断耐力曲線は、梁1の開口24の部分の曲げ耐力とのせん断耐力との関係を表す。
線ABが右肩下がりとなっているのは、つまり式(9)の一次関数の傾きが負となっているのは、梁1の開口24の部分に作用するせん断力Qが増加するにつれて、梁1の開口24の部分24の曲げ耐力Mcが減少するようしたものである。即ち、数値Qのせん断力が梁1の開口24の部分に作用すると、梁1の開口24の部分がそのせん断力に耐えうるように数値Qのせん断耐力を必要とするが、梁1の開口24の部分の全体としての耐力がせん断耐力として用いられる分だけ、梁1の開口24の部分の全体としての耐力のうち曲げ耐力として用いられる分が減少するので、線AB及び式(9)のようにせん断力Qが増加するにつれて曲げ耐力Mcが減少することになる。
Here, as shown in FIG. 9, points A (0, Mc1 ) and B are shown in a graph of a Cartesian coordinate system in which the shear force Q as a variable is represented by the horizontal axis and the bending moment M as a variable is represented by the vertical axis. When (Q c , M c2 ) and the point C (Q c , 0) are plotted, the area on the left side of the line BC represents the comparison judgment formula (8), and the area below the line AB is the comparison judgment formula (9). Represents. The line ABC is a bending shear strength curve determined based on the shear strength Q c and the bending strengths M c1 and M c2 , and the bending shear strength curve is the shear strength with the bending strength of the opening 24 of the beam 1. Represents the relationship with.
The reason why the line AB is downward-sloping, that is, the slope of the linear function of Eq. (9) is negative, is that as the shear force Q acting on the opening 24 of the beam 1 increases, The bending strength M c of the portion 24 of the opening 24 of the beam 1 is reduced. That is, when the shearing force of the numerical value Q acts on the portion of the opening 24 of the beam 1, the shearing strength of the numerical value Q is required so that the portion of the opening 24 of the beam 1 can withstand the shearing force, but the opening of the beam 1 Since the proof stress of the 24 portion as a whole is used as the shear strength, the portion of the proof stress of the opening 24 portion of the beam 1 used as the bending proof stress is reduced, so that the line AB and the formula (9) As the shear force Q increases, the bending proof stress M c decreases.

(E)ステップS5:比較・判定
比較判定式(8)のせん断力Qに設計用せん断力Qdを当て嵌めて、比較判定式(8)に従って設計用せん断力Qdとせん断耐力Qcとを比較することによって、比較判定式(8)を充足するか否かを判定する。更に、比較判定式(9)のせん断力Qと曲げモーメントMにそれぞれ設計用せん断力Qdと設計用曲げモーメントMdを当て嵌め、設計用せん断力Qdを比較判定式(9)に当て嵌めることによって得られた曲げ耐力Mcを求めて、比較判定式(9)に従って曲げ耐力Mcと設計用曲げモーメントMdとを比較することによって、比較判定式(9)を充足するか否かを判定する。
(E) Step S5: Comparison / judgment The design shear force Q d is applied to the shear force Q of the comparison judgment formula (8), and the design shear force Q d and the shear strength Q c are combined according to the comparison judgment formula (8). It is determined whether or not the comparison determination formula (8) is satisfied by comparing. Furthermore, comparison judgment formula (9) of the shear force Q and bending each designed for shear force moment M Q d and fit the design for the bending moment M d, applying a design for shear force Q d to comparative judgment formula (9) Whether or not the comparative judgment formula (9) is satisfied by obtaining the bending strength M c obtained by fitting and comparing the bending strength M c with the design bending moment M d according to the comparative judgment formula (9). Is determined.

つまり、線AB,線BCが表された図9のグラフに点D(Qd,Md)をプロットし(点Dは点D1〜点D4の何れか)、点Dが曲げせん断耐力曲線ABCの内側に存在するか否かを判定する。具体的には、線BCの左側の領域に存在するか否かを判定するが、点Dが点D1又は点D3のように線BCの左側の領域に存在すれば、比較判定式(8)を充足し、点Dが点D2又は点D4のように線BCの右側の領域に存在すれば、比較判定式(8)を充足しない。また、点Dが線ABの下側の領域に存在するか否かを判定するが、点Dが点D1又は点D2のように線ABの下側の領域に存在すれば、比較判定式(9)を充足し、点Dが点D3又は点D4のように線BCの右側の領域に存在すれば、比較判定式(9)を充足しない。 That is, the points D (Q d , M d ) are plotted on the graph of FIG. 9 in which the lines AB and BC are represented (point D is any of points D1 to D4), and point D is the bending shear strength curve ABC. Determine if it exists inside. Specifically, it is determined whether or not it exists in the region on the left side of the line BC, but if the point D exists in the region on the left side of the line BC like the point D1 or the point D3, the comparison determination formula (8) If the point D exists in the region on the right side of the line BC like the point D2 or the point D4, the comparison determination formula (8) is not satisfied. Further, it is determined whether or not the point D exists in the region below the line AB, but if the point D exists in the region below the line AB like the point D1 or the point D2, the comparison determination formula ( If 9) is satisfied and the point D exists in the region on the right side of the line BC like the point D3 or the point D4, the comparison determination formula (9) is not satisfied.

(F)ステップS6:曲げ補強部,せん断補強部の幅及び厚さの設定値の変更
図9に示す点D2,D4のように、ステップS5の比較判定工程において比較判定式(8)を充足しなければ、せん断補強部32,33,42,43の幅Bs及び厚さtsが設定された梁1は設計用せん断力Qdに耐えることができず、設定された幅Bb,Bs及び厚さtb,tsが不適切である。また、図9に示す点D3,D4のように、ステップS5の比較判定工程において比較判定式(9)を充足しなければ、曲げ補強部31,41やせん断補強部32,33,42,43の幅Bb,Bs及び厚さtb,tsが設定された梁1は設計用曲げモーメントMdに耐えることができず、設定された幅Bb,Bs及び厚さtb,tsが不適切である。
(F) Step S6: Change of set values of width and thickness of bending reinforcement portion and shear reinforcement portion As shown in points D2 and D4 shown in FIG. 9, the comparison determination formula (8) is satisfied in the comparison determination step of step S5. Otherwise, the beam 1 having the width B s and the thickness t s of the shear reinforcing portions 32, 33, 42, 43 cannot withstand the design shear force Q d , and the set width B b , B s and thickness t b , t s are inappropriate. Further, as in the points D3 and D4 shown in FIG. 9, if the comparison determination formula (9) is not satisfied in the comparison determination step of step S5, the bending reinforcement portions 31, 41 and the shear reinforcement portions 32, 33, 42, 43 Beam 1 with widths B b , B s and thicknesses t b , t s cannot withstand the design bending moment M d , and the set widths B b , B s and thickness t b , t s is inappropriate.

そこで、判別式(8),(9)のどちらか一方又は両方を充足しない場合には、曲げ補強部31,41とせん断補強部32,33,42,43の幅Bb,Bs及び厚さtb,tsの設定値を変更することによって、曲げ補強部31,41とせん断補強部32,33,42,43の幅Bb,Bs及び厚さtb,tsを再度設定する。或いは、フランジ22,23の降伏点σyf,ウエブ21の降伏点σyw,曲げ補強部31,41の降伏点σyb,せん断補強部32,33,42,43の降伏点σysのうち少なくとも1つをより高い設定値に変更することによって、降伏点σyf,降伏点σyw,降伏点σyb及び降伏点σysのうち少なくとも1つを再度設定する。
その後、ステップS3に戻って、ステップS3の再計算によってせん断耐力Qc及び曲げ耐力Mc1,Mc2を再度計算し、ステップS4における判別式(8),(9)を再度定めて、ステップS5において設計用せん断力Qd及び設計用曲げモーメントMdが変更後の判別式(8),(9)を充足するか否か判定する。こうして、ステップS5の比較判定工程において比較判定式(8)及び比較判定式(9)の両方を充足するまで、ステップS6,S3,S4,S5の工程を繰り返す。
Therefore, when either one or both of the discriminants (8) and (9) are not satisfied, the widths B b , B s and thickness of the bending reinforcing portions 31, 41 and the shear reinforcing portions 32, 33, 42, 43 are not satisfied. By changing the set values of t b and t s , the widths B b and B s and the thicknesses t b and t s of the bending reinforcing portions 31, 41 and the shear reinforcing portions 32, 33, 42 and 43 are set again. To do. Alternatively, at least one of the yield point σ yf of the flanges 22 and 23, the yield point σ yw of the web 21, the yield point σyb of the bending reinforcing portions 31 and 41, and the yield point σ ys of the shear reinforcing portions 32, 33, 42, 43 is set. By changing to a higher setting value, at least one of the yield point σ yf , the yield point σ yw , the yield point σ yb, and the yield point σ ys is set again.
After that, returning to step S3, the shear strength Q c and the bending strengths M c1 and M c2 are recalculated by the recalculation of step S3, and the discriminants (8) and (9) in step S4 are redefined, and step S5. Whether or not the design shear force Q d and the design bending moment M d satisfy the changed discriminants (8) and (9) is determined. In this way, the steps S6, S3, S4, and S5 are repeated until both the comparison determination formula (8) and the comparison determination formula (9) are satisfied in the comparison determination step of step S5.

(G)ステップS7:決定(本設定)
図9に示す点D1のように、ステップS5の比較判定工程において比較判定式(8)及び比較判定式(9)の両方を充足すれば、ステップS2又はステップS6において幅Bb,Bs及び厚さtb,tsが設定された梁1は設計用せん断力Qd及び設計用曲げモーメントMdに耐え得る。従って、ステップS2又はステップS6において設定された幅Bb,Bs及び厚さtb,tsが適切である。よって、曲げ補強部31,41やせん断補強部32,33,42,43の幅や厚さをステップS2又はステップS6において設定された数値Bb,Bs及びtb,tsに決定する。併せて、鉄骨梁本体2の梁成、フランジ22,23の幅、ウエブ21の厚さ、フランジ22,23の厚さ、開口24の直径、曲げ補強部31の上端から曲げ補強部41の下端までの距離、フランジ22,23の降伏点、ウエブ21の降伏点、曲げ補強部31,41の降伏点、せん断補強部32,33,42,43の降伏点、梁軸方向に対するせん断補強部32,33,42,43の延在方向の成す角を、ステップS2において設定した数値D,B,tw,tf,φ,Hb,σyf,σyw,σyb,σys,θに決定する。
以上により、梁1の評価・設計が終了する。
(G) Step S7: Decision (this setting)
As shown at point D1 shown in FIG. 9, if both the comparison determination formula (8) and the comparison determination formula (9) are satisfied in the comparison determination step of step S5, the widths B b , B s and the widths B b , B s and in step S2 or step S6 are satisfied. The beam 1 having the thicknesses t b and t s can withstand the design shear force Q d and the design bending moment M d . Therefore, the widths B b , B s and the thicknesses t b , t s set in step S2 or step S6 are appropriate. Therefore, the widths and thicknesses of the bending reinforcing portions 31, 41 and the shear reinforcing portions 32, 33, 42, 43 are determined to be the numerical values B b , B s and t b , t s set in step S2 or step S6. At the same time, the beam formation of the steel beam main body 2, the widths of the flanges 22 and 23, the thickness of the web 21, the thickness of the flanges 22 and 23, the diameter of the opening 24, the upper end of the bending reinforcing portion 31 to the lower end of the bending reinforcing portion 41. Distance to, the yield point of the flanges 22, 23, the yield point of the web 21, the yield point of the bending reinforcing portions 31, 41, the yield point of the shear reinforcing portions 32, 33, 42, 43, the shear reinforcing portion 32 in the beam axial direction. The angles formed by the extending directions of, 33, 42, and 43 are set to the numerical values D, B, t w , t f , φ, H b , σ yf , σ yw , σ yb , σ ys , and θ set in step S2. decide.
This completes the evaluation and design of the beam 1.

3. 梁の製造
上述の設計方法によって決定した設計値に従って梁1を製造する。具体的には、まず、ステップS7で決定した幅Bb、厚さtb及び降伏点σybの曲げ補強部31,41と、ステップS7で決定した幅Bs、厚さts及び降伏点σysのせん断補強部32,33,42,43とを有した鋼製補強材3,4を準備する。更に、ステップS7で決定した幅B、厚さtf及び降伏点σyfのフランジ22,23と、ステップS7で決定した厚さtw、高さ(D−2tf)及び降伏点σywのウエブ21と、直径φの開口24とを有した梁成Dの鉄骨梁本体2を準備する。そして、梁軸方向に対するせん断補強部32,33,42,43の延在方向の成す角がステップS7で決定した設計値θになるように、且つ、曲げ補強部31の上端から曲げ補強部41の下端までの距離がステップS7で決定した設計値Hbになるように、曲げ補強部31,41及びせん断補強部32,33,42,43を鉄骨梁本体2のウエブ21に接合する。こうして製造した梁1を柱間に架設する。
3. 3. Manufacture of Beam Beam 1 is manufactured according to the design value determined by the above design method. Specifically, first, the width B b determined at step S7, and the bending reinforcement portion 31, 41 having a thickness of t b and yield point sigma yb, width B s determined in step S7, the thickness t s and a yield point Steel reinforcing members 3 and 4 having shear reinforcing portions 32, 33, 42 and 43 of σ ys are prepared. Furthermore, the width B is determined in step S7, the flange 22, 23 thickness t f and yield point sigma yf, the thickness t w determined in step S7, the height (D-2t f) and yield point sigma yw of A steel beam main body 2 of a beam D having a web 21 and an opening 24 having a diameter φ is prepared. Then, the angle formed by the shear reinforcing portions 32, 33, 42, 43 in the extending direction with respect to the beam axial direction becomes the design value θ determined in step S7, and the bending reinforcing portion 41 is formed from the upper end of the bending reinforcing portion 31. The bending reinforcing portions 31, 41 and the shear reinforcing portions 32, 33, 42, 43 are joined to the web 21 of the steel beam main body 2 so that the distance to the lower end of the beam becomes the design value H b determined in step S7. The beam 1 manufactured in this way is erected between the columns.

4. 効果
以上の評価方法・設計方法では、せん断力のみならず曲げモーメントも考慮して、梁1が設計用せん断力Qd及び設計用曲げモーメントMdに耐え得るように、曲げ補強部31,41とせん断補強部32,33,42,43の幅Bb,Bs及び厚さtb,tsの値を決定した。そのため、曲げ補強部31,41とせん断補強部32,33,42,43の幅Bb,Bs及び厚さtb,tsを過不足なく適切に設計することができる。そのため、曲げ補強部31,41とせん断補強部32,33,42,43の材料費の増大を抑えることができるとともに、梁1の開口24の部分の耐力が不足することを防止できる。
4. Effect In the above evaluation method and design method, not only the shear force but also the bending moment is taken into consideration so that the beam 1 can withstand the design shear force Q d and the design bending moment M d. The values of the widths B b , B s and the thicknesses t b , t s of the shear reinforcing portions 32, 33, 42, 43 were determined. Therefore, the widths B b , B s and the thicknesses t b , t s of the bending reinforcing portions 31, 41 and the shear reinforcing portions 32, 33, 42, 43 can be appropriately designed without excess or deficiency. Therefore, it is possible to suppress an increase in the material cost of the bending reinforcing portions 31, 41 and the shear reinforcing portions 32, 33, 42, 43, and it is possible to prevent the proof stress of the opening 24 portion of the beam 1 from being insufficient.

5. 変形例
鉄骨梁本体2はH形鋼であったが、梁軸方向に帯状に延びた鉛直な縦板部と、縦板部の上下端に設けられるとともに梁軸方向に帯状に延びた水平な横板部とを備える形鋼(例えば山形鋼、溝形鋼、リップ溝形鋼、Z形鋼、T形鋼、角形鋼管)であれば、H形鋼以外であってもよい。
5. Modification example The steel beam body 2 was H-shaped steel, but it was provided in a vertical vertical plate portion extending in a strip shape in the beam axial direction and a horizontal plate portion provided in the upper and lower ends of the vertical plate portion and extending in a strip shape in the beam axial direction. A section steel having a horizontal plate portion (for example, angle steel, channel steel, lip channel steel, Z section steel, T section steel, square steel tube) may be other than H section steel.

6. 具体例
以下に、梁1の各部の寸法及び降伏点の具体的な数値を挙げて、具体的に梁1の評価・設計をする。
6. Specific Examples Below, specific numerical values of the dimensions and yield points of each part of the beam 1 are given, and the beam 1 is specifically evaluated and designed.

梁1の各部の寸法及び降伏点を以下のように設定する。

Figure 0006801231
The dimensions and yield points of each part of the beam 1 are set as follows.
Figure 0006801231

また、梁1の設計用荷重から設計用せん断力Qd及び設計用曲げモーメントMdを解析して、設計用せん断力Qd及び設計用曲げモーメントMdを以下のように設定する。

Figure 0006801231
Further, the design shear force Q d and the design bending moment M d are analyzed from the design load of the beam 1, and the design shear force Q d and the design bending moment M d are set as follows.
Figure 0006801231

式(1)に従って開口24を有する鉄骨梁本体2のせん断耐力Qcgを計算すると、次の通りである。

Figure 0006801231
The shear strength Q cg of the steel beam main body 2 having the opening 24 is calculated according to the equation (1) as follows.
Figure 0006801231

式(2)に従ってせん断補強部32,33,42,43のせん断耐力Qcrを計算すると、次の通りである。

Figure 0006801231
The shear strength Q cr of the shear reinforcing portions 32, 33, 42, and 43 is calculated according to the equation (2) as follows.
Figure 0006801231

式(3)に従って梁1の開口24の部分のせん断耐力Qcを計算すると、次の通りである。

Figure 0006801231
Calculating the shear strength Q c of the portion of the opening 24 of the beam 1 according to equation (3), it is as follows.
Figure 0006801231

式(4)に従って開口24を有する鉄骨梁本体2の曲げ耐力Mc1gを計算すると、次の通りである。

Figure 0006801231
The bending strength M c1 g of the steel beam main body 2 having the opening 24 is calculated according to the equation (4) as follows.
Figure 0006801231

次式(5)に従って曲げ補強部31,41の曲げ耐力Mc1rを計算すると、次の通りである。

Figure 0006801231
The bending strength M c1r of the bending reinforcing portions 31 and 41 is calculated according to the following equation (5) and is as follows.
Figure 0006801231

式(6)に従って第一曲げ耐力Mc1を計算すると、次の通りである。

Figure 0006801231
The first bending strength M c1 is calculated according to the equation (6) as follows.
Figure 0006801231

式(7)に従って第二曲げ耐力Mc2を計算すると、次の通りである。

Figure 0006801231
The second bending strength M c2 is calculated according to the equation (7) and is as follows.
Figure 0006801231

図10に示すように、点A、点B及び点Cをグラフにプロットし、線ABCをグラフに設定する。つまり、せん断耐力Qc及び曲げ耐力Mc1,Mc2から線ABの傾きを算出し、第一曲げ耐力Mc1を線ABの切片とし、線ABを表す一次関数を設定する。この一次関数に設計用せん断力Qdを当て嵌める。これにより、せん断力Qが設計用せん断力Qdである場合の曲げ耐力Mcを計算する。

Figure 0006801231
As shown in FIG. 10, points A, B and C are plotted on the graph and line ABC is set on the graph. That is, the slope of the line AB is calculated from the shear strength Q c and the bending strengths M c1 and M c2 , the first bending strength M c1 is used as the intercept of the line AB, and a linear function representing the line AB is set. The design shear force Q d is applied to this linear function. As a result, the bending proof stress M c when the shear force Q is the design shear force Q d is calculated.
Figure 0006801231

そして、せん断耐力Qc(=825 kN)と設計用せん断力Qd(=600 kN)を比較すると、せん断耐力Qcが設計用せん断力Qdよりも大きい。また、曲げ耐力Mc(=725 kN・m)と設計用曲げモーメントMd(=710 kN・m)を比較すると、曲げ耐力Mcが設計用曲げモーメントMdよりも大きい。つまり、図10に示すように、点Dをグラフにプロットすると、点Dが線BCの左側且つ線ABの下側の領域にある。
よって、梁1の各部の寸法及び降伏点の設定値(表2)が適切であり、梁1の各部の寸法及び降伏点の設計値をその設定値に決定する。この梁1の各部の寸法及び降伏点の設計値に従って、梁1を製造する。
Comparing the shear strength Q c (= 825 kN) and the design shear strength Q d (= 600 kN), the shear strength Q c is larger than the design shear strength Q d . Comparing the bending proof stress M c (= 725 kN ・ m) and the design bending moment M d (= 710 kN ・ m), the bending proof stress M c is larger than the design bending moment M d . That is, as shown in FIG. 10, when the point D is plotted on the graph, the point D is in the region on the left side of the line BC and below the line AB.
Therefore, the set values of the dimensions and the yield point of each part of the beam 1 (Table 2) are appropriate, and the design values of the dimensions and the yield point of each part of the beam 1 are determined as the set values. The beam 1 is manufactured according to the dimensions of each part of the beam 1 and the design value of the yield point.

1…梁, 2…鉄骨梁本体, 3,4…鋼製補強材, 21…ウエブ(縦板部), 22,23…フランジ(横板部), 24…開口, 31,41…曲げ補強部, 32,33,42,43…せん断補強部 1 ... Beam, 2 ... Steel beam body, 3,4 ... Steel reinforcement, 21 ... Web (vertical plate), 22, 23 ... Flange (horizontal plate), 24 ... Opening, 31, 41 ... Bending reinforcement , 32, 33, 42, 43 ... Shear reinforcement

Claims (1)

梁軸方向に延在する鉛直な縦板部と、前記縦板部の上下に設けられた水平な横板部と、前記縦板部に形成された開口とを有した鉄骨梁本体と、
前記開口の上下において前記梁軸方向に延在するように前記縦板部に接合された曲げ補強部と、
前記開口の前記梁軸方向両側において前記梁軸方向に対して斜めな方向に延在するように前記縦板部に接合されたせん断補強部と、を備える梁を評価する方法において、
前記曲げ補強部と前記せん断補強部の幅及び厚さを設定する設定工程と、
前記設定工程において設定した前記曲げ補強部と前記せん断補強部の幅及び厚さに基づいて、前記梁の前記開口の部分の曲げ耐力とせん断耐力との関係を定める工程と、
前記梁に想定する設計用せん断力と設計用曲げモーメントを定める設定工程と、
前記設計用せん断力及び前記設計用曲げモーメントを前記関係と比較する比較工程と、を備え
前記関係を定める工程は、
前記設定工程において設定した前記せん断補強部の幅及び厚さに基づいて、前記梁の前記開口の部分のせん断耐力を計算する第一計算工程と、
前記設定工程において設定した前記曲げ補強部の幅及び厚さに基づいて、せん断力が前記梁の前記開口の部分に作用しない場合の前記梁の前記開口の部分の第一曲げ耐力を計算するとともに、前記せん断耐力に相当するせん断力が前記梁の前記開口の部分に作用する場合の前記梁の前記開口の部分の第二曲げ耐力を計算する第二計算工程と、
前記第二曲げ耐力と前記第一曲げ耐力の差を前記せん断耐力で除することで得られた商を傾きとし、前記第一曲げ耐力を切片とした一次関数を定める工程と、を有し、
前記比較工程は、
前記設計用せん断力と前記せん断耐力とを比較するとともに、前記設計用せん断力を前記一次関数に当て嵌めることで得られた曲げ耐力と前記設計用曲げモーメントとを比較する工程を有する
ことを特徴とする梁の評価方法。
A steel beam main body having a vertical vertical plate portion extending in the beam axial direction, horizontal horizontal plate portions provided above and below the vertical plate portion, and openings formed in the vertical plate portion.
A bending reinforcing portion joined to the vertical plate portion so as to extend in the beam axial direction above and below the opening, and a bending reinforcing portion.
In a method for evaluating a beam including a shear reinforcing portion joined to the vertical plate portion so as to extend in a direction oblique to the beam axial direction on both sides of the opening in the beam axial direction.
A setting process for setting the width and thickness of the bending reinforcing portion and the shear reinforcing portion, and
A step of determining the relationship between the bending strength and the shearing strength of the opening portion of the beam based on the width and thickness of the bending reinforcing portion and the shear reinforcing portion set in the setting step.
A setting process that determines the design shear force and design bending moment assumed for the beam, and
A comparison step of comparing the design shear force and the design bending moment with the relationship is provided .
The process of determining the relationship is
A first calculation step of calculating the shear strength of the opening portion of the beam based on the width and thickness of the shear reinforcing portion set in the setting step.
Based on the width and thickness of the bending reinforcing portion set in the setting step, the first bending strength of the opening portion of the beam when the shear force does not act on the opening portion of the beam is calculated. A second calculation step of calculating the second bending strength of the opening portion of the beam when a shear force corresponding to the shear strength acts on the opening portion of the beam.
It has a step of determining a linear function with the quotient obtained by dividing the difference between the second bending proof stress and the first bending proof stress by the shearing proof stress as an intercept and using the first bending proof stress as an intercept.
The comparison step is
It has a step of comparing the design shearing force and the shearing force, and comparing the bending force obtained by applying the design shearing force to the linear function and the design bending moment. > A beam evaluation method characterized by that.
JP2016104172A 2016-05-25 2016-05-25 Beam evaluation method Active JP6801231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016104172A JP6801231B2 (en) 2016-05-25 2016-05-25 Beam evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016104172A JP6801231B2 (en) 2016-05-25 2016-05-25 Beam evaluation method

Publications (2)

Publication Number Publication Date
JP2017210785A JP2017210785A (en) 2017-11-30
JP6801231B2 true JP6801231B2 (en) 2020-12-16

Family

ID=60476037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104172A Active JP6801231B2 (en) 2016-05-25 2016-05-25 Beam evaluation method

Country Status (1)

Country Link
JP (1) JP6801231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380230B2 (en) 2020-01-10 2023-11-15 株式会社大林組 Beam opening reinforcement method and beam structure

Also Published As

Publication number Publication date
JP2017210785A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US9447596B2 (en) Axially yielding elasto-plastic hysteresis brace and vibration-damping steel-frame structure
JP6072946B1 (en) Steel deck and road bridge
KR102632017B1 (en) Structural system for replacing a standard beam and method for providing thereof
JP6801231B2 (en) Beam evaluation method
JP2021179172A (en) Reinforcement structure
US20120186191A1 (en) Rolled h-section steel
JPH0540498U (en) Concrete stop material with ribs around slabs
JP6978212B2 (en) Deck plate
JP5864491B2 (en) Diaphragm stiffness prediction method and plate thickness design method for steel pipe column joints with different diameters of upper and lower columns
JP7185617B2 (en) steel formwork
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
JP6986751B2 (en) Column-beam joint structure
JP7304661B2 (en) Penetration frame
JP6936033B2 (en) Floor structure opening width setting method and floor structure
JP6382656B2 (en) Friction bolt joint structure and building
JP7315320B2 (en) frame structure
JP2006290103A (en) Canopy structure of construction machine
Bródka et al. Design of hollow section overlap joints with the reinforcing rib plate. Welded connection resistance
KR102658814B1 (en) Deck plate form for RC beams and manufacturing method thereof
JP5899895B2 (en) Column beam connection structure of square hollow section column and H section beam
JP2022154352A (en) Column-beam connection core
JP7102386B2 (en) Cloth frame with floor
JP5954942B2 (en) Reinforcement structure of steel perforated beams
JP6807787B2 (en) Steel beam reinforcement structure
JP6830394B2 (en) Shear reinforcement member and beam-column joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150