JP6800729B2 - Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment - Google Patents

Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment Download PDF

Info

Publication number
JP6800729B2
JP6800729B2 JP2016241198A JP2016241198A JP6800729B2 JP 6800729 B2 JP6800729 B2 JP 6800729B2 JP 2016241198 A JP2016241198 A JP 2016241198A JP 2016241198 A JP2016241198 A JP 2016241198A JP 6800729 B2 JP6800729 B2 JP 6800729B2
Authority
JP
Japan
Prior art keywords
point light
plant cultivation
division
output density
light output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016241198A
Other languages
Japanese (ja)
Other versions
JP2018093786A (en
Inventor
秀二 五味
秀二 五味
好成 奥野
好成 奥野
安田 剛規
剛規 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016241198A priority Critical patent/JP6800729B2/en
Publication of JP2018093786A publication Critical patent/JP2018093786A/en
Application granted granted Critical
Publication of JP6800729B2 publication Critical patent/JP6800729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、植物栽培用照明装置及び連結式植物栽培用照明装置並びに植物栽培装置に関する。 The present invention relates to a plant cultivation lighting device, a connected plant cultivation lighting device, and a plant cultivation device.

従来、植物栽培において、植物苗に人工光を照射して育苗を促す技術が取り入れられている。植物の生長を促進することで、栽培期間を短縮して、同一場所での収穫回数を増やすことができる。また、同じ栽培期間であっても、植物をより大きく生長させることができれば、収穫量を増やすことができる。 Conventionally, in plant cultivation, a technique of irradiating plant seedlings with artificial light to promote seedling raising has been adopted. By promoting the growth of plants, the cultivation period can be shortened and the number of harvests in the same place can be increased. Moreover, even in the same cultivation period, if the plant can be grown larger, the yield can be increased.

人工光の照射に用いる植物栽培用照明装置において、発光ダイオード等の点光源を複数配置する構成としては、面状に配置する構成や直線状に配置する構成が知られている。 In a plant cultivation lighting device used for irradiating artificial light, as a configuration in which a plurality of point light sources such as light emitting diodes are arranged, a configuration in which they are arranged in a plane or a configuration in which they are arranged in a straight line is known.

特開2014−217280号公報Japanese Unexamined Patent Publication No. 2014-217280 特開昭59−120034号公報JP-A-59-120034 特開2014−157757号公報Japanese Unexamined Patent Publication No. 2014-157757 特許第5779678号公報Japanese Patent No. 5779678

ここで、複数の点光源が直線状に配置された植物栽培用照明装置はその多くが点光源が均等に配置されたものであるが、この場合、植物栽培用照明装置の両端部の直下の領域は、中心部の直下の領域に比べて照度が著しく劣るという問題があった。この問題について実際に確認した結果を以下に示す。 Here, most of the lighting devices for plant cultivation in which a plurality of point light sources are arranged in a straight line are those in which the point light sources are evenly arranged. In this case, directly below both ends of the lighting device for plant cultivation. There is a problem that the illuminance of the region is significantly inferior to that of the region directly below the central portion. The results of actual confirmation of this problem are shown below.

図24(a)は、点光源としてOptosupply社製の白色小型ランプOSAWFLZ2C1Pを用い、1160mmに50個の点光源を等間隔で並べた線状照明装置を用いて、線状照明装置の点光源列に対向して距離200mm離間した照射面における照度を計測した結果を示すグラフである。図24(a)には、同じ設定(モデル)で、照明設計解析ソフトウェアによるシミュレーションを行った結果も示している。ここで、用いた照明設計解析ソフトウェアは、Optical Research Associates社のLightToolsである。
横軸は、線状照明装置の位置を示す座標であり、X=0が線状照明装置の中心の位置である。点光源の配置は中心(X=0)に対して両側に対称なので、片側半分だけをとっている。また、縦軸は、各位置(X)における照度を示すものであり、最大照度(現物の場合、X=133における照度、モデルの場合、X=0における照度)を1としてその相対照度によって照度を示している。
図24(a)に示すように、現物、モデルのいずれの結果においても、X=522mmでは照度は最大照度に対して65%程度と大きく低下しており、端部のX=580mmでは、最大照度に対して60%未満に低下していた。
FIG. 24A shows a line of point light sources of a linear lighting device using a small white lamp OSAWFLZ2C1P manufactured by Optosuppley as a point light source and a linear lighting device in which 50 point light sources are arranged at equal intervals in 1160 mm. It is a graph which shows the result of having measured the illuminance on the irradiation surface which faced and separated by 200 mm. FIG. 24A also shows the result of simulating with the lighting design analysis software with the same settings (model). The lighting design analysis software used here is Light Tools of Optical Research Associates.
The horizontal axis is the coordinates indicating the position of the linear illuminator, and X = 0 is the position of the center of the linear illuminator. Since the arrangement of the point light sources is symmetrical with respect to the center (X = 0) on both sides, only one half is taken. The vertical axis indicates the illuminance at each position (X), and the maximum illuminance (the illuminance at X = 133 in the case of the actual product and the illuminance at X = 0 in the case of the model) is set to 1 and the illuminance is determined by the relative illuminance. Is shown.
As shown in FIG. 24A, in both the actual and model results, the illuminance is significantly reduced to about 65% of the maximum illuminance at X = 522 mm, and is maximum at X = 580 mm at the end. It was reduced to less than 60% of the illuminance.

このような照度分布の不均一の問題を解決する方法として、線状照明装置の照射部に特殊な光拡散体を設けること(特許文献1)、線状照明装置の両端部に特殊な垂れ幕を設けること(特許文献2)、線状照明装置の複数の光源を光源の光軸方向との角度が所定の角度関係になるようにすること(特許文献3)が提案されている。 As a method for solving such a problem of non-uniform illuminance distribution, a special light diffuser is provided in the irradiation portion of the linear illumination device (Patent Document 1), and special banners are provided at both ends of the linear illumination device. It has been proposed to provide (Patent Document 2) and to make a plurality of light sources of a linear lighting device have a predetermined angular relationship with the optical axis direction of the light source (Patent Document 3).

しかしながらいずれも構造が複雑化しているため、線状照明装置のメンテナンスに手間が掛かるという別の問題が生じる。 However, since the structure is complicated in each case, another problem arises that maintenance of the linear lighting device is troublesome.

そこで線状照明装置の構造を複雑化させず、これまでと同様にメンテナンスを容易なものとしたまま両端部の直下の領域の照度を向上させるべく、図24(b)に概念的に示すように、両端部に近づくにしたがって照度の減少分に応じて光出力密度を増加させた構成の線状照明装置を作製したが、照度は、図24(c)に示すような分布となり、予想に反して不均一を改善する照度は得られなかった。すなわち、照射面における照度分布における照度の低下を、単に補償するような光出力密度分布を有するような点光源配置パターンとしても照度の低下を改善することはできなかった。 Therefore, as shown conceptually in FIG. 24 (b), in order to improve the illuminance in the region directly under both ends without complicating the structure of the linear illuminating device and making maintenance as easy as before. In addition, a linear lighting device was manufactured in which the light output density was increased according to the decrease in illuminance as it approached both ends, but the illuminance had a distribution as shown in FIG. 24 (c), which was expected. On the contrary, no illuminance was obtained to improve the non-uniformity. That is, it was not possible to improve the decrease in illuminance even with a point light source arrangement pattern having a light output density distribution that simply compensates for the decrease in illuminance in the illuminance distribution on the irradiated surface.

本発明者は、この予想外の結果を踏まえて鋭意研究を重ね、点光源を特定の配置にすることで、従来の点光源を均等に配置(等間隔配置)した場合の問題を解決する光出力密度分布が得られることを見出し、本発明を完成させた。 Based on this unexpected result, the present inventor has conducted extensive research, and by arranging the point light sources in a specific arrangement, the light that solves the problem when the conventional point light sources are evenly arranged (equally spaced). We have found that an output density distribution can be obtained, and completed the present invention.

本発明は、上記事情に鑑みてなされたものであり、光拡散体等の付帯設備を設けることなく両端部の直下の領域における照度の低下が抑えられる植物栽培用照明装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lighting device for plant cultivation in which a decrease in illuminance in a region directly below both ends is suppressed without providing ancillary equipment such as a light diffuser. And.

本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means for solving the above problems.

(1)本発明の一態様に係る植物栽培用照明装置は、基板上に複数の点光源が直線状に並んで配置された点光源列を有する植物栽培用照明装置であって、前記基板において前記複数の点光源が配置されている領域は、一方の端部である第1端部と該第1端部の反対側の端部である第2端部と、前記第1端部及び前記第2端部の間に配置する中央部と、前記第1端部と中央部との間に配置する第1境界部と、前記第2端部と中央部との間に配置する第2境界部とからなり、前記第1端部及び前記第2端部の光出力密度が最大であり、前記第1境界部及び前記第2境界部に光出力密度の最小領域があり、前記中央部の光出力密度は前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるように前記複数の点光源が配置されている。 (1) The lighting device for plant cultivation according to one aspect of the present invention is a lighting device for plant cultivation having a row of point light sources in which a plurality of point light sources are arranged in a straight line on a substrate. The regions in which the plurality of point light sources are arranged include a first end portion which is one end portion, a second end portion which is an end portion opposite to the first end portion, the first end portion, and the said portion. A central portion arranged between the second end portions, a first boundary portion arranged between the first end portion and the central portion, and a second boundary portion arranged between the second end portion and the central portion. The first end portion and the second end portion have the maximum light output density, and the first boundary portion and the second boundary portion have a minimum region of the light output density, and the central portion thereof. The plurality of point light sources are arranged so that the light output density is equal to or higher than the minimum light output density and lower than the maximum light output density.

(2)上記(1)に記載の植物栽培用照明装置において、前記点光源列を構成する複数の点光源の光出力密度が等しく、前記複数の点光源は以下の(i)及び(ii)を共に満たすように配置されている;(i)点光源の平均個数密度は、2.6個/100mm〜26個/100mmであり、(ii)前記点光源が配置されている領域を幅30mm〜85mmの複数の等間隔の区分に区分けしたときに、前記第1端部及び前記第2端部はそれぞれ両端の1区分(「第1区分」)からなり、前記第1境界部及び前記第2境界部はそれぞれ、前記第1区分に隣接する2つ目の区分(「第2区分」)及び3つ目の区分(「第3区分」)からなり、前記中央部はその残りの区分からなってもよい。 (2) In the lighting device for plant cultivation according to (1) above, the light output densities of the plurality of point light sources constituting the point light source sequence are equal, and the plurality of point light sources have the following (i) and (ii). (I) The average number density of the point light sources is 2.6 / 100 mm to 26/100 mm, and (ii) the area where the point light sources are arranged is 30 mm wide. When divided into a plurality of equally spaced divisions of ~ 85 mm, the first end portion and the second end portion each consist of one division (“first division”) at both ends, and the first boundary portion and the first division. Each of the two boundaries is composed of a second division (“second division”) and a third division (“third division”) adjacent to the first division, and the central portion is from the remaining divisions. You may become.

(3)上記(2)に記載の植物栽培用照明装置において、前記第2区分及び前記第3区分のうち少なくとも1つの区分の光出力密度が、各区分の光出力密度に比べて最小であり、前記第1区分の光出力密度が各区分の光出力密度に比べて最大であってもよい。 (3) In the lighting device for plant cultivation according to (2) above, the light power density of at least one of the second category and the third category is the minimum as compared with the light output density of each category. , The light output density of the first section may be the maximum as compared with the light output density of each section.

(4)上記(1)〜(3)のいずれか一つに記載の植物栽培用照明装置において、前記第1端部及び第2端部の直下における照度は、最大照度からの低下が20%以内の大きさであってもよい。 (4) In the lighting device for plant cultivation according to any one of (1) to (3) above, the illuminance immediately below the first end and the second end is reduced by 20% from the maximum illuminance. It may be within the size.

(5)上記(1)〜(4)のいずれか一つに記載の植物栽培用照明装置において、前記最小の光出力密度が0〔mW/mm〕であってもよい。 (5) In the lighting device for plant cultivation according to any one of (1) to (4) above, the minimum light output density may be 0 [mW / mm 2 ].

(6)上記(1)〜(5)のいずれか一つに記載の植物栽培用照明装置において、前記光出力密度を調整する制御装置を備えてもよい。 (6) The plant cultivation lighting device according to any one of (1) to (5) above may be provided with a control device for adjusting the light output density.

(7)上記(6)に記載の植物栽培用照明装置において、前記制御装置によって、発光させる点光源の選択、又は、点光源に流れる電流量のいずれかを調整してもよい。 (7) In the plant cultivation lighting device according to (6) above, either the selection of the point light source to emit light or the amount of current flowing through the point light source may be adjusted by the control device.

(8)上記(1)〜(7)のいずれか一つに記載の植物栽培用照明装置において、前記点光源が特定の波長を発光する点光源であってもよい。 (8) In the lighting device for plant cultivation according to any one of (1) to (7) above, the point light source may be a point light source that emits a specific wavelength.

(9)上記(1)〜(8)のいずれか一つに記載の植物栽培用照明装置において、前記点光源列が複数あってもよい。 (9) In the lighting device for plant cultivation according to any one of (1) to (8) above, there may be a plurality of the point light source rows.

(10)上記(1)〜(9)のいずれか一つに記載の植物栽培用照明装置において、前記点光源が、赤色発光素子、青色発光素子並びに赤色発光素子及び青色発光素子を搭載した混色発光素子のいずれかであってもよい。 (10) In the lighting device for plant cultivation according to any one of (1) to (9) above, the point light source is a color mixing element including a red light emitting element, a blue light emitting element, and a red light emitting element and a blue light emitting element. It may be any of the light emitting elements.

(11)本発明の一態様に係る連結式植物栽培用照明装置は、上記(1)〜(10)のいずれか一つに記載の植物栽培用照明装置を離間して長手方向に平行に並置して構成されている。 (11) In the articulated plant cultivation lighting device according to one aspect of the present invention, the plant cultivation lighting device according to any one of (1) to (10) above is separated and juxtaposed in parallel in the longitudinal direction. It is composed of.

(12)本発明の一態様に係る植物栽培装置は、前記点光源列から照射面までの距離を変えることができる距離可変装置及び上記(1)〜(11)のいずれか一つに記載の植物栽培用照明装置を備えている。 (12) The plant cultivation device according to one aspect of the present invention is described in any one of (1) to (11) above, the distance variable device capable of changing the distance from the point light source array to the irradiation surface. It is equipped with a lighting device for plant cultivation.

本発明の植物栽培用照明装置によれば、光拡散体等の付帯設備を設けることなく両端部の直下の領域における照度の低下が抑えられる植物栽培用照明装置を提供することができる。
本発明の連結式植物栽培用照明装置によれば、光拡散体等の付帯設備を設けることなく両端部の直下の領域における照度の低下が抑えられる植物栽培用照明装置を提供することができる。
According to the lighting device for plant cultivation of the present invention, it is possible to provide a lighting device for plant cultivation in which a decrease in illuminance in a region directly below both ends is suppressed without providing ancillary equipment such as a light diffuser.
According to the connection type lighting device for plant cultivation of the present invention, it is possible to provide a lighting device for plant cultivation in which a decrease in illuminance in a region immediately below both ends is suppressed without providing ancillary equipment such as a light diffuser.

本発明の一実施形態に係る植物栽培用照明装置の一例を模式的に示す平面図である。It is a top view which shows typically an example of the lighting apparatus for plant cultivation which concerns on one Embodiment of this invention. 点光源が配置されている領域を複数の等間隔の区分に区分けしたことの説明図である。It is explanatory drawing which divided the area where a point light source is arranged into a plurality of equally spaced divisions. (a)は、本発明の点光源配置とした場合の照度分布、及び、点光源の均等配置の場合の照度分布を示すグラフであり、(b)は、(a)で示した照度分布の得た本発明の点光源配置を説明するための区分光出力密度分布パターンを示す図である。(A) is a graph showing the illuminance distribution in the case of the point light source arrangement of the present invention and the illuminance distribution in the case of the even arrangement of the point light sources, and (b) is a graph showing the illuminance distribution shown in (a). It is a figure which shows the sectional light output density distribution pattern for demonstrating the point light source arrangement of this invention obtained. (a)は、点光源数Nを25個として、図3(b)で示した区分光出力密度分布パターンを実現した点光源の配置パターンを示す模式図であり、(b)は、従来の均等配置の点光源の配置パターンを示す模式図である。(A) is a schematic diagram showing an arrangement pattern of point light sources that realizes the divided light output density distribution pattern shown in FIG. 3 (b) with 25 point light sources N, and FIG. 3 (b) is a conventional schematic diagram. It is a schematic diagram which shows the arrangement pattern of the point light source of uniform arrangement. 点光源数が25個でかつ区分が10個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the number of point light sources is 25 and the number of divisions is 10, (a) and (b) are the conventional and present point light source arrangements, and (c) and (d) are the illuminance distributions. The simulation result is a divided light output density distribution pattern. 点光源数が50個でかつ区分が10個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the number of point light sources is 50 and the number of divisions is 10, (a) and (b) are the conventional and present point light source arrangements, and (c) and (d) are the illuminance distributions. The simulation result is a divided light output density distribution pattern. 点光源数が75個でかつ区分が10個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the number of point light sources is 75 and the number of divisions is 10, (a) and (b) are the conventional and present point light source arrangements, and (c) and (d) are the illuminance distributions. The simulation result is a divided light output density distribution pattern. 点光源数が100個でかつ区分が10個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the number of point light sources is 100 and the number of divisions is 10, (a) and (b) are the conventional and present point light source arrangements, and (c) and (d) are the illuminance distributions. The simulation result is a divided light output density distribution pattern. 点光源数が125個でかつ区分が10個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the number of point light sources is 125 and the number of divisions is 10, (a) and (b) are the conventional and present point light source arrangements, and (c) and (d) are the illuminance distributions. The simulation result is a divided light output density distribution pattern. 点光源数が150個でかつ区分が10個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the number of point light sources is 150 and the number of divisions is 10, (a) and (b) are the conventional and present point light source arrangements, and (c) and (d) are the illuminance distributions. The simulation result is a divided light output density distribution pattern. 照度分布のシミュレーション結果を示すものであり、点光源数が25個でかつ区分が10個で、(a)は高さが50mm、(b)は高さが100mm、(c)は高さが150mm、(d)は高さが200mm、(e)は高さが250mm、(f)は高さが300mmの場合である。It shows the simulation result of the illuminance distribution. The number of point light sources is 25 and the number of divisions is 10. (a) has a height of 50 mm, (b) has a height of 100 mm, and (c) has a height. 150 mm, (d) is a case where the height is 200 mm, (e) is a case where the height is 250 mm, and (f) is a case where the height is 300 mm. 高さが200mmと共通で、点光源数が25個でかつ区分が7個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 25, and the number of divisions is 7, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が75個でかつ区分が7個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 75, and the number of divisions is 7, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が150個でかつ区分が7個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 150, and the number of divisions is 7, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が25個でかつ区分が13個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 25, and the number of divisions is 13, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が75個でかつ区分が13個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 75, and the number of divisions is 13, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が150個でかつ区分が13個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 150, and the number of divisions is 13, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が25個でかつ区分が16個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 25, and the number of divisions is 16, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が75個でかつ区分が16個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 75, and the number of divisions is 16, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が150個でかつ区分が16個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 150, and the number of divisions is 16, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が25個でかつ区分が19個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 25, and the number of divisions is 19, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が75個でかつ区分が19個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 75, and the number of divisions is 19, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. 高さが200mmと共通で、点光源数が150個でかつ区分が19個の場合であって、(a)、(b)は、従来及び本発明の点光源配置であり、(c)、(d)は、照度分布のシミュレーション結果、区分光出力密度分布パターンである。In the case where the height is common to 200 mm, the number of point light sources is 150, and the number of divisions is 19, (a) and (b) are the conventional and present point light source arrangements, and (c), (D) is a simulation result of the illuminance distribution and a divided light output density distribution pattern. (a)は、従来の均等配置の線状照明装置を用いて点光源列に対向して距離200mm離間した照射面における照度を計測した結果を示すグラフであり、(b)は、両端部に近づくにしたがって照度の減少分に応じて点光源の光出力密度を増加させたことを概念的に示す図である。(c)は、光出力密度の分布を(b)のように設定した場合に得られる、照度分布のグラフである。(A) is a graph showing the result of measuring the illuminance on the irradiation surface at a distance of 200 mm facing the point light source train using the conventional linear illumination device of even arrangement, and (b) is a graph showing the results at both ends. It is a figure which conceptually shows that the light output density of a point light source was increased according to the decrease of illuminance as it approached. (C) is a graph of the illuminance distribution obtained when the distribution of the light output density is set as in (b).

以下、本発明を適用した実施形態である植物栽培用照明装置について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, the lighting device for plant cultivation, which is an embodiment to which the present invention is applied, will be described in detail with reference to the drawings. In the drawings used in the following description, in order to make the features easier to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. Absent. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effect is exhibited.

(植物栽培用照明装置)
図1に、本発明の一実施形態に係る植物栽培用照明装置の一例を模式的に示す平面図を示す。
図1に示す植物栽培用照明装置100は、基板1上に複数の点光源(図示省略)が直線状に並んで配置された点光源列2を有する植物栽培用照明装置であって、基板1において複数の点光源が配置されている領域は、一方の端部である第1端部Leと該第1端部Leの反対側の端部である第2端部Reと、第1端部Le及び第2端部Reの間に配置する中央部Aと、第1端部Leと中央部Aとの間に配置する第1境界部Lbと、第2端部Reと中央部Aとの間に配置する第2境界部Rbとからなり、第1端部Le及び第2端部Reの光出力密度が最大であり、第1境界部Lb及び第2境界部Rbに光出力密度の最小領域があり、中央部Aの光出力密度は最小の光出力密度以上でかつ最大の光出力密度未満となるように複数の点光源が配置されている。
ここで、本発明において「点光源」とは、面光源や線光源に対する光源を意味しており、例えば、LEDチップや小型ランプ等の微小な発光素子を用いたものである。発光素子は1個である必要はなく、複数の発光素子からなるものでもよい。例えば、赤、緑、青などの複数個のLEDチップを一体に封止したものであってもよい。「点光源」のサイズを例示すると、0.25mm×0.25mm〜1mm×1mm程度である。
また、本発明において「光出力密度」とは、単位面積当たりの発光出力(W)である。
(Lighting device for plant cultivation)
FIG. 1 shows a plan view schematically showing an example of a lighting device for plant cultivation according to an embodiment of the present invention.
The plant cultivation lighting device 100 shown in FIG. 1 is a plant cultivation lighting device having a point light source row 2 in which a plurality of point light sources (not shown) are arranged in a straight line on the substrate 1. The regions in which a plurality of point light sources are arranged are the first end Le which is one end, the second end Re which is the opposite end of the first end Le, and the first end. A central portion A arranged between Le and the second end portion Re, a first boundary portion Lb arranged between the first end portion Le and the central portion A, and a second end portion Re and the central portion A. It consists of a second boundary portion Rb arranged between them, and the light output densities of the first end portion Le and the second end portion Re are the maximum, and the light output densities are the minimum at the first boundary portion Lb and the second boundary portion Rb. There is a region, and a plurality of point light sources are arranged so that the light output density of the central portion A is equal to or higher than the minimum light output density and lower than the maximum light output density.
Here, in the present invention, the "point light source" means a light source for a surface light source or a line light source, and for example, a minute light emitting element such as an LED chip or a small lamp is used. The number of light emitting elements does not have to be one, and may be composed of a plurality of light emitting elements. For example, a plurality of LED chips such as red, green, and blue may be integrally sealed. An example of the size of the "point light source" is about 0.25 mm × 0.25 mm to 1 mm × 1 mm.
Further, in the present invention, the "light output density" is the light emission output (W) per unit area.

基板1の材料としては一般に照明装置の基板として用いられているものを用いることができる。例えば、紙フェノール基板、紙エポキシ基板、ガラスエポキシ基板等を用いることができる。 As the material of the substrate 1, a material generally used as a substrate of a lighting device can be used. For example, a paper phenol substrate, a paper epoxy substrate, a glass epoxy substrate, or the like can be used.

本発明の植物栽培用照明装置において、上記のような光出力密度の大小関係を示す構成としては例えば、(a)各部に配置する点光源が規定するような大小関係を有する光出力密度の点光源である構成でもよいし、あるいは、(b)全ての点光源が等しい光出力密度を有しており、各部における点光源の配置密度の違いによって規定するような光出力密度の大小関係を有する構成であってもよいし、あるいは、(c)(a)及び(b)が組み合わされた構成によって規定するような大小関係を示すものであってもよい。 In the lighting device for plant cultivation of the present invention, as a configuration showing the magnitude relationship of the light output density as described above, for example, (a) a point of the light output density having a magnitude relationship as defined by the point light sources arranged in each part. It may be configured as a light source, or (b) all point light sources have the same light output density, and have a magnitude relationship of light output densities as defined by the difference in the arrangement density of the point light sources in each part. It may be a configuration, or it may indicate a magnitude relationship as defined by a configuration in which (c), (a) and (b) are combined.

本発明の植物栽培用照明装置は、点光源列を構成する複数の点光源の光出力密度が等しく(上記(b)の構成に相当)、それらの複数の点光源が以下の(i)及び(ii)を共に満たすように配置されていてもよい;(i)点光源の平均個数密度(単位長さあたりの密度)が、2.6個/100mm〜26個/100mmであり、(ii)点光源が配置されている領域を幅30mm〜85mmの複数の等間隔の区分に区分けしたときに、第1端部及び第2端部がそれぞれ両端の1区分(「第1区分」)からなり、第1境界部及び第2境界部がそれぞれ、第1区分に隣接する2つ目の区分(「第2区分」)及び3つ目の区分(「第3区分」)からなり、中央部はその残りの区分からなる。
本発明において、「第1境界部及び第2境界部に光出力密度の最小領域がある」とは、この構成の場合、第1境界部及び第2境界部をそれぞれ構成する第2区分及び第3区分のうち、いずれかの区分が全区分の中で最小であることを意味する。ここで、“第2区分及び第3区分のうち、いずれかの区分が全区分の中で最小”とは、第2区分及び第3区分のうちのいずれかの区分が全区分の中で“唯一の”最小であることを要さず、中央部を構成する区分において、その“最小”の光出力密度と同じ光出力密度の区分があってもよい。これは、本発明の特徴的な光出力密度分布において、両端部(第1端部及び第2端部)とそれに隣接する境界部(第1境界部及び第2境界部)の光出力密度が重要であって、所定の要件を満たす必要があるが、中央部の光出力密度は両端部直下の領域における照度低下の抑制という目的には必須ではないからである。
In the lighting device for plant cultivation of the present invention, the light output densities of the plurality of point light sources constituting the point light source sequence are equal (corresponding to the configuration of (b) above), and the plurality of point light sources are the following (i) and (Ii) may be arranged so as to satisfy both of them; (i) The average number density (density per unit length) of the point light source is 2.6 pieces / 100 mm to 26 pieces / 100 mm, and (ii). ) When the area where the point light source is arranged is divided into a plurality of equally spaced divisions having a width of 30 mm to 85 mm, the first end portion and the second end portion are each divided into one division at both ends (“first division”). The first boundary and the second boundary are composed of a second division (“second division”) and a third division (“third division”) adjacent to the first division, respectively, and the central portion. Consists of the remaining divisions.
In the present invention, "there is a minimum region of light output density in the first boundary portion and the second boundary portion" means that, in the case of this configuration, the second division and the second boundary portion constituting the first boundary portion and the second boundary portion, respectively. It means that one of the three categories is the smallest of all the categories. Here, "one of the second and third categories is the smallest of all categories" means that any of the second and third categories is "among all categories." It is not necessary to be the only "minimum", and there may be a division having the same light power density as the "minimum" light output density in the division constituting the central portion. This is because, in the characteristic light power density distribution of the present invention, the light power density of both ends (first end and second end) and the adjacent boundary (first boundary and second boundary) is It is important and it is necessary to meet the predetermined requirements, but the light output density in the central portion is not essential for the purpose of suppressing the decrease in illuminance in the region immediately below both ends.

図2を用いてこの構成について説明する。
図2に示す植物栽培用照明装置においては、点光源が配置されている領域を複数の等間隔の区分に区分けすることをわかりやすく説明するために、基板1において等間隔に目盛りをつけた。
図2に示す植物栽培用照明装置は、点光源が配置されている領域を18個の区分に区分けした例である。
図2に示す例では、左右の端部である第1端部L1、第2端部R1が第1区分に相当する。
また、第1区分である第1端部L1、第2端部R1のそれぞれに隣接する2つ目の区分(第2区分)は、符号L2で示す区分、及び、符号R2で示す区分である。さらに、第2区分(L2、R2)の中央部側に隣接する第3区分が、符号L3で示す区分、及び、符号R3で示す区分である。そして、第2区分L2及び第3区分L3、第2区分R2及び第3区分R3がそれぞれ、第1境界部及び第2境界部を構成する。
また、残りの区分L4〜L9及び区分R4〜R9が中央部を構成する。
This configuration will be described with reference to FIG.
In the lighting device for plant cultivation shown in FIG. 2, in order to clearly explain that the area where the point light source is arranged is divided into a plurality of equally spaced divisions, the substrate 1 is provided with scales at equal intervals.
The lighting device for plant cultivation shown in FIG. 2 is an example in which the area where the point light source is arranged is divided into 18 sections.
In the example shown in FIG. 2, the first end portion L1 and the second end portion R1, which are the left and right end portions, correspond to the first division.
Further, the second division (second division) adjacent to each of the first end portion L1 and the second end portion R1, which is the first division, is a division indicated by reference numeral L2 and a division indicated by reference numeral R2. .. Further, the third division adjacent to the central portion side of the second division (L2, R2) is a division indicated by reference numeral L3 and a division indicated by reference numeral R3. Then, the second division L2 and the third division L3, the second division R2 and the third division R3 form the first boundary portion and the second boundary portion, respectively.
Further, the remaining divisions L4 to L9 and divisions R4 to R9 form a central portion.

この構成においては、各区分における点光源は、その平均個数密度が2.6個/100mm以上、26個/100mm以下の範囲で設置されている。 In this configuration, the point light sources in each category are installed in a range in which the average number density is 2.6 pieces / 100 mm or more and 26 pieces / 100 mm or less.

図3(a)は、図24に示したデータを得るのに用いた点光源と同じ光源を用いて、本発明の点光源配置パターンとした、現物(実施例)の線状照明装置の照度分布(太実線)、シミュレーションモデル(実施例)の照度分布(点線)、及び、図24(a)に示した点光源の均等配置(等間隔配置(比較例))の場合の照度分布(細実線)のグラフを示す。
図24(a)に示した点光源の均等配置による照度分布との比較から、本発明の点光源配置の場合に、端部における照度の低下が大幅に抑えられていることがわかる。また、シミュレーションモデルによる照度分布との比較から、現物による本発明の点光源配置による照度分布の結果の妥当性を確認することができる。
なお、図24(a)に示しているように、同じ設定による現物とシミュレーションのモデルとで、照度分布に関するほぼ一致した結果が得られていることから、上記照明設計解析ソフトウェアによるシミュレーション結果の妥当性については保証されている。
FIG. 3A shows the illuminance of the actual linear illuminating device (Example) in which the same light source as the point light source used to obtain the data shown in FIG. 24 is used and the point light source arrangement pattern of the present invention is used. The distribution (thick solid line), the illuminance distribution (dotted line) of the simulation model (example), and the illuminance distribution (thin) in the case of the even arrangement of the point light sources shown in FIG. 24 (a) (equally spaced arrangement (comparative example)). The solid line) graph is shown.
From the comparison with the illuminance distribution due to the even arrangement of the point light sources shown in FIG. 24 (a), it can be seen that the decrease in illuminance at the end portion is significantly suppressed in the case of the point light source arrangement of the present invention. In addition, the validity of the result of the illuminance distribution by the point light source arrangement of the present invention based on the actual product can be confirmed from the comparison with the illuminance distribution by the simulation model.
As shown in FIG. 24 (a), since the actual product with the same settings and the simulation model obtained almost the same results regarding the illuminance distribution, the simulation results by the above lighting design analysis software are valid. Gender is guaranteed.

本発明の点光源配置とした現物およびシミュレーションのモデルにおいて、図3(a)に示した照度分布を得るために設定した光出力密度分布(この場合、点光源配置パターン)を、図3(b)に示す。図3(b)では、点光源が配置されている領域を複数の等間隔の区分に区分けし、その区分の光出力密度分布に置き換えている。 In the actual product and the simulation model with the point light source arrangement of the present invention, the light output density distribution (in this case, the point light source arrangement pattern) set to obtain the illuminance distribution shown in FIG. 3 (a) is shown in FIG. 3 (b). ). In FIG. 3B, the region where the point light source is arranged is divided into a plurality of equally spaced divisions and replaced with the light output density distribution of the divisions.

図3(b)において、点光源が配置されている領域の片側半分を10個の区分(各区分の長さは58mm)に分け、各区分における光出力密度を、全光出力密度を1としてその割合を縦軸に示したものである。横軸は図24と同様に、線状照明装置の位置を示す座標であり、X=0が線状照明装置の中心の位置である。
図3(b)において、各区分における2つの棒データのうち、右側の棒データは実際の現物(実施例)のデータを示し、左側の棒データはシミュレーション用モデル(実施例)のデータを示す。
図3(b)において左側の棒データのパターンは、図3(a)で示した実際の現物のデータを得た点光源配置パターンを、点光源が配置されている領域の片側半分を10個の区分(各区分の長さは58mm)に分け、その区分の光出力密度分布パターン(以下、「区分光出力密度分布パターン」ということがある)に置き換えたものである。
図3(b)において、符号Reは第2端部、符号Rbは第2境界部に相当する。第2端部において光出力密度が最大であり、第2境界部を構成する第2区分が光出力密度最小である。
この区分光出力密度分布パターンの構成のときに得られた照度分布が、図3(a)で示したものである。
In FIG. 3B, one half of the area where the point light source is arranged is divided into 10 sections (the length of each section is 58 mm), and the light output density in each section is set to 1 with the total light output density as 1. The ratio is shown on the vertical axis. Similar to FIG. 24, the horizontal axis is the coordinates indicating the position of the linear illuminator, and X = 0 is the position of the center of the linear illuminator.
In FIG. 3B, of the two bar data in each category, the bar data on the right side shows the actual actual data (example), and the bar data on the left side shows the data of the simulation model (example). ..
In FIG. 3B, the pattern of the bar data on the left side is a point light source arrangement pattern obtained by obtaining the actual actual data shown in FIG. 3A, and 10 points on one side half of the area where the point light source is arranged. (The length of each division is 58 mm), and the light output density distribution pattern of the division (hereinafter, may be referred to as "division light output density distribution pattern") is replaced.
In FIG. 3B, the reference numeral Re corresponds to the second end portion, and the reference numeral Rb corresponds to the second boundary portion. The light output density is the maximum at the second end portion, and the light output density is the minimum in the second division constituting the second boundary portion.
The illuminance distribution obtained in the configuration of this divided light output density distribution pattern is shown in FIG. 3 (a).

図4(a)は、1160mmの片側半分(すなわち、580mm)における点光源数Nを25個として、図3(b)で示した区分光出力密度分布パターンを実現した点光源の配置パターン(実施例)を示す模式図である。菱形のマークが1個の点光源を示すものである。なお、この場合、本発明における「点光源が配置されている領域」のサイズは1160mmである。
なお、複数の点光源は、580mm近辺に密集している。密集しているそれぞれの点光源の位置同士は、完全に一致することはないが、わずかにずれる程度で分布している。このずれの大きさは、点光源の配置領域全体に比べて十分小さいため、図4(a)では、密集している点光源同士が重なっているように見えている。この事情は、以下で示す図においても同様である。
図4(b)に参考のため、従来の均等配置(比較例)の点光源の配置パターンを示す模式図を示す。
FIG. 4A shows an arrangement pattern of point light sources (implementation) in which the divided light output density distribution pattern shown in FIG. 3B is realized, with 25 point light sources N in one half (that is, 580 mm) of 1160 mm. It is a schematic diagram which shows an example). The diamond-shaped mark indicates one point light source. In this case, the size of the "region in which the point light source is arranged" in the present invention is 1160 mm.
The plurality of point light sources are densely packed in the vicinity of 580 mm. The positions of the densely packed point light sources do not completely coincide with each other, but they are distributed with a slight deviation. Since the magnitude of this deviation is sufficiently smaller than the entire arrangement region of the point light sources, in FIG. 4A, it appears that the dense point light sources overlap each other. This situation is the same in the figure shown below.
For reference, FIG. 4B shows a schematic diagram showing a conventional even arrangement (comparative example) point light source arrangement pattern.

ここでのシミュレーションにも、図3(a)、24(a)の照度分布を求めた照明設計解析ソフトウェアと同じものを用いている。以下でも同様とする。
シミュレーションのモデルにおいては、点光源を配置する基板をアクリル製とし、基板の長手方向に一列に点光源を、発光部を含むLEDチップをとし、光出力の配光分布はランバーシアンとした。両端点光源間の距離は1160mmとした。
両端の点光源間の距離Lを1160mm、点光源間の最小距離は0超mmで、点光源列の出力方向に垂直の照射面を点光源列に対向させて配置させ、照射面の長さをLと同じにし、初期配置は均等配置にし、照射面で得られる点光源列の出力方向の照度ムラをなくすように、点光源の配置を設定した。
For the simulation here, the same software as the lighting design analysis software for obtaining the illuminance distribution in FIGS. 3 (a) and 24 (a) is used. The same shall apply below.
In the simulation model, the substrate on which the point light sources are arranged is made of acrylic, the point light sources are arranged in a row in the longitudinal direction of the substrate, the LED chips including the light emitting part are used, and the light distribution of the light output is Lambersian. The distance between the end point light sources was 1160 mm.
The distance L between the point light sources at both ends is 1160 mm, the minimum distance between the point light sources is more than 0 mm, and the irradiation surface perpendicular to the output direction of the point light source array is arranged so as to face the point light source array, and the length of the irradiation surface. Was the same as L, the initial arrangement was made uniform, and the arrangement of the point light sources was set so as to eliminate the uneven illumination in the output direction of the point light source train obtained on the irradiation surface.

図5、6は、図3、4で示した結果と同様なシミュレーションを行ったものである。図5は1160mmの片側半分(すなわち、580mm)での点光源数が25個(点光源の平均個数密度4.3個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合、及び、図6は点光源数が50個(点光源の平均個数密度8.6個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合の結果を示すものである。
図5、6のそれぞれにおいて、(a)、(b)の模式図は、図4に示した点光源の配置パターンを示す模式図と同様の模式図であり、(a)の模式図が本発明のもの(実施例)であり、(b)の模式図が従来の均等配置のもの(比較例)である。図7〜10においても同様である。
また、(c)、(d)の2つのグラフはそれぞれ、図3(a)及び(b)に示したグラフと同様である。照度分布のグラフにおいて、実線のグラフは従来の均等配置のものの照度分布(比較例)を示すものであり、点線のグラフは、下のグラフで示す区分光出力密度分布パターン(本発明の場合)の照度分布(実施例)を示すものである。図7〜10においても同様である。
FIGS. 5 and 6 are simulations similar to the results shown in FIGS. 3 and 4. In FIG. 5, the number of point light sources in one half (that is, 580 mm) of 1160 mm is 25 (corresponding to the average number density of 4.3 points / 100 mm of point light sources) and 10 divisions (corresponding to the width of each division of 58 mm). ), And FIG. 6 shows the results when the number of point light sources is 50 (corresponding to the average number density of 8.6 point light sources / 100 mm) and the number of divisions is 10 (corresponding to the width of each division of 58 mm). Is shown.
In each of FIGS. 5 and 6, the schematic diagram of (a) and (b) is the same schematic diagram as the schematic diagram showing the arrangement pattern of the point light source shown in FIG. 4, and the schematic diagram of (a) is the present. It is the one of the invention (Example), and the schematic diagram of (b) is the conventional one with even arrangement (Comparative Example). The same applies to FIGS. 7 to 10.
Further, the two graphs (c) and (d) are the same as the graphs shown in FIGS. 3 (a) and 3 (b), respectively. In the graph of the illuminance distribution, the solid line graph shows the illuminance distribution (comparative example) of the conventional evenly arranged one, and the dotted line graph shows the divided light output density distribution pattern (in the case of the present invention) shown in the graph below. It shows the illuminance distribution (Example) of. The same applies to FIGS. 7 to 10.

図5、6に示した結果は片側半分の結果であるが、他方の半分も同じ結果が得られる。
図5、6から、点光源数が25個(点光源の平均個数密度4.3個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合、及び、点光源数が50個(点光源の平均個数密度8.6個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合において、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第2区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。
The results shown in FIGS. 5 and 6 are the results of one half, but the same results can be obtained for the other half.
From FIGS. 5 and 6, when the number of point light sources is 25 (corresponding to the average number density of point light sources 4.3 / 100 mm) and the number of divisions is 10 (corresponding to the width of each division 58 mm), and the point light sources. When the number is 50 (corresponding to the average number density of point light sources 8.6 / 100 mm) and the number of divisions is 10 (corresponding to the width of each division 58 mm), the first end and the second end are respectively. The light output density of the first division constituting the above is the maximum, and the light output density of the second division is the smallest among the second division and the third division constituting the first boundary portion and the second boundary portion, respectively. By using a point light source arrangement pattern such that the light output density in the central portion is equal to or higher than the minimum light output density and less than the maximum light output density, the illuminance in the region directly below both ends is set. It can be seen that the decrease is suppressed.

図7は1160mmの片側半分(すなわち、580mm)での点光源数が75個(点光源の平均個数密度12.9個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合、及び、図8は点光源数が100個(点光源の平均個数密度17.2個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合の結果を示すものである。 In FIG. 7, the number of point light sources in one half (that is, 580 mm) of 1160 mm is 75 (corresponding to the average number density of 12.9 points / 100 mm of point light sources) and 10 divisions (corresponding to the width of each division of 58 mm). ), And FIG. 8 shows the results when the number of point light sources is 100 (corresponding to the average number density of 17.2 point light sources / 100 mm) and the number of divisions is 10 (corresponding to the width of each division of 58 mm). Is shown.

図7から、点光源数が75個(点光源の平均個数密度12.9個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合において、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第3区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。
図8から、点光源数が100個(点光源の平均個数密度17.2個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合において、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第2区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。
From FIG. 7, when the number of point light sources is 75 (corresponding to the average number density of 12.9 point light sources / 100 mm) and the number of divisions is 10 (corresponding to the width of each division of 58 mm), the first end portion and The light output density of the first division that constitutes each of the second end portions is the maximum, and the third division among the second division and the third division that constitute each of the first boundary portion and the second boundary portion. By making the point light source arrangement pattern such that the light output density of the above is the minimum and the light output density of the central part is equal to or more than the minimum light output density and less than the maximum light output density, both ends are It can be seen that the decrease in illuminance in the area directly below is suppressed.
From FIG. 8, when the number of point light sources is 100 (corresponding to the average number density of 17.2 point light sources / 100 mm) and the number of divisions is 10 (corresponding to the width of each division of 58 mm), the first end portion and The second division of the second and third divisions that have the maximum light output density of the first division that constitutes each of the second end portions and that constitute each of the first boundary portion and the second boundary portion. By making the point light source arrangement pattern such that the light output density of the above is the minimum and the light output density of the central part is equal to or more than the minimum light output density and less than the maximum light output density, both ends are It can be seen that the decrease in illuminance in the area directly below is suppressed.

図9は1160mmの片側半分(すなわち、580mm)での点光源数が125個(点光源の平均個数密度21.6個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合、及び、図10は点光源数が150個(点光源の平均個数密度25.9個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合の結果を示すものである。 In FIG. 9, the number of point light sources in one half of 1160 mm (that is, 580 mm) is 125 (corresponding to the average number density of point light sources 21.6 / 100 mm) and 10 divisions (corresponding to the width of each division 58 mm). ), And FIG. 10 shows the results when the number of point light sources is 150 (corresponding to the average number density of 25.9 point light sources / 100 mm) and the number of divisions is 10 (corresponding to the width of each division of 58 mm). Is shown.

図9及び10から、点光源数が125個(点光源の平均個数密度21.6個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合、及び、点光源数が点光源数が150個(点光源の平均個数密度25.9個/100mmに相当)でかつ区分が10個(各区分の幅58mmに相当)の場合において、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第2区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。 From FIGS. 9 and 10, when the number of point light sources is 125 (corresponding to the average number density of point light sources 21.6 / 100 mm) and the number of divisions is 10 (corresponding to the width of each division 58 mm), and the point light sources. When the number of point light sources is 150 (corresponding to the average number density of point light sources 25.9 / 100 mm) and the number of divisions is 10 (corresponding to the width of each division 58 mm), the first end and the second The light output density of the first division that constitutes each of the end portions is the maximum, and the light of the second division among the second division and the third division that constitute each of the first boundary portion and the second boundary portion. By using a point light source arrangement pattern in which the output density is the minimum and the light output density in the central portion is equal to or higher than the minimum light output density and less than the maximum light output density, the light output density is directly below both ends. It can be seen that the decrease in illuminance in the region is suppressed.

次に、照射分布に対する、点光源列から照射面までの距離(高さ)hの影響について検討した。
図11に、1160mmの片側半分(すなわち、580mm)に25個の点光源を並べた線状照明装置(「点光源が配置されている領域」が1160mmということ)であり、かつ、区分数が10個(各区分の幅58mmに相当)である場合(図5の場合に相当)において、距離(高さ)hを、(a)50mm、(b)100mm、(c)150mm、(d)200mm、(e)250mm、(f)300mm、としたときの照度分布を示す。なお、(d)200mmのときは、図5に示した結果と同じものである。
Next, the effect of the distance (height) h from the point light source array to the irradiation surface on the irradiation distribution was examined.
FIG. 11 shows a linear lighting device in which 25 point light sources are arranged in one half (that is, 580 mm) of 1160 mm (“the area where the point light sources are arranged” is 1160 mm), and the number of divisions is large. In the case of 10 pieces (corresponding to the width of 58 mm in each section) (corresponding to the case of FIG. 5), the distance (height) h is (a) 50 mm, (b) 100 mm, (c) 150 mm, (d). The illuminance distribution when 200 mm, (e) 250 mm, and (f) 300 mm are shown. When (d) is 200 mm, the result is the same as that shown in FIG.

図11(a)〜(f)のいずれの高さの場合にも、両端部直下の領域における照度低下の抑制の効果が出ている。
X=0〜580における照度の変動幅の割合は(a)〜(f)の順に、23%、13%、8%、11%、19%、22%であり、変動幅の割合が低い順は、h=150mm、h=200mm、h=100mm、h=250mm、h=300mm、h=50mmの場合である。また、(a)50mm、(b)100mm、(c)150mmの場合には、端部で照度が低下する前に境界部から端部にかけて照度が一旦、高くなってしまい、その変動の程度は距離(高さ)hが小さいほど大きくなるのに対して、(d)200mm、(e)250mm、(f)300mmの場合には、そのような境界部から端部にかけての照度の上昇という変動はない。
以上の効果の検討に基づくと、距離(高さ)hは、100mm〜250mmが好ましく、150mm〜250mmがより好ましい。
In any of the heights shown in FIGS. 11A to 11F, the effect of suppressing the decrease in illuminance in the region immediately below both ends is exhibited.
The ratio of the fluctuation range of the illuminance at X = 0 to 580 is 23%, 13%, 8%, 11%, 19%, 22% in the order of (a) to (f), and the ratio of the fluctuation range is the lowest. Is the case of h = 150 mm, h = 200 mm, h = 100 mm, h = 250 mm, h = 300 mm, h = 50 mm. Further, in the case of (a) 50 mm, (b) 100 mm, and (c) 150 mm, the illuminance once increases from the boundary portion to the end portion before the illuminance decreases at the end portion, and the degree of the fluctuation is The smaller the distance (height) h, the larger the illuminance, whereas in the case of (d) 200 mm, (e) 250 mm, and (f) 300 mm, the illuminance increases from the boundary to the end. There is no.
Based on the examination of the above effects, the distance (height) h is preferably 100 mm to 250 mm, more preferably 150 mm to 250 mm.

次に、照射分布に対する、点光源が配置されている領域を等間隔に区分けする区分のサイズ(長さ)の影響について検討した。本発明の線状照明装置においては、端部である第1区分において光出力密度が最大であり、端部に隣接する境界部である第2区分及び第3区分において光出力密度が最小であるが、本発明において区分のサイズというのは、線状照明装置中で、光出力密度の最大及び最小が存在する位置に関係する因子である。 Next, the effect of the size (length) of the division that divides the area where the point light source is arranged into equal intervals on the irradiation distribution was examined. In the linear lighting device of the present invention, the light output density is the maximum in the first division which is the end portion, and the light output density is the minimum in the second division and the third division which are the boundary portions adjacent to the end portion. However, in the present invention, the size of the division is a factor related to the position where the maximum and minimum of the light output density exist in the linear illuminating device.

図12〜14では、距離(高さ)hが200mmと共通である。図12では、1160mmの片側半分(すなわち、580mm)の点光源数Nが25個、区分数nが7個(各区分の幅83mmに相当)、図13では、580mmの点光源数Nが75個、区分数nが7個(各区分の幅83mmに相当)、図14では、580mmの点光源数Nが150個、区分数nが7個(各区分の幅83mmに相当)、としたときの図5、6と同様な模式図及び結果を示すものである。 In FIGS. 12 to 14, the distance (height) h is common to 200 mm. In FIG. 12, the number of point light sources N on one side of 1160 mm (that is, 580 mm) is 25, the number of divisions n is 7 (corresponding to the width of each division of 83 mm), and in FIG. 13, the number of point light sources N of 580 mm is 75. The number of divisions n is 7 (corresponding to the width of each division of 83 mm), and in FIG. 14, the number of point light sources N of 580 mm is 150 and the number of divisions n is 7 (corresponding to the width of each division of 83 mm). The schematic diagram and the result similar to those in FIGS. 5 and 6 are shown.

図12の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第3区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。なお、この構成では、第3区分の2つ隣りの区分(中央部)の光出力密度も第3区分の光出力密度と共に最小である。 In the configuration of FIG. 12, the light output density of the first division that constitutes each of the first end portion and the second end portion is the maximum, and the second boundary portion and the second boundary portion that form each of the second boundary portion are formed. Of the categories and the third category, the point that the light output density of the third category is the minimum, and the light output density of the central portion is equal to or higher than the minimum light output density and less than the maximum light output density. It can be seen that the light source arrangement pattern suppresses the decrease in illuminance in the region directly below both ends. In this configuration, the light output density of the two adjacent sections (central portion) of the third section is also the minimum together with the light output density of the third section.

図13及び14の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第2区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。 In the configurations of FIGS. 13 and 14, the light output density of the first division constituting each of the first end portion and the second end portion is the maximum, and each of the first boundary portion and the second boundary portion is configured. Of the second and third categories, the light output density of the second category is the minimum, and the light output density of the central portion is equal to or higher than the minimum light output density and less than the maximum light output density. It can be seen that the decrease in illuminance in the region directly below both ends is suppressed by using the point light source arrangement pattern.

図15〜17では、距離(高さ)hが200mmと共通である。図15では、1160mmの片側半分(すなわち、580mm)の点光源数Nが25個、区分数nが13個(各区分の幅45mmに相当)、図16では、580mmの点光源数Nが75個、区分数nが13個(各区分の幅45mmに相当)、図17では、580mmの点光源数Nが150個、区分数nが13個(各区分の幅45mmに相当)、としたときの図5、6と同様な模式図及び結果を示すものである。 In FIGS. 15 to 17, the distance (height) h is the same as 200 mm. In FIG. 15, the number of point light sources N on one side of 1160 mm (that is, 580 mm) is 25, the number of divisions n is 13 (corresponding to the width of each division of 45 mm), and in FIG. 16, the number of point light sources N of 580 mm is 75. The number of divisions n is 13 (corresponding to the width of 45 mm of each division), and in FIG. 17, the number of point light sources N of 580 mm is 150 and the number of divisions n is 13 (corresponding to the width of 45 mm of each division). The schematic diagram and the result similar to those in FIGS. 5 and 6 are shown.

図15の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分の両方の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。なお、この構成では、第3区分の3つ隣りの区分(中央部)の光出力密度も第2区分及び第3区分の光出力密度と共に最小である。 In the configuration of FIG. 15, the light output density of the first division that constitutes each of the first end portion and the second end portion is the maximum, and the second boundary portion and the second boundary portion that form each of the second boundary portion are formed. A point light source arrangement pattern in which the light output densities of both the division and the third division are the minimum, and the light output density in the central portion is equal to or higher than the minimum light output density and lower than the maximum light output density. By doing so, it can be seen that the decrease in illuminance in the region immediately below both ends is suppressed. In this configuration, the light output densities of the three adjacent divisions (central portion) of the third division are also the minimum together with the light output densities of the second division and the third division.

図16及び17の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第2区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。なお、図16の構成では、第2区分の2つ隣りの区分(中央部)の光出力密度も第2区分の光出力密度と共に最小である。 In the configurations of FIGS. 16 and 17, the light output density of the first section constituting each of the first end portion and the second end portion is the maximum, and each of the first boundary portion and the second boundary portion is configured. Of the second and third categories, the light output density of the second category is the minimum, and the light output density of the central portion is equal to or higher than the minimum light output density and less than the maximum light output density. It can be seen that the decrease in illuminance in the region directly below both ends is suppressed by using the point light source arrangement pattern. In the configuration of FIG. 16, the light output density of the two adjacent sections (central portion) of the second section is also the minimum together with the light output density of the second section.

図18〜20では、距離(高さ)hが200mmと共通である。図18では、1160mmの片側半分(すなわち、580mm)の点光源数Nが25個、区分数nが16個(各区分の幅36mmに相当)、図19では、580mmの点光源数Nが75個、区分数nが16個(各区分の幅36mmに相当)、図20では、580mmの点光源数Nが150個、区分数nが16個(各区分の幅36mmに相当)、としたときの図5、6と同様な模式図及び結果を示すものである。 In FIGS. 18 to 20, the distance (height) h is the same as 200 mm. In FIG. 18, the number of point light sources N on one side of 1160 mm (that is, 580 mm) is 25, the number of divisions n is 16 (corresponding to the width of each division of 36 mm), and in FIG. 19, the number of point light sources N of 580 mm is 75. The number of divisions n is 16 (corresponding to the width of 36 mm of each division), and in FIG. 20, the number of point light sources N of 580 mm is 150 and the number of divisions n is 16 (corresponding to the width of 36 mm of each division). The schematic diagram and the result similar to those in FIGS. 5 and 6 are shown.

図18の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分の両方の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。なお、この構成では、第3区分の隣りの区分(中央部)の光出力密度も第2区分及び第3区分の光出力密度と共に最小である。 In the configuration of FIG. 18, the light output density of the first division that constitutes each of the first end portion and the second end portion is the maximum, and the second boundary portion and the second boundary portion that form each of the second boundary portion are formed. A point light source arrangement pattern in which the light output densities of both the division and the third division are the minimum, and the light output density in the central portion is equal to or higher than the minimum light output density and lower than the maximum light output density. By doing so, it can be seen that the decrease in illuminance in the region immediately below both ends is suppressed. In this configuration, the light output density of the division (central portion) adjacent to the third division is also the minimum together with the light output densities of the second division and the third division.

図19及び20の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第3区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。 In the configurations of FIGS. 19 and 20, the light output density of the first division constituting each of the first end portion and the second end portion is the maximum, and each of the first boundary portion and the second boundary portion is configured. Of the second and third categories, the light output density of the third category is the minimum, and the light output density of the central portion is equal to or higher than the minimum light output density and less than the maximum light output density. It can be seen that the decrease in illuminance in the region directly below both ends is suppressed by using the point light source arrangement pattern.

図21〜23では、距離(高さ)hが200mmと共通である。図21では、1160mmの片側半分(すなわち、580mm)の点光源数Nが25個、区分数nが19個(各区分の幅31mmに相当)、図22では、580mmの点光源数Nが75個、区分数nが19個(各区分の幅31mmに相当)、図23では、580mmの点光源数Nが150個、区分数nが19個(各区分の幅31mmに相当)、としたときの図5、6と同様な模式図及び結果を示すものである。 In FIGS. 21 to 23, the distance (height) h is common to 200 mm. In FIG. 21, the number of point light sources N on one side of 1160 mm (that is, 580 mm) is 25, the number of divisions n is 19 (corresponding to the width of each division of 31 mm), and in FIG. 22, the number of point light sources N of 580 mm is 75. The number of divisions n is 19 (corresponding to the width of each division of 31 mm), and in FIG. 23, the number of point light sources N of 580 mm is 150 and the number of divisions n is 19 (corresponding to the width of each division of 31 mm). The schematic diagram and the result similar to those in FIGS. 5 and 6 are shown.

図21の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第3区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。なお、この構成では、第3区分の隣りの区分など(中央部)の光出力密度も第3区分の光出力密度と共に最小である。 In the configuration of FIG. 21, the light output density of the first division that constitutes each of the first end portion and the second end portion is the maximum, and the second boundary portion and the second boundary portion that form each of the second boundary portion are formed. Of the categories and the third category, the point that the light output density of the third category is the minimum, and the light output density of the central portion is equal to or higher than the minimum light output density and less than the maximum light output density. It can be seen that the light source arrangement pattern suppresses the decrease in illuminance in the region directly below both ends. In this configuration, the light output density of the section adjacent to the third section (central portion) is also the minimum together with the light output density of the third section.

図22及び23の構成では、第1端部及び第2端部のそれぞれを構成する第1区分の光出力密度が最大であり、かつ、第1境界部及び第2境界部のそれぞれを構成する第2区分及び第3区分のうち、第2区分の光出力密度が最小であり、かつ、中央部の光出力密度が前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるような点光源配置パターンとすることによって、両端部の直下の領域における照度の低下が抑えられていることがわかる。 In the configurations of FIGS. 22 and 23, the light output density of the first division constituting each of the first end portion and the second end portion is the maximum, and each of the first boundary portion and the second boundary portion is configured. Of the second and third categories, the light output density of the second category is the minimum, and the light output density of the central portion is equal to or higher than the minimum light output density and less than the maximum light output density. It can be seen that the decrease in illuminance in the region directly below both ends is suppressed by using the point light source arrangement pattern.

本発明の植物栽培用照明装置において、第1端部及び第2端部の直下における照度が、最大照度からの低下が20%以内の大きさであることが好ましい。
これに該当する例としては、図5及び6、図7及び8、図9及び10、図11(b)〜(e)、図12〜14、図15〜17、図18〜20、図21〜23において結果を示したそれぞれ構成が挙げられる。
本発明の植物栽培用照明装置において、第1端部及び第2端部の直下における照度が、最大照度からの低下が15%以内の大きさであることがさらに好ましい。
これに該当する例としては、上記において、図11(e)以外において結果を示したそれぞれ構成が挙げられる。
In the lighting device for plant cultivation of the present invention, it is preferable that the illuminance immediately below the first end portion and the second end portion has a magnitude of 20% or less reduction from the maximum illuminance.
Examples corresponding to this are FIGS. 5 and 6, FIGS. 7 and 8, FIGS. 9 and 10, FIGS. 11 (b) to 11 (e), FIGS. 12 to 14, 15 to 17, 18 to 20, and 21. The configurations showing the results in ~ 23 are listed.
In the lighting device for plant cultivation of the present invention, it is more preferable that the illuminance immediately below the first end portion and the second end portion has a magnitude of a decrease of 15% or less from the maximum illuminance.
Examples of cases corresponding to this include the configurations shown in the above except for FIG. 11 (e).

本発明の植物栽培用照明装置において、最小の光出力密度が0〔mW/mm〕であってもよい。
この場合、その区分におけて点光源を用いなくてもよいのでコストメリットがある。
In the lighting device for plant cultivation of the present invention, the minimum light output density may be 0 [mW / mm 2 ].
In this case, there is a cost merit because it is not necessary to use a point light source in the division.

本発明の植物栽培用照明装置は、光出力密度を調整する制御装置を備えることが好ましい。
この制御装置による光出力密度の調整は、発光させる点光源の選択、又は、点光源に流れる電流量のいずれかによって行ってもよい。
本発明の植物栽培用照明装置は、同じ又は異なる点光源を均等配置して、実際に発光させる点光源を制御装置によって選択することによって、所定の光出力密度となるようにしてもよい。
The lighting device for plant cultivation of the present invention preferably includes a control device for adjusting the light output density.
The light output density may be adjusted by this control device by either selecting a point light source to emit light or by the amount of current flowing through the point light source.
In the lighting device for plant cultivation of the present invention, the same or different point light sources may be evenly arranged, and the point light sources to actually emit light may be selected by the control device to obtain a predetermined light output density.

本発明の植物栽培用照明装置は、点光源が特定の波長を発光する点光源であってもよく、植物栽培用に適した波長を発光する点光源であることが好ましい。
例えば、点光源が、赤色光を発光する赤色発光素子、青色光を発光する青色発光素子並びに赤色発光素子及び青色発光素子を搭載した混色発光素子のいずれかであってもよい。この構成の場合、赤色光を植物に照射する手順と、青色光を植物に照射する手順とを一定期間内に別個独立に行う工程を含む植物栽培方法(「執行法(Shigyo Method)」(例えば、特許文献4参照))に適している。
The lighting device for plant cultivation of the present invention may be a point light source that emits a specific wavelength, and is preferably a point light source that emits a wavelength suitable for plant cultivation.
For example, the point light source may be any one of a red light emitting element that emits red light, a blue light emitting element that emits blue light, and a mixed color light emitting element equipped with a red light emitting element and a blue light emitting element. In the case of this configuration, a plant cultivation method ("Shigyo Method" (for example, "Shigyo Method") including a step of irradiating a plant with red light and a procedure of irradiating a plant with blue light separately and independently within a certain period of time. , Patent Document 4)).

赤色発光素子としては、波長域が570〜730nmの光、好適には635〜660nmの範囲に中心波長を有する光を発する素子が用いられる。また、青色発光素子としては、波長域が400〜515nmの光、好適には中心波長を450nmとする光が用いられる。このような赤色発光素子としては、例えば、昭和電工株式会社製で製品番号がHRP−350Fの発光ダイオード(アルミニウム・ガリウム・インジウム・リン系発光ダイオード等を用いることができる。また、上記のような青色発光素子としては、例えば、昭和電工株式会社製で製品番号がGM2LR450Gの発光ダイオード等を用いることができる。 As the red light emitting element, an element that emits light having a wavelength range of 570 to 730 nm, preferably light having a central wavelength in the range of 635 to 660 nm is used. Further, as the blue light emitting element, light having a wavelength range of 400 to 515 nm, preferably light having a center wavelength of 450 nm is used. As such a red light emitting element, for example, a light emitting diode (aluminum, gallium, indium, phosphorus-based light emitting diode, etc.) manufactured by Showa Denko Co., Ltd. and having a product number of HRP-350F can be used, as described above. As the blue light emitting element, for example, a light emitting diode manufactured by Showa Denko Co., Ltd. and having a product number of GM2LR450G can be used.

執行法を用いる場合には、赤色光の照射手順と、青色光の照射手順とを一定期間内に別個独立に行うために、どちらの発光素子の駆動回路を駆動するか選択するスイッチング回路と、この選択のタイミングを時間的に制御するタイマー回路と、を付設する必要がある。スイッチング回路による選択動作は、タイマー回路を構成する1チップマイコンに設定、保持(記憶)された、赤色発光素子への電流供給時間と青色発光素子への電流供給時間とに基づいて行う。 When the enforcement method is used, a switching circuit that selects which light emitting element drive circuit is to be driven in order to perform the red light irradiation procedure and the blue light irradiation procedure independently within a certain period of time, and It is necessary to attach a timer circuit that controls the timing of this selection in time. The selection operation by the switching circuit is performed based on the current supply time to the red light emitting element and the current supply time to the blue light emitting element set and held (stored) in the one-chip microcomputer constituting the timer circuit.

執行法を用いる場合の入力部としては、可変抵抗によるアナログ信号変換スイッチとする場合、スライドスイッチを適用することができる。また、デジタル入力を行う場合には、入力部は、押しボタンなどによって構成してもよい。あるいは、入力部は、赤外線受光部として、赤外線リモコンを用いて電流供給時間及び電流値を入力できるようにしてもよい。本発明においても、入力部によって、タイマー回路を構成する1チップマイコンに、所望の電流供給時間及び電流値を設定することにより、スイッチング回路に上述の制御パターンを実行させて、執行法による植物栽培を行うことが可能である。 As an input unit when the enforcement method is used, a slide switch can be applied when an analog signal conversion switch using a variable resistor is used. Further, when performing digital input, the input unit may be configured by a push button or the like. Alternatively, the input unit may be capable of inputting the current supply time and the current value using an infrared remote controller as an infrared light receiving unit. Also in the present invention, by setting a desired current supply time and current value in the one-chip microcomputer constituting the timer circuit by the input unit, the switching circuit is made to execute the above-mentioned control pattern, and the plant is cultivated by the execution method. It is possible to do.

必要に応じて、電流供給時間及び電流値の設定値を確認するための表示部を設けることが好ましい。表示部は、アナログ式又はデジタル式の時計や、LEDインジケーターなどであってもよい。なお、赤色発光素子又は青色発光素子の電流供給時間及び電流値の設定は、各発光素子に制御線を配線し、有線あるいは無線で、複数の発光素子のスイッチング回路を一括して制御することも可能である。 If necessary, it is preferable to provide a display unit for confirming the current supply time and the set value of the current value. The display unit may be an analog or digital clock, an LED indicator, or the like. The current supply time and current value of the red light emitting element or the blue light emitting element can be set by wiring a control line to each light emitting element and collectively controlling the switching circuits of a plurality of light emitting elements by wire or wirelessly. It is possible.

以上の説明においては、点光源列が一つの場合について説明してきたが、本発明の効果を奏する限り、点光源列は複数であってもよい。この場合、隣接する点光源列同士が、互いに邪魔にならない範囲で近接していることが好ましいが、実際には、小型ランプのサイズ程度は離間させることになる。
従って、本発明の植物栽培用照明装置は、点光源が線状に配置された点光源列を一つ又は複数有する植物栽培用照明装置である。
In the above description, the case where there is one point light source sequence has been described, but as long as the effect of the present invention is obtained, there may be a plurality of point light source sequences. In this case, it is preferable that the adjacent point light source rows are close to each other within a range that does not interfere with each other, but in reality, the size of the small lamps is separated.
Therefore, the plant cultivation lighting device of the present invention is a plant cultivation lighting device having one or a plurality of point light source rows in which point light sources are linearly arranged.

本発明の植物栽培用照明装置が備える点光源は、一つの発光素子で構成されることには限定されず、本発明の効果を奏する限り、複数の発光素子によって構成されてもよい。 The point light source included in the lighting device for plant cultivation of the present invention is not limited to being composed of one light emitting element, and may be composed of a plurality of light emitting elements as long as the effect of the present invention is exhibited.

(連結式植物栽培用照明装置)
本発明の連結式植物栽培用照明装置は、上述した本発明の植物栽培用照明装置を離間して長手方向に平行に並置して構成されたものである。
(Lighting device for connected plant cultivation)
The articulated plant cultivation lighting device of the present invention is configured by arranging the above-mentioned plant cultivation lighting devices of the present invention in parallel in the longitudinal direction with the distance from each other.

(植物栽培装置)
本発明の植物栽培装置は、点光源列から照射面までの距離を変えることができる距離可変装置及び上述した本発明の植物栽培用照明装置を備えるものである。
(Plant cultivation equipment)
The plant cultivation device of the present invention includes a distance variable device capable of changing the distance from the point light source array to the irradiation surface, and the above-mentioned lighting device for plant cultivation of the present invention.

1 基板
2 点光源列
100 植物栽培用照明装置
Le 第1端部
Re 第2端部
Lb 第1境界部
Rb 第2境界部
A 中央部
1 Substrate 2-point light source row 100 Plant cultivation lighting device Le 1st end Re 2nd end Lb 1st boundary Rb 2nd boundary A Central

Claims (12)

基板上に複数の点光源が直線状に並んで配置された点光源列を有する植物栽培用照明装置であって、
前記基板において前記複数の点光源が配置されている領域は、一方の端部である第1端部と該第1端部の反対側の端部である第2端部と、前記第1端部及び前記第2端部の間に配置する中央部と、前記第1端部と中央部との間に配置する第1境界部と、前記第2端部と中央部との間に配置する第2境界部とからなり、
前記第1端部及び前記第2端部の光出力密度が最大であり、
前記第1境界部及び前記第2境界部に光出力密度の最小領域があり、
前記中央部の光出力密度は前記最小の光出力密度以上でかつ前記最大の光出力密度未満となるように前記複数の点光源が配置され
前記点光源が並ぶ方向において、前記第1端部及び前記第2端部の長さが、それぞれ前記基板の中心から片側全体の長さの10分の1以下である植物栽培用照明装置。
A lighting device for plant cultivation having a row of point light sources in which a plurality of point light sources are arranged in a straight line on a substrate.
The region in which the plurality of point light sources are arranged on the substrate includes a first end portion which is one end portion, a second end portion which is an end portion opposite to the first end portion, and the first end portion. A central portion arranged between the portion and the second end portion, a first boundary portion arranged between the first end portion and the central portion, and a central portion arranged between the second end portion and the central portion. Consists of a second boundary
The light output densities of the first end and the second end are maximum.
There is a minimum region of light output density at the first boundary portion and the second boundary portion.
The plurality of point light sources are arranged so that the light output density in the central portion is equal to or higher than the minimum light output density and lower than the maximum light output density .
In the direction in which the point light sources are arranged, the length of the first end and the second end, the center from one side total length der Ru plant cultivation lighting device 1 following 10 minutes of each said substrate.
前記点光源列を構成する複数の点光源の光出力密度が等しく、前記複数の点光源は以下の(i)及び(ii)を共に満たすように配置されている請求項1に記載の植物栽培用照明装置;
(i)点光源の平均個数密度は、2.6個/100mm〜26個/100mmであり、
(ii)前記点光源が配置されている領域を幅30mm〜85mmの複数の等間隔の区分に区分けしたときに、前記第1端部及び前記第2端部はそれぞれ両端の1区分(「第1区分」)からなり、前記第1境界部及び前記第2 境界部はそれぞれ、前記第1 区分に隣接する2つ目の区分(「第2区分」)及び3つ目の区分(「第3区分」) からなり、前記中央部はその残りの区分からなる。
The plant cultivation according to claim 1, wherein the light output densities of the plurality of point light sources constituting the point light source sequence are equal, and the plurality of point light sources are arranged so as to satisfy both (i) and (ii) below. Lighting device;
(I) The average number density of point light sources is 2.6 / 100 mm to 26/100 mm.
(Ii) When the area where the point light source is arranged is divided into a plurality of equally spaced divisions having a width of 30 mm to 85 mm, the first end portion and the second end portion are each divided into one division at both ends (“the first”. 1 division "), and the first boundary portion and the second boundary portion are the second division ("second division") and the third division ("third division") adjacent to the first division, respectively. The central part consists of the remaining divisions.
前記第2区分及び前記第3区分のうち少なくとも1つの区分の光出力密度が、各区分の光出力密度に比べて最小であり、前記第1区分の光出力密度が各区分の光出力密度に比べて最大である請求項2に記載の植物栽培用照明装置。 The light power density of at least one of the second division and the third division is the minimum as compared with the light output density of each division, and the light output density of the first division becomes the light output density of each division. The lighting device for plant cultivation according to claim 2, which is the largest in comparison. 前記第1端部及び第2端部の直下における照度は、最大照度からの低下が20%以内の大きさであり、
前記照度が、前記点光源列から100mm以上250mm以下の距離の位置において得られるものである請求項1〜3のいずれか一項に記載の植物栽培用照明装置。
The illuminance immediately below the first end and second end, Ri magnitude der reduction is within 20% of the maximum illuminance
The illuminance is, for plant cultivation lighting device according to any one of the point light source der those obtained Ru claim at a location a distance of 100mm or more 250mm or less from the column 1-3.
前記最小の光出力密度が0〔mW/mm〕である請求項1〜4のいずれか一項に記載の植物栽培用照明装置。 The lighting device for plant cultivation according to any one of claims 1 to 4, wherein the minimum light output density is 0 [mW / mm 2 ]. 前記光出力密度を調整する制御装置を備える請求項1〜5のいずれか一項に記載の植物栽培用照明装置。 The lighting device for plant cultivation according to any one of claims 1 to 5, further comprising a control device for adjusting the light output density. 前記制御装置によって、発光させる点光源の選択、又は、点光源に流れる電流量のいずれかを調整する請求項6に記載の植物栽培用照明装置。 The lighting device for plant cultivation according to claim 6, wherein the control device adjusts either the selection of a point light source to emit light or the amount of current flowing through the point light source. 前記点光源が特定の波長を発光する点光源である請求項1〜7のいずれか一項に記載の植物栽培用照明装置。 The lighting device for plant cultivation according to any one of claims 1 to 7, wherein the point light source is a point light source that emits a specific wavelength. 前記点光源列が複数ある請求項1〜8のいずれか一項に記載の植物栽培用照明装置。 The lighting device for plant cultivation according to any one of claims 1 to 8, wherein the point light source sequence is plurality. 前記点光源が、赤色発光素子、青色発光素子並びに赤色発光素子及び青色発光素子を搭載した混色発光素子のいずれかである請求項1〜9のいずれか一項に記載の植物栽培用照明装置。 The lighting device for plant cultivation according to any one of claims 1 to 9, wherein the point light source is any one of a red light emitting element, a blue light emitting element, and a red light emitting element and a mixed color light emitting element equipped with the blue light emitting element. 請求項1〜10のいずれか一項に記載の植物栽培用照明装置を離間して長手方向に平行に並置して構成された連結式植物栽培用照明装置。 A connected plant cultivation lighting device configured by arranging the plant cultivation lighting devices according to any one of claims 1 to 10 in parallel in the longitudinal direction with the plant cultivation lighting devices separated from each other. 前記点光源列から照射面までの距離を変えることができる距離可変装置及び請求項1〜11のいずれか一項に記載の植物栽培用照明装置を備える植物栽培装置。 A plant cultivation device including a distance variable device capable of changing the distance from the point light source array to the irradiation surface and a plant cultivation lighting device according to any one of claims 1 to 11.
JP2016241198A 2016-12-13 2016-12-13 Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment Active JP6800729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241198A JP6800729B2 (en) 2016-12-13 2016-12-13 Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241198A JP6800729B2 (en) 2016-12-13 2016-12-13 Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment

Publications (2)

Publication Number Publication Date
JP2018093786A JP2018093786A (en) 2018-06-21
JP6800729B2 true JP6800729B2 (en) 2020-12-16

Family

ID=62631882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241198A Active JP6800729B2 (en) 2016-12-13 2016-12-13 Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment

Country Status (1)

Country Link
JP (1) JP6800729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048534A (en) * 2018-09-28 2020-04-02 株式会社アルミス Plant cultivation lighting device
JP2021065183A (en) * 2019-10-25 2021-04-30 大日本印刷株式会社 Plant raising shelf

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283038A (en) * 2002-03-22 2003-10-03 Hamamatsu Photonics Kk Light emitting device
JP2006042706A (en) * 2004-08-06 2006-02-16 Shigetaka Kamahara Fe light source for growing plant and plant factory using the fe light source
JP2006320314A (en) * 2005-04-19 2006-11-30 Tsujiko Co Ltd Lighting equipment
JP2014027922A (en) * 2012-06-26 2014-02-13 Showa Denko Kk Plant cultivation apparatus
JP5779678B2 (en) * 2013-02-04 2015-09-16 昭和電工株式会社 Lamp for plant cultivation and plant cultivation method using the same
JP5936586B2 (en) * 2013-09-06 2016-06-22 アイリスオーヤマ株式会社 Lighting device
JP6484083B2 (en) * 2015-03-31 2019-03-13 ウシオ電機株式会社 Plant growing lighting device, plant hydroponics device, and plant hydroponic method
US9958115B2 (en) * 2015-07-22 2018-05-01 Qin Kong LED tube grow light
JPWO2017168667A1 (en) * 2016-03-31 2018-09-13 富士通株式会社 Lighting device for plant cultivation, plant cultivation device, plant cultivation method

Also Published As

Publication number Publication date
JP2018093786A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
CN101627332B (en) Led module
JP5363985B2 (en) Plant growth equipment
US8441214B2 (en) Light array maintenance system and method
US10172295B2 (en) Method for providing horticulture light to a crop and lighting device for horticulture lighting
KR101502960B1 (en) LED lighting module for optimizing inception growth efficiency of plant, LED lighting apparatus for plant-culture factory using the same
JP6800729B2 (en) Lighting equipment for plant cultivation, lighting equipment for articulated plant cultivation, and plant cultivation equipment
US10764981B2 (en) Tunable LED light array for horticulture
CN201129692Y (en) LED combined lamp used for indoor photosynthesis
JP2012221838A (en) Solar simulator
JP6810312B2 (en) Biological growth system and lighting device for biological growth that can be illuminated according to the biological growth range
CN101251241A (en) Method for combining LED with homogeneous proportion of red blue light as well as module thereof
JP2013236572A (en) Lighting system for plant
EP2761997A1 (en) Illuminating device for plant cultivation, plant cultivation system and plant cultivation method
KR20120043266A (en) Lighting device and system with light emitting diode for cultivating vegetables
JP2018130101A (en) Lighting unit for plant cultivation and lighting device
JP2012019715A (en) Lighting device for plant
CN105981601A (en) Plant illumination device
TWI604752B (en) Light emitting diode display device and method for generating dimming signal
US10687478B2 (en) Optimized LED lighting array for horticultural applications
US11266076B2 (en) Lighting device and a method of distributing light radiation sources
CN102128360A (en) Illumination device
CN206851084U (en) A kind of plant LED lamp illumination control system
EP4224993A1 (en) Modular uniform lighting system and device
Harbick et al. Optimization of spatial lighting uniformity using non-planar arrays and photosynthetic photon flux density modulation
RU2494495C1 (en) Multielement colour radiation source

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6800729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350