JP6798565B2 - High-strength steel sheets for sour-resistant pipes and high-strength steel pipes using them - Google Patents

High-strength steel sheets for sour-resistant pipes and high-strength steel pipes using them Download PDF

Info

Publication number
JP6798565B2
JP6798565B2 JP2018564993A JP2018564993A JP6798565B2 JP 6798565 B2 JP6798565 B2 JP 6798565B2 JP 2018564993 A JP2018564993 A JP 2018564993A JP 2018564993 A JP2018564993 A JP 2018564993A JP 6798565 B2 JP6798565 B2 JP 6798565B2
Authority
JP
Japan
Prior art keywords
less
strength
width direction
plate
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018564993A
Other languages
Japanese (ja)
Other versions
JPWO2019077725A1 (en
Inventor
純二 嶋村
純二 嶋村
横田 智之
智之 横田
晋一 泉川
晋一 泉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019077725A1 publication Critical patent/JPWO2019077725A1/en
Application granted granted Critical
Publication of JP6798565B2 publication Critical patent/JP6798565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Description

本発明は、耐サワーラインパイプの分野で使用される、鋼板内の材質均一性、特にHIC特性の均一性に優れた耐サワーラインパイプ用高強度鋼板およびこれを用いた高強度鋼管に関するものである。 The present invention relates to a high-strength steel plate for sour-resistant pipes, which is used in the field of sour-resistant pipes and has excellent material uniformity in steel sheets, particularly HIC characteristics, and high-strength steel pipes using the same. is there.

一般に、ラインパイプは、厚板ミルや熱延ミルによって製造された鋼板を、UOE成形、プレスベンド成形およびロール成形等によって、鋼管に成形することで製造される。 Generally, a line pipe is manufactured by forming a steel plate produced by a thick plate mill or a hot-rolling mill into a steel pipe by UOE forming, press bend forming, roll forming or the like.

ここに、硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性などの他に、耐水素誘起割れ性(耐HIC(Hydrogen Induced Cracking)性)や耐硫化物応力腐食割れ性(耐SSCC(Sulfide Stress Corrosion Cracking)性)といった、いわゆる耐サワー性が必要とされる。中でもHICは、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積して、分子状の水素となり、その内圧により割れを生ずるものとされている。 Here, line pipes used for transporting crude oil containing hydrogen sulfide and natural gas have strength, toughness, weldability, etc., as well as hydrogen-induced cracking resistance (HIC (Hydrogen Induced Cracking) resistance) and sulfide resistance. So-called sour resistance such as stress corrosion cracking resistance (SSCC (Sulfide Stress Corrosion Cracking) resistance) is required. Among them, in HIC, hydrogen ions due to the corrosion reaction are adsorbed on the surface of the steel material, penetrate into the steel as atomic hydrogen, and diffuse and accumulate around non-metal inclusions such as MnS in the steel and the hard phase 2 structure. As a result, it becomes molecular hydrogen, and cracks are caused by its internal pressure.

このようなHICを防ぐために、いくつかの方法が提案されている。特許文献1,2には、高強度鋼板に対して、低SかつCa添加により硫化物系介在物の形態制御を行いつつ、低C−低Mn化により中心偏析を抑制し、それに伴う強度低下をCr、Mo、Ni等の添加と加速冷却により補う方法が提案されている。 Several methods have been proposed to prevent such HIC. Patent Documents 1 and 2 describe that for high-strength steel sheets, while controlling the morphology of sulfide-based inclusions by adding low S and Ca, central segregation is suppressed by lowering C-Mn, and the strength is reduced accordingly. Has been proposed as a method of supplementing with the addition of Cr, Mo, Ni and the like and accelerated cooling.

一方、鋼構造物の大型化やコスト削減の観点から、より高強度や高靭性を有する鋼板の需要が高まっている。鋼板の特性向上や合金元素削減、熱処理省略を目的として、通常、高強度鋼板は、制御圧延と制御冷却を組み合わせた、いわゆるTMCP(Thermo-Mechanical Control Process)技術が適用されて製造される。 On the other hand, from the viewpoint of increasing the size of steel structures and reducing costs, there is an increasing demand for steel sheets having higher strength and toughness. For the purpose of improving the characteristics of steel sheets, reducing alloying elements, and omitting heat treatment, high-strength steel sheets are usually manufactured by applying the so-called TMCP (Thermo-Mechanical Control Process) technology, which combines controlled rolling and controlled cooling.

TMCP技術を用いて鋼材の高強度化を行うには、制御冷却時の冷却速度を大きくすることが有効である。しかしながら、高冷却速度で制御冷却した場合、鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向の硬さ分布にばらつきが生じる。従って、鋼板内の材質均一性を確保する観点で問題となる。 In order to increase the strength of steel materials using TMCP technology, it is effective to increase the cooling rate during controlled cooling. However, when controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel sheet, and the hardness distribution in the plate thickness direction varies. Therefore, there is a problem from the viewpoint of ensuring the material uniformity in the steel sheet.

上記の問題を解決するために、例えば特許文献3,4には、高周波誘導加熱装置を用いて、加速冷却後の鋼板表面を内部より高温に加熱して表層部の硬さを低減した、ラインパイプ用鋼板の製造方法が開示されている。 In order to solve the above problems, for example, in Patent Documents 3 and 4, a line in which the surface of the steel sheet after accelerated cooling is heated to a higher temperature than the inside to reduce the hardness of the surface layer portion by using a high frequency induction heating device. A method for manufacturing a steel plate for a pipe is disclosed.

一方、鋼板表面のスケール厚さにむらがあった場合、冷却時にその下部の鋼板の冷却速度にもばらつきが生じ、鋼板内の局所的な冷却停止温度のばらつきが問題となる。その結果、スケール厚さのむらによって板幅方向に鋼板材質のばらつきが生じることになる。これに対し、特許文献5,6には、冷却直前にデスケーリングを行うことにより、スケール厚さむらに起因した冷却むらを低減して、鋼板形状を改善する方法が開示されている。 On the other hand, if the scale thickness of the surface of the steel sheet is uneven, the cooling rate of the steel sheet below the steel sheet also varies during cooling, and the local cooling stop temperature in the steel sheet becomes a problem. As a result, the steel plate material varies in the plate width direction due to the unevenness of the scale thickness. On the other hand, Patent Documents 5 and 6 disclose a method of reducing the cooling unevenness caused by the scale thickness unevenness and improving the steel sheet shape by performing descaling immediately before cooling.

特開平5−271766号公報Japanese Unexamined Patent Publication No. 5-271766 特開平7−173536号公報Japanese Unexamined Patent Publication No. 7-173536 特開2002−327212号公報JP-A-2002-327212 特許第3711896号公報Japanese Patent No. 3711896 特開平9−57327号公報Japanese Unexamined Patent Publication No. 9-57327 特許第3796133号公報Japanese Patent No. 3796133

しかしながら、特許文献1〜4に記載の技術は、いずれも中心偏析部が対象であるが、板幅方向の耐HIC特性の均一性に関しては考慮されていない。スラブ段階の板幅方向の中心偏析のばらつきが影響し、圧延後鋼板の板幅方向の耐HIC特性のばらつきが生じるという問題がある。 However, although the techniques described in Patent Documents 1 to 4 are all targeted at the central segregation portion, the uniformity of HIC resistance characteristics in the plate width direction is not considered. There is a problem that the variation in the central segregation in the plate width direction at the slab stage affects the variation in the HIC resistance characteristics of the rolled steel sheet in the plate width direction.

また、本発明者らの検討によると、上記特許文献5,6に記載の製造方法で得られる高強度鋼板でも、板幅方向の耐HIC特性の均一性という観点で改善の余地があることが判明した。その理由としては、以下のようなものが考えられる。すなわち、特許文献5,6に記載の方法では、デスケーリングにより、熱間矯正時のスケールの押し込み疵による表面性状不良の低減や、鋼板の冷却停止温度のばらつきを低減して鋼板形状を改善しているが、均一な材質を得るための冷却条件に関しては何ら配慮がなされていない。 Further, according to the study by the present inventors, there is room for improvement even in the high-strength steel plate obtained by the manufacturing methods described in Patent Documents 5 and 6 from the viewpoint of uniformity of HIC resistance characteristics in the plate width direction. found. The possible reasons for this are as follows. That is, in the methods described in Patent Documents 5 and 6, descaling reduces surface texture defects due to scale indentation defects during hot straightening and reduces variations in the cooling stop temperature of the steel sheet to improve the shape of the steel sheet. However, no consideration has been given to the cooling conditions for obtaining a uniform material.

このように、従来、低廉な成分と高冷却速度の制御冷却を組み合わせた場合、鋼板内の材質均一性と耐HIC特性を備えた高強度鋼板を製造することはできなかった。 As described above, conventionally, when a combination of low-cost components and controlled cooling at a high cooling rate, it has not been possible to manufacture a high-strength steel sheet having material uniformity in the steel sheet and HIC resistance characteristics.

そこで本発明は、上記課題に鑑み、耐HIC特性に優れ、しかも板幅方向における耐HIC特性のばらつきを抑制した耐サワーラインパイプ用高強度鋼板と、これを用いた高強度鋼管を提供することを目的とする。 Therefore, in view of the above problems, the present invention provides a high-strength steel plate for sour-resistant pipes which is excellent in HIC-resistant characteristics and suppresses variations in HIC-resistant characteristics in the plate width direction, and a high-strength steel pipe using the same. With the goal.

上記課題を解決するため、本発明者らは、API規格X65グレードの強度を有する高強度鋼板において、中心偏析部からのHIC発生を防止し、板幅方向の耐HIC特性のばらつきを抑制し、鋼板内の材質均一性を向上させるために、鋼材の成分組成、ミクロ組織、および製造方法を鋭意検討した。その結果、鋳片(スラブ)の2次冷却の際に特定の条件を採用し、かつ、特定の条件下で熱間圧延後の制御冷却を行うことを組み合わせることによって、鋼板の板幅方向における中心偏析のばらつきを抑制することができるとの知見を得て、本発明を完成した。 In order to solve the above problems, the present inventors have prevented HIC from being generated from the central segregation portion in a high-strength steel sheet having strength of API standard X65 grade, and suppressed variation in HIC resistance characteristics in the plate width direction. In order to improve the material uniformity in the steel sheet, the composition of the steel material, the microstructure, and the manufacturing method were intensively studied. As a result, by adopting specific conditions for the secondary cooling of the slab and performing controlled cooling after hot rolling under the specific conditions, in the plate width direction of the steel sheet. The present invention was completed based on the finding that the variation in central segregation can be suppressed.

すなわち、本発明の要旨構成は次のとおりである。
[1]質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.50〜1.80%、P:0.001〜0.015%、S:0.0002〜0.0015%、Al:0.01〜0.08%およびCa:0.0005〜0.005%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板の圧延方向に垂直な断面において、板厚中心から板厚方向に±5mmの測定領域に、楕円形状と近似した長軸長さ1.5mm超えのMn濃化スポットの数が、板幅方向の長さ100mm当たりに3個以下であり、
板幅をWとして、鋼板の板幅方向の片端から、W/4の位置、W/2の位置、および3W/4の位置において、耐HIC特性がCARで10%以下であり、
板幅方向の耐HIC特性のばらつきが、CARの標準偏差をσとしたときに3σで5%以下であり、
520MPa以上の引張強さを有する
ことを特徴とする耐サワーラインパイプ用高強度鋼板。
That is, the gist structure of the present invention is as follows.
[1] In terms of mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015%. , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and the balance is composed of Fe and unavoidable impurities. And
In the cross section perpendicular to the rolling direction of the steel sheet, the number of Mn-enriched spots with a major axis length exceeding 1.5 mm, which is similar to an elliptical shape, is in the measurement area of ± 5 mm in the sheet thickness direction from the center of the sheet thickness in the plate width direction. 3 or less per 100 mm of length
The HIC resistance is 10% or less in CAR at the W / 4, W / 2, and 3W / 4 positions from one end of the steel plate in the plate width direction, where W is the plate width.
The variation in HIC resistance characteristics in the plate width direction is 5% or less at 3σ when the standard deviation of CAR is σ.
A high-strength steel sheet for sour line pipes, which has a tensile strength of 520 MPa or more.

[2]前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、上記[1]に記載の耐サワーラインパイプ用高強度鋼板。 [2] The component composition was further selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less in mass%. The high-strength steel plate for sour line pipe according to the above [1], which contains one type or two or more types.

[3]前記成分組成が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%、およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有する、上記[1]または[2]に記載の耐サワーラインパイプ用高強度鋼板。 [3] The component composition further comprises, in mass%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1%. The high-strength steel sheet for sour line pipe according to the above [1] or [2], which contains one or more selected types.

[4]上記[1]〜[3]のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管。 [4] A high-strength steel pipe using the high-strength steel plate for sour-resistant pipe according to any one of the above [1] to [3].

本発明の耐サワーラインパイプ用高強度鋼板は、耐HIC特性に優れ、しかも板幅方向における耐HIC特性のばらつきが抑制されている。それ故、この高強度鋼板を用いた本発明の高強度鋼管は、耐HIC特性に優れ、しかも管周方向における耐HIC特性のばらつきが抑制されている。 The high-strength steel sheet for sour line pipes of the present invention has excellent HIC resistance characteristics, and variations in HIC resistance characteristics in the plate width direction are suppressed. Therefore, the high-strength steel pipe of the present invention using this high-strength steel plate is excellent in HIC resistance, and variations in HIC resistance in the circumferential direction of the pipe are suppressed.

実施例におけるEMPA分析領域の位置を説明する鋼板C断面の模式図である。It is a schematic diagram of the cross section of the steel plate C explaining the position of the EMPA analysis area in an Example. 実施例におけるHIC試験片の採取部の位置を説明する鋼板C断面の模式図である。It is a schematic diagram of the cross section of the steel plate C explaining the position of the sampling part of the HIC test piece in an Example. 本実施形態の高強度鋼板を製造するための、連続鋳造における鋳片の2次冷却方法を説明する図であり、(A)は、1つの二流体スプレーノズルから冷却水を噴射したときの冷却水の噴射範囲および水量密度分布を示す模式図であり、(B)は、2つの二流体スプレーノズルから冷却水を噴射したときの冷却水の噴射範囲、水量密度分布、および噴射範囲のラップ代を示す模式図である。It is a figure explaining the secondary cooling method of a slab in continuous casting for manufacturing a high-strength steel plate of this embodiment, (A) is the cooling at the time of injecting cooling water from one two-fluid spray nozzle. It is a schematic diagram which shows the water injection range and the water amount density distribution, (B) is the cooling water injection range when cooling water is injected from two two-fluid spray nozzles, the water amount density distribution, and the lap allowance of the injection range. It is a schematic diagram which shows.

以下、本開示の耐サワーラインパイプ用高強度鋼板について、具体的に説明する。 Hereinafter, the high-strength steel sheet for sour-resistant pipes of the present disclosure will be specifically described.

[成分組成]
まず、本開示による高強度鋼板の成分組成とその限定理由について説明する。以下の説明において%で示す単位は全て質量%である。
[Ingredient composition]
First, the component composition of the high-strength steel sheet according to the present disclosure and the reason for its limitation will be described. In the following description, all units indicated by% are mass%.

C:0.02〜0.08%
Cは、強度の向上に有効に寄与するが、含有量が0.02%未満では十分な強度が確保できず、一方0.08%を超えると、加速冷却時に表層部の硬さが上昇するため、耐HIC特性が劣化する。また、靭性も劣化する。このため、C量は0.02〜0.08%の範囲に限定する。
C: 0.02 to 0.08%
C effectively contributes to the improvement of strength, but if the content is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.08%, the hardness of the surface layer portion increases during accelerated cooling. Therefore, the HIC resistance property deteriorates. In addition, toughness also deteriorates. Therefore, the amount of C is limited to the range of 0.02 to 0.08%.

Si:0.01〜0.50%
Siは、脱酸のため添加するが、含有量が0.01%未満では脱酸効果が十分でなく、一方0.50%を超えると靭性や溶接性を劣化させるため、Si量は0.01〜0.50%の範囲に限定する。
Si: 0.01 to 0.50%
Si is added for deoxidation, but if the content is less than 0.01%, the deoxidizing effect is not sufficient, while if it exceeds 0.50%, the toughness and weldability deteriorate, so the amount of Si is 0. Limited to the range of 01 to 0.50%.

Mn:0.50〜1.80%
Mnは、強度、靭性の向上に有効に寄与するが、含有量が0.50%未満ではその添加効果に乏しく、一方1.80%を超えると加速冷却時に表層部の硬さが上昇するため、耐HIC特性が劣化する。また、溶接性も劣化する。このため、Mn量は0.50〜1.80%の範囲に限定する。
Mn: 0.50 to 1.80%
Mn effectively contributes to the improvement of strength and toughness, but when the content is less than 0.50%, the effect of adding Mn is poor, while when it exceeds 1.80%, the hardness of the surface layer portion increases during accelerated cooling. , HIC resistance deteriorates. Weldability also deteriorates. Therefore, the amount of Mn is limited to the range of 0.50 to 1.80%.

P:0.001〜0.015%
Pは、不可避不純物元素であり、溶接性を劣化させるとともに、中心偏析部の硬さを上昇させることで耐HIC性を劣化させる。0.015%を超えるとその傾向が顕著となるため、上限を0.015%に規定する。好ましくは0.008%以下である。含有量は低いほどよいが、精錬コストの観点から0.001%以上とする。
P: 0.001 to 0.015%
P is an unavoidable impurity element, which deteriorates weldability and also deteriorates HIC resistance by increasing the hardness of the central segregated portion. If it exceeds 0.015%, the tendency becomes remarkable, so the upper limit is set to 0.015%. It is preferably 0.008% or less. The lower the content, the better, but from the viewpoint of refining cost, it should be 0.001% or more.

S:0.0002〜0.0015%
Sは、不可避不純物元素であり、鋼中においてはMnS介在物となり耐HIC性を劣化させるため少ないことが好ましいが、0.0015%までは許容される。含有量は低いほどよいが、精錬コストの観点から0.0002%以上とする。
S: 0.0002 to 0.0015%
S is an unavoidable impurity element and is preferably a small amount because it becomes an MnS inclusion in steel and deteriorates HIC resistance, but up to 0.0015% is allowed. The lower the content, the better, but from the viewpoint of refining cost, it should be 0.0002% or more.

Al:0.01〜0.08%
Alは、脱酸剤として添加するが、0.01%未満では添加効果がなく、一方、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al量は0.01〜0.08%の範囲に限定する。
Al: 0.01 to 0.08%
Al is added as an antacid, but if it is less than 0.01%, there is no effect of addition, while if it exceeds 0.08%, the cleanliness of the steel is lowered and the toughness is deteriorated, so that the amount of Al is 0. Limited to the range of 01 to 0.08%.

Ca:0.0005〜0.005%
Caは、硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.0005%未満ではその添加効果が十分でない。一方、0.005%を超えた場合、効果が飽和するだけでなく、鋼の清浄度の低下により耐HIC特性を劣化させるので、Ca量は0.0005〜0.005%の範囲に限定する。
Ca: 0.0005 to 0.005%
Ca is an element effective for improving HIC resistance by controlling the morphology of sulfide-based inclusions, but its addition effect is not sufficient if it is less than 0.0005%. On the other hand, if it exceeds 0.005%, not only the effect is saturated but also the HIC resistance is deteriorated due to the decrease in the cleanliness of the steel, so the Ca amount is limited to the range of 0.0005 to 0.005%. ..

以上、本開示の基本成分について説明したが、本開示の成分組成は、鋼板の強度や靱性の一層の改善のために、Cu,Ni,CrおよびMoのうちから選んだ1種又は2種以上を、以下の範囲で任意に含有させることができる。 The basic components of the present disclosure have been described above, but the component composition of the present disclosure is one or more selected from Cu, Ni, Cr and Mo in order to further improve the strength and toughness of the steel sheet. Can be arbitrarily contained in the following range.

Cu:0.50%以下
Cuは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Cuを添加する場合は0.50%を上限とする。
Cu: 0.50% or less Cu is an element effective for improving toughness and increasing strength, and it is preferable to contain 0.05% or more in order to obtain this effect, but if the content is too large, welding is performed. Since the property deteriorates, the upper limit is 0.50% when Cu is added.

Ni:0.50%以下
Niは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると経済的に不利なだけでなく、溶接熱影響部の靱性が劣化するため、Niを添加する場合は0.50%を上限とする。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength, and it is preferable to contain 0.05% or more in order to obtain this effect, but it is economical if the content is too large. Not only is it disadvantageous, but the toughness of the weld heat-affected zone deteriorates. Therefore, when Ni is added, the upper limit is 0.50%.

Cr:0.50%以下
Crは、Mnと同様、低Cでも十分な強度を得るために有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Crを添加する場合は0.50%を上限とする。
Cr: 0.50% or less Cr is an element effective for obtaining sufficient strength even at low C like Mn, and it is preferable to contain 0.05% or more in order to obtain this effect. If the amount is too large, the weldability deteriorates. Therefore, when Cr is added, the upper limit is 0.50%.

Mo:0.50%以下
Moは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Moを添加する場合は0.50%を上限とする。
Mo: 0.50% or less Mo is an element effective for improving toughness and increasing strength, and it is preferable to contain 0.05% or more in order to obtain this effect, but if the content is too large, welding is performed. Since the property deteriorates, the upper limit is 0.50% when Mo is added.

本開示の成分組成は、さらに、Nb,VおよびTiのうちから選んだ1種又は2種以上を、以下の範囲で任意に含有させることもできる。 The component composition of the present disclosure may further optionally contain one or more selected from Nb, V and Ti within the following range.

Nb:0.005〜0.1%、V:0.005〜0.1%、およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上
Nb,VおよびTiはいずれも、鋼板の強度および靭性を高めるために任意に添加することができる元素である。各元素とも、含有量が0.005%未満ではその添加効果に乏しく、一方0.1%を超えると溶接部の靭性が劣化するので、添加する場合はいずれも0.005〜0.1%の範囲とするのが好ましい。
One or more selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% Nb, V and Ti Both are elements that can be optionally added to increase the strength and toughness of the steel sheet. If the content of each element is less than 0.005%, the effect of adding it is poor, while if it exceeds 0.1%, the toughness of the weld deteriorates. Therefore, when it is added, it is 0.005 to 0.1%. It is preferably in the range of.

なお、上記した元素以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。 The balance other than the above elements consists of Fe and unavoidable impurities. However, the inclusion of other trace elements is not hindered as long as the effects of the present invention are not impaired.

[Mn濃化スポット]
本開示の耐サワーラインパイプ用高強度鋼板においては、鋼板の圧延方向(板長方向)に垂直な断面において、板厚中心から板厚方向に±5mmの測定領域に、楕円形状と近似した長軸長さ1.5mm超えのMn濃化スポットの数が、板幅方向の長さ100mm当たりに3個以下であることが肝要である。
[Mn enrichment spot]
In the high-strength steel plate for sour line pipes of the present disclosure, in a cross section perpendicular to the rolling direction (plate length direction) of the steel plate, a length close to an elliptical shape is formed in a measurement region of ± 5 mm in the plate thickness direction from the center of the plate thickness. It is important that the number of Mn enriched spots having a shaft length of more than 1.5 mm is 3 or less per 100 mm of length in the plate width direction.

本明細書において、「Mn濃化スポット」とは、Mn濃度が偏析により添加量(鋼板中のMn含有量)よりも高い部位を意味し、具体的には、鋼板中のMn含有量が1.50%以下の場合には、Mn濃度が1.60%以上の部位として特定され、鋼板中のMn含有量が1.50%超え1.80%以下の場合には、Mn濃度が鋼板中のMn含有量よりも0.10%以上高い部位として特定される。 In the present specification, the “Mn-enriched spot” means a portion where the Mn concentration is higher than the addition amount (Mn content in the steel sheet) due to segregation. Specifically, the Mn content in the steel sheet is 1. When it is .50% or less, it is specified as a portion where the Mn concentration is 1.60% or more, and when the Mn content in the steel sheet is more than 1.50% and 1.80% or less, the Mn concentration is in the steel sheet. It is identified as a site that is 0.10% or more higher than the Mn content of.

本発明者らの検討によると、上記のとおり特定されるMn濃化スポットのうち、長軸長さが1.5mm超えのMn濃化スポットの箇所からHIC割れが発生しやすいこと、そして、長軸長さ1.5mm超えのMn濃化スポットの数が板幅方向の長さ100mm当たりに3個を超えて存在すると、HIC割れが発生することが判明した。そこで本開示では、長軸長さ1.5mm超えのMn濃化スポットの数が板幅方向の長さ100mm当たりに3個以下とする。 According to the study by the present inventors, among the Mn-enriched spots specified as described above, HIC cracks are likely to occur from the Mn-enriched spots having a major axis length of more than 1.5 mm, and the length It was found that HIC cracking occurs when the number of Mn-enriched spots having a shaft length of more than 1.5 mm exceeds 3 per 100 mm of length in the plate width direction. Therefore, in the present disclosure, the number of Mn enriched spots having a major axis length exceeding 1.5 mm is set to 3 or less per 100 mm in the plate width direction.

本開示において、「板幅方向の長さ100mm当たりの、長軸長さ1.5mm超えのMn濃化スポットの数」は、以下の方法で測定するものとする。まず、鋼板から解析用の試料を切り出し、研磨により試料調整を実施する。このとき、試料の表面が、鋼板の板長方向に垂直な断面(C断面)となるようにする。そして、図1に示すように、このC断面において、板幅をWとして、鋼板の板幅方向の片端から、W/4の位置、W/2の位置、および3W/4の位置(以下、単に「W/4位置」、「W/2位置」、および「3W/4位置」と記載する。)における鋼板の板厚中心(t/2位置;tは板厚)である3点のそれぞれを中心として板厚方向に±5mm(厚さ10mm)、板幅方向に±200mm(幅400mm)となる3つの領域について、電子プローブマイクロアナライザ(EMPA)によって、Mn濃度のマッピングを実施する。なお、鋼板の板幅によっては、上記3つの領域がオーバーラップして1つの領域となることもある。マッピングは、加速電圧25kVで、直径が0.15mmの電子プローブを用いて行う。このEPMA分析領域(厚さ10mm×幅400mm)中で、長軸長さ1.5mm超えのMn濃化スポットの数をカウントし、板幅方向の長さ100mm当たりの数に換算する。 In the present disclosure, "the number of Mn-enriched spots having a major axis length exceeding 1.5 mm per 100 mm in the plate width direction" shall be measured by the following method. First, a sample for analysis is cut out from the steel sheet, and the sample is adjusted by polishing. At this time, the surface of the sample is set to have a cross section (C cross section) perpendicular to the plate length direction of the steel plate. Then, as shown in FIG. 1, in this C cross section, where W is the plate width, the W / 4 position, the W / 2 position, and the 3W / 4 position (hereinafter,, from one end in the plate width direction of the steel plate). Each of the three points that are the center of the thickness of the steel sheet (t / 2 position; t is the plate thickness) at the "W / 4 position", "W / 2 position", and "3W / 4 position"). The Mn concentration is mapped by an electron probe microanalyzer (EMPA) for three regions of ± 5 mm (thickness 10 mm) in the plate thickness direction and ± 200 mm (width 400 mm) in the plate width direction. Depending on the plate width of the steel plate, the above three regions may overlap to form one region. Mapping is performed using an electron probe having an accelerating voltage of 25 kV and a diameter of 0.15 mm. In this EPMA analysis region (thickness 10 mm × width 400 mm), the number of Mn-enriched spots having a major axis length exceeding 1.5 mm is counted and converted into the number per 100 mm length in the plate width direction.

なお、本開示の耐サワーラインパイプ用高強度鋼板の鋼組織については、引張強さ520MPa以上の高強度化を図るために、ベイナイト組織であることが好ましい。ここで、ベイナイト組織は、変態強化に寄与する加速冷却時あるいは加速冷却後に変態するベイニティックフェライトまたはグラニュラーフェライトと称される組織を含むものとする。ベイナイト組織中に、フェライトやマルテンサイト、パーライト、島状マルテンサイト、残留オーステナイトなどの異種組織が混在すると、強度の低下や靭性の劣化、表層硬さの上昇などが生じるため、ベイナイト相以外の組織分率は少ない程良い。ただし、ベイナイト相以外の組織の体積分率が十分に低い場合には、それらの影響が無視できるので、ある程度の量であれば許容される。具体的に、本開示では、ベイナイト以外の鋼組織(フェライト、マルテンサイト、パーライト、島状マルテンサイト、残留オーステナイト等)の合計が体積分率で5%未満であれば、大きな影響がないので許容されるものとする。 The steel structure of the high-strength steel plate for sour-resistant pipes disclosed in the present disclosure preferably has a bainite structure in order to increase the tensile strength to 520 MPa or more. Here, the bainite structure includes a structure called bainitic ferrite or granular ferrite that is transformed during or after accelerated cooling, which contributes to strengthening the transformation. When heterogeneous structures such as ferrite, martensite, pearlite, island-like martensite, and retained austenite are mixed in the bainite structure, the strength decreases, the toughness deteriorates, and the surface hardness increases. Therefore, structures other than the bainite phase The smaller the fraction, the better. However, if the volume fraction of the tissue other than the bainite phase is sufficiently low, those effects can be ignored, and a certain amount is acceptable. Specifically, in the present disclosure, if the total volume fraction of steel structures other than bainite (ferrite, martensite, pearlite, island-like martensite, retained austenite, etc.) is less than 5%, there is no significant effect and is acceptable. It shall be done.

[板幅方向の耐HIC特性の均一性]
本開示の耐サワーラインパイプ用高強度鋼板においては、W/4位置、W/2位置、および3W/4位置において、耐HIC特性がCARで10%以下であること、並びに、板幅方向の耐HIC特性のばらつきが、CARの標準偏差をσとしたときに3σで5%以下であることが肝要である。これは、耐HIC特性に優れ、しかも板幅方向における耐HIC特性のばらつきが抑制されていることを意味する。W/4位置、W/2位置、および3W/4位置の耐HIC特性は、好ましくはCARで5%以下である。
[Uniformity of HIC resistance characteristics in the plate width direction]
In the high-strength steel plate for sour line pipe of the present disclosure, the HIC resistance property is 10% or less in CAR at the W / 4 position, W / 2 position, and 3W / 4 position, and the plate width direction It is important that the variation in HIC resistance characteristics is 5% or less at 3σ when the standard deviation of CAR is σ. This means that the HIC resistance is excellent and the variation in the HIC resistance in the plate width direction is suppressed. The HIC resistance characteristics of the W / 4 position, the W / 2 position, and the 3W / 4 position are preferably 5% or less in CAR.

本開示において、「W/4位置、W/2位置、および3W/4位置の耐HIC特性」は、以下の方法で評価するものとする。図2に示すように、鋼板のC断面において、板幅方向がW/4位置、W/2位置、および3W/4位置の板厚中心(計3点)を中心として、厚さ20mm×幅20mmの寸法の試験片を採取する。こうして得た3個の試験片から、それぞれ3個のサンプルを採取して、計9個のサンプルに対して、HIC(水素誘起割れ)特性調査を行う。この調査では、NACEで規定されているTM0284に基づき、Method A環境で行い、水素誘起割れ判定基準として割れ発生面積率(CAR)を求める。本開示の耐サワーラインパイプ用高強度鋼板においては、こうして得る9個のCARが全て10%以下であり、好ましくは5%以下である。 In the present disclosure, "HIC resistance characteristics at W / 4 position, W / 2 position, and 3 W / 4 position" shall be evaluated by the following method. As shown in FIG. 2, in the C cross section of the steel sheet, the thickness is 20 mm × width centered on the center of the plate thickness (3 points in total) at the W / 4, W / 2 position, and 3 W / 4 position in the plate width direction. Take a test piece with a size of 20 mm. Three samples are taken from each of the three test pieces thus obtained, and a total of nine samples are subjected to a HIC (hydrogen-induced cracking) characteristic investigation. In this survey, based on TM0284 defined by NACE, the survey is performed in a Method A environment, and the crack generation area ratio (CAR) is determined as a hydrogen-induced crack determination criterion. In the high-strength steel sheet for sour line pipes of the present disclosure, all nine CARs thus obtained are 10% or less, preferably 5% or less.

また、本開示において「板幅方向の耐HIC特性のばらつき」は、上記9個のCARの標準偏差をσとして求めたときの3σとして評価するものとする。 Further, in the present disclosure, "variation in HIC resistance characteristics in the plate width direction" shall be evaluated as 3σ when the standard deviations of the above nine CARs are calculated as σ.

[引張強さ]
本開示の高強度鋼板は、API 5LのX60グレード以上の強度を有する鋼管用の鋼板であるので、520MPa以上の引張強さを有するものとする。
[Tensile strength]
Since the high-strength steel sheet of the present disclosure is a steel sheet for steel pipes having a strength of X60 grade or higher of API 5L, it is assumed to have a tensile strength of 520 MPa or higher.

[製造方法]
以下、上記耐サワーラインパイプ用高強度鋼板を製造するための製造方法および製造条件について、具体的に説明する。本開示の製造方法は、上記成分組成を有する鋼を連続鋳造して鋳片(スラブ)とし、このスラブの加熱したのち、熱間圧延して鋼板とし、その後当該鋼板に対して制御冷却を行う。このとき、連続鋳造における2次冷却を特定の条件で行い、かつ、スラブ加熱および制御冷却を特定の条件で行うことにより、耐HIC特性に優れ、しかも板幅方向における耐HIC特性のばらつきを抑制した耐サワーラインパイプ用高強度鋼板を製造することができる。
[Production method]
Hereinafter, the manufacturing method and manufacturing conditions for manufacturing the high-strength steel sheet for sour-resistant pipes will be specifically described. In the manufacturing method of the present disclosure, steel having the above composition is continuously cast into a slab, which is heated and then hot-rolled to form a steel sheet, and then controlled cooling is performed on the steel sheet. .. At this time, by performing the secondary cooling in continuous casting under specific conditions and performing slab heating and controlled cooling under specific conditions, the HIC resistance is excellent and the variation in HIC resistance in the plate width direction is suppressed. High-strength steel sheets for sour-resistant pipes can be manufactured.

〔連続鋳造時のスラブの2次冷却方法〕
図3(A),(B)に示すように、鋳片20の幅方向に所定の間隔で配置した複数の二流体スプレーノズル10A,10Bから冷却水をミスト状に噴射し、鋳片20をその長手方向に送りながら冷却する方法であって、二流体スプレーノズル10として、二流体スプレーノズル10直下の水量密度に対する比率が50%となる位置が、前記鋳片20の幅方向における前記冷却水の噴射範囲の両端から距離S(mm)であるものを用い、かつ隣り合う二流体スプレーノズル10A,10Bから噴射される前記冷却水の噴射範囲のラップ代が1.6S以上2.4S以下の範囲となるようにすることを特徴とする鋳片の2次冷却方法を用いる。
[Secondary cooling method for slabs during continuous casting]
As shown in FIGS. 3A and 3B, cooling water is sprayed in a mist form from a plurality of two-fluid spray nozzles 10A and 10B arranged at predetermined intervals in the width direction of the slab 20, and the slab 20 is formed. It is a method of cooling while feeding in the longitudinal direction, and the position where the ratio of the two-fluid spray nozzle 10 to the water amount density directly under the two-fluid spray nozzle 10 is 50% is the cooling water in the width direction of the slab 20. The wrapping allowance of the cooling water injection range injected from the adjacent two-fluid spray nozzles 10A and 10B is 1.6S or more and 2.4S or less, using the one having a distance S (mm) from both ends of the injection range. A secondary cooling method for slabs is used, which is characterized in that it is within the range.

図3は、二流体スプレーノズルから噴射された冷却水の噴射範囲および水量密度分布を模式的に図示したものであり、図3(A)には、二流体スプレーノズル10直下の水量密度に対する水量密度比率が50%となる前記噴射範囲の両端からの距離Sが示され、図3(B)には、2つの二流体スプレーノズル10A,10Bから噴射される冷却水の噴射範囲のラップ代が示されている。 FIG. 3 schematically shows the injection range and the water density distribution of the cooling water jetted from the two-fluid spray nozzle, and FIG. 3 (A) shows the amount of water with respect to the water density immediately below the two-fluid spray nozzle 10. The distance S from both ends of the injection range in which the density ratio is 50% is shown, and FIG. 3B shows the lap allowance of the injection range of the cooling water injected from the two two-fluid spray nozzles 10A and 10B. It is shown.

二流体スプレーノズル10から噴射された冷却水の噴射範囲の両端からの距離Sは、以下の方法により求めることができる。まず、二流体スプレーノズル10から噴射された冷却水の鋳片の幅方向における水量密度分布を測定する。水量密度分布は、鋳片1の幅方向に多数分割された計量枡群の上方に二流体スプレーノズル10を配置し、二流体スプレーノズル10から噴射された冷却水を計量枡毎に計量することにより測定することができる。 The distance S from both ends of the injection range of the cooling water injected from the two-fluid spray nozzle 10 can be obtained by the following method. First, the water density distribution in the width direction of the slab of cooling water sprayed from the two-fluid spray nozzle 10 is measured. For the water amount density distribution, the bifluid spray nozzle 10 is arranged above the measuring basin group divided into a large number in the width direction of the slab 1, and the cooling water injected from the bifluid spray nozzle 10 is weighed for each measuring basin. Can be measured by.

ラップ代が1.6S以上2.4S以下の範囲となるようにする理由は以下のとおりである。すなわち、複数の二流体スプレーノズルを配置して鋳片を2次冷却する場合において、たとえ各二流体スプレーノズルから噴射された冷却水の水量密度が鋳片の幅方向にわたって均一となるように配置したとしても、冷却水の噴射範囲の両端においては衝突圧が低いため鋳片の冷却能が低くなってしまい、鋳片を幅方向にわたって均一に冷却することができない。しかしながら、ラップ代が1.6S以上2.4S以下の範囲であれば、鋳片の幅方向における水量密度分布に加えて、衝突圧分布をも考慮して、鋳片を幅方向にわたって均一に冷却することができる。つまり、この方法によれば、隣り合う二流体スプレーノズル10A,10Bから噴射される冷却水の噴射範囲がラップする領域における冷却能を低下せずに鋳片を冷却することができ、鋳片の幅方向における表面温度偏差を小さくし、ほぼ均一に冷却することができる。これにより、幅方向における中心偏析ばらつきの少ないスラブ製造が可能となる。 The reason for setting the lap allowance to be in the range of 1.6S or more and 2.4S or less is as follows. That is, when a plurality of two-fluid spray nozzles are arranged to secondarily cool the slab, the slab is arranged so that the water amount density of the cooling water sprayed from each two-fluid spray nozzle is uniform over the width direction of the slab. Even so, since the collision pressure is low at both ends of the cooling water injection range, the cooling ability of the slab becomes low, and the slab cannot be uniformly cooled over the width direction. However, if the wrap allowance is in the range of 1.6S or more and 2.4S or less, the slab is uniformly cooled over the width direction in consideration of the collision pressure distribution in addition to the water density distribution in the width direction of the slab. can do. That is, according to this method, the slab can be cooled without reducing the cooling capacity in the region where the injection range of the cooling water injected from the adjacent two-fluid spray nozzles 10A and 10B wraps, and the slab can be cooled. The surface temperature deviation in the width direction can be reduced, and cooling can be performed almost uniformly. This makes it possible to manufacture a slab with little variation in central segregation in the width direction.

なお、図3(B)では、2つの二流体スプレーノズル10A,10Bを用いた例を説明したが、3つ以上の二流体スプレーノズルを配置して鋳片を2次冷却する場合においても、3つ以上の二流体スプレーノズルのうち隣り合うもの同士について、冷却水の噴射範囲のラップ代を上記のように設定すればよい。 In addition, in FIG. 3B, an example using two two-fluid spray nozzles 10A and 10B was described, but even when three or more two-fluid spray nozzles are arranged to secondarily cool the slab. The wrapping allowance of the cooling water injection range may be set as described above for adjacent two or more two-fluid spray nozzles.

また、二流体スプレーノズルとしては、例えば、冷却水と空気の供給管、混合配管およびノズルチップを備えたミストノズルを用いることができるが、これに限定されるものではない。 Further, as the two-fluid spray nozzle, for example, a mist nozzle provided with a cooling water and air supply pipe, a mixing pipe and a nozzle tip can be used, but the two-fluid spray nozzle is not limited thereto.

〔スラブ加熱温度〕
スラブ加熱温度:1000〜1300℃
スラブ加熱温度が1000℃未満では、炭化物の固溶が不十分で必要な強度が得られず、一方1300℃を超えると靭性が劣化するため、スラブ加熱温度は1000〜1300℃とする。なお、この温度は加熱炉の炉内温度であり、スラブは中心部までこの温度に加熱されるものとする。
[Slab heating temperature]
Slab heating temperature: 1000-1300 ° C
If the slab heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained. On the other hand, if the slab heating temperature exceeds 1300 ° C., the toughness deteriorates. Therefore, the slab heating temperature is set to 1000 to 1300 ° C. It should be noted that this temperature is the temperature inside the heating furnace, and the slab is heated to this temperature up to the center.

〔圧延終了温度〕
熱間圧延工程において、高い母材靱性を得るには、圧延終了温度は低いほどよいが、その反面、圧延能率が低下するため、鋼板表面温度における圧延終了温度は、必要な母材靱性と圧延能率を勘案して設定する必要がある。強度および耐HIC特性を向上させる観点からは、圧延終了温度を、鋼板表面温度でAr3変態点以上とすることが好ましい。ここで、Ar3変態点とは、冷却中におけるフェライト変態開始温度を意味し、例えば、鋼の成分から以下の式で求めることができる。また、高い母材靱性を得るためにはオーステナイト未再結晶温度域に相当する950℃以下の温度域での圧下率を60%以上とすることが望ましい。なお、鋼板の表面温度は放射温度計等で測定することができる。
Ar3(℃)=910−310[%C]−80[%Mn]−20[%Cu]−15[%Cr]−55[%Ni]−80[%Mo]
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
[Rolling end temperature]
In the hot rolling process, in order to obtain high base metal toughness, the lower the rolling end temperature, the better, but on the other hand, the rolling efficiency decreases, so the rolling end temperature at the steel sheet surface temperature is the required base material toughness and rolling. It is necessary to set in consideration of efficiency. From the viewpoint of improving the strength and HIC resistance, it is preferable that the rolling end temperature is equal to or higher than the Ar 3 transformation point at the steel sheet surface temperature. Here, the Ar 3 transformation point means the ferrite transformation start temperature during cooling, and can be obtained from the components of steel, for example, by the following equation. Further, in order to obtain high base metal toughness, it is desirable that the reduction rate in the temperature range of 950 ° C. or lower, which corresponds to the austenite unrecrystallized temperature range, be 60% or more. The surface temperature of the steel sheet can be measured with a radiation thermometer or the like.
Ar 3 (° C.) = 910-310 [% C] -80 [% Mn] -20 [% Cu] -15 [% Cr] -55 [% Ni] -80 [% Mo]
However, [% X] indicates the content (mass%) of the X element in the steel.

〔制御冷却の冷却開始温度〕
冷却開始温度:鋼板表面温度で(Ar3−10℃)以上
冷却開始時の鋼板表面温度が低いと、制御冷却前のフェライト生成量が多くなり、特にAr3変態点からの温度降下量が10℃を超えると体積分率で5%を超えるフェライトが生成して、強度低下が大きくなると共に耐HIC特性が劣化するため、冷却開始時の鋼板表面温度は(Ar3−10℃)以上とする。
[Cooling start temperature for controlled cooling]
Cooling start temperature: the steel plate surface temperature (Ar 3 -10 ° C.) or higher cooling starting steel sheet surface temperature is low, the number of ferrite amount before controlled cooling, in particular the amount of temperature drop of from Ar 3 transformation point is 10 ° C. to produce the ferrite exceeds 5% by volume fraction exceeds, for deteriorated HIC resistance with reduction in strength is increased, the steel sheet surface temperature of the cooling at the start and (Ar 3 -10 ℃) or higher ..

〔制御冷却の冷却速度〕
鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上
鋼板平均温度で750℃から550℃までの平均冷却速度が15℃/s未満では、ベイナイト組織が得られずに強度低下や耐HIC特性の劣化が生じる。このため、鋼板平均温度での冷却速度は15℃/s以上とする。鋼板強度と硬さのばらつきの観点からは、鋼板平均の冷却速度は20℃/s以上とすることが好ましい。当該平均冷却速度の上限は特に限定されないが、低温変態生成物が過剰に生成しないように、80℃/s以下とすることが好ましい。
[Cooling rate of controlled cooling]
Average cooling rate from 750 ° C to 550 ° C at average steel sheet temperature: 15 ° C / s or more If the average cooling rate from 750 ° C to 550 ° C at average steel sheet temperature is less than 15 ° C / s, bainite structure cannot be obtained and strength Deterioration and deterioration of HIC resistance characteristics occur. Therefore, the cooling rate at the average temperature of the steel sheet is set to 15 ° C./s or more. From the viewpoint of variations in steel sheet strength and hardness, the average cooling rate of the steel sheet is preferably 20 ° C./s or more. The upper limit of the average cooling rate is not particularly limited, but it is preferably 80 ° C./s or less so that the low temperature transformation product is not excessively produced.

〔冷却停止温度〕
冷却停止温度:鋼板平均温度で250〜550℃
圧延終了後、制御冷却でベイナイト変態の温度域である250〜550℃まで急冷することにより、ベイナイト相を生成させる。冷却停止温度が550℃を超えると、ベイナイト変態が不完全であり、十分な強度が得られない。また、冷却停止温度が250℃未満では、表層部の硬さ上昇が著しくなる。好ましくは、350〜500℃である。
[Cooling stop temperature]
Cooling stop temperature: 250 to 550 ° C at average steel sheet temperature
After the rolling is completed, the bainite phase is formed by quenching to 250 to 550 ° C., which is the temperature range of bainite transformation, by controlled cooling. If the cooling stop temperature exceeds 550 ° C., the bainite transformation is incomplete and sufficient strength cannot be obtained. Further, when the cooling stop temperature is less than 250 ° C., the hardness of the surface layer portion increases remarkably. Preferably, it is 350 to 500 ° C.

なお、鋼板平均温度は、物理的に直接測定することはできないが、放射温度計にて測定された冷却開始時の表面温度と目標の冷却停止時の表面温度をもとに、例えばプロセスコンピューターを用いて差分計算により板厚断面内の温度分布をリアルタイムに求めることができる。当該温度分布における板厚方向の温度の平均値を本明細書における「鋼板平均温度」とする。 Although the average temperature of the steel plate cannot be physically measured directly, for example, a process computer can be used based on the surface temperature at the start of cooling and the surface temperature at the target cooling stop measured by a radiation thermometer. The temperature distribution in the plate thickness cross section can be obtained in real time by using the difference calculation. The average value of the temperature in the plate thickness direction in the temperature distribution is referred to as the "average temperature of the steel plate" in the present specification.

[高強度鋼管]
本開示の高強度鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、突き合わせ部を溶接することにより、原油や天然ガスの輸送に好適な鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。
[High-strength steel pipe]
The high-strength steel sheet of the present disclosure is formed into a tubular shape by press bend forming, roll forming, UOE forming, etc., and then the butt portion is welded to provide excellent material uniformity in the steel sheet suitable for transporting crude oil and natural gas. High-strength steel pipes for sour-resistant pipes (UOE steel pipes, welded steel pipes, spiral steel pipes, etc.) can be manufactured.

例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面溶接および外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。 For example, in a UOE steel pipe, the end portion of a steel plate is grooved, formed into a steel pipe shape by C press, U press, and O press, and then the butt portion is seam welded by inner surface welding and outer surface welding, and further, if necessary. Manufactured through a pipe expansion process. The welding method may be any method as long as sufficient joint strength and joint toughness can be obtained, but from the viewpoint of excellent welding quality and manufacturing efficiency, submerged arc welding is preferably used.

表1に示す成分組成になる鋼(鋼種A〜M)を、連続鋳造法によりスラブ幅1600mmのスラブとした。2次冷却では、幅方向に所定の間隔で配置した3個の二流体スプレーノズルからミスト状に噴射される冷却水の噴射範囲のラップ代を、表2に示す値として2次冷却した。なお、鋳片20の幅方向における冷却水の噴射範囲の両端から二流体スプレーノズル直下の水量密度に対する比率が50%となる位置までの距離Sは、70mmで固定した。 The steels (steel grades A to M) having the composition shown in Table 1 were prepared into slabs having a slab width of 1600 mm by a continuous casting method. In the secondary cooling, the lap allowance in the injection range of the cooling water sprayed in a mist shape from the three two-fluid spray nozzles arranged at predetermined intervals in the width direction was used as the value shown in Table 2 for the secondary cooling. The distance S from both ends of the cooling water injection range in the width direction of the slab 20 to the position where the ratio to the water density immediately below the two-fluid spray nozzle is 50% was fixed at 70 mm.

こうして得たスラブを、表2に示す温度に加熱した後、表2に示す圧延終了温度および圧下率の熱間圧延をして、表2に示す板厚の鋼板とした。その後、鋼板に対して、表2に示す条件下で水冷型の制御冷却装置を用いて制御冷却を行った。 The slab thus obtained was heated to the temperature shown in Table 2 and then hot-rolled at the rolling end temperature and the rolling reduction ratio shown in Table 2 to obtain a steel sheet having a plate thickness shown in Table 2. Then, the steel sheet was controlled-cooled using a water-cooled control cooling device under the conditions shown in Table 2.

Figure 0006798565
Figure 0006798565

Figure 0006798565
Figure 0006798565

[組織の特定]
得られた鋼板のミクロ組織を、光学顕微鏡および走査型電子顕微鏡により観察した。鋼板の板厚中央(t/2位置)での組織を、表3に示す。
[Organization identification]
The microstructure of the obtained steel sheet was observed with an optical microscope and a scanning electron microscope. Table 3 shows the structure of the steel sheet at the center of the thickness (t / 2 position).

[引張特性の評価]
各水準において得られた鋼板から圧延直角方向の全厚試験片(API5L規格)を採取して、これを引張試験片として引張試験を行い、降伏強度(0.5%耐力)および引張強度を測定した。降伏強度450MPa以上、引張強度520MPa以上が目標範囲である。結果を表3に示す。
[Evaluation of tensile properties]
A total thickness test piece (API5L standard) in the direction perpendicular to rolling is taken from the steel sheet obtained at each level, and a tensile test is performed using this as a tensile test piece to measure the yield strength (0.5% proof stress) and tensile strength. did. The target range is a yield strength of 450 MPa or more and a tensile strength of 520 MPa or more. The results are shown in Table 3.

[板幅方向における耐HIC特性のばらつきの評価]
既述の方法で、W/4位置、W/2位置、および3W/4位置から各々3個のサンプルを採取し、CARを測定した。こうして得た9個の測定値のうちの最大値を表3の「耐HIC特性」の欄に示す。また、9個のCARの標準偏差をσとして求めたときの3σも表3に示す。最大値は10%以下、3σは5%以下が目標範囲である。
[Evaluation of variation in HIC resistance characteristics in the plate width direction]
Three samples were taken from each of the W / 4, W / 2, and 3W / 4 positions by the method described above, and the CAR was measured. The maximum value among the nine measured values thus obtained is shown in the column of "HIC resistance characteristics" in Table 3. Table 3 also shows 3σ when the standard deviations of the nine CARs are calculated as σ. The maximum value is 10% or less, and 3σ is 5% or less.

[Mn濃化スポットの測定]
既述の方法で板幅方向の長さ100mm当たりの、長軸長さ1.5mm超えのMn濃化スポットの数を測定した。3個以下が目標範囲である。結果を表3に示す。
[Measurement of Mn concentrated spot]
The number of Mn-enriched spots having a major axis length of more than 1.5 mm per 100 mm in the plate width direction was measured by the method described above. The target range is 3 or less. The results are shown in Table 3.

[DWTT試験]
各水準において得られた鋼板からAPI−5Lに準拠したDWTT試験片を採取し、0〜−80℃の試験温度で試験を行い、SA値(Shear Area:延性破面率)が85%となる遷移温度を求めた。遷移温度は−50℃以下が目標範囲である。結果を表3に示す。
[DWTT test]
DWTT test pieces conforming to API-5L are collected from the steel sheets obtained at each level and tested at a test temperature of 0 to -80 ° C, and the SA value (Shear Area: ductile fracture surface ratio) becomes 85%. The transition temperature was calculated. The target range for the transition temperature is -50 ° C or lower. The results are shown in Table 3.

Figure 0006798565
Figure 0006798565

No.1〜13は発明例であり、成分組成が本発明の範囲であり、製造方法が本発明の鋼板を得るための好適な条件の範囲内となっている。いずれも、降伏強度450MPa以上、引張強度520MPa以上、DWTT試験での85%SATTを−50℃以下、耐HIC特性の板幅方向のばらつきも小さく、いずれの特性も良好であった。 No. 1 to 13 are examples of the invention, the component composition is within the range of the present invention, and the manufacturing method is within the range of suitable conditions for obtaining the steel sheet of the present invention. In each case, the yield strength was 450 MPa or more, the tensile strength was 520 MPa or more, the 85% SATT in the DWTT test was −50 ° C. or less, the variation in the HIC resistance characteristics in the plate width direction was small, and all the characteristics were good.

一方、No.14〜22は比較例であり、成分組成は本発明の範囲内であるが、製造方法が本発明の鋼板を得るための好適な条件の範囲外となっている。No.14は、スラブ加熱温度が低く、ミクロ組織の均質化と炭化物の固溶が不十分であり低強度であった。
No.15は、冷却開始温度が低く、フェライトが析出しすぎたため、低強度であり、且つ耐HIC特性が劣っていた。
No.16およびNo.18は、制御冷却条件が好適な条件の範囲外で、ミクロ組織として板厚中心部でパーライトが析出しすぎたため、低強度であり、且つ耐HIC特性が劣っていた。
No.17は、冷却停止温度が低く、マルテンサイトや島状マルテンサイト(MA)の硬質相が生成したため、DWTT特性と耐HIC特性が劣っていた。
No.19〜No.22は、いずれもスラブ段階の2次冷却条件が好適な条件の範囲外で、中心偏析部のMn濃化が多く、鋼板板幅方向の耐HIC特性ばらつきが大きく、HIC特性が劣っていた。
No.23〜No.27は、成分組成が本発明の範囲外であり、中心偏析部のMn濃化が多く、鋼板板幅方向のHIC特性ばらつきが大きく、HIC特性が劣っていた。
On the other hand, No. 14 to 22 are comparative examples, and the composition of the components is within the range of the present invention, but the production method is outside the range of suitable conditions for obtaining the steel sheet of the present invention. No. In No. 14, the slab heating temperature was low, the homogenization of the microstructure and the solid solution of carbides were insufficient, and the strength was low.
No. In No. 15, the cooling start temperature was low and ferrite was deposited too much, so that the strength was low and the HIC resistance was inferior.
No. 16 and No. No. 18 had low strength and was inferior in HIC resistance characteristics because pearlite was excessively precipitated in the central portion of the plate thickness as a microstructure when the control cooling conditions were out of the preferable range.
No. In No. 17, the cooling stop temperature was low and a hard phase of martensite or island-shaped martensite (MA) was formed, so that the DWTT characteristics and the HIC resistance characteristics were inferior.
No. 19-No. In each of No. 22, the secondary cooling conditions in the slab stage were outside the range of suitable conditions, the Mn concentration in the central segregated portion was large, the HIC resistance characteristics in the steel plate plate width direction varied widely, and the HIC characteristics were inferior.
No. 23-No. In No. 27, the component composition was out of the range of the present invention, the Mn concentration in the central segregated portion was large, the HIC characteristics in the steel plate plate width direction varied widely, and the HIC characteristics were inferior.

本発明の耐サワーラインパイプ用高強度鋼板は、耐HIC特性に優れ、しかも板幅方向における耐HIC特性のばらつきが抑制されている。よって、この鋼板を冷間成形して製造した鋼管(電縫鋼管、スパイラル鋼管、UOE鋼管等)は、耐サワー性を要する硫化水素を含む原油や天然ガスの輸送に好適に使用することができる。 The high-strength steel sheet for sour line pipes of the present invention has excellent HIC resistance characteristics, and variations in HIC resistance characteristics in the plate width direction are suppressed. Therefore, steel pipes (electrosewn steel pipes, spiral steel pipes, UOE steel pipes, etc.) produced by cold forming this steel sheet can be suitably used for transporting crude oil and natural gas containing hydrogen sulfide, which requires sour resistance. ..

10,10A,10B 二流体スプレーノズル
20 鋳片
10, 10A, 10B two-fluid spray nozzle 20 slab

Claims (4)

質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.50〜1.80%、P:0.001〜0.015%、S:0.0002〜0.0015%、Al:0.01〜0.08%およびCa:0.0005〜0.005%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板の圧延方向に垂直な断面において、板幅をWとして、鋼板の板幅方向の片端から、W/4の位置、W/2の位置、および3W/4の位置における鋼板の板厚中心である3点のそれぞれを中心として板厚方向に±5mm、板幅方向に±200mmの測定領域において、楕円形状と近似した長軸長さ1.5mm超えのMn濃化スポットの数が、板幅方向の長さ100mm当たりに3個以下であり、
鋼板の圧延方向に垂直な断面において、板幅をWとして、鋼板の板幅方向の片端から、W/4の位置、W/2の位置、および3W/4の位置における鋼板の板厚中心である3点のそれぞれを中心として、厚さ20mm×幅20mmの寸法の試験片を採取し、こうして得た3個の試験片から、それぞれ3個のサンプルを採取して、計9個のサンプルに対してHIC特性試験を行った際に全てのサンプルの耐HIC特性がCARで10%以下であり、
板幅方向の耐HIC特性のばらつきが、前記9個のサンプルのCARの標準偏差をσとしたときに3σで5%以下であり、
520MPa以上の引張強さを有する
ことを特徴とする耐サワーラインパイプ用高強度鋼板。
By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015%, S: It contains 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and has a component composition in which the balance consists of Fe and unavoidable impurities.
In the cross section perpendicular to the rolling direction of the steel plate, where W is the plate width, from one end in the plate width direction of the steel plate, at the center of the thickness of the steel plate at the W / 4, W / 2, and 3W / 4 positions. ± 5 mm in the thickness direction around the respective certain three points, Oite the measurement region of ± 200 mm in the sheet width direction, the number of Mn concentrated spot beyond major axis 1.5mm approximates an elliptical shape, 3 or less per 100 mm of length in the plate width direction,
In the cross section perpendicular to the rolling direction of the steel plate, where W is the plate width, from one end in the plate width direction of the steel plate, at the center of the thickness of the steel plate at the W / 4, W / 2, and 3W / 4 positions . A test piece having a thickness of 20 mm and a width of 20 mm was collected around each of the three points, and three samples were taken from each of the three test pieces thus obtained to make a total of nine samples. On the other hand, when the HIC characteristic test was performed, the HIC resistance characteristics of all the samples were 10% or less in CAR.
The variation in HIC resistance characteristics in the plate width direction is 5% or less at 3σ when the standard deviation of the CARs of the nine samples is σ.
A high-strength steel sheet for sour line pipes, which has a tensile strength of 520 MPa or more.
前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、請求項1に記載の耐サワーラインパイプ用高強度鋼板。 The component composition is further selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less in mass%. The high-strength steel plate for sour-resistant pipes according to claim 1, which contains two or more types. 前記成分組成が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%、およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有する、請求項1または2に記載の耐サワーラインパイプ用高強度鋼板。 The component composition was further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% in mass%. The high-strength steel plate for sour line pipe according to claim 1 or 2, which contains seeds or two or more kinds. 請求項1〜3のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管。 A high-strength steel pipe using the high-strength steel plate for sour-resistant line pipe according to any one of claims 1 to 3.
JP2018564993A 2017-10-19 2017-10-19 High-strength steel sheets for sour-resistant pipes and high-strength steel pipes using them Active JP6798565B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037891 WO2019077725A1 (en) 2017-10-19 2017-10-19 High-strength steel sheet for sour-resistant line pipe, and high-strength steel pipe using same

Publications (2)

Publication Number Publication Date
JPWO2019077725A1 JPWO2019077725A1 (en) 2019-11-14
JP6798565B2 true JP6798565B2 (en) 2020-12-09

Family

ID=66174107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018564993A Active JP6798565B2 (en) 2017-10-19 2017-10-19 High-strength steel sheets for sour-resistant pipes and high-strength steel pipes using them

Country Status (6)

Country Link
EP (1) EP3674433A4 (en)
JP (1) JP6798565B2 (en)
KR (1) KR102497363B1 (en)
CN (1) CN111247261A (en)
BR (1) BR112020007057B1 (en)
WO (1) WO2019077725A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151737B (en) * 2021-02-25 2022-06-07 江阴兴澄特种钢铁有限公司 08Ni3DR steel plate with hydrogen induced cracking resistance and manufacturing method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647302B2 (en) 1992-03-30 1997-08-27 新日本製鐵株式会社 Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH07136752A (en) * 1993-11-18 1995-05-30 Nippon Steel Corp Secondary cooling method for slab in continuous casting and its device
JPH07173536A (en) 1993-12-16 1995-07-11 Nippon Steel Corp Production of steel sheet for high strength line pipe excellent in sour resistance
JPH0957327A (en) 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JP3796133B2 (en) 2000-04-18 2006-07-12 新日本製鐵株式会社 Thick steel plate cooling method and apparatus
JP2002327212A (en) 2001-02-28 2002-11-15 Nkk Corp Method for manufacturing sour resistant steel sheet for line pipe
JP3711896B2 (en) 2001-06-26 2005-11-02 Jfeスチール株式会社 Manufacturing method of steel sheets for high-strength line pipes
JP2003313638A (en) * 2002-04-22 2003-11-06 Jfe Steel Kk High-strength steel sheet superior in hic resistance and manufacturing method therefor
JP5634662B2 (en) * 2008-02-07 2014-12-03 Jfeスチール株式会社 Accelerated cooling type thin wall steel plate with excellent homogeneity
BR112012005189A2 (en) * 2009-09-09 2016-03-08 Nippon Steel Corp steel sheets for use in high-strength oil pipelines and steel for use in high-resistance oil pipelines with excellent low temperature toughness
KR101224955B1 (en) * 2010-08-30 2013-01-22 현대제철 주식회사 Device for controlling cooling of strand and method therefor
JP5672916B2 (en) * 2010-09-30 2015-02-18 Jfeスチール株式会社 High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP5192074B2 (en) * 2010-12-20 2013-05-08 Thk株式会社 Seal member and linear motion guide apparatus using the same
JP5900303B2 (en) * 2011-12-09 2016-04-06 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP6044247B2 (en) * 2011-12-13 2016-12-14 Jfeスチール株式会社 Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking
JP5853661B2 (en) * 2011-12-15 2016-02-09 Jfeスチール株式会社 Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
JP2014077642A (en) * 2012-10-09 2014-05-01 Jfe Steel Corp Estimation method of hic sensitivity of steel material and manufacturing method of high strength thick steel plate for line pipe superior in anti hic performance using the same
JP6169025B2 (en) * 2013-03-29 2017-07-26 株式会社神戸製鋼所 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
WO2014208089A1 (en) * 2013-06-27 2014-12-31 Jfeスチール株式会社 Hot-rolled high-strength steel sheet and process for production thereof
JP6115735B2 (en) * 2014-07-25 2017-04-19 Jfeスチール株式会社 Steel continuous casting method
KR20160147153A (en) * 2015-06-12 2016-12-22 동국제강주식회사 Manufacturing method of high strength steel plate for line pipe and high strength steel plate for line pipe
JP6641875B2 (en) * 2015-10-21 2020-02-05 日本製鉄株式会社 Low yield ratio steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
CN111247261A (en) 2020-06-05
BR112020007057A2 (en) 2020-10-06
EP3674433A1 (en) 2020-07-01
WO2019077725A1 (en) 2019-04-25
BR112020007057B1 (en) 2022-07-12
KR102497363B1 (en) 2023-02-08
KR20200058490A (en) 2020-05-27
JPWO2019077725A1 (en) 2019-11-14
EP3674433A4 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6004144B1 (en) High-strength ERW steel pipe and manufacturing method thereof
JP4819186B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP4940882B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP4819185B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP6521197B2 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP4837789B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP6825748B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
JP2012077331A (en) High strength steel sheet for sour-resistant line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2016006209A (en) Hot rolled steel sheet having high strength and excellent in low temperature toughness and production method therefor
JP6825749B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
CN106011622B (en) A kind of manufacturing method of the welded still pipe of the high deformation performance of superhigh intensity
WO2021193383A1 (en) High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe
US9487841B2 (en) Linepipe steel
JP6798565B2 (en) High-strength steel sheets for sour-resistant pipes and high-strength steel pipes using them
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP7048378B2 (en) High strength and high ductility steel sheet
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP7163777B2 (en) Steel plate for line pipe
JP7472826B2 (en) Electric resistance welded steel pipe and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6798565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250