JP6796941B2 - Method for Manufacturing Silicon Carbide Single Crystal Ingot - Google Patents

Method for Manufacturing Silicon Carbide Single Crystal Ingot Download PDF

Info

Publication number
JP6796941B2
JP6796941B2 JP2016068465A JP2016068465A JP6796941B2 JP 6796941 B2 JP6796941 B2 JP 6796941B2 JP 2016068465 A JP2016068465 A JP 2016068465A JP 2016068465 A JP2016068465 A JP 2016068465A JP 6796941 B2 JP6796941 B2 JP 6796941B2
Authority
JP
Japan
Prior art keywords
single crystal
sic
silicon carbide
crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016068465A
Other languages
Japanese (ja)
Other versions
JP2017178673A (en
Inventor
佐藤 信也
信也 佐藤
藤本 辰雄
辰雄 藤本
弘志 柘植
弘志 柘植
勝野 正和
正和 勝野
正史 中林
正史 中林
昌史 牛尾
昌史 牛尾
小桃 谷
小桃 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016068465A priority Critical patent/JP6796941B2/en
Publication of JP2017178673A publication Critical patent/JP2017178673A/en
Application granted granted Critical
Publication of JP6796941B2 publication Critical patent/JP6796941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、坩堝内に装填した炭化珪素原料を加熱して昇華ガスを発生させ、坩堝内に対向配置した炭化珪素の種結晶上に再結晶させる昇華再結晶法により、種結晶上に炭化珪素単結晶を成長させて炭化珪素単結晶インゴットを製造する方法に関するものである。 The present invention uses a sublimation recrystallization method in which a silicon carbide raw material loaded in a crucible is heated to generate a sublimation gas and recrystallized on a seed crystal of silicon carbide opposed to the crucible. The present invention relates to a method for producing a silicon carbide single crystal ingot by growing a single crystal.

炭化珪素(SiC)は、広い禁制帯幅を有するワイドバンドギャップ半導体であり、耐電圧性や耐熱性等で従来のシリコン(Si)をはるかに凌ぐ特性を有することから、次世代の半導体材料として研究開発が進められている。 Silicon carbide (SiC) is a wide bandgap semiconductor with a wide forbidden bandwidth, and has properties far superior to conventional silicon (Si) in terms of withstand voltage and heat resistance, so it can be used as a next-generation semiconductor material. Research and development is underway.

炭化珪素単結晶(SiC単結晶)を成長させる技術のひとつとして、坩堝内に装填したSiC原料を加熱して昇華ガスを発生させ、坩堝内に対向配置したSiCの種結晶上にSiC単結晶を再結晶させる昇華再結晶法がある(改良レーリー法とも呼ばれる)。すなわち、この方法では、坩堝の蓋体に種結晶を取り付け、坩堝の容器本体(坩堝本体)にSiC原料を配置して、SiC原料を昇華させることで、種結晶上にバルク状のSiC単結晶を成長させる。その際には、成長する単結晶中への不純物ドーピングが可能であり、例えば、n型SiC単結晶の場合には、成長中の雰囲気ガスへ窒素(N2)ガスを添加することができる。そして、略円柱状をしたバルク状のSiC単結晶(インゴット)を得た後、一般には、300〜600μm程度の厚さに切り出した上で、SiC単結晶基板を製造し、パワーエレクトロニクス等の分野でSiCデバイスの作製に供される。 As one of the techniques for growing a silicon carbide single crystal (SiC single crystal), the SiC raw material loaded in the pit is heated to generate a sublimation gas, and the SiC single crystal is formed on the SiC seed crystals opposed to each other in the pit. There is a sublimation recrystallization method for recrystallization (also called an improved Rayleigh method). That is, in this method, a seed crystal is attached to the lid of the crucible, a SiC raw material is placed on the container body (crucible body) of the crucible, and the SiC raw material is sublimated to form a bulk SiC single crystal on the seed crystal. To grow. At that time, impurity doping into the growing single crystal is possible. For example, in the case of an n-type SiC single crystal, nitrogen (N 2 ) gas can be added to the growing atmospheric gas. Then, after obtaining a substantially columnar bulk-shaped SiC single crystal (ingot), it is generally cut out to a thickness of about 300 to 600 μm, and then a SiC single crystal substrate is manufactured to manufacture a SiC single crystal substrate in fields such as power electronics. Is used for manufacturing SiC devices.

このような昇華再結晶法による結晶成長には2000℃を超える温度が必要であり、しかも、種結晶とSiC原料を配した坩堝側とに温度勾配を設けて結晶成長を行うことなどから、得られるSiC単結晶には、如何しても転位や積層欠陥等が含まれてしまう。このうち、転位としては、貫通刃状転位(TED)、基底面転位(BPD)、及び貫通らせん転位(TSD)が含まれ、例えば、市販されているSiC単結晶基板では、貫通らせん転位が8×102〜3×103(個/cm2)、貫通刃状転位が5×103〜2×104(個/cm2)、基底面転位が2×103〜2×104(個/cm2)程度存在するという報告がある(非特許文献1参照)。なかでも、例えば、TSDはデバイスの酸化膜不良を引き起こして絶縁破壊の原因となり、また、TEDはデバイスのリーク電流の原因となることなどが知られており、高性能SiCデバイスの作製のためには、これらの転位をできるだけ低減させる必要がある。 Crystal growth by such a sublimation recrystallization method requires a temperature exceeding 2000 ° C., and the crystal growth is obtained by providing a temperature gradient between the seed crystal and the pit side where the SiC raw material is arranged. The SiC single crystal produced contains dislocations, stacking defects, and the like. Of these, the dislocations include through-blade dislocations (TED), basal plane dislocations (BPD), and through-spiral dislocations (TSD). For example, in a commercially available SiC single crystal substrate, the through-spiral dislocation is 8 × 10 2 to 3 × 10 3 (pieces / cm 2 ), through-blade dislocations 5 × 10 3 to 2 × 10 4 (pieces / cm 2 ), basal dislocations 2 × 10 3 to 2 × 10 4 ( There is a report that there are about 1 piece / cm 2 ) (see Non-Patent Document 1). Among them, for example, it is known that TSD causes poor oxide film of the device and causes dielectric breakdown, and TED causes leakage current of the device. For the production of high-performance SiC device. Need to reduce these dislocations as much as possible.

そこで、得られるSiC単結晶の転位密度を低減させるために様々な方法が研究され、また検討されている。例えば、所定の成長圧力及び基板温度で初期成長層としてのSiC単結晶を成長させた後、基板温度及び圧力を徐々に減じながら結晶成長を行うことで、マイクロパイプと共にTSDの少ないSiC単結晶を得る方法(特許文献1参照)や、所定の成長圧力、及び基板温度によってSiC単結晶を初期成長層として成長させた後、基板温度はそのまま維持し、減圧して成長速度を高めて結晶成長させることで、マイクロパイプの発生を抑え、かつ、TSD等の転位密度を少なくさせる方法(特許文献2参照)などがある。 Therefore, various methods have been studied and studied in order to reduce the dislocation density of the obtained SiC single crystal. For example, by growing a SiC single crystal as an initial growth layer at a predetermined growth pressure and substrate temperature, and then performing crystal growth while gradually reducing the substrate temperature and pressure, a SiC single crystal having less TSD can be produced together with a micropipe. After growing a SiC single crystal as an initial growth layer by a method for obtaining it (see Patent Document 1), a predetermined growth pressure, and a substrate temperature, the substrate temperature is maintained as it is, and the pressure is reduced to increase the growth rate to grow crystals. Therefore, there is a method of suppressing the generation of micropipes and reducing the dislocation density of TSD or the like (see Patent Document 2).

また、SiC原料に含まれた不純物がSiC単結晶中に取り込まれると結晶欠陥を引き起こしてしまうとして、不純物元素の含有量が0.1ppm以下の高純度SiC原料を用いる方法が提案されている(特許文献3参照)。すなわち、SiC原料として坩堝内に装填する炭化珪素粉末は、一般にアチソン法により得られたものが使用される。このアチソン法では、黒鉛や石油コークス等のカーボン材料とケイ砂(シリカ)とを電気炉で直接通電して還元することで炭化珪素を合成することから、炭化珪素を大量に製造することができるが、得られた凝結塊を粉砕する必要があるため、粉砕工程で混入したり、或いは材料に由来して不純物が多く含まれてしまう。そこで、この特許文献3では、アチソン法で得られた炭化珪素粉末を2100℃〜2500℃で熱処理することで、所定の元素(周期表の1族から16族元素に属する原子番号3以上の元素であって、原子番号6〜8及び同14〜16の元素を除いたもの)からなる不純物元素を除去して、昇華再結晶法のSiC原料としている。 Further, since impurities contained in the SiC raw material cause crystal defects when incorporated into the SiC single crystal, a method using a high-purity SiC raw material having an impurity element content of 0.1 ppm or less has been proposed. See Patent Document 3). That is, as the silicon carbide powder to be loaded into the crucible as the SiC raw material, the one obtained by the Acheson method is generally used. In this Achison method, silicon carbide is synthesized by directly energizing and reducing carbon materials such as graphite and petroleum coke and silica sand (silica) in an electric furnace, so that silicon carbide can be produced in large quantities. However, since it is necessary to crush the obtained agglomerates, they may be mixed in the crushing step or contain a large amount of impurities derived from the material. Therefore, in Patent Document 3, by heat-treating the silicon carbide powder obtained by the Achison method at 2100 ° C to 2500 ° C, a predetermined element (elements having an atomic number of 3 or more belonging to groups 1 to 16 of the periodic table) It is used as a SiC raw material for the sublimation recrystallization method by removing an impurity element (excluding elements having atomic numbers 6 to 8 and 14 to 16).

しかしながら、従来の方法において、昇華再結晶法での成長条件の最適化を図ったり、SiC原料の不純物を除去して調整しても転位等の結晶欠陥を効果的に低減させるまでには至っていない。特に、SiCデバイスのコストを抑えて普及させるなどの目的から、得られるSiC単結晶の口径やサイズの大型化は重要であるが、大きなSiC単結晶を製造しようとすると結晶欠陥の発生はより顕著になってしまう。 However, in the conventional method, even if the growth conditions are optimized by the sublimation recrystallization method or the impurities of the SiC raw material are removed and adjusted, crystal defects such as dislocations have not been effectively reduced. .. In particular, it is important to increase the diameter and size of the obtained SiC single crystal for the purpose of suppressing the cost of the SiC device and popularizing it, but the occurrence of crystal defects is more remarkable when trying to produce a large SiC single crystal. Become.

特開2002−284599号公報JP-A-2002-284599 特開2007−119273号公報JP-A-2007-119273 特開2009−173501号公報JP-A-2009-173501

大谷昇、SiC及び関連ワイドギャップ半導体研究会第17回講演会予稿集、2008、p8Noboru Otani, SiC and Related Wide Gap Semiconductor Study Group 17th Lecture Proceedings, 2008, p8

上述したように、種結晶上にSiC単結晶を成長させる昇華再結晶法において、従来の方法では、転位等の結晶欠陥を確実に低減させるまでには至っておらず、これらの結晶欠陥が発生する原因についても十分に解明できているとは言えない状況である。 As described above, in the sublimation recrystallization method for growing a SiC single crystal on a seed crystal, the conventional method has not been able to reliably reduce crystal defects such as dislocations, and these crystal defects occur. It cannot be said that the cause has been fully elucidated.

そこで、本発明者らは、坩堝に装填したSiC原料に含まれる不純物の挙動に着目して検討を重ねたところ、種結晶上に成長するSiC単結晶の大きさとの関係においてその不純物元素の量がある一定量に達したときに、結晶欠陥が発現することを突き止めた。そして、SiC原料に含まれる不純物元素の総量Qを種結晶の結晶成長表面の面積Sで除した値(Q/S)で結晶欠陥の発生を制御することができることを見出し、本発明を完成させた。 Therefore, the present inventors have repeatedly studied the behavior of impurities contained in the SiC raw material loaded in the crucible, and found that the amount of the impurity elements in relation to the size of the SiC single crystal growing on the seed crystal. It was found that crystal defects develop when a certain amount is reached. Then, they found that the occurrence of crystal defects can be controlled by the value (Q / S) obtained by dividing the total amount Q of the impurity elements contained in the SiC raw material by the area S of the crystal growth surface of the seed crystal, and completed the present invention. It was.

したがって、本発明の目的は、マイクロパイプや転位等の結晶欠陥の発生を制御してSiC単結晶を成長させることができ、結晶欠陥の少ない良質なSiC単結晶インゴットを製造することができるSiC単結晶インゴットの製造方法を提供することにある。 Therefore, an object of the present invention is to control the occurrence of crystal defects such as micropipes and dislocations to grow a SiC single crystal, and to produce a high-quality SiC single crystal ingot with few crystal defects. The purpose is to provide a method for producing a crystalline ingot.

すなわち、本発明の要旨は次のとおりである。
(1)坩堝内に装填した炭化珪素原料を加熱して昇華ガスを発生させ、坩堝内に対向配置した炭化珪素の種結晶上に再結晶させる昇華再結晶法により、種結晶上に炭化珪素単結晶を成長させて炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法であって、炭化珪素原料に含まれる不純物元素の総量Qを炭化珪素単結晶が成長する種結晶の結晶成長表面の面積Sで除した値(Q/S)が10mg/cm2以下となる条件で、炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶インゴットの製造方法。
(2)炭化珪素原料に含まれる不純物元素の総量Qは、含有量が0.01質量ppm以上の不純物元素を合計したものである(1)に記載の炭化珪素単結晶インゴットの製造方法。
(3)炭化珪素原料に含まれる不純物元素の総量Qは、金属元素不純物であるAl、Fe、Ti、Cr、Ni、及びVの含有量を合計した総量で擬制される(1)又は(2)に記載の炭化珪素単結晶インゴットの製造方法。
That is, the gist of the present invention is as follows.
(1) Silicon carbide single crystal on the seed crystal by the sublimation recrystallization method in which the silicon carbide raw material loaded in the pit is heated to generate sublimation gas and recrystallized on the seed crystal of silicon carbide arranged opposite to each other in the pit. A method for producing a silicon carbide single crystal ingot by growing a crystal to produce a silicon carbide single crystal ingot, wherein the total amount Q of impurity elements contained in the silicon carbide raw material is the crystal growth surface of the seed crystal in which the silicon carbide single crystal grows. A method for producing a silicon carbide single crystal ingot, which comprises growing a silicon carbide single crystal under the condition that the value (Q / S) divided by the area S of is 10 mg / cm 2 or less.
(2) The method for producing a silicon carbide single crystal ingot according to (1), wherein the total amount Q of the impurity elements contained in the silicon carbide raw material is the total of the impurity elements having a content of 0.01 mass ppm or more.
(3) The total amount Q of impurity elements contained in the silicon carbide raw material is simulated by the total amount of the total contents of metal element impurities Al, Fe, Ti, Cr, Ni, and V (1) or (2). ). The method for producing a silicon carbide single crystal impurity.

本発明によれば、転位等の結晶欠陥の発生を制御しながらSiC単結晶を成長させることができ、結晶欠陥の少ない良質なSiC単結晶インゴットを製造することができる。本発明のようにして、結晶欠陥の発生が制御可能になることで、SiC単結晶インゴットの口径やサイズを大型化した場合でも良質なSiC単結晶インゴットを得ることができるようになり、また、いたずらにSiC原料の高純度化を図る必要がなくなることから、SiCデバイスのコストを抑えることができるようにもなる。 According to the present invention, a SiC single crystal can be grown while controlling the occurrence of crystal defects such as dislocations, and a high-quality SiC single crystal ingot with few crystal defects can be produced. By making it possible to control the occurrence of crystal defects as in the present invention, it becomes possible to obtain a high-quality SiC single crystal ingot even when the diameter and size of the SiC single crystal ingot are increased. Since it is not necessary to unnecessarily purify the SiC raw material, the cost of the SiC device can be suppressed.

図1は、SiC単結晶インゴットの種結晶近傍における結晶成長領域を結晶成長方向と平行に切断した縦断面の光学顕微鏡写真(倍率100倍)であり、(a)は試験例4のSiC単結晶インゴットであり、(b)は試験例1のSiC単結晶インゴットの場合である。FIG. 1 is an optical micrograph (magnification of 100 times) of a vertical cross section obtained by cutting a crystal growth region in the vicinity of a seed crystal of a SiC single crystal ingot in parallel with the crystal growth direction, and (a) is a SiC single crystal of Test Example 4. It is an ingot, and (b) is the case of the SiC single crystal ingot of Test Example 1. 図2は、SiC単結晶インゴットの製造に用いた改良型レーリー法による単結晶成長装置の説明図である。FIG. 2 is an explanatory diagram of a single crystal growth apparatus by the improved Rayleigh method used for manufacturing a SiC single crystal ingot.

以下、本発明について詳しく説明する。
本発明は、坩堝内に装填した炭化珪素(SiC)原料を加熱して昇華ガスを発生させ、坩堝内に対向配置した炭化珪素(SiC)の種結晶上に再結晶させる昇華再結晶法により、種結晶上に炭化珪素(SiC)単結晶を成長させる炭化珪素(SiC)単結晶インゴットの製造方法に関し、SiC原料に含まれる不純物元素の総量QをSiC単結晶が成長する種結晶の結晶成長表面の面積Sで除した値(Q/S)が10mg/cm2以下となる条件でSiC単結晶を成長させることで、転位やマイクロパイプ等の結晶欠陥の発生を抑制する。
Hereinafter, the present invention will be described in detail.
The present invention is based on a sublimation recrystallization method in which a silicon carbide (SiC) raw material loaded in a pit is heated to generate a sublimation gas, which is then recrystallized onto a silicon carbide (SiC) seed crystal arranged oppositely in the pit. Regarding the method for producing a silicon carbide (SiC) single crystal ingot that grows a silicon carbide (SiC) single crystal on a seed crystal, the total amount Q of impurity elements contained in the SiC raw material is the crystal growth surface of the seed crystal in which the SiC single crystal grows. By growing the SiC single crystal under the condition that the value (Q / S) divided by the area S is 10 mg / cm 2 or less, the occurrence of dislocations and crystal defects such as micropipes is suppressed.

先に述べたように、昇華再結晶法で用いられるSiC原料は、アチソン法により得られたものが一般的に使用され、それらにはいろいろな不純物が含まれる。例えば、FeやV等の金属からSやCl等の非金属まで様々な元素が存在するが、含有量が比較的多いものは金属であり、そのうち、Na、Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、及びMo等は、下記の理由から、転位やマイクロパイプ等の結晶欠陥の発生に特に関係していると考えられる。なかでも、Al、Fe、Ni、Cr、Ti、及びVの含有量が多く、これらの金属系元素はアチソン法によるSiCの製造時に混入したもの、もしくは、製造されたSiCを所定の粒度に粉砕して分粒する工程において混入したものと推定される。 As described above, as the SiC raw material used in the sublimation recrystallization method, those obtained by the Achison method are generally used, and they contain various impurities. For example, there are various elements from metals such as Fe and V to non-metals such as S and Cl, but those having a relatively large content are metals, of which Na, Mg, Al, Ca, Ti and V. , Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo and the like are considered to be particularly related to the generation of dislocations and crystal defects such as micropipes for the following reasons. Among them, the contents of Al, Fe, Ni, Cr, Ti, and V are high, and these metallic elements are mixed during the production of SiC by the Atison method, or the produced SiC is pulverized to a predetermined particle size. It is presumed that it was mixed in the step of granulating.

すなわち、上記のような金属系元素をはじめとしたSiC原料中の不純物元素はSiCより昇華温度が低く、しかも、Siと共晶を形成し易い。そのため、SiC単結晶の結晶成長初期段階では、所定の条件を満たしたときに、種結晶の近傍領域に例えば金属系元素が凝集して液滴を形成する、もしくは、これらの金属系元素とSiとの共晶を形成すると考えられる。但し、SiC単結晶の結晶成長後にこのような液滴や共晶を確認することはできず、実際には、図1(a)に示したように、種結晶の近傍領域に黒色に写るボイド(気泡)のような粒状欠陥として現れる。この粒状欠陥は大きなものであっても10〜20μm程度であり、また、粒状欠陥の元素分析では上記のような金属系元素等は検出されないことから、液滴やSiと共晶を形成した金属系元素等は気化するものと推測される。そして、この粒状欠陥を起点として、結晶成長方向に転位(なかでも貫通刃状転位や貫通らせん転位)やマイクロパイプ等が発生すると考えられ、粒状欠陥の発生以降に成長したSiC単結晶中には多数の転位欠陥やマイクロパイプ欠陥が存在することになる。 That is, the impurity elements in the SiC raw material, such as the metal-based elements described above, have a lower sublimation temperature than SiC and easily form eutectic with Si. Therefore, in the initial stage of crystal growth of a SiC single crystal, when a predetermined condition is satisfied, for example, metal-based elements aggregate in a region near the seed crystal to form droplets, or these metal-based elements and Si It is considered to form a eutectic with. However, such droplets and eutectics cannot be confirmed after the crystal growth of the SiC single crystal, and in reality, as shown in FIG. 1 (a), voids appearing in black in the vicinity of the seed crystal. Appears as granular defects such as (bubbles). Even if the granular defect is large, it is about 10 to 20 μm, and since the above-mentioned metal elements and the like are not detected in the elemental analysis of the granular defect, the metal forming a eutectic with droplets and Si. It is presumed that system elements and the like are vaporized. Then, it is considered that dislocations (particularly through-blade dislocations and penetrating spiral dislocations) and micropipes occur in the crystal growth direction starting from these granular defects, and in the SiC single crystal grown after the occurrence of the granular defects. There will be a large number of dislocation defects and micropipe defects.

ところで、不純物濃度が同じSiC原料(純度が同じSiC原料)を使用した場合に、必ずしも上記のような粒状欠陥が種結晶の近傍領域に発生するとは限らない。つまり、結晶成長の条件によっては、粒状欠陥が発生する場合とそうでない場合とが確認される。この現象の原因を探るべく検討を重ねたところ、SiC原料に含まれる不純物元素の総量QをSiC単結晶が成長する種結晶の結晶成長表面の面積Sで除した値(Q/S)で整理できることが分かった。すなわち、Q/Sが10mg/cm2以下、好ましくは5mg/cm2以下、更に好ましくは1mg/cm2以下となる条件であれば、種結晶の近傍領域における粒状欠陥の発生を抑制でき、結果として、転位やマイクロパイプ等の結晶欠陥を低減させることができる。 By the way, when SiC raw materials having the same impurity concentration (SiC raw materials having the same purity) are used, the above-mentioned granular defects do not always occur in the vicinity of the seed crystal. That is, depending on the conditions of crystal growth, it is confirmed that granular defects occur and cases where they do not occur. As a result of repeated studies to find the cause of this phenomenon, the total amount Q of impurity elements contained in the SiC raw material was arranged by the value (Q / S) divided by the area S of the crystal growth surface of the seed crystal in which the SiC single crystal grows. I found that I could do it. That is, if the Q / S is 10 mg / cm 2 or less, preferably 5 mg / cm 2 or less, and more preferably 1 mg / cm 2 or less, the occurrence of granular defects in the vicinity of the seed crystal can be suppressed, resulting in As a result, crystal defects such as dislocations and micropipes can be reduced.

SiC原料に含まれる不純物元素の総量Qについては、好適には、SiC原料をグロー放電質量分析法(Glow Discharge Mass Spectrometry:GDMS)等で元素分析し、Si及びC以外であって含有量が0.01質量ppm以上の不純物元素を合計して求めることができる。また、上述したように、このような分析によると金属系元素の含有量が多く、これらは種結晶の近傍領域に粒状欠陥を発生させる主な原因と考えられることから、金属元素不純物であるNa、Mg、Al、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、及びMoの合計含有量を不純物元素の総量Qとみなしてもよく、より詳しくは、Al、Fe、Ti、Cr、Ni、及びVの合計含有量を不純物元素の総量Qとみなしてもよい。 Regarding the total amount Q of the impurity elements contained in the SiC raw material, preferably, the SiC raw material is elementally analyzed by Glow Discharge Mass Spectrometry (GDMS) or the like, and the content is 0 except for Si and C. It can be obtained by totaling the impurity elements of 0.01 mass ppm or more. Further, as described above, according to such an analysis, the content of metallic elements is high, and these are considered to be the main causes of causing granular defects in the region near the seed crystal. Therefore, Na which is a metallic element impurity. , Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, and Mo may be regarded as the total amount of impurity elements Q, and more specifically, Al. , Fe, Ti, Cr, Ni, and V may be regarded as the total amount Q of impurity elements.

上記Q/Sにより、SiC単結晶中の結晶欠陥が制御可能になる理由としては、種結晶の近傍領域でSiC単結晶が成長する際に存在する不純物元素が一定量を超えると、前述したように不純物元素が凝集して液滴を形成したり、Siとの共晶を形成するためと推測される。先に挙げた金属系元素等はSiCより昇華温度が低いため、坩堝内に装填されたSiC原料中でこれらの金属系元素が結晶成長の初期段階に昇華して、種結晶の近傍領域に集まると考えられる。その際、初期段階に昇華する不純物元素が多くて高濃度になると液滴やSiとの共晶になって、上述したような粒状欠陥がSiC単結晶中に発生するものと推測される。つまり、純度が同じSiC原料を使用する場合でも、より大きな(より高さの高い)SiC単結晶インゴットを製造するときには、SiC原料を多量に使用する必要があり、不純物元素の総量が増加することから、結晶成長の初期段階に不純物元素が集中して上記のような粒状欠陥を発生させてしまう可能性がある。そのため、比較的純度が高いSiC原料を使用していても、SiC単結晶インゴットのスケールアップを図る上で純度が足りなくなる場合がある。逆に言えば、Q/Sが10mg/cm2を超えない結晶成長条件であれば、純度の低いSiC原料を用いても構わない。 The reason why the crystal defects in the SiC single crystal can be controlled by the above Q / S is that the amount of impurity elements present when the SiC single crystal grows in the vicinity of the seed crystal exceeds a certain amount, as described above. It is presumed that the impurity elements aggregate to form droplets or form a single crystal with Si. Since the metal-based elements mentioned above have a lower sublimation temperature than SiC, these metal-based elements sublimate in the SiC raw material loaded in the crucible at the initial stage of crystal growth and gather in the vicinity of the seed crystal. it is conceivable that. At that time, if there are many impurity elements that sublimate in the initial stage and the concentration becomes high, it becomes eutectic with droplets and Si, and it is presumed that the above-mentioned granular defects occur in the SiC single crystal. That is, even when SiC raw materials having the same purity are used, when producing a larger (higher height) SiC single crystal ingot, it is necessary to use a large amount of SiC raw materials, and the total amount of impurity elements increases. Therefore, there is a possibility that impurity elements are concentrated in the initial stage of crystal growth and the above-mentioned granular defects are generated. Therefore, even if a SiC raw material having a relatively high purity is used, the purity may be insufficient in order to scale up the SiC single crystal ingot. Conversely, if the crystal growth conditions are such that the Q / S does not exceed 10 mg / cm 2 , a low-purity SiC raw material may be used.

本発明において、上記Q/Sが10mg/cm2以下となる結晶成長条件にするにあたっては、成長させるSiC単結晶インゴットのサイズ(口径及び高さ)や坩堝に装填するSiC原料を調整するようにすればよい。例えば、成長させるSiC単結晶インゴットの口径と使用するSiC原料が決まっている場合、SiC原料に含まれる不純物元素の濃度(SiC原料の純度)に応じて、坩堝に装填するSiC原料の装填量を調整して、SiC単結晶インゴットの高さを制御するようにすればよい。また、成長させるSiC単結晶インゴットの口径と高さが決まっている場合には、SiC原料に含まれる不純物元素の濃度を調整して、坩堝内のSiC原料に含まれる不純物元素の総量(含有量)を制御すればよい。 In the present invention, in order to obtain the crystal growth condition in which the Q / S is 10 mg / cm 2 or less, the size (caliber and height) of the SiC single crystal ingot to be grown and the SiC raw material to be loaded in the crucible should be adjusted. do it. For example, when the diameter of the SiC single crystal ingot to be grown and the SiC raw material to be used are determined, the loading amount of the SiC raw material to be loaded in the crucible is determined according to the concentration of impurity elements contained in the SiC raw material (purity of the SiC raw material). It may be adjusted to control the height of the SiC single crystal ingot. If the diameter and height of the SiC single crystal ingot to be grown are determined, the concentration of impurity elements contained in the SiC raw material is adjusted to adjust the total amount (content) of the impurity elements contained in the SiC raw material in the crucible. ) Should be controlled.

ここで、SiC原料に含まれる不純物元素の濃度を調整するにあたり、不純物元素を除去する手段については特に制限はなく、例えば、フッ硝酸を用いた洗浄によるSiC原料中の金属系元素を溶解させる方法や、SiC原料を高温に加熱して不純物元素を気化させる方法等が挙げられる。 Here, in adjusting the concentration of the impurity element contained in the SiC raw material, there is no particular limitation on the means for removing the impurity element, for example, a method of dissolving the metal element in the SiC raw material by washing with fluorine nitric acid. Alternatively, a method of heating the SiC raw material to a high temperature to vaporize the impurity element and the like can be mentioned.

また、本発明においては、上記Q/Sが10mg/cm2以下となれば、それ以外の条件については公知の手法と同様にして、種結晶上にSiC単結晶を成長させてSiC単結晶インゴットを製造することができる。例えば、得られるSiC単結晶インゴットの口径は特に制限はなく、現在主流である口径50mm〜150mmのSiC単結晶インゴットの製造は勿論のこと、それ以上の口径であっても適用可能であり、いずれも結晶欠陥を抑えた良質なSiC単結晶インゴットを製造することができる。なかでも口径が100mm以上である大型化のSiC単結晶インゴットが高品質で得られるようになることで、スケールアップ効果によりSiCデバイスのコストを抑えることができる。一方で、このQ/Sの考え方に従えば、精製工程等を減らした比較的安価な低純度のSiC原料を用いて良質なSiC単結晶インゴットを製造することができることから、やはりSiCデバイスのコストを抑えることが可能になる。なお、本発明は、得られるSiC単結晶インゴットの大きさに制限されずに適用することができるが、現時点での製造技術からして実質的にSiC単結晶インゴットの口径は300mm以下であるのが望ましい。 Further, in the present invention, if the Q / S is 10 mg / cm 2 or less, the SiC single crystal is grown on the seed crystal in the same manner as the known method for other conditions, and the SiC single crystal ingot. Can be manufactured. For example, the diameter of the obtained SiC single crystal ingot is not particularly limited, and it is possible to manufacture a SiC single crystal ingot having a diameter of 50 mm to 150 mm, which is currently the mainstream, and it is applicable to a larger diameter. It is also possible to produce a high-quality SiC single crystal ingot with suppressed crystal defects. In particular, a large-sized SiC single crystal ingot having a diameter of 100 mm or more can be obtained with high quality, so that the cost of the SiC device can be suppressed by the scale-up effect. On the other hand, according to this Q / S concept, it is possible to manufacture a high-quality SiC single crystal ingot using a relatively inexpensive low-purity SiC raw material with reduced purification steps and the like, so that the cost of the SiC device is also high. Can be suppressed. Although the present invention can be applied without being limited to the size of the obtained SiC single crystal ingot, the diameter of the SiC single crystal ingot is substantially 300 mm or less in view of the current manufacturing technology. Is desirable.

また、得られるSiC単結晶インゴットのポリタイプ(結晶多形)についても制限はなく、例えば、代表的なポリタイプである4H、6H、3C、15R等のSiC単結晶を成長させる方法として勿論適用可能である。更には、使用する種結晶のオフ角についても同様であって、例えば、一般に採用される0度〜15度のオフ角を有する種結晶を用いることができ、更にまた、結晶成長中に窒素ガスソース(N2)等を用いて、得られるSiC単結晶インゴットの抵抗率を調整することも可能である。 Further, there is no limitation on the polytype (polymorph) of the obtained SiC single crystal ingot, and of course, it is applied as a method for growing SiC single crystals such as 4H, 6H, 3C, and 15R, which are typical polytypes. It is possible. Furthermore, the same applies to the off-angle of the seed crystal to be used. For example, a commonly adopted seed crystal having an off-angle of 0 to 15 degrees can be used, and further, nitrogen gas during crystal growth. It is also possible to adjust the resistivity of the obtained SiC single crystal ingot using a source (N 2 ) or the like.

以下、本発明について、試験例に基づきながらより具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。 Hereinafter, the present invention will be described in more detail based on test examples. The present invention is not limited to these contents.

(試験例1〜5)
図2には、この試験例1〜5に係るSiC単結晶インゴットの製造に用いた、改良型レーリー法による単結晶成長装置が示されている。SiCの結晶成長は、昇華原料であるSiC原料を坩堝内で誘導加熱して昇華ガスを発生させ、坩堝内に対向配置した種結晶上に再結晶させることにより行われる。ここで、種結晶1は、黒鉛製坩堝を形成する坩堝蓋体4の内面に取り付けられ、また、SiC原料2は同じく黒鉛製坩堝を形成する坩堝本体3内に装填される。坩堝本体3及び坩堝蓋体4は、熱シールドのために断熱材7で覆われており、断熱材7で覆われた黒鉛製坩堝(坩堝本体3及び坩堝蓋体4)は二重石英管5内部で黒鉛支持台座6の上に設置される。二重石英管5の内部は、真空排気装置及び圧力制御装置11を用いて真空排気された後、純度99.9999%以上の高純度Arガスを、配管9を介してマスフローコントローラ10で制御しながら流入させ、真空排気装置及び圧力制御装置11を用いて二重石英管5内を所定の圧力に保ちながら、ワークコイル8に高周波電流を流して、SiC原料2が充填された坩堝本体3と種結晶1が取り付けられた坩堝蓋体4とがそれぞれ目標温度となるように上昇させる。また、窒素ガス(N2)も同様に、配管9を介してマスフローコントローラ10で制御しながら二重石英管5内に流入させ、雰囲気ガス中の窒素分圧を制御して、SiC結晶中に取り込まれる窒素元素の濃度を調整した。なお、種結晶1の温度の計測は、坩堝蓋体4の上面を覆う断熱材7に直径10mm程度の光路を設けて図示外の放射温度計により行い、測定された温度を種結晶温度とした。
(Test Examples 1 to 5)
FIG. 2 shows a single crystal growth apparatus by the improved Rayleigh method used for producing the SiC single crystal ingot according to Test Examples 1 to 5. The crystal growth of SiC is carried out by inducing and heating the SiC raw material, which is a sublimation raw material, in the crucible to generate sublimation gas, and recrystallizing it on the seed crystals arranged opposite to each other in the crucible. Here, the seed crystal 1 is attached to the inner surface of the crucible lid body 4 that forms the graphite crucible, and the SiC raw material 2 is loaded into the crucible body 3 that also forms the graphite crucible. The crucible body 3 and the crucible lid 4 are covered with a heat insulating material 7 for heat shielding, and the graphite crucible (the crucible body 3 and the crucible lid 4) covered with the heat insulating material 7 is a double quartz tube 5. It is internally installed on the graphite support pedestal 6. The inside of the double quartz tube 5 is evacuated using a vacuum exhaust device and a pressure control device 11, and then high-purity Ar gas having a purity of 99.9999% or more is controlled by the mass flow controller 10 via the pipe 9. While keeping the inside of the double quartz tube 5 at a predetermined pressure by using the vacuum exhaust device and the pressure control device 11, a high-frequency current is passed through the work coil 8 to form a crucible body 3 filled with the SiC raw material 2. The temperature of the crucible lid 4 to which the seed crystal 1 is attached is raised so as to reach the target temperature. Similarly, nitrogen gas (N 2 ) is also flowed into the double quartz tube 5 through the pipe 9 while being controlled by the mass flow controller 10, and the nitrogen partial pressure in the atmospheric gas is controlled to enter the SiC crystal. The concentration of nitrogen elements taken in was adjusted. The temperature of the seed crystal 1 was measured by providing an optical path having a diameter of about 10 mm in the heat insulating material 7 covering the upper surface of the crucible lid 4 and using a radiation thermometer (not shown), and the measured temperature was defined as the seed crystal temperature. ..

この試験例1〜5では昇華原料として3種類のSiC原料A〜Cを使用した。このうち、SiC原料A及びBはいずれも市販品(SiC原料A:純度99%、SiC原料B:純度96%)であり、それぞれ数グラムをサンプリングして、グロー放電質量分析法(GDMS)により元素分析を行ったところ、表1に示したような不純物元素を含有していた。また、SiC原料Cは、SiC原料Bをフッ硝酸(HFとHNO3を1:1で混合したもの)に2時間浸漬させて金属不純物を溶解させ洗浄したものであり、洗浄後のGDMSによる分析結果は表2に示したとおりである。なお、表1〜2では含有量が0.01ppm未満の元素を「−」としている。 In Test Examples 1 to 5, three kinds of SiC raw materials A to C were used as sublimation raw materials. Of these, SiC raw materials A and B are both commercially available products (SiC raw material A: purity 99%, SiC raw material B: purity 96%), and several grams of each are sampled and subjected to glow discharge mass spectrometry (GDMS). Elemental analysis revealed that it contained impurity elements as shown in Table 1. Further, the SiC raw material C is obtained by immersing the SiC raw material B in fluorinated nitric acid (a mixture of HF and HNO 3 at a ratio of 1: 1) for 2 hours to dissolve metal impurities and washing the material. Analysis by GDMS after washing. The results are shown in Table 2. In Tables 1 and 2, elements having a content of less than 0.01 ppm are designated as "-".

Figure 0006796941
Figure 0006796941

Figure 0006796941
Figure 0006796941

また、この試験例1〜5では、2種類の種結晶1を用意した。先ず、口径100mmであって(0001)面を主面とした4H型のSiC単結晶から、この(0001)面のオフ方位が<11−20>方向であり、かつ(0001)面のオフ角が4度になるように、SiC単結晶基板を切り出し、切り出された面を鏡面研磨して4インチ口径の種結晶(結晶成長表面の面積S=78.5cm2)を作製した。また、口径150mmであって(0001)面を主面とした4H型のSiC単結晶から、上記と同様にしてSiC単結晶基板を切り出し、鏡面研磨して、オフ角4度の6インチ口径の種結晶(結晶成長表面の面積S=176.6cm2)を作製した。 Further, in Test Examples 1 to 5, two kinds of seed crystals 1 were prepared. First, from a 4H-type SiC single crystal having a diameter of 100 mm and having the (0001) plane as the main plane, the off orientation of the (0001) plane is the <11-20> direction, and the off angle of the (0001) plane is A SiC single crystal substrate was cut out so that the temperature was 4 degrees, and the cut out surface was mirror-polished to prepare a 4-inch diameter seed crystal (crystal growth surface area S = 78.5 cm 2 ). Further, a SiC single crystal substrate having a diameter of 150 mm and having a (0001) plane as a main surface is cut out in the same manner as above, and mirror-polished to obtain a 6-inch diameter with an off-angle of 4 degrees. A seed crystal (crystal growth surface area S = 176.6 cm 2 ) was prepared.

上記で準備した3種類のSiC原料A〜Cと2種類の種結晶とを用いて、表3に示した結晶成長条件により、試験例1〜5に係るSiC単結晶インゴットの製造を行った。ここで、各試験例で使用したSiC原料に含まれる不純物元素の合計(表1又は2に示した不純物元素の合計)を総量Qとし、また、Al、Fe、Ti、Cr、Ni、及びVの合計(表1又は2に示したこれらの元素の合計)を総量Q’とした。 Using the three types of SiC raw materials A to C prepared above and the two types of seed crystals, the SiC single crystal ingots according to Test Examples 1 to 5 were produced under the crystal growth conditions shown in Table 3. Here, the total amount of impurity elements contained in the SiC raw material used in each test example (total of impurity elements shown in Table 1 or 2) is taken as the total amount Q, and Al, Fe, Ti, Cr, Ni, and V (The sum of these elements shown in Table 1 or 2) was taken as the total amount Q'.

すなわち、試験例1では、4インチ口径の種結晶1を図2に示した単結晶成長装置の坩堝蓋体4の内面に取り付け、また、坩堝本体3にはSiC原料2としてSiC原料Aを7500g装填して、坩堝本体3と坩堝蓋体4とからなる黒鉛製坩堝の外側を黒鉛製フェルト(断熱材)7で被覆し、この黒鉛製フェルト7で被覆した黒鉛製坩堝を黒鉛支持棒6の上に載せて、二重石英管5の内部に設置した。次いで、二重石英管5の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、二重石英管内の圧力を約80kPaに保ちながら、ワークコイル8に電流を流して温度を上げ、種結晶1の温度が2300℃になるまで上昇させた。そして、石英管内圧力を1.3kPaに減圧し、成長結晶中の窒素濃度が約1×1019cm-3となるようにしながら、50時間の結晶成長を行った。試験例2〜5についても試験例1と同様にして、表3に示した条件で結晶成長を行い、それぞれ試験例1〜5に係るSiC単結晶インゴットを得た。 That is, in Test Example 1, a seed crystal 1 having a diameter of 4 inches was attached to the inner surface of the crucible lid 4 of the single crystal growing device shown in FIG. 2, and 7500 g of SiC raw material A was added to the crucible body 3 as the SiC raw material 2. After loading, the outside of the graphite crucible composed of the crucible body 3 and the crucible lid 4 is covered with a graphite felt (insulation material) 7, and the graphite crucible coated with the graphite felt 7 is covered with the graphite support rod 6. It was placed on top and installed inside the double graphite tube 5. Next, after vacuum exhausting the inside of the double quartz tube 5, high-purity Ar gas is introduced as an atmospheric gas, and a current is passed through the work coil 8 to raise the temperature while keeping the pressure inside the double quartz tube at about 80 kPa. , The temperature of the seed crystal 1 was raised until it reached 2300 ° C. Then, the pressure inside the quartz tube was reduced to 1.3 kPa, and crystal growth was carried out for 50 hours while keeping the nitrogen concentration in the growing crystal at about 1 × 10 19 cm -3 . Crystal growth was also carried out in Test Examples 2 to 5 under the conditions shown in Table 3 in the same manner as in Test Example 1 to obtain SiC single crystal ingots according to Test Examples 1 to 5, respectively.

Figure 0006796941
Figure 0006796941

上記で得られた試験例1〜5に係るSiC単結晶インゴットについて、ラマン分光装置を用いてポリタイプ(結晶多形)を確認したところ、いずれも結晶の全面に亘って4Hポリタイプを有していた。
一方で、各SiC単結晶インゴットについて、種結晶近傍の結晶成長領域(種結晶の結晶成長表面から高さ約1mmの部分)の縦断面を得て、観察面を(−1100)面として光学顕微鏡写真を撮影し(倍率100倍)、黒色に写る粒状欠陥の有無を観察した。また、各SiC単結晶インゴットの結晶成長の終端部から5mmの位置より(000−1)面の観察基板を切り出し、鏡面研磨した後にX線トポグラフによりマイクロパイプを観察した。更には、上記の観察基板から溶融KOHエッチング法により転位欠陥を観察した。結果を表3にまとめて示す。
When the polymorphism (polymorphism) of the SiC single crystal ingots according to Test Examples 1 to 5 obtained above was confirmed using a Raman spectroscope, all of them had a 4H polymorphism over the entire surface of the crystal. Was there.
On the other hand, for each SiC single crystal ingot, a vertical cross section of a crystal growth region near the seed crystal (a portion having a height of about 1 mm from the crystal growth surface of the seed crystal) is obtained, and an optical microscope with the observation plane as the (-1100) plane. A photograph was taken (magnification 100 times), and the presence or absence of granular defects appearing in black was observed. Further, an observation substrate on the (000-1) plane was cut out from a position 5 mm from the end of crystal growth of each SiC single crystal ingot, mirror-polished, and then the micropipe was observed by an X-ray topograph. Furthermore, dislocation defects were observed from the above observation substrate by the molten KOH etching method. The results are summarized in Table 3.

表3に示したとおり、試験例4及び5のSiC単結晶インゴットでは、種結晶近傍の結晶成長領域に粒状欠陥が発生していた。図1(a)はこのうちの試験例4の種結晶近傍の結晶成長領域の光学顕微鏡写真であり、10〜20μm程度の粒状の黒色点が粒状欠陥である。これに対して、試験例1〜3に係るSiC単結晶インゴットではこのような粒状欠陥は確認されなかった。図1(b)は試験例1の種結晶近傍の結晶成長領域を写した光学顕微鏡写真である。 As shown in Table 3, in the SiC single crystal ingots of Test Examples 4 and 5, granular defects were generated in the crystal growth region near the seed crystal. FIG. 1A is an optical micrograph of a crystal growth region in the vicinity of the seed crystal of Test Example 4, and granular black spots of about 10 to 20 μm are granular defects. On the other hand, such granular defects were not confirmed in the SiC single crystal ingots according to Test Examples 1 to 3. FIG. 1B is an optical micrograph showing a crystal growth region near the seed crystal of Test Example 1.

また、試験例1〜3のSiC単結晶インゴットでは、試験例4及び5のものに比べてマイクロパイプ密度が1/300以下であり、転位欠陥密度も1/2以下であった。ここで、試験例4のSiC単結晶インゴットを結晶成長方向に対して平行に切断した縦断面をX線トポグラフ法により回折面(0004)の条件で観察したところ、粒状欠陥を起点としてマイクロパイプ及び転位欠陥が発生していることが確認された。すなわち、試験例1〜3のSiC単結晶インゴットが試験例4及び5のものに比べてマイクロパイプや転位欠陥が低減されたのは、種結晶近傍の結晶成長領域における粒状欠陥を抑えたためと考えられる。例えば、試験例1及び試験例5では、同じSiC原料を使用していずれも4インチ口径の種結晶上に結晶成長を行っているが、試験例1では粒状欠陥の発生を抑えることができている。 Further, in the SiC single crystal ingots of Test Examples 1 to 3, the micropipe density was 1/300 or less and the dislocation defect density was 1/2 or less as compared with those of Test Examples 4 and 5. Here, when the longitudinal cross section of the SiC single crystal ingot of Test Example 4 cut parallel to the crystal growth direction was observed by the X-ray topograph method under the condition of the diffraction plane (0004), the micropipe and the micropipe and the granular defect were observed as starting points. It was confirmed that a dislocation defect had occurred. That is, it is considered that the reason why the SiC single crystal ingots of Test Examples 1 to 3 had reduced micropipes and dislocation defects as compared with those of Test Examples 4 and 5 was because the granular defects in the crystal growth region near the seed crystal were suppressed. Be done. For example, in Test Example 1 and Test Example 5, the same SiC raw material is used to grow crystals on a seed crystal having a diameter of 4 inches, but in Test Example 1, the occurrence of granular defects can be suppressed. There is.

したがって、本発明のように、SiC原料に含まれる不純物元素の総量Qを種結晶の結晶成長表面の面積Sで除した値Q/Sが10mg/cm2以下の条件でSiC単結晶を成長させることで、もしくは、この総量Qを金属元素不純物の合計含有量で擬制してQ/Sが10mg/cm2以下の条件でSiC単結晶を成長させることで(上記試験例ではSiC原料に含まれるAl、Fe、Ti、Cr、Ni、及びVの総量Q’を用いている)、結晶欠陥の少ない良質なSiC単結晶インゴットを製造することが可能になる。 Therefore, as in the present invention, the SiC single crystal is grown under the condition that the value Q / S obtained by dividing the total amount Q of the impurity elements contained in the SiC raw material by the area S of the crystal growth surface of the seed crystal is 10 mg / cm 2 or less. By doing so, or by simulating this total amount Q with the total content of metal element impurities and growing a SiC single crystal under the condition that Q / S is 10 mg / cm 2 or less (in the above test example, it is contained in the SiC raw material). It is possible to produce a high-quality SiC single crystal ingot with few crystal defects (using the total amount Q'of Al, Fe, Ti, Cr, Ni, and V).

1:種結晶、2:SiC原料、3:坩堝本体、4:坩堝蓋体、5:二重石英管、6:黒鉛支持台座、7:断熱材、8:ワークコイル、9:配管、10:マスフローコントローラ、11:真空排気装置及び圧力制御装置。 1: Seed crystal, 2: SiC raw material, 3: Crucible body, 4: Crucible lid, 5: Double quartz tube, 6: Graphite support pedestal, 7: Insulation material, 8: Work coil, 9: Piping, 10: Mass flow controller, 11: Vacuum exhaust device and pressure control device.

Claims (3)

坩堝内に装填した炭化珪素原料を加熱して昇華ガスを発生させ、坩堝内に対向配置した炭化珪素の種結晶上に再結晶させる昇華再結晶法により、種結晶上に炭化珪素単結晶を成長させて炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法であって、炭化珪素原料に含まれる不純物元素の総量Qを炭化珪素単結晶が成長する種結晶の結晶成長表面の面積Sで除した値(Q/S)が1mg/cm2以下となる条件で、炭化珪素単結晶を成長させ、前記面積Sは口径50mm以上300mm以下から求まる面積であることを特徴とする炭化珪素単結晶インゴットの製造方法。 A silicon carbide single crystal is grown on the seed crystal by a sublimation recrystallization method in which the silicon carbide raw material loaded in the pit is heated to generate a sublimation gas and recrystallized on the seed crystal of silicon carbide arranged oppositely in the pit. This is a method for producing a silicon carbide single crystal ingot, wherein the total amount Q of impurity elements contained in the silicon carbide raw material is the area S of the crystal growth surface of the seed crystal on which the silicon carbide single crystal grows. A silicon carbide single crystal is grown under the condition that the value (Q / S) divided by 3 is 1 mg / cm 2 or less, and the area S is an area obtained from a diameter of 50 mm or more and 300 mm or less. A method for producing a single crystal ingot. 炭化珪素原料に含まれる不純物元素の総量Qは、含有量が0.01質量ppm以上の不純物元素を合計したものである請求項1に記載の炭化珪素単結晶インゴットの製造方法。 The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the total amount Q of the impurity elements contained in the silicon carbide raw material is the total of the impurity elements having a content of 0.01 mass ppm or more. 炭化珪素原料に含まれる不純物元素の総量Qは、金属元素不純物であるAl、Fe、Ti、Cr、Ni、及びVの含有量を合計した総量で擬制される請求項1又は2に記載の炭化珪素単結晶インゴットの製造方法。 The carbide according to claim 1 or 2, wherein the total amount Q of the impurity elements contained in the silicon carbide raw material is simulated by the total amount of the total contents of the metal element impurities Al, Fe, Ti, Cr, Ni, and V. A method for producing a silicon single crystal ingot.
JP2016068465A 2016-03-30 2016-03-30 Method for Manufacturing Silicon Carbide Single Crystal Ingot Active JP6796941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068465A JP6796941B2 (en) 2016-03-30 2016-03-30 Method for Manufacturing Silicon Carbide Single Crystal Ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068465A JP6796941B2 (en) 2016-03-30 2016-03-30 Method for Manufacturing Silicon Carbide Single Crystal Ingot

Publications (2)

Publication Number Publication Date
JP2017178673A JP2017178673A (en) 2017-10-05
JP6796941B2 true JP6796941B2 (en) 2020-12-09

Family

ID=60003951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068465A Active JP6796941B2 (en) 2016-03-30 2016-03-30 Method for Manufacturing Silicon Carbide Single Crystal Ingot

Country Status (1)

Country Link
JP (1) JP6796941B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039372A1 (en) * 1998-12-25 2000-07-06 Showa Denko K. K. Method for growing single crystal of silicon carbide
EP1782454A4 (en) * 2004-07-07 2009-04-29 Ii Vi Inc Low-doped semi-insulating sic crystals and method
JP4924289B2 (en) * 2007-08-28 2012-04-25 株式会社デンソー Method for producing silicon carbide single crystal
JP6334253B2 (en) * 2014-05-15 2018-05-30 昭和電工株式会社 Method for processing silicon carbide single crystal ingot

Also Published As

Publication number Publication date
JP2017178673A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6758527B1 (en) Silicon Carbide Ingot Growth Powder and Method for Manufacturing Silicon Carbide Ingot Using It
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP4585359B2 (en) Method for producing silicon carbide single crystal
KR101760030B1 (en) The method of Variable scale SiC ingot growth using large scale SiC ingot growing apparatus
EP2940196B1 (en) Method for producing n-type sic single crystal
JP2009167044A (en) Method for growing silicon carbide single crystal
JP2009126770A (en) Method for growing silicon carbide single crystal
JP2016179920A (en) METHOD FOR MANUFACTURING SiC RAW MATERIAL USED FOR SUBLIMATION RECRYSTALLIZATION METHOD AND SiC RAW MATERIAL
KR20180037204A (en) Manufacturing method of SiC single crystal
JP2018016498A (en) Method for manufacturing silicon carbide single crystal ingot
WO2009090535A1 (en) Method for growing silicon carbide single crystal
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP2005041710A (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and method for manufacturing silicon carbide single crystal
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP6796941B2 (en) Method for Manufacturing Silicon Carbide Single Crystal Ingot
JP6883409B2 (en) SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot
JP5428706B2 (en) Method for producing SiC single crystal
JP6895496B2 (en) Ingot manufacturing method, ingot growth raw material and its manufacturing method
WO2023054263A1 (en) Single-crystal silicon carbide wafer, single-crystal silicon carbide ingot, and single-crystal silicon carbide production method
WO2023054264A1 (en) Silicon carbide single crystal wafer and silicon carbide single crystal ingot
WO2017043215A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2011201754A (en) Method for producing single crystal silicon carbide
JP2011201756A (en) Method for producing single crystal silicon carbide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6796941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350