JP6791628B2 - Powder coating for non-conductive members and coating method for non-conductive members - Google Patents

Powder coating for non-conductive members and coating method for non-conductive members Download PDF

Info

Publication number
JP6791628B2
JP6791628B2 JP2015255960A JP2015255960A JP6791628B2 JP 6791628 B2 JP6791628 B2 JP 6791628B2 JP 2015255960 A JP2015255960 A JP 2015255960A JP 2015255960 A JP2015255960 A JP 2015255960A JP 6791628 B2 JP6791628 B2 JP 6791628B2
Authority
JP
Japan
Prior art keywords
powder coating
coating material
powder
polarization
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015255960A
Other languages
Japanese (ja)
Other versions
JP2017119746A (en
Inventor
弘光 根岸
弘光 根岸
文幸 佐々木
文幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP2015255960A priority Critical patent/JP6791628B2/en
Publication of JP2017119746A publication Critical patent/JP2017119746A/en
Application granted granted Critical
Publication of JP6791628B2 publication Critical patent/JP6791628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、粉体塗料及び塗装方法に関し、特に非導電性部材に塗装可能な粉体塗料及び非導電性部材の塗装方法に関する。 The present invention relates to a powder coating material and a coating method, and more particularly to a powder coating material that can be applied to a non-conductive member and a method for coating a non-conductive member.

携帯機器の筐体をはじめ、様々な分野で樹脂やガラス製部材が用いられている。これらの部材の表面には、通常、美粧性や耐久性の向上を目的に塗膜が塗装されることが求められている。金属材料等の塗装用には、コロナ帯電式又はトリボ帯電式等の静電塗装が行われている。静電塗装は、生産効率、作業環境、塗料の再利用等の観点から有効な方法として、広く用いられている。 Resin and glass members are used in various fields, including housings for mobile devices. The surface of these members is usually required to be coated with a coating film for the purpose of improving cosmeticity and durability. For coating metal materials and the like, electrostatic coating such as corona charging type or trivo charging type is performed. Electrostatic coating is widely used as an effective method from the viewpoints of production efficiency, working environment, and reuse of paint.

しかしながら、樹脂やガラス等の非導電性成形品(部材)に直接静電塗装することはできない。そこで、非導電性部材の表面に予め導電性皮膜を被覆した後、静電塗装を行う方法が提案されている。
特許文献1には、プラスチック成形品に白色導電性プライマー(A)を乾燥膜厚で5〜30μmになるようにして塗装し、未硬化のまま、白色非導電性カラーベース(B)を乾燥膜厚で15〜50μmになるようにして静電塗装して必要に応じて焼付けた後、干渉色ベース塗料(C)を乾燥膜厚で10〜25μmになるようにして静電塗装して必要に応じて焼付けた後、クリヤー塗料(D)を乾燥膜厚で20〜50μmになるようにして静電塗装して焼付けることを特徴とする高白色パール調複層塗膜の形成方法が開示されている。特許文献1の方法では、プラスチック成形品の塗装において、導電プライマーの膜厚を薄く抑えることができ、大幅なコスト削減になるだけでなく白色度の高い複層塗膜を形成することができることが記載されている。
However, it is not possible to directly electrostatically coat a non-conductive molded product (member) such as resin or glass. Therefore, a method has been proposed in which the surface of the non-conductive member is coated with a conductive film in advance and then electrostatically coated.
In Patent Document 1, a white conductive primer (A) is coated on a plastic molded product so as to have a dry film thickness of 5 to 30 μm, and a white non-conductive color base (B) is coated with a dry film thickness while remaining uncured. After electrostatic coating to 15 to 50 μm and baking as needed, electrostatically coat the interference color base paint (C) to a dry film thickness of 10 to 25 μm as needed. Disclosed is a method for forming a high-white pearl-like multi-layer coating film, which comprises electrostatically coating and baking a clear paint (D) with a dry film thickness of 20 to 50 μm after baking. There is. In the method of Patent Document 1, when coating a plastic molded product, the film thickness of the conductive primer can be suppressed to be thin, which not only significantly reduces the cost but also can form a multi-layer coating film having a high whiteness. Are listed.

特開2004−262988号公報Japanese Unexamined Patent Publication No. 2004-262988

上述のとおり、導電性プライマーを用いることにより、非導電性部材への静電塗装が可能となる。しかしながら、このように複数工程を経ることにより、塗装に要するコストや時間が増加する。特に、材料変更により、従来導電性であった部材を非導電性に変更した場合には、製造工程の大幅な変更が必要となり好ましくない。
そこで、本発明は、塗装工程を増やすことなく、非導電性部材に静電塗装できる粉体塗料と非導電性部材の塗装方法を提供することを目的とする。
As described above, by using the conductive primer, electrostatic coating on the non-conductive member becomes possible. However, by going through the plurality of steps in this way, the cost and time required for painting increase. In particular, when the conventionally conductive member is changed to non-conductive by changing the material, a drastic change in the manufacturing process is required, which is not preferable.
Therefore, an object of the present invention is to provide a powder coating capable of electrostatically coating a non-conductive member and a method for coating the non-conductive member without increasing the number of coating steps.

上記課題に鑑み鋭意研究の結果、本発明者らは、分極材料を内包、又は担持した粉体塗料を用いることにより、導電性プライマーを用いることなく、静電塗装により、直接非導電性部材の表面に塗膜を形成できることを見出し、本発明に想到した。すなわち、本発明の非導電性部材用粉体塗料は、分極材料を内包又は担持することを特徴とする。
上記分極材料は、金属酸化物、金属硫化物、導電性高分子、及び炭素材料の少なくとも1種であることが好ましい。
また、上記分極材料は、グラファイト及びチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種を含むことが好ましい。
As a result of diligent research in view of the above problems, the present inventors have made a direct non-conductive member by electrostatic coating without using a conductive primer by using a powder coating material containing or supporting a polarization material. We have found that a coating film can be formed on the surface, and came up with the present invention. That is, the powder coating material for non-conductive members of the present invention is characterized by containing or supporting a polarization material.
The polarization material is preferably at least one of a metal oxide, a metal sulfide, a conductive polymer, and a carbon material.
Further, the polarization material preferably contains at least one of graphite, barium titanate, strontium titanate, and calcium titanate.

本発明の非導電性部材は、上記の非導電性部材用粉体塗料を塗装したことを特徴とする。 The non-conductive member of the present invention is characterized by being coated with the above-mentioned powder coating material for a non-conductive member.

本発明の非導電性部材の塗装方法は、プラス又はマイナスに帯電した粉体塗料及び分極した分極材料を被塗装面に塗装する工程を含むことを特徴とする。 The method for coating a non-conductive member of the present invention is characterized by including a step of coating a positively or negatively charged powder coating material and a polarized polarization material on a surface to be coated.

本発明の非導電性部材用粉体塗料及び塗装方法により、非導電性部材に直接、美粧用、耐久用又は防錆用等の良好な塗膜を塗装することができる。 According to the powder coating material for non-conductive members and the coating method of the present invention, a good coating film for cosmetics, durability, rust prevention, etc. can be directly applied to the non-conductive members.

以下に本発明の実施の形態について詳細に説明する。
なお、本発明において、非導電性部材又は絶縁性部材とは、体積抵抗率が1MΩ・cm以上の部材を意味する。
また、本明細書の実施例以外の記載においては、特段の断りのない場合、単に「粉体塗料」とは、分極材料を除く粉体塗料を意味するものとし、分極材料を含有する場合には、「分極材料を内包する粉体塗料」、「分極材料を担持する粉体塗料」、「非導電性部材用粉体塗料」又は「分極材料を含む粉体塗料」と記載する。
Embodiments of the present invention will be described in detail below.
In the present invention, the non-conductive member or the insulating member means a member having a volume resistivity of 1 MΩ · cm or more.
Further, in the description other than the examples of the present specification, unless otherwise specified, the term "powder coating material" simply means a powder coating material excluding the polarization material, and when the polarization material is contained. Is described as "powder coating material containing a polarization material", "powder coating material supporting a polarization material ", "powder coating material for non-conductive members", or "powder coating material containing a polarization material".

本発明の非導電性部材用粉体塗料は、分極材料を内包、又は担持することを特徴とする。このような非導電性部材用粉体塗料では、非導電性部材にも直接、美粧用、耐久用又は防錆用等の良好な塗膜を塗装することができる。
なお、本明細書において、「分極材料を内包する」とは、分極材料を粉体塗料の少なくとも一部の構成成分と溶融混合等液状で混合して得られる状態をいい、分極材料の一部が粉体塗料表面に露出、又は粉体塗料表面から突出した状態のものも含まれる。
また、「分極材料を担持する」とは、粉体塗料の溶融工程を経ることなく、分極材料と混合した状態をいい、粉体塗料の表面に分極材料が被覆されているもの、粉体塗料粉末と分極材料粉末が混合しているものを含む。
以下に、本発明の粉体塗料の詳細について説明する。
The powder coating material for a non-conductive member of the present invention is characterized by containing or supporting a polarization material. With such a powder coating material for non-conductive members, a good coating film for cosmetics, durability, rust prevention, etc. can be directly applied to the non-conductive members.
In the present specification, "encapsulating the polarization material" means a state obtained by mixing the polarization material with at least a part of the constituent components of the powder coating material in a liquid state such as melt mixing, and is a part of the polarization material. Also includes those exposed on the surface of the powder coating material or protruding from the surface of the powder coating material.
Further, "supporting the polarization material" means a state in which the powder coating material is mixed with the polarization material without going through the melting step of the powder coating material, and the surface of the powder coating material is coated with the polarization material, the powder coating material. Includes a mixture of powder and polarization material powder.
The details of the powder coating material of the present invention will be described below.

(1)分極材料
上述のとおり、本発明の非導電性部材用粉体塗料は、分極材料を内包、又は担持する。
本発明で用いられる分極材料は、特に限定されず、金属酸化物、金属硫化物、導電性高分子、及び炭素材料等を用いることができる。
金属酸化物としては、酸化コバルト、酸化マンガン、酸化バナジウム、酸化ニッケル、酸化モリブデン等の他、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム等の複合金属酸化物を用いることができる。
金属硫化物としては、硫化モリブデン、硫化チタン、硫化バナジウム等が挙げられる。
導電性高分子としては、ポリアニリン、ポリアセチレン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリピロール及びその誘導体、ポリチエニレン及びその誘導体、ポリピリジンジイル及びその誘導体、ポリイソチアナフテニレン及びその誘導体、ポリフリレン及びその誘導体、ポリセレノフェン及びその誘導体、ポリパラフェニレンビニレン、ポリチエニレンビニレン、ポリフリレンビニレン、ポリナフテニレンビニレン、ポリセレノフェンビニレン、ポリピリジンジイルビニレン等のポリアリーレンビニレン及びそれらの誘導体等が挙げられる。
炭素材料としては、天然黒鉛、人造黒鉛、気相法黒鉛、フッ化黒鉛等の黒鉛(グラファイト)、フラーレン、カーボンナノチューブ、グラフェン等のナノカーボン、カーボンブック、活性炭等の非晶質(微結晶)炭素等が挙げられる。
これらの中でも、グラファイト及びチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムが好ましい。
分極材料の比誘電率は、8以上が好ましく、10以上であることがさらに好ましい。また、分極材料の平均粒径は、0.02μm〜50μmが好ましく、1μm〜30μmがより好ましい。
(1) Polarizing Material As described above, the powder coating material for non-conductive members of the present invention contains or supports a polarization material.
The polarization material used in the present invention is not particularly limited, and metal oxides, metal sulfides, conductive polymers, carbon materials and the like can be used.
As the metal oxide, in addition to cobalt oxide, manganese oxide, vanadium oxide, nickel oxide, molybdenum oxide and the like, composite metal oxides such as barium titanate, strontium titanate and calcium titanate can be used.
Examples of the metal sulfide include molybdenum sulfide, titanium sulfide, vanadium sulfide and the like.
Conductive polymers include polyaniline, polyacetylene and its derivatives, polyparaphenylene and its derivatives, polypyrrole and its derivatives, polythienylene and its derivatives, polypyridinediyl and its derivatives, polyisothianaftenylene and its derivatives, polyfurylene and its derivatives. Examples thereof include derivatives, polyselenophenes and derivatives thereof, polyarylene vinylenes such as polyparaphenylene vinylenes, polythienylene vinylenes, polyfurylene vinylenes, polynaphthenylene vinylenes, polyselenophenene vinylenes, polypyridinediylbinenes, and derivatives thereof. Be done.
Examples of carbon materials include natural graphite, artificial graphite, vapor-phase graphite, graphite such as fluorographite (graphite), nanocarbon such as fullerene, carbon nanotubes, and graphene, and amorphous (microcrystals) such as carbon book and activated carbon. Examples include carbon.
Among these, graphite, barium titanate, strontium titanate, and calcium titanate are preferable.
The relative permittivity of the polarization material is preferably 8 or more, and more preferably 10 or more. The average particle size of the polarization material is preferably 0.02 μm to 50 μm, more preferably 1 μm to 30 μm.

(2)粉体塗料
本発明の粉体塗料は、特に限定されず、塗装の用途等に応じて適宜選択される。具体的には、エポキシ系粉体塗料、ポリエステル系粉体塗料、アクリル系粉体塗料、エポキシ-ポリエステルのハイブリッド系粉体塗料等公知の粉体塗料が挙げられる。
本発明の分極材料を内包、又は担持する粉体塗料は、上記粉体塗料に、以下に示す方法で分極材料を添加することにより得られる。
(2) Powder coating The powder coating of the present invention is not particularly limited, and is appropriately selected depending on the application of coating and the like. Specific examples thereof include known powder coating materials such as epoxy powder coating materials, polyester powder coating materials, acrylic powder coating materials, and epoxy-polyester hybrid powder coating materials.
The powder coating material containing or supporting the polarization material of the present invention can be obtained by adding the polarization material to the powder coating material by the method shown below.

(3)分極材料の添加方法
本発明において、非導電性部材用粉体塗料の製造方法は特に限定されないが、分極材料の添加方法は、内添法と外添法の2つの方法に分けられる。以下にそれぞれについて説明する。
(a)内添法
エポキシ樹脂等の樹脂材料及び硬化触媒に、分極材料を加えて、溶融混練を行う。必要に応じて、充填剤や各種添加材を加えることもできる。溶融混練には、エクストルーダー等を用いることができる。溶融混練時の温度は、樹脂材料等にもよるが、90℃〜120℃の範囲とするのが好ましい。溶融混練時間は、10分以下が好ましく、5分以下がより好ましく、60秒以下がさらに好ましい。
上述のように全ての原料を一度に溶融混練することもできるが、予め、一部の原料を溶融混合することもできる。溶融混合には、ニーダー、プラネタリーミキサー等を用いることができる。
溶融混練した後、冷却固化し、得られた混合物を微粉砕して、分級することにより分極材料を内包する粉体塗料が得られる。
分極材料の含有量は、分極材料を含む粉体塗料の総質量の1%〜20%であることが好ましく、3%〜10%であることがより好ましい。
(3) Method of Adding Polarizing Material In the present invention, the method for producing a powder coating material for non-conductive members is not particularly limited, but the method of adding a polarizing material can be divided into two methods, an internal addition method and an external addition method. .. Each will be described below.
(A) Internal addition method A polarization material is added to a resin material such as an epoxy resin and a curing catalyst, and melt-kneading is performed. If necessary, fillers and various additives can be added. An extruder or the like can be used for melt-kneading. The temperature at the time of melt-kneading depends on the resin material and the like, but is preferably in the range of 90 ° C. to 120 ° C. The melt-kneading time is preferably 10 minutes or less, more preferably 5 minutes or less, and even more preferably 60 seconds or less.
As described above, all the raw materials can be melt-kneaded at once, but some raw materials can be melt-mixed in advance. A kneader, a planetary mixer, or the like can be used for melt mixing.
After melt-kneading, it is cooled and solidified, and the obtained mixture is finely pulverized and classified to obtain a powder coating material containing a polarization material.
The content of the polarization material is preferably 1% to 20%, more preferably 3% to 10% of the total mass of the powder coating material containing the polarization material.

(b)外添法
分極材料を加えない他は、上述の方法で作製した粉体塗料に分極材料を担持させる。担持方法としては、ドライブレンド法が挙げられる。この方法では、ヘンシェルミキサー、Vブレンダー、ナウターミキサー等を用いて、粉体塗料と分極材料を混合することにより分極材料を担持した粉体塗料を得ることができる。
また、分極材料を分散させた液中に粉体塗料を浸漬して混合撹拌した後、乾燥することによっても分極材料を担持する粉体塗料が得られる。
上記外添法の場合、分極材料の含有量は、分極材料を含む粉体塗料の総質量の0.1%〜10%であることが好ましく、1%〜5%であることがより好ましい。
(B) External Addition Method The polarization material is supported on the powder coating material produced by the above method, except that the polarization material is not added. Examples of the supporting method include a dry blend method. In this method, a powder coating material carrying a polarization material can be obtained by mixing the powder coating material and the polarization material using a Henschel mixer, a V blender, a Nauter mixer or the like.
Further, a powder coating material supporting the polarization material can also be obtained by immersing the powder coating material in a liquid in which the polarization material is dispersed, mixing and stirring the mixture, and then drying the powder coating material.
In the case of the external addition method, the content of the polarization material is preferably 0.1% to 10%, more preferably 1% to 5% of the total mass of the powder coating material containing the polarization material.

(4)粉体塗料の塗装方法
本発明の非導電性部材用粉体塗料の塗装方法は、特に限定されず、公知の塗装方法が適用できる。具体的には、摩擦荷電方式(トリボ式)や外部荷電方式(コロナ式)等の静電塗装等を用いることができる。
トリボ式静電塗装の場合には、プラスに帯電させた粉体塗料と分極した分極材を、被塗装面に付着させる。一方、コロナ式静電塗装の場合は、マイナスに帯電させた粉体塗料と分極した分極材を、被塗装面に付着させる。
なお、以下の記載において、単に「粉体塗料」とは、分極材料を除く粉体塗料をいい、例えば、分極材料を含有しないエポキシ系粉体塗料、ポリエステル系粉体塗料、アクリル系粉体塗料、エポキシ-ポリエステルのハイブリッド系粉体塗料等のことをいう。
トリボ式静電塗装においては、粉体塗料はプラスに帯電する。ここで、非導電性被塗装部材は、導電性部材を介して、接地されているため、被塗装面は弱いマイナスの電荷を帯びる。このような被塗装面に、プラスに帯電した粉体塗料が分極した分極材料を介して効果的に堆積することにより優れた付着性が実現される。
一方、コロナ式静電塗装においては、粉体塗料はマイナスに帯電する。ここで、非導電性被塗装部材は、導電性部材を介して、接地されているため、被塗装面は弱いプラスの電荷を帯びる。このような被塗装面に、マイナスに帯電した粉体塗料が分極した分極材料を介して効果的に堆積することにより優れた付着性が実現される。
上記方法により、被塗装部材表面に非導電性部材用粉体塗料を塗装した後、硬化することにより塗膜を得ることができる。硬化温度及び硬化時間は、特に限定されないが、150℃〜250℃で、10分〜2時間硬化するのが好ましい。必要に応じて被塗装部材に予め表面処理を施すことにより、塗膜の密着性等を向上させることもできる。
本発明の非導電性部材用粉体塗料から得られる塗膜の膜厚は特に限定されないが、10μm以上300μm以下が好ましい。
(4) Coating method of powder coating The coating method of the powder coating for non-conductive members of the present invention is not particularly limited, and a known coating method can be applied. Specifically, electrostatic coating such as a friction charge method (trivo type) or an external charge method (corona type) can be used.
In the case of tribo-type electrostatic coating, a positively charged powder coating material and a polarized polarization material are attached to the surface to be coated. On the other hand, in the case of corona type electrostatic coating, a negatively charged powder coating material and a polarized polarization material are adhered to the surface to be coated.
In the following description, the "powder coating material" simply refers to a powder coating material excluding a polarization material, for example, an epoxy-based powder coating material, a polyester-based powder coating material, or an acrylic-based powder coating material that does not contain a polarization material. , Epoxy-polyester hybrid powder paint, etc.
In the tribo type electrostatic coating, the powder coating is positively charged. Here, since the non-conductive member to be coated is grounded via the conductive member, the surface to be coated is slightly negatively charged. Excellent adhesion is realized by effectively depositing the positively charged powder coating material on such a surface to be coated via the polarized material.
On the other hand, in the corona type electrostatic coating, the powder coating is negatively charged. Here, since the non-conductive member to be coated is grounded via the conductive member, the surface to be coated is slightly positively charged. Excellent adhesion is realized by effectively depositing a negatively charged powder coating material on such a surface to be coated via a polarized material.
By the above method, a coating film can be obtained by applying a powder coating material for a non-conductive member on the surface of a member to be coated and then curing the coating film. The curing temperature and curing time are not particularly limited, but it is preferable to cure at 150 ° C. to 250 ° C. for 10 minutes to 2 hours. It is also possible to improve the adhesion of the coating film by subjecting the member to be coated to a surface treatment in advance, if necessary.
The film thickness of the coating film obtained from the powder coating material for non-conductive members of the present invention is not particularly limited, but is preferably 10 μm or more and 300 μm or less.

本発明の非導電性部材用粉体塗料は、非導電性部材に効果的に塗装することができるため、各種プラスチック部材、ガラス部材、セラミックス部材、又はそれらの複合材料等の塗装に効果的に用いることができる。具体的には、携帯機器の筐体の他、基板、コンデンサー等の電子・電気機器用部材、バンパー、ドアミラーカバー等の自動車用部材等が挙げられる。 Since the powder coating material for non-conductive members of the present invention can be effectively applied to non-conductive members, it is effective for coating various plastic members, glass members, ceramic members, or composite materials thereof. Can be used. Specific examples thereof include housings for mobile devices, electronic / electrical device members such as substrates and capacitors, and automobile members such as bumpers and door mirror covers.

以下の実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例中、特に記載がない場合には、「%」及び「部」は質量%及び質量部を示す。また、以下の実施例の記載においては、「粉体塗料」とは、各実施例及び比較例に記載の方法で作製された粉体塗料をさし、分極材料を含むものも分極材料を含まないものも包含するものとする。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples, unless otherwise specified, "%" and "part" indicate mass% and parts by mass. Further, in the description of the following examples, the "powder coating material" refers to the powder coating material produced by the methods described in each Example and Comparative Example, and those containing a polarization material also include a polarization material. It shall include those that do not exist.

(実施例1)
表1に示す質量比で、ビスフェノールA型エポキシ樹脂、2,4―ジアミノ―6―[2― (2―メチル―1―イミダゾリル)エチル] ―1,3,5―トリアジン及び鱗状黒鉛(グラファイト)粉末(比誘電率12〜13)を配合し、エクストルーダーにより100℃〜150℃で溶融混練した。このときの混練時間は、30秒以下であった。混合物を冷却固化した後、微粉砕することにより鱗状黒鉛粉末を内包する粉体塗料を得た。この粉体塗料をトリボ帯電式静電塗装ガン(旭サナック株式会社製)を用いて、冷間圧延鋼板(SPCC)に貼り付けた石膏ボードに塗装した(電圧:成り行き)。塗装時間は、10秒とした。その後、得られた塗膜を190℃で20分硬化した。
以下に示す方法で、塗装後の実施例1の粉体塗料の付着状態を評価した結果を表1に示す。
(Example 1)
Bisphenol A type epoxy resin, 2,4-diamino-6- [2- (2-methyl-1-imidazolyl) ethyl] -1,3,5-triazine and scaly graphite (graphite) in the mass ratio shown in Table 1. Powders (relative permittivity 12 to 13) were blended and melt-kneaded at 100 ° C. to 150 ° C. using an extruder. The kneading time at this time was 30 seconds or less. After the mixture was cooled and solidified, it was finely pulverized to obtain a powder coating material containing scaly graphite powder. This powder coating was applied to a gypsum board attached to a cold-rolled steel plate (SPCC) using a trivo-charged electrostatic coating gun (manufactured by Asahi Sanac Co., Ltd.) (voltage: course). The painting time was 10 seconds. Then, the obtained coating film was cured at 190 ° C. for 20 minutes.
Table 1 shows the results of evaluating the adhesion state of the powder coating material of Example 1 after coating by the method shown below.

(実施例2)
表1に示す質量比で、ビスフェノールA型エポキシ樹脂と2,4―ジアミノ―6―[2― (2―メチル―1―イミダゾリル)エチル] ―1,3,5―トリアジンを配合し、エクストルーダーにより100℃〜150℃で溶融混練した。このときの混練時間は、30秒以下であった。混合物を冷却固化した後、微粉砕することにより粉体塗料を得た。粉体塗料と鱗状黒鉛粉末(比誘電率12〜13)を表1に示す比で配合して、5分間ドライブレンドした。トリボ帯電式静電塗装ガンを用いて、得られた鱗状黒鉛粉末を担持する粉体塗料を、冷間圧延鋼板(SPCC)に貼り付けた石膏ボードに塗装した。塗装時間は、10秒とした。その後、190℃で20分硬化して塗膜を得た。
以下に示す方法で、塗装後の実施例2の粉体塗料の付着状態を評価した結果を表1に示す。
(Example 2)
Extruder containing bisphenol A type epoxy resin and 2,4-diamino-6- [2- (2-methyl-1-imidazolyl) ethyl] -1,3,5-triazine in the mass ratio shown in Table 1. The mixture was melt-kneaded at 100 ° C. to 150 ° C. The kneading time at this time was 30 seconds or less. The mixture was cooled and solidified, and then finely pulverized to obtain a powder coating material. The powder coating material and scaly graphite powder (relative permittivity 12 to 13) were blended at the ratios shown in Table 1 and dry-blended for 5 minutes. Using a tribo-charged electrostatic coating gun, the powder coating material supporting the obtained scale-like graphite powder was applied to a gypsum board attached to a cold-rolled steel plate (SPCC). The painting time was 10 seconds. Then, it was cured at 190 degreeC for 20 minutes to obtain a coating film.
Table 1 shows the results of evaluating the adhesion state of the powder coating material of Example 2 after coating by the method shown below.

(比較例1)
表1に示す配合比(質量)で、ビスフェノールA型エポキシ樹脂及び2,4―ジアミノ―6―[2― (2―メチル―1―イミダゾリル)エチル] ―1,3,5―トリアジンを配合し、エクストルーダーにより100℃〜150℃で溶融混練した。このときの混練時間は、30秒以下であった。混合物を冷却固化した後、微粉砕することにより粉体塗料を得た。この粉体塗料をトリボ帯電式静電塗装ガンを用いて、冷間圧延鋼板(SPCC)に貼り付けた石膏ボードに塗装した。塗装時間は、10秒とした。その後、190℃で20分硬化して塗膜を得た。
以下に示す方法で、塗装後の比較例1の粉体塗料の付着状態を評価した結果を表1に示す。
(Comparative Example 1)
Bisphenol A type epoxy resin and 2,4-diamino-6- [2- (2-methyl-1-imidazolyl) ethyl] -1,3,5-triazine were blended in the blending ratio (mass) shown in Table 1. , Melt and kneaded at 100 ° C to 150 ° C with an extruder. The kneading time at this time was 30 seconds or less. The mixture was cooled and solidified, and then finely pulverized to obtain a powder coating material. This powder coating was applied to a gypsum board attached to a cold-rolled steel plate (SPCC) using a trivo-charged electrostatic coating gun. The painting time was 10 seconds. Then, it was cured at 190 degreeC for 20 minutes to obtain a coating film.
Table 1 shows the results of evaluating the adhesion state of the powder coating material of Comparative Example 1 after coating by the method shown below.

(実施例3)
表2に示す質量比で、ビスフェノールA型エポキシ樹脂と2,4―ジアミノ―6―[2― (2―メチル―1―イミダゾリル)エチル] ―1,3,5―トリアジンを配合し、エクストルーダーにより100℃〜150℃で溶融混練した。このときの混練時間は、30秒以下であった。混合物を冷却固化した後、微粉砕することにより粉体塗料を得た。粉体塗料とカーボンブラック(比誘電率8〜12)を表2に示す比で配合して、5分間ドライブレンドした。得られたカーボンブラックを担持する粉体塗料をトリボ帯電式静電塗装ガンを用いて、冷間圧延鋼板(SPCC)に貼り付けた石膏ボードに塗装した。塗装時間は、10秒とした。その後、190℃で20分硬化して塗膜を得た。
以下に示す方法で、塗装後の実施例3の粉体塗料の付着状態を評価した結果を表2に示す。
(Example 3)
Extruder containing bisphenol A type epoxy resin and 2,4-diamino-6- [2- (2-methyl-1-imidazolyl) ethyl] -1,3,5-triazine in the mass ratio shown in Table 2. The mixture was melt-kneaded at 100 ° C. to 150 ° C. The kneading time at this time was 30 seconds or less. The mixture was cooled and solidified, and then finely pulverized to obtain a powder coating material. The powder coating material and carbon black (relative permittivity 8 to 12) were blended at the ratios shown in Table 2 and dry-blended for 5 minutes. The obtained powder coating material supporting carbon black was applied to a gypsum board attached to a cold-rolled steel sheet (SPCC) using a trivo-charged electrostatic coating gun. The painting time was 10 seconds. Then, it was cured at 190 degreeC for 20 minutes to obtain a coating film.
Table 2 shows the results of evaluating the adhesion state of the powder coating material of Example 3 after coating by the method shown below.

(実施例4)
鱗状黒鉛粉末に変えて、チタン酸バリウム(比誘電率1200)を用いた他は、実施例2と同様に、チタン酸バリウムを担持する粉体塗料を作製して、塗装した。以下に示す方法で、塗装後の実施例4の粉体塗料の付着状態を評価した結果を表2に示す。
(Example 4)
A powder coating material carrying barium titanate was prepared and coated in the same manner as in Example 2 except that barium titanate (relative permittivity 1200) was used instead of the scaly graphite powder. Table 2 shows the results of evaluating the adhesion state of the powder coating material of Example 4 after coating by the method shown below.

(比較例2)
鱗状黒鉛粉末に変えて、ジメチルシリコーン処理ヒュームドシリカ(比誘電率2.0〜2.7)を用いた他は、実施例2と同様に、ジメチルシリコーン処理ヒュームドシリカを担持する粉体塗料を作製して、塗装した。以下に示す方法で、塗装後の比較例2の粉体塗料の付着状態を評価した結果を表2に示す。
(Comparative Example 2)
A powder coating material supporting dimethylsilicone-treated fumed silica, as in Example 2, except that dimethylsilicone-treated fumed silica (relative permittivity 2.0 to 2.7) was used instead of scaly graphite powder. Was made and painted. Table 2 shows the results of evaluating the adhesion state of the powder coating material of Comparative Example 2 after coating by the method shown below.

(比較例3)
鱗状黒鉛粉末に変えて、アクリル粒子(比誘電率2.7〜4.5)を用いた他は、実施例2と同様に、アクリル粒子を担持する粉体塗料を作製して、塗装した。以下に示す方法で、塗装後の比較例3の粉体塗料の付着状態を評価した結果を表2に示す。
(Comparative Example 3)
A powder coating material carrying acrylic particles was prepared and coated in the same manner as in Example 2 except that acrylic particles (relative permittivity 2.7 to 4.5) were used instead of the scaly graphite powder. Table 2 shows the results of evaluating the adhesion state of the powder coating material of Comparative Example 3 after coating by the method shown below.

(粉体塗料の付着状態の評価)
上述のとおり、トリボ帯電式静電塗装ガンを用いて実施例及び比較例の粉体塗料を石膏ボードに塗装した後、塗装面を目視で観察して、粉体塗料の付着状態を評価した。評価結果は、以下の3段階で表す。
◎:塗装面の全域にわたり、所定の厚みで粉体塗料の付着が認められる
○:塗装面の30%以上の領域で粉体塗料の付着が認められる。
×:塗装面の30%未満の領域で粉体塗料の付着が認められる、又は粉体塗料の付着が認められない
(Evaluation of adhesion state of powder paint)
As described above, after the powder coatings of Examples and Comparative Examples were applied to the gypsum board using a trivo-charged electrostatic coating gun, the coated surface was visually observed to evaluate the adhesion state of the powder coating. The evaluation result is represented by the following three stages.
⊚: Adhesion of powder paint is observed over the entire area of the painted surface with a predetermined thickness. ◯: Adhesion of powder paint is observed in a region of 30% or more of the painted surface.
X: Adhesion of powder paint is observed in the area of less than 30% of the painted surface, or adhesion of powder paint is not observed.

表1に示すように、ビスフェノールA型エポキシ樹脂と2,4―ジアミノ―6―[2― (2―メチル―1―イミダゾリル)エチル] ―1,3,5―トリアジンから得られた比較例1では、トリボ帯電式静電塗装による粉体塗料の付着はほとんど認められなかった。これに対して、鱗状黒鉛粉末をビスフェノールA型エポキシ樹脂及び2,4―ジアミノ―6―[2― (2―メチル―1―イミダゾリル)エチル] ―1,3,5―トリアジンとともに溶融混練して得られた実施例1、及び鱗状黒鉛粉末を比較例1の粉体塗料とドライブレンドして得られた実施例2では、塗装面全体に十分な厚さの粉体塗料が付着することがわかった。
以上の結果より、鱗状黒鉛粉末を内包した粉体塗料、又は鱗状黒鉛粉末を担持した粉体塗料では、非導電性部材にも効率的に静電塗装ができることがわかった。
As shown in Table 1, Comparative Example 1 obtained from bisphenol A type epoxy resin and 2,4-diamino-6- [2- (2-methyl-1-imidazolyl) ethyl] -1,3,5-triazine. However, almost no adhesion of powder coating was observed due to trivo-charged electrostatic coating. On the other hand, the scaly graphite powder was melt-kneaded with bisphenol A type epoxy resin and 2,4-diamino-6- [2- (2-methyl-1-imidazolyl) ethyl] -1,3,5-triazine. In Example 1 obtained and Example 2 obtained by dry-blending the scale-like graphite powder with the powder coating material of Comparative Example 1, it was found that the powder coating material having a sufficient thickness adhered to the entire coated surface. It was.
From the above results, it was found that the powder coating material containing the scaly graphite powder or the powder coating material supporting the scaly graphite powder can efficiently perform electrostatic coating even on the non-conductive member.

表2に示すように、ジメチルシリコーン処理ヒュームドシリカを担持した比較例2及びアクリル粒子を担持した比較例3では、トリボ帯電式静電塗装による粉体塗料の付着はほとんど認められなかった。これに対して、カーボンブラックを担持した実施例3では、粉体塗料の付着が認められた。さらに、チタン酸バリウムを担持した実施例4では、鱗状黒鉛粉末を担持した実施例2と同様、塗装面全体に十分な厚さの粉体塗料が付着することがわかった。
以上の結果より、比誘電率の低い分極しない粉末を担持した粉体塗料では、非導電性部材に塗装することはできないが、比誘電率の高い分極材料の粉末を担持した粉体塗料では、静電塗装により、非導電性部材に効果的に塗装できることが確認された。分極材料の比誘電率は、8以上であることが好ましいと考えられる。
なお、鱗状黒鉛粉末以外の比誘電率の高い分極材料を内包した粉体塗料でも同様に、良好な付着性が得られることが確認されている。



As shown in Table 2, in Comparative Example 2 in which dimethyl silicone-treated fumed silica was supported and Comparative Example 3 in which acrylic particles were supported, adhesion of the powder coating material by trivo-charged electrostatic coating was hardly observed. On the other hand, in Example 3 in which carbon black was supported, adhesion of the powder coating material was observed. Further, in Example 4 in which barium titanate was supported, it was found that a powder coating material having a sufficient thickness adhered to the entire coated surface as in Example 2 in which scaly graphite powder was supported.
From the above results, a powder coating material carrying a non-polarizing powder having a low relative permittivity cannot be applied to a non-conductive member, but a powder coating material carrying a powder of a polarization material having a high relative permittivity cannot be applied. It was confirmed that the non-conductive member can be effectively coated by electrostatic coating. It is considered that the relative permittivity of the polarization material is preferably 8 or more.
It has been confirmed that a powder coating material containing a polarization material having a high relative permittivity other than the scaly graphite powder also has good adhesiveness.



Claims (3)

分極材料を内包、又は担持する非導電性部材用粉体塗料であって、
前記分極材料は、鱗状黒鉛及びチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種を含み、
前記粉体塗料は、エポキシ樹脂を主成分とする、非導電性部材用粉体塗料。
A powder coating material for non-conductive members that contains or supports a polarization material.
The polarization material, scaly graphite and barium titanate, strontium titanate, among calcium titanate, looking contains at least one,
The powder coating material is a powder coating material for non-conductive members containing an epoxy resin as a main component .
請求項1に記載の非導電性部材用粉体塗料を塗装したことを特徴とする非導電性部材。 A non-conductive member characterized by being coated with the powder coating material for a non-conductive member according to claim 1. 分極材料を内包、又は担持する粉体塗料を被塗装面に塗装する工程を含む非導電性部材の塗装方法であって、
前記分極材料は、鱗状黒鉛及びチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種を含み、
前記粉体塗料は、エポキシ樹脂を主成分とする、非導電性部材の塗装方法。
A method of coating a non-conductive member, which comprises a step of coating a surface to be coated with a powder coating material containing or supporting a polarization material .
The polarization material, scaly graphite and barium titanate, strontium titanate, among calcium titanate, looking contains at least one,
The powder coating is a method for coating a non-conductive member containing an epoxy resin as a main component .
JP2015255960A 2015-12-28 2015-12-28 Powder coating for non-conductive members and coating method for non-conductive members Active JP6791628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015255960A JP6791628B2 (en) 2015-12-28 2015-12-28 Powder coating for non-conductive members and coating method for non-conductive members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015255960A JP6791628B2 (en) 2015-12-28 2015-12-28 Powder coating for non-conductive members and coating method for non-conductive members

Publications (2)

Publication Number Publication Date
JP2017119746A JP2017119746A (en) 2017-07-06
JP6791628B2 true JP6791628B2 (en) 2020-11-25

Family

ID=59271563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015255960A Active JP6791628B2 (en) 2015-12-28 2015-12-28 Powder coating for non-conductive members and coating method for non-conductive members

Country Status (1)

Country Link
JP (1) JP6791628B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587160A (en) * 1983-06-13 1986-05-06 Ferro Corporation Electrostatically conductive premold coating
JPS61111335A (en) * 1984-11-05 1986-05-29 Dainippon Toryo Co Ltd Molding of plastic
JPS61126185A (en) * 1984-11-21 1986-06-13 Dainippon Toryo Co Ltd Composition in powder
JPH0638339B2 (en) * 1986-07-16 1994-05-18 三菱電機株式会社 Cooling device for fuel cells
JPH02284968A (en) * 1989-04-26 1990-11-22 Kansai Paint Co Ltd Electrically conductive coating composition
JPH09111155A (en) * 1995-10-19 1997-04-28 Shinagawa Refract Co Ltd Coating material for carbon-containing brick
JP3437973B2 (en) * 1997-11-06 2003-08-18 株式会社巴川製紙所 Powder coating for glass surface coating and coating method
JP2000153217A (en) * 1998-11-17 2000-06-06 Asahi Sunac Corp Electrostatic coating method of now-conductive material to be coated
JP2000212476A (en) * 1999-01-26 2000-08-02 Sumitomo Durez Co Ltd Coated item having multilayer structure coated with fire retarded epoxy resin powder coating
JP2002060696A (en) * 2000-08-14 2002-02-26 Araco Corp Preparation processes for electrically conductive film- forming powder coating and metal separator for fuel cell
JP2003001183A (en) * 2001-06-20 2003-01-07 Matsushita Electric Works Ltd Electrostatic coating method of foundation bed for construction
JP2003145032A (en) * 2001-11-07 2003-05-20 Nippon Paint Co Ltd Design coating method

Also Published As

Publication number Publication date
JP2017119746A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
CN111183192B (en) Antistatic powder coating composition
RU2016138829A (en) ANTICORROSIVE COMPOSITIONS FOR ZINC-CONTAINING PRIMER COATING
KR101766629B1 (en) Conductive liquid composition
JP2008530302A (en) Binding powder coating compositions
ES2301496T3 (en) ANTISTATIC POWDER COATING COMPOSTIONS AND THEIR USE.
JP2006144003A (en) Conductive coating composition and method for producing the same
US20040102561A1 (en) Powder coating composition
JP6791628B2 (en) Powder coating for non-conductive members and coating method for non-conductive members
CN103160183A (en) Preparation method of nano anticorona varnish
DE102013111306A1 (en) Manufacturing method for a plasma-coated molded body and component
TW201439232A (en) Conductive paint and adherend coated with the same conductive paint
JP2017171705A (en) Powder coating composition
KR102595245B1 (en) Compositions and painting articles for powder coatings
KR20180101807A (en) Coating composition
JP2006232884A (en) White conductive primer coating composition, coating method using the same composition and coated article coated with the same coating method
JP2016113526A (en) Powder coating composition
JP2008248101A (en) Epoxy resin powder coating material
JP5151365B2 (en) Articles painted with epoxy resin powder paint
JP2002155237A (en) Lubricating powder coating composition
JP2020169314A (en) Epoxy resin powder coating
JPH11323202A (en) Epoxy resin-based powder coating composition
JP5434715B2 (en) Epoxy resin powder coating
JPH03145090A (en) Platy heat radiating body
JP2003003122A (en) Thermally curable powder coating and method of forming thermally curable coating film
JP7259652B2 (en) Powder coatings, lubricating films, and parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R150 Certificate of patent or registration of utility model

Ref document number: 6791628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250