JP6789821B2 - Polyester film - Google Patents

Polyester film Download PDF

Info

Publication number
JP6789821B2
JP6789821B2 JP2016560834A JP2016560834A JP6789821B2 JP 6789821 B2 JP6789821 B2 JP 6789821B2 JP 2016560834 A JP2016560834 A JP 2016560834A JP 2016560834 A JP2016560834 A JP 2016560834A JP 6789821 B2 JP6789821 B2 JP 6789821B2
Authority
JP
Japan
Prior art keywords
film
shrinkage
temperature
heat
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016560834A
Other languages
Japanese (ja)
Other versions
JPWO2017022742A1 (en
Inventor
敏行 飯田
敏行 飯田
林 大輔
大輔 林
村上 奈穗
奈穗 村上
塩見 篤史
篤史 塩見
功 真鍋
功 真鍋
光隆 坂本
光隆 坂本
高田 育
育 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Toray Industries Inc
Original Assignee
Nitto Denko Corp
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Toray Industries Inc filed Critical Nitto Denko Corp
Publication of JPWO2017022742A1 publication Critical patent/JPWO2017022742A1/en
Application granted granted Critical
Publication of JP6789821B2 publication Critical patent/JP6789821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Description

本発明は、特殊な熱特性を有するポリエステルフィルムに関するものである。 The present invention relates to a polyester film having special thermal properties.

熱収縮フィルムは、包装用途、ラベル用途など、広く使用されているが、近年、水系インキ、特殊インキ、水系塗剤や特殊塗剤等、塗布、乾燥工程において加熱工程を伴う塗剤等を印刷、塗布するために、原反フィルムには塗布乾燥工程における90℃程度の低温では収縮等の変形をしない耐熱性を有し、その後の収縮工程における高温では大きく収縮するといった特徴を持った熱収縮性フィルムが求められるようになってきている。例えば、お茶や清涼飲料水等のボトル容器を中心とした包装用途、フィルムの収縮を利用して複雑な形状の部材に高意匠なデザインを付与する加飾用途、位相差形成層といった光学層を形成する光学用離型フィルムといった用途において、低温での低熱収縮率、高温での高熱収縮率を両立させるニーズが高まっている。熱収縮フィルムとして、特定方向に収縮させるために特許文献1および2に代表されるような一軸延伸フィルムおよび横方向に延伸した後に縦方向に逐次二軸延伸することで特定方向にのみ熱収縮させるフィルムが知られている。 Heat-shrinkable films are widely used for packaging, labels, etc., but in recent years, water-based inks, special inks, water-based coatings, special coatings, etc., have been printed with coatings that involve a heating process in the coating and drying processes. In order to apply the raw film, the raw film has heat resistance that does not cause deformation such as shrinkage at a low temperature of about 90 ° C. in the coating and drying step, and shrinks significantly at a high temperature in the subsequent shrinking step. There is a growing demand for sex films. For example, packaging applications centered on bottle containers for tea and soft drinks, decorative applications that use the shrinkage of films to give highly designed members to members with complex shapes, and optical layers such as retardation forming layers. In applications such as mold release films for optics to be formed, there is an increasing need for both a low thermal shrinkage rate at a low temperature and a high thermal shrinkage rate at a high temperature. As a heat-shrinkable film, a uniaxially stretched film as represented by Patent Documents 1 and 2 in order to shrink in a specific direction, and a heat-shrinkable film that is stretched in the horizontal direction and then sequentially biaxially stretched in the vertical direction to be heat-shrinked only in a specific direction. The film is known.

しかしながら、特許文献1または2に記載されている一軸延伸フィルム、横縦逐次二軸延伸フィルムを上記低温耐熱性かつ高温収縮特性が求められる収縮性フィルムとして用いた場合、90℃程度で大きく収縮することから、特殊インキや塗剤を塗布する工程にて変形、収縮してしまうという問題があった。そこで、より耐熱温度が高く、かつ高温に加熱した場合に大きく収縮するフィルムが求められている。 However, when the uniaxially stretched film and the transversely and longitudinally biaxially stretched film described in Patent Document 1 or 2 are used as the shrinkable film required to have low temperature heat resistance and high temperature shrinkage characteristics, they shrink significantly at about 90 ° C. Therefore, there is a problem that the film is deformed and shrunk in the process of applying the special ink or the coating agent. Therefore, there is a demand for a film having a higher heat resistant temperature and shrinking significantly when heated to a high temperature.

特開2011−79229号公報Japanese Unexamined Patent Publication No. 2011-79229 国際公開第2014/021120号International Publication No. 2014/021120

そこで本発明の課題は、塗布工程や乾燥工程などの工程温度である90℃程度では収縮しないか収縮率が小さく、収縮工程温度では大きく収縮するポリエステルフィルムを提供することにある。 Therefore, an object of the present invention is to provide a polyester film that does not shrink or has a small shrinkage rate at a process temperature of about 90 ° C. such as a coating process or a drying process, and shrinks significantly at a shrinkage process temperature.

上述した課題を解決するために、本発明に係るポリエステルフィルムは、主収縮方向の150℃熱収縮率が15%以上かつ主収縮方向と直交する方向の150℃熱収縮率が15%未満、主収縮方向の90℃熱収縮率が14%以下であることを特徴とする。また、主収縮方向の150℃熱収縮率が15%以上かつ主収縮方向と直交する方向の150℃熱収縮率が15%未満であって、温度変調DSCより得られるガラス転移温度が100℃以上であることを特徴とする。 In order to solve the above-mentioned problems, the polyester film according to the present invention has a heat shrinkage rate of 150 ° C. in the main shrinkage direction of 15% or more and a heat shrinkage rate of 150 ° C. in the direction orthogonal to the main shrinkage direction of less than 15%. It is characterized in that the 90 ° C. heat shrinkage rate in the shrinkage direction is 14% or less. Further, the heat shrinkage rate of 150 ° C. in the main shrinkage direction is 15% or more and the heat shrinkage rate of 150 ° C. in the direction orthogonal to the main shrinkage direction is less than 15%, and the glass transition temperature obtained from the temperature-modulated DSC is 100 ° C. or higher. It is characterized by being.

本発明に係るポリエステルフィルムは、150℃では主収縮方向に15%以上、かつ主収縮方向と直交する方向には15%未満、90℃では主収縮方向に14%以下で収縮する特殊な熱特性を有する。また、本発明に係るポリエステルフィルムは主収縮方向の150℃熱収縮率が15%以上かつ主収縮方向と直交する方向の150℃熱収縮率が15%未満であって、温度変調DSCより得られるガラス転移温度が100℃以上である特殊な熱特性を有する。これにより、90℃では収縮率が小さく、各種機能層の塗布工程、乾燥工程において塗剤の延展や乾燥のために十分な加熱が可能であり、その後、150℃において主収縮方向に15%以上、かつ主収縮方向と直交する方向に15%未満で収縮するという、特定の方向には大きく収縮する特殊な熱収縮性を示すため、包装用途、加飾用途、光学用途として好ましく用いることができる。 The polyester film according to the present invention has special thermal properties of shrinking at 150 ° C. in the main shrinkage direction by 15% or more, in the direction orthogonal to the main shrinkage direction by less than 15%, and at 90 ° C. in the main shrinkage direction by 14% or less. Has. Further, the polyester film according to the present invention has a heat shrinkage rate of 150 ° C. in the main shrinkage direction of 15% or more and a heat shrinkage rate of 150 ° C. in the direction orthogonal to the main shrinkage direction of less than 15%, and can be obtained from a temperature-modulated DSC. It has a special thermal property that the glass transition temperature is 100 ° C. or higher. As a result, the shrinkage rate is small at 90 ° C., and sufficient heating is possible for spreading and drying the coating material in the coating step and drying step of various functional layers, and then at 150 ° C., 15% or more in the main shrinkage direction. In addition, since it exhibits a special heat shrinkage property of shrinking by less than 15% in a direction orthogonal to the main shrinkage direction, which is a large shrinkage in a specific direction, it can be preferably used for packaging, decoration, and optical applications. ..

以下、本発明のポリエステルフィルムについて、実施の形態とともに詳細に説明する。
本発明に係るポリエステルフィルムに用いるポリエステルを与えるグリコールあるいはその誘導体としては、エチレングリコールが80モル%以上であることが好ましいが、その他の成分として、例えば、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジヒドロキシ化合物、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール、1,4−シクロヘキサンジメタノールなどの脂環族ジヒドロキシ化合物、ビスフェノールA、ビスフェノールSなどの芳香族ジヒドロキシ化合物、並びに、それらの誘導体を含んでいてもよい。
Hereinafter, the polyester film of the present invention will be described in detail together with embodiments.
The glycol or derivative thereof that gives the polyester used in the polyester film according to the present invention preferably contains 80 mol% or more of ethylene glycol, but other components include, for example, 1,2-propanediol and 1,3-. Aliper dihydroxy compounds such as propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, poly It may contain a polyoxyalkylene glycol such as tetramethylene glycol, an alicyclic dihydroxy compound such as 1,4-cyclohexanedimethanol, an aromatic dihydroxy compound such as bisphenol A and bisphenol S, and derivatives thereof.

また、本発明に用いるポリエステルを与えるジカルボン酸あるいはその誘導体としては、テレフタル酸が80モル%以上であることが好ましいが、その他の成分として、例えば、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸などの芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、パラオキシ安息香酸などのオキシカルボン酸、並びに、それらの誘導体を挙げることができる。ジカルボン酸の誘導体としては例えばテレフタル酸ジメチル、テレフタル酸ジエチル、テレフタル酸2−ヒドロキシエチルメチルエステル、2,6−ナフタレンジカルボン酸ジメチル、イソフタル酸ジメチル、アジピン酸ジメチル、マレイン酸ジエチル、ダイマー酸ジメチルなどのエステル化物を含んでいてもよい。 The dicarboxylic acid or its derivative that gives the polyester used in the present invention preferably contains 80 mol% or more of terephthalic acid, but other components include, for example, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Aromatic dicarboxylic acids such as acids, diphenyldicarboxylic acids, diphenylsulfonedicarboxylic acids and diphenoxyetanedicarboxylic acids, aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid, Examples thereof include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, oxycarboxylic acids such as paraoxybenzoic acid, and derivatives thereof. Derivatives of the dicarboxylic acid include, for example, dimethyl terephthalate, diethyl terephthalate, 2-hydroxyethylmethyl ester terephthalic acid, dimethyl 2,6-naphthalenedicarboxylic acid, dimethyl isophthalate, dimethyl adipate, diethyl maleate, dimethyl dimerate and the like. It may contain an esterified product.

本発明においては、90℃での主収縮方向の熱収縮率を低く、かつ150℃における主収縮方向の熱収縮率を高くする観点、また、温度変調DSCにより得られるガラス転移温度を100℃以上とし、かつ150℃における主収縮方向の熱収縮率を高くする観点より、ポリエステルの結晶性は高い方が好ましいことから、グリコール成分として、エチレングリコールが85モル%以上であることが好ましく、90モル%以上であることがより好ましい。また、ジカルボン酸成分としては、テレフタル酸が85モル%以上であることが好ましく、90モル%以上であることがより好ましい。ただし、熱収縮率を高めようとした場合、特にポリエチレンテレフタレートに対しては共重合成分を導入し、非晶性を高めることにより熱収縮率を向上させることができることから、熱収縮性と耐熱性の両立の観点からは、共重合成分を3モル%以上、より好ましくは5モル%以上、特に好ましくは10モル%以上含むことが好ましい。ポリエチレンテレフタレートに共重合成分を導入する場合、共重合成分としては、上に挙げたジカルボン酸成分又はグリコール成分のいずれを用いてもよいが、耐熱性の観点から、2,6−ナフタレンジカルボン酸、1,4−シクロヘキサンジメタノールが好ましく用いられる。 In the present invention, from the viewpoint of lowering the heat shrinkage rate in the main shrinkage direction at 90 ° C. and increasing the heat shrinkage rate in the main shrinkage direction at 150 ° C., and setting the glass transition temperature obtained by the temperature-modulated DSC to 100 ° C. or higher. From the viewpoint of increasing the heat shrinkage rate in the main shrinkage direction at 150 ° C., it is preferable that the polyester has high crystallinity. Therefore, ethylene glycol is preferably 85 mol% or more as the glycol component, and 90 mol. More preferably, it is% or more. Further, as the dicarboxylic acid component, terephthalic acid is preferably 85 mol% or more, and more preferably 90 mol% or more. However, when trying to increase the heat shrinkage rate, the heat shrinkage rate can be improved by introducing a copolymerization component especially for polyethylene terephthalate and increasing the amorphous property, so that the heat shrinkage property and heat resistance From the viewpoint of compatibility, it is preferable to contain the copolymerization component in an amount of 3 mol% or more, more preferably 5 mol% or more, and particularly preferably 10 mol% or more. When a copolymerization component is introduced into polyethylene terephthalate, either the dicarboxylic acid component or the glycol component listed above may be used as the copolymerization component, but from the viewpoint of heat resistance, 2,6-naphthalenedicarboxylic acid, 1,4-Cyclohexanedimethanol is preferably used.

本発明のポリエステルフィルムは、耐熱性と熱収縮性の両立の観点からは、温度変調DSCより得られるガラス転移温度が90℃以上であることが好ましい。ここで、ガラス転移温度は後述の特性の測定方法の(6)温度変調DSCガラス転移温度に記載した方法にて得ることができる。本発明のポリエステルフィルムは、各種機能層の塗布工程温度または乾燥工程温度の範囲内である90℃程度にて収縮変形が起こらないことを目的としている。このため、フィルムバルク中の分子運動性を90℃において低くすることが好ましいことから、温度変調DSCより得られるガラス転移温度を90℃以上にすることが好ましい。90℃未満であると、各種機能層等を塗布した後の乾燥工程でフィルムが変形してしまう場合がある。耐熱性と熱収縮性の両立の観点からは、温度変調DSCより得られるガラス転移温度は95℃以上であることが好ましく、100℃以上であることがより好ましい。更に、高い耐熱性が必要な用途へ展開する場合には、温度変調DSCより得られるガラス転移温度が100℃以上であることが必要となり、好ましくは103℃以上120℃以下であり、105℃以上115℃以下であることがより好ましい。温度変調DSCより得られるガラス転移温度が120℃以上であると、150℃での熱収縮性が低くなる可能性がある。一方、100℃未満であると各種機能層等を塗布した後の乾燥工程でフィルムが変形してしまう場合がある。ガラス転移温度を90℃以上とする方法としては、たとえば、剛直となる成分を共重合することで、制御することが可能である。さらに。共重合成分の選択、共重合量の制御、延伸条件の調整により、ガラス転移温度を100℃以上にすることができる。例えば、ポリエチレンテレフタレートに対する好ましい共重合成分としては、2,6−ナフタレンジカルボン酸、1,4−シクロヘキサンジメタノールなどが挙げられる。また、製膜時の延伸方式、延伸倍率、延伸及び熱処理の温度を調整することにより達成することができる。 From the viewpoint of achieving both heat resistance and heat shrinkage, the polyester film of the present invention preferably has a glass transition temperature of 90 ° C. or higher obtained by a temperature-modulated DSC. Here, the glass transition temperature can be obtained by the method described in (6) Temperature-modulated DSC glass transition temperature of the characteristic measurement method described later. The object of the polyester film of the present invention is that shrinkage deformation does not occur at about 90 ° C., which is within the range of the coating process temperature or the drying process temperature of various functional layers. Therefore, since it is preferable to reduce the molecular motion in the film bulk at 90 ° C., it is preferable to set the glass transition temperature obtained by the temperature-modulated DSC to 90 ° C. or higher. If the temperature is lower than 90 ° C., the film may be deformed in the drying step after applying various functional layers and the like. From the viewpoint of achieving both heat resistance and heat shrinkage, the glass transition temperature obtained from the temperature-modulated DSC is preferably 95 ° C. or higher, more preferably 100 ° C. or higher. Further, when developing into an application requiring high heat resistance, the glass transition temperature obtained from the temperature-modulated DSC needs to be 100 ° C. or higher, preferably 103 ° C. or higher and 120 ° C. or lower, and 105 ° C. or higher. More preferably, it is 115 ° C. or lower. When the glass transition temperature obtained from the temperature-modulated DSC is 120 ° C. or higher, the heat shrinkage at 150 ° C. may be lowered. On the other hand, if the temperature is lower than 100 ° C., the film may be deformed in the drying step after applying various functional layers and the like. As a method of setting the glass transition temperature to 90 ° C. or higher, for example, it is possible to control by copolymerizing a rigid component. further. The glass transition temperature can be set to 100 ° C. or higher by selecting the copolymerization component, controlling the copolymerization amount, and adjusting the stretching conditions. For example, preferable copolymerization components for polyethylene terephthalate include 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedimethanol and the like. It can also be achieved by adjusting the stretching method, stretching ratio, stretching and heat treatment temperatures during film formation.

本発明のポリエステルフィルムは、可動非晶量が25%以上であることが好ましい。ここで、可動非晶量は、後述の特性の測定方法(5)可動非晶量(分率)に記載のとおり、温度変調DSCで測定したガラス転移温度での比熱差より算出することができる。可動非晶量が25%未満であると、熱収縮工程において収縮挙動を示す非晶成分量が少なく、150℃において、主収縮方向に15%以上収縮することができなくなることがある。また上限は特に限定されないが、40%を超えた場合、機械的強度が低下することがあるため、40%以下であることが好ましい。可動非晶量を25%以上とするためには、製膜時の延伸方式、延伸倍率、延伸及び熱処理の温度を調整することにより達成することができる。 The polyester film of the present invention preferably has a movable amorphous amount of 25% or more. Here, the movable amorphous amount can be calculated from the specific heat difference at the glass transition temperature measured by the temperature-modulated DSC as described in the characteristic measurement method (5) movable amorphous amount (fraction) described later. .. If the amount of movable amorphous is less than 25%, the amount of amorphous components exhibiting shrinkage behavior in the heat shrinkage step is small, and at 150 ° C., it may not be possible to shrink by 15% or more in the main shrinkage direction. The upper limit is not particularly limited, but if it exceeds 40%, the mechanical strength may decrease, so it is preferably 40% or less. The amount of movable amorphous can be 25% or more by adjusting the stretching method, stretching ratio, stretching and heat treatment temperatures at the time of film formation.

本発明のポリエステルフィルムは、主収縮方向の150℃熱収縮率が15%以上であることが必要である。主収縮方向の150℃熱収縮率を15%以上とすることで、包装用途、加飾用途、光学用途等に用いた場合、優れた収縮特性を示すことができる。好ましくは20%以上であり、さらに好ましくは25%以上、最も好ましくは30%以上である。主収縮方向の150℃熱収縮率を15%以上とするには、延伸工程において、収縮方向に延伸すればよい。例えば、15%収縮させようとするのであれば、少なくとも1.15倍以上に延伸する必要があり、ホモポリエステル、特にポリエチレンテレフタレートであれば、主収縮方向の屈折率を1.6以上とすることが好ましい。また、主収縮方向の屈折率が1.64を越えて配向している場合、主収縮方向と直交する方向の150℃熱収縮率を15%未満とした上で、主収縮方向150℃熱収縮率は15%以上とすることが困難である。そのため、本発明におけるポリエステルフィルムの主収縮方向の屈折率は、1.60以上1.64以下であることが好ましい。ここで、本発明における主収縮方向とは、フィルムのある任意の1方向を0°として、そこから5°間隔にて180°までの各方向について150℃熱収縮率を測定し、最も収縮率が高い方向のことを指す。本発明において、主収縮方向はフィルム長手方向、主収縮方向と直交する方向はフィルム幅方向であることが好ましい。フィルム長手方向に高い収縮性を示すことにより、各種インキや塗剤の塗布工程、他の機能層との貼り合せなどの加工工程において、ロールtoロールでの貼り合せや加工を行うことができ、特に光学用途において、ロールtoロールでの位相差層形成が可能となるため、好ましい。 The polyester film of the present invention needs to have a heat shrinkage rate of 150 ° C. in the main shrinkage direction of 15% or more. By setting the heat shrinkage rate at 150 ° C. in the main shrinkage direction to 15% or more, excellent shrinkage characteristics can be exhibited when used for packaging, decoration, optical use, and the like. It is preferably 20% or more, more preferably 25% or more, and most preferably 30% or more. In order to set the heat shrinkage rate at 150 ° C. in the main shrinkage direction to 15% or more, stretching may be performed in the shrinkage direction in the stretching step. For example, if it is intended to shrink by 15%, it must be stretched at least 1.15 times or more, and in the case of homopolyester, especially polyethylene terephthalate, the refractive index in the main shrinkage direction should be 1.6 or more. Is preferable. When the refractive index in the main contraction direction is oriented beyond 1.64, the heat contraction rate at 150 ° C. in the direction orthogonal to the main contraction direction is set to less than 15%, and the heat shrinkage is 150 ° C. in the main contraction direction. It is difficult to make the rate 15% or more. Therefore, the refractive index of the polyester film in the main contraction direction in the present invention is preferably 1.60 or more and 1.64 or less. Here, the main shrinkage direction in the present invention is defined as 0 ° in any one direction of the film, and the heat shrinkage rate of 150 ° C. is measured in each direction from there to 180 ° at 5 ° intervals, and the shrinkage rate is the highest. Points to the higher direction. In the present invention, the main shrinkage direction is preferably the film longitudinal direction, and the direction orthogonal to the main shrinkage direction is preferably the film width direction. By exhibiting high shrinkage in the longitudinal direction of the film, it is possible to perform roll-to-roll bonding and processing in processing processes such as coating processes of various inks and coating agents, and bonding with other functional layers. Especially in optical applications, it is preferable because it enables roll-to-roll retardation layer formation.

本発明のポリエステルフィルムは、主収縮方向と直交する方向の150℃熱収縮率が15%未満であることが必要である。通常、縦横の順に逐次二軸延伸したフィルムや縦横の延伸倍率や延伸速度を同等として同時二軸延伸したフィルムであれば、主収縮方向と直交する方向をフィルム幅方向とした場合、幅方向にも収縮してしまう。これに対し、例えば、少なくとも幅方向に延伸した後、その直交方向である長手方向に延伸する工程を含む逐次二軸延伸方法とすることで、主収縮方向と直交する方向の150℃熱収縮率を15%未満とすることができる。これは、幅方向に一度配向、結晶化させた状態にて長手方向に延伸させることで、収縮成分と考えられる非晶成分を選択的に長手方向に歪ませることができているものと推定される。このため、樹脂組成としては配向結晶化できる程度に結晶性を有する樹脂を用いることが好ましい。また、配向結晶化は屈折率や面配向係数で定義されるもののことを指し、面配向係数は0.1以上であることが好ましく、非晶成分を結晶化させることなく歪ませる点において面配向係数は0.14以下であることが好ましい。 The polyester film of the present invention needs to have a heat shrinkage rate of less than 15% at 150 ° C. in a direction orthogonal to the main shrinkage direction. Normally, in the case of a film that is sequentially biaxially stretched in the vertical and horizontal order or a film that is simultaneously biaxially stretched with the same vertical and horizontal stretching ratio and stretching speed, when the direction orthogonal to the main shrinkage direction is the film width direction, the width direction Also shrinks. On the other hand, for example, by adopting a sequential biaxial stretching method including a step of stretching at least in the width direction and then stretching in the longitudinal direction which is the orthogonal direction thereof, a heat shrinkage rate of 150 ° C. in a direction orthogonal to the main shrinkage direction is adopted. Can be less than 15%. It is presumed that this is because the amorphous component, which is considered to be a contraction component, can be selectively distorted in the longitudinal direction by stretching it in the longitudinal direction in a state where it is once oriented in the width direction and crystallized. Amorphous. Therefore, as the resin composition, it is preferable to use a resin having crystallinity to the extent that it can be oriented and crystallized. Orientation crystallization refers to what is defined by the refractive index and the plane orientation coefficient, and the plane orientation coefficient is preferably 0.1 or more, and the plane orientation is in that the amorphous component is distorted without being crystallized. The coefficient is preferably 0.14 or less.

本発明のポリエステルフィルムは、主収縮方向の90℃熱収縮率が14%以下であることが好ましい。本発明では各種機能層の塗布工程または乾燥工程の工程温度にて収縮変形しないことが求められる。これに対し、14%を超えると各種機能層を塗布した後の乾燥工程にて収縮変形するため、該工程に耐えることができないことがある。また、シワの低減等、塗布工程、乾燥工程を経たフィルムにおける外観を向上させる観点からは、主収縮方向の90℃熱収縮率が14%以下であることが必要となる場合がある。主収縮方向の90℃熱収縮率は、10%以下であることがより好ましく、5%以下であることがさらに好ましい。90℃における主収縮方向の熱収縮率を14%以下とするためには、例えば、フィルムの温度変調DSCから得られるガラス転移温度を90℃以上とすることにより達成することができる。 The polyester film of the present invention preferably has a 90 ° C. heat shrinkage rate in the main shrinkage direction of 14% or less. In the present invention, it is required that the functional layers do not shrink and deform at the step temperature of the coating step or the drying step. On the other hand, if it exceeds 14%, it shrinks and deforms in the drying step after applying various functional layers, so that the step may not be withstood. Further, from the viewpoint of improving the appearance of the film that has undergone the coating step and the drying step, such as reducing wrinkles, it may be necessary that the 90 ° C. heat shrinkage rate in the main shrinkage direction is 14% or less. The 90 ° C. heat shrinkage rate in the main shrinkage direction is more preferably 10% or less, and further preferably 5% or less. In order to reduce the heat shrinkage rate in the main shrinkage direction at 90 ° C. to 14% or less, it can be achieved, for example, by setting the glass transition temperature obtained from the temperature-modulated DSC of the film to 90 ° C. or higher.

本発明のポリエステルフィルムは、耐熱性の観点から、主収縮方向の80℃における熱収縮応力が1MPa以下であることが好ましい。80℃における熱収縮応力が1MPa以下であれば、各種機能層の塗布工程または乾燥工程の工程温度での収縮変形を非常に低く抑えることができる。主収縮方向の80℃における熱収縮応力は0.9MPa以下であればより好ましく、0.001MPa以上0.8MPa以下であれば更に好ましく、0.01MPa以上0.2MPa以下であれば最も好ましい。本発明のポリエステルフィルムにおいて、主収縮方向の80℃における熱収縮応力を1MPa以下とする方法としては、例えば、延伸後に80℃以上105℃以下で熱処理を行い、その後105℃よりも高温で熱処理を行う段階熱処理を行う方法が挙げられる。低温/高温の段階熱処理を行うことで、熱結晶化を抑えつつ、非晶部の一部を緩和することができるため、主収縮方向の高温での熱収縮性を高く保ったまま、低温での熱収縮応力を非常に低く抑えることができる。 From the viewpoint of heat resistance, the polyester film of the present invention preferably has a heat shrinkage stress of 1 MPa or less at 80 ° C. in the main shrinkage direction. When the heat shrinkage stress at 80 ° C. is 1 MPa or less, shrinkage deformation at the step temperature of the coating step or the drying step of various functional layers can be suppressed to a very low level. The thermal shrinkage stress at 80 ° C. in the main shrinkage direction is more preferably 0.9 MPa or less, further preferably 0.001 MPa or more and 0.8 MPa or less, and most preferably 0.01 MPa or more and 0.2 MPa or less. In the polyester film of the present invention, as a method of setting the heat shrinkage stress at 80 ° C. in the main shrinkage direction to 1 MPa or less, for example, heat treatment is performed at 80 ° C. or higher and 105 ° C. or lower after stretching, and then heat treatment is performed at a temperature higher than 105 ° C. Examples thereof include a method of performing stepwise heat treatment. By performing low-temperature / high-temperature stepwise heat treatment, it is possible to alleviate a part of the amorphous part while suppressing thermal crystallization, so that the heat shrinkage at high temperature in the main shrinkage direction is kept high at low temperature. The heat shrinkage stress of is very low.

本発明のポリエステルフィルムは、高靱性の観点から、主収縮方向と直交する方向の破断伸度が100%以上であることが好ましい。また、主収縮方向の破断伸度を100%以上とすることで、フィルムの靱性が高まり、加工時のフィルム破れを抑制しやすくなるため好ましい。主収縮方向と直交する方向の破断伸度は120%以上であればさらに好ましく、150%以上であれば最も好ましい。本発明のポリエステルフィルムにおいて、主収縮方向と直交する方向の破断伸度を100%以上とする方法としては、主収縮方向と直交する方向の延伸温度を90℃以上とする方法が好ましく用いられる。また、主収縮方向と直交する方向に複数回延伸する場合は、最も延伸温度の高い主収縮方向と直交する方向の延伸工程において延伸温度を90℃以上とすることが好ましい。主収縮方向と直交する方向の延伸温度を90℃以上と高く設定することで、主収縮方向と直交する方向の配向が進行せずに、破断伸度を高めることが可能となる。より好ましくは、主収縮方向と直交する方向の延伸温度は95℃以上である。 From the viewpoint of high toughness, the polyester film of the present invention preferably has a breaking elongation of 100% or more in the direction orthogonal to the main contraction direction. Further, it is preferable to set the breaking elongation in the main contraction direction to 100% or more because the toughness of the film is increased and the film tearing during processing is easily suppressed. The elongation at break in the direction orthogonal to the main contraction direction is more preferably 120% or more, and most preferably 150% or more. In the polyester film of the present invention, as a method of setting the breaking elongation in the direction orthogonal to the main shrinkage direction to 100% or more, a method of setting the stretching temperature in the direction orthogonal to the main shrinkage direction to 90 ° C. or higher is preferably used. When stretching a plurality of times in a direction orthogonal to the main contraction direction, it is preferable that the stretching temperature is 90 ° C. or higher in the stretching step in the direction orthogonal to the main contraction direction having the highest stretching temperature. By setting the stretching temperature in the direction orthogonal to the main contraction direction as high as 90 ° C. or higher, it is possible to increase the elongation at break without the orientation in the direction orthogonal to the main contraction direction progressing. More preferably, the stretching temperature in the direction orthogonal to the main contraction direction is 95 ° C. or higher.

本発明のポリエステルフィルムは、さらに靱性を高めるために、主収縮方向の破断伸度が150%以上であり、かつ主収縮方向と直交する方向の破断伸度よりも高いことが好ましい。主収縮方向の破断伸度を150%以上とし、主収縮方向と直交する方向の破断伸度よりも高く制御することで、フィルムの靱性がさらに高まり、加工時のフィルム破れを大幅に低減することができる。本発明のポリエステルフィルムの主収縮方向の破断伸度は、170%以上であればさらに好ましく、200%以上であれば最も好ましい。 In order to further increase the toughness, the polyester film of the present invention preferably has a breaking elongation in the main contraction direction of 150% or more and higher than the breaking elongation in the direction orthogonal to the main contraction direction. By setting the breaking elongation in the main shrinkage direction to 150% or more and controlling it to be higher than the breaking elongation in the direction orthogonal to the main shrinkage direction, the toughness of the film is further increased and the film tearing during processing is significantly reduced. Can be done. The elongation at break in the main shrinkage direction of the polyester film of the present invention is more preferably 170% or more, and most preferably 200% or more.

本発明のポリエステルフィルムは、二軸延伸によってフィルム表面に微小なキズが着いた場合などの表面平滑化を目的として、少なくとも一方の面にハードコート性、自己修復性、防眩性、反射防止性、低反射性、紫外線遮蔽性、及び帯電防止性からなる群より選択される1種以上の機能を示す表面層を有してもよい。表面層は、フィルム原反収縮による追従性の観点から収縮に追従して変形することができる程度に柔らかい方が好ましい。 The polyester film of the present invention has hard coat property, self-healing property, antiglare property, and antireflection property on at least one surface for the purpose of surface smoothing when minute scratches are formed on the film surface due to biaxial stretching. It may have a surface layer exhibiting one or more functions selected from the group consisting of low reflectivity, ultraviolet shielding property, and antistatic property. The surface layer is preferably soft enough to be deformed following the shrinkage from the viewpoint of followability due to the shrinkage of the original film.

次に、本発明のフィルムの好ましい製造方法を以下に説明する。本発明はかかる例に限定して解釈されるものではない。 Next, a preferred method for producing the film of the present invention will be described below. The present invention is not construed as being limited to such examples.

ポリエステルとして、例えば、ポリエチレンテレフタレートを押出機に供給し溶融押出する。この際、樹脂温度は265℃〜295℃に制御することが好ましい。次いで、フィルターやギヤポンプを通じて、異物の除去、押出量の均整化を各々行い、Tダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリエステル樹脂のガラス転移点未満にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステルを使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。 As polyester, for example, polyethylene terephthalate is supplied to an extruder and melt-extruded. At this time, it is preferable to control the resin temperature to 265 ° C to 295 ° C. Next, foreign matter is removed and the extrusion amount is leveled through a filter and a gear pump, and the T-die discharges the foreign matter onto the cooling drum in the form of a sheet. At that time, the electrostatic application method in which the cooling drum and the resin are brought into close contact with each other by static electricity using an electrode to which a high voltage is applied, the casting method in which a water film is provided between the casting drum and the extruded polymer sheet, and the casting drum temperature are set to polyester resin. The sheet-like polymer is brought into close contact with the casting drum and cooled and solidified to obtain an unstretched film by a method of adhering the polymer extruded below the glass transition point or a method of combining a plurality of these methods. Among these casting methods, when polyester is used, the method of electrostatically applying is preferably used from the viewpoint of productivity and flatness.

本発明のポリエステルフィルムは、主収縮方向の150℃熱収縮率が15%以上かつ、主収縮方向と直交する方向の150℃熱収縮率が15%未満であって、90℃主収縮方向熱収縮率が14%以下とするものである。また、主収縮方向の150℃熱収縮率が15%以上かつ主収縮方向と直交する方向の150℃熱収縮率が15%未満であって、温度変調DSCより得られるガラス転移温度が100℃以上であることを特徴とするものである。これらを達成するために、前記キャスト法によって得られたシートの延伸方法としては、例えば、フィルム長手方向−幅方向−長手方向に逐次二軸延伸、または、フィルム幅方向−長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法、フィルム幅方向端部を把持して、長手方向と幅方向を延伸し、全延伸工程の最終点から5%の区間の長手方向延伸倍率が、幅方向延伸倍率以上とし、101℃以上160℃以下の熱処理を行う方法、などが好ましく用いられる。 The polyester film of the present invention has a heat shrinkage rate of 150 ° C. in the main shrinkage direction of 15% or more and a heat shrinkage rate of 150 ° C. in the direction orthogonal to the main shrinkage direction of less than 15%, and heat shrinkage in the main shrinkage direction of 90 ° C. The rate is 14% or less. Further, the heat shrinkage rate of 150 ° C. in the main shrinkage direction is 15% or more and the heat shrinkage rate of 150 ° C. in the direction orthogonal to the main shrinkage direction is less than 15%, and the glass transition temperature obtained from the temperature-modulated DSC is 100 ° C. or higher. It is characterized by being. In order to achieve these, as a method of stretching the sheet obtained by the casting method, for example, the film is sequentially biaxially stretched in the longitudinal direction-width direction-longitudinal direction, or sequentially biaxially in the film width direction-longitudinal direction. After stretching, a method of heat-treating at 101 ° C. or higher and 160 ° C. or lower, grasping the end portion in the width direction of the film, stretching in the longitudinal direction and the width direction, and the longitudinal stretching ratio of a section of 5% from the final point of the entire stretching step. However, a method of performing heat treatment at 101 ° C. or higher and 160 ° C. or lower with a stretching ratio of 101 ° C. or higher and 160 ° C. or lower is preferably used.

本発明において、特に、主収縮方向の高収縮性を重視する用途に適用する場合、シートの延伸方法としては、長手方向−幅方向−長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法において、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率以下とすることが好ましい。具体的には、最初の長手方向の延伸倍率を、1.01倍以上3倍以下とし、後の長手方向の延伸倍率を1.1倍以上4倍以下とし、かつ、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率以下とすることが好ましい。また、シートの延伸方法を、フィルム幅方向−長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法とすることも好ましい。この場合、幅方向に1.5倍以上6倍以下に延伸し、その後に長手方向に1.1倍以上4倍以下延伸し、長手方向延伸後に、100℃以下の冷却工程、101℃以上160℃以下の熱処理工程を有することが好ましい。さらに、シートの延伸方法を、シートの幅方向端部を把持して、長手方向と幅方向を延伸し、全延伸工程の最終点から5%の区間の長手方向延伸倍率を、幅方向延伸倍率以上とし、トータルの長手方向延伸倍率を、トータルの幅方向延伸倍率よりも低くし、延伸後に101℃以上160℃以下の熱処理を行う方法とすることも好ましい。 In the present invention, particularly when applied to an application in which high shrinkage in the main shrinkage direction is emphasized, the sheet stretching method is 101 ° C. or higher and 160 ° C. after sequential biaxial stretching in the longitudinal direction-width direction-longitudinal direction. In the method of heat treatment below, it is preferable that the first stretching ratio in the longitudinal direction is equal to or less than the later stretching ratio in the longitudinal direction. Specifically, the first stretching ratio in the longitudinal direction is 1.01 times or more and 3 times or less, the subsequent stretching ratio in the longitudinal direction is 1.1 times or more and 4 times or less, and the first stretching in the longitudinal direction is performed. It is preferable that the magnification is equal to or less than the later stretching magnification in the longitudinal direction. Further, it is also preferable that the sheet stretching method is a method of sequentially biaxially stretching in the film width direction-longitudinal direction and then heat-treating at 101 ° C. or higher and 160 ° C. or lower. In this case, it is stretched 1.5 times or more and 6 times or less in the width direction, then 1.1 times or more and 4 times or less in the longitudinal direction, and after stretching in the longitudinal direction, a cooling step of 100 ° C. or less, 101 ° C. or more and 160 It is preferable to have a heat treatment step of ° C. or lower. Further, as a method of stretching the sheet, the widthwise end portion of the sheet is gripped, the longitudinal direction and the width direction are stretched, and the longitudinal stretching magnification of the section 5% from the final point of the total stretching step is set to the width direction stretching magnification. As described above, it is also preferable that the total longitudinal stretching ratio is lower than the total width stretching ratio, and the heat treatment is performed at 101 ° C. or higher and 160 ° C. or lower after stretching.

一方、本発明において、主収縮方向の高収縮性と、機械強度、ハンドリング性の両立が重要な用途に適用する場合には、延伸方法を長手方向−幅方向−長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法とし、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率より高くすることが好ましい。具体的には、最初の長手方向の延伸倍率を1.11倍以上4倍以下とし、後の長手方向の延伸倍率を1.01倍以上3倍以下とし、かつ、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率より高くすることが好ましい。また、ほかの延伸方法として、フィルムの幅方向端部を把持して、フィルム長手方向と幅方向を延伸し、全延伸工程の最終点から5%の区間の長手方向延伸倍率を幅方向延伸倍率以上とし、トータルの長手方向延伸倍率をトータルの幅方向延伸倍率よりも高くし、延伸後に101℃以上160℃以下の熱処理を行う方法とすることも好ましい。ここで好ましい熱処理温度とは、二軸延伸後に行う熱処理温度の中で、最も高温となる温度を示す。また、熱処理時間は特性を悪化させない範囲において任意の時間とすることができ、好ましくは5秒以上60秒以下、より好ましくは10秒以上40秒以下、最も好ましくは15秒以上30秒以下で行うことができる。 On the other hand, in the present invention, when it is applied to an application in which both high shrinkage in the main shrinkage direction, mechanical strength and handleability are important, the stretching method is sequentially biaxially stretched in the longitudinal direction-width direction-longitudinal direction. Later, a method of heat-treating at 101 ° C. or higher and 160 ° C. or lower is used, and it is preferable that the first stretching ratio in the longitudinal direction is higher than the later stretching ratio in the longitudinal direction. Specifically, the first stretching ratio in the longitudinal direction is 1.11 times or more and 4 times or less, the subsequent stretching ratio in the longitudinal direction is 1.01 times or more and 3 times or less, and the first stretching ratio in the longitudinal direction is set. Is preferably higher than the later stretching ratio in the longitudinal direction. Further, as another stretching method, the end portion in the width direction of the film is grasped, the film is stretched in the longitudinal direction and the width direction, and the longitudinal stretching ratio in a section of 5% from the final point of the entire stretching step is set to the width direction stretching ratio. As described above, it is also preferable that the total longitudinal stretching ratio is higher than the total width stretching ratio, and the heat treatment is performed at 101 ° C. or higher and 160 ° C. or lower after stretching. Here, the preferable heat treatment temperature indicates the temperature at which the temperature becomes the highest among the heat treatment temperatures performed after biaxial stretching. The heat treatment time can be any time as long as the characteristics are not deteriorated, and is preferably 5 seconds or more and 60 seconds or less, more preferably 10 seconds or more and 40 seconds or less, and most preferably 15 seconds or more and 30 seconds or less. be able to.

本発明のポリエステルフィルムの厚みは、本発明の目的を阻害しない範囲であれば特に制限はなく、一般的に二軸延伸フィルムとして使用されるような3μm〜300μm程度とすればよい。また、フィルムの厚みは、用途や塗布するインキ、塗剤などに応じて選択することができる。 The thickness of the polyester film of the present invention is not particularly limited as long as it does not impair the object of the present invention, and may be about 3 μm to 300 μm as generally used as a biaxially stretched film. The thickness of the film can be selected according to the application, the ink to be applied, the coating agent, and the like.

本発明のポリエステルフィルムは、裏打ち材等で補強してもよい。裏打ち材としては二軸配向ポリエステルフィルムや二軸配向ポリプロピレンフィルムなどが挙げられる。 The polyester film of the present invention may be reinforced with a backing material or the like. Examples of the lining material include a biaxially oriented polyester film and a biaxially oriented polypropylene film.

本発明のポリエステルフィルムは、低温領域では熱収縮率が低く、高温領域において、均一な熱収縮性を示すため、包装用途として好ましく用いられる。印刷層、耐候層、粘着層、接着層、蒸着層等などの各種機能層の塗工、形成工程や乾燥工程においては熱収縮しない耐熱性を有するため、例えば水系溶媒のコーティング剤への対応も可能である。さらに、高温加熱することで、高い熱収縮性を示すため、ボトル等の容器への装着性に優れるので、ラベル用を中心とした各種包装用途に好ましく用いられる。 The polyester film of the present invention has a low heat shrinkage rate in a low temperature region and exhibits uniform heat shrinkage in a high temperature region, and is therefore preferably used for packaging. Since it has heat resistance that does not shrink due to heat in the coating, forming process and drying process of various functional layers such as printing layer, weather resistant layer, adhesive layer, adhesive layer, vapor deposition layer, etc., it can be used for coating agents of aqueous solvents, for example. It is possible. Further, since it exhibits high heat shrinkage when heated at a high temperature, it is excellent in mountability to a container such as a bottle, and is therefore preferably used for various packaging applications mainly for labels.

また、本発明のポリエステルフィルムは、加飾用途にも好ましく用いることが可能である。印刷層、耐候層、粘着層、接着層、蒸着層、耐傷層、耐指紋層等などの各種機能層の塗工、形成工程や乾燥工程においては熱収縮しない耐熱性を有するため、例えば水系溶媒のコーティング剤への対応も可能であり、各種機能層塗工後の乾燥工程での耐熱性に優れ、高温加熱時には高い熱収縮性を示すため、複雑形状の部材への高意匠な加飾への適用が可能である。 Further, the polyester film of the present invention can also be preferably used for decorative purposes. Since it has heat resistance that does not shrink due to heat resistance in the coating, forming process and drying process of various functional layers such as printing layer, weather resistant layer, adhesive layer, adhesive layer, vapor deposition layer, scratch resistant layer, fingerprint resistant layer, etc., for example, an aqueous solvent It is also possible to deal with various coating agents, has excellent heat resistance in the drying process after coating various functional layers, and shows high heat shrinkage when heated at high temperature, so it is suitable for high-design decoration of members with complicated shapes. Can be applied.

また、本発明のポリエステルフィルムは、光学用途にも好ましく用いられる。位相差形成層といった各種機能層の塗工工程や乾燥工程における耐熱性に優れ、高温加熱時の収縮特性を利用して位相差層を形成することが可能である。 The polyester film of the present invention is also preferably used for optical applications. It has excellent heat resistance in the coating process and drying process of various functional layers such as the retardation cambium, and it is possible to form the retardation layer by utilizing the shrinkage characteristics at the time of high temperature heating.

(特性の測定方法および効果の評価方法)
本発明における特性の測定方法、および効果の評価方法は次のとおりである。
(1)ポリエステルの組成
ポリエステルフィルムをヘキサフルオロイソプロパノール(HFIP)に溶解し、H−NMRおよび13C−NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量することができる。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取し、評価することができる。なお、本発明のフィルムについては、フィルム製造時の混合比率から計算により、組成を算出した。
(Characteristic measurement method and effect evaluation method)
The method for measuring the characteristics and the method for evaluating the effect in the present invention are as follows.
(1) Composition of polyester The polyester film is dissolved in hexafluoroisopropanol (HFIP), and the content of each monomer residue component and by-product diethylene glycol can be quantified using 1 1 H-NMR and 13 C-NMR. In the case of a laminated film, by scraping off each layer of the film according to the laminated thickness, the components constituting each layer alone can be collected and evaluated. The composition of the film of the present invention was calculated from the mixing ratio at the time of film production.

(2)フィルム主収縮方向
フィルムの任意の1方向を0°として、そこから5°間隔にて180°までの方向について150mm(測定方向)×幅10mm(測定方向に直交する方向)のサイズに切り出したサンプルに、100mm(L0)の間隔の両端位置にマーク(標線)を入れ、3gの錘を吊して150℃に加熱した熱風オーブン内に30分間設置し加熱処理を行った。熱処理後の標線間距離(L1)を測定し、加熱前後の標線間距離の変化から下記式にて熱収縮率を算出した。
熱収縮率(%) = 100×(L0−L1)/L0
測定は各方向とも5回ずつ行い、最も熱収縮率の高い方向を主収縮方向とした。
(2) Film main contraction direction With 0 ° as any one direction of the film, the size is 150 mm (measurement direction) x width 10 mm (direction orthogonal to the measurement direction) in the direction from there to 180 ° at 5 ° intervals. Marks (marked lines) were placed at both ends of the cut-out sample at intervals of 100 mm (L0), and a 3 g weight was hung and placed in a hot air oven heated to 150 ° C. for 30 minutes for heat treatment. The distance between the marked lines (L1) after the heat treatment was measured, and the heat shrinkage rate was calculated from the change in the distance between the marked lines before and after the heat treatment by the following formula.
Heat shrinkage rate (%) = 100 × (L0-L1) / L0
The measurement was performed 5 times in each direction, and the direction having the highest heat shrinkage rate was defined as the main shrinkage direction.

(3)90℃および150℃熱収縮率
フィルムの主収縮方向および主収縮方向と直交する方向について測定を行った。150mm(測定方向)×幅10mm(測定方向に直交する方向)のサイズに切り出したサンプルに、100mm(L0)の間隔の両端位置にマーク(標線)を入れ、3gの錘を吊して測定温度に加熱した熱風オーブン内に30分間設置し加熱処理を行った。熱処理後の標線間距離(L1)を測定し、加熱前後の標線間距離の変化から下記式にて熱収縮率を算出した。測定は各方向とも5サンプル実施して平均値で評価を行った。
熱収縮率(%) = 100×(L0−L1)/L0
(3) Heat Shrinkage Rate at 90 ° C. and 150 ° C. Measurements were made in the main shrinkage direction of the film and in the direction orthogonal to the main shrinkage direction. Marks (marked lines) are placed at both ends of a sample cut to a size of 150 mm (measurement direction) x width 10 mm (direction orthogonal to the measurement direction) at intervals of 100 mm (L0), and a 3 g weight is hung for measurement. It was placed in a hot air oven heated to a temperature for 30 minutes and heat-treated. The distance between the marked lines (L1) after the heat treatment was measured, and the heat shrinkage rate was calculated from the change in the distance between the marked lines before and after the heat treatment by the following formula. Five samples were measured in each direction, and the average value was used for evaluation.
Heat shrinkage rate (%) = 100 × (L0-L1) / L0

(4)破断伸度
フィルムの主収縮方向および主収縮方向と直交する方向について測定を行った。引張試験機(オリエンテック社製テンシロンUCT−100)を用いて、幅10mmのサンプルフィルムを測定方向にチャック間長さ50mm(初期試験長)となるようにセットし、温度25℃、湿度65%RHの条件下で、引張速度300mm/分で引張試験を行い、破断したときの伸度を破断伸度とした。各測定はそれぞれ5回ずつ行い、その平均値を用いた。
(4) Breaking elongation The main contraction direction of the film and the direction orthogonal to the main contraction direction were measured. Using a tensile tester (Tencilon UCT-100 manufactured by Orientec), a sample film with a width of 10 mm was set in the measurement direction so that the chuck-to-chuck length was 50 mm (initial test length), and the temperature was 25 ° C. and the humidity was 65%. A tensile test was performed at a tensile speed of 300 mm / min under the condition of RH, and the elongation at break was defined as the elongation at break. Each measurement was performed 5 times, and the average value was used.

(5)可動非晶量(分率)
TA Instruments社製温度変調DSCを用いて測定した。試料5mgを窒素雰囲気下、0℃から150℃まで2℃/minの昇温速度、温度変調振幅±1℃、温度変調周期60秒で測定した。ガラス転移温度での比熱差を求め、以下の式より算出した。
可動非晶量(%)=(比熱差)/(ポリエステル完全非晶物の比熱差理論値)×100
ポリエチレンテレフタレート完全非晶物の比熱差理論値=0.4052J/(g℃)
また、本発明ではポリエチレンテレフタレートユニットが89モル%以上であるものについては、ポリエチレンテレフタレートの完全非晶物の比熱差理論値を参照した。また、ポリエチレンテレフタレートユニットが89モル%未満の場合は、該樹脂が非晶状態において下記(6)記載の方法によりガラス転移温度を測定し、その際に得られたガラス転移温度前後での比熱差を該樹脂における完全非晶物の比熱差理論値とした。尚、樹脂を非晶状態とするには、例えば、該樹脂を融点以上に加熱して溶融させた後、3秒以内に20℃以下に急冷することで得るなどの方法が挙げられる。その他、一般的に非晶状態とする手段であれば上記方法に限らず、用いることができる。
(5) Movable amorphous amount (fraction)
The measurement was performed using a temperature-modulated DSC manufactured by TA Instruments. A 5 mg sample was measured under a nitrogen atmosphere at a temperature rising rate of 2 ° C./min from 0 ° C. to 150 ° C., a temperature modulation amplitude of ± 1 ° C., and a temperature modulation cycle of 60 seconds. The specific heat difference at the glass transition temperature was calculated and calculated from the following formula.
Movable amorphous amount (%) = (specific heat difference) / (theoretical value of specific heat difference of polyester completely amorphous) x 100
Theoretical value of specific heat difference of polyethylene terephthalate completely amorphous material = 0.4052J / (g ℃)
Further, in the present invention, for the polyethylene terephthalate unit having an amount of 89 mol% or more, the theoretical value of the specific heat difference of the completely amorphous material of polyethylene terephthalate was referred to. When the polyethylene terephthalate unit is less than 89 mol%, the glass transition temperature is measured by the method described in (6) below while the resin is in an amorphous state, and the specific heat difference before and after the glass transition temperature obtained at that time is measured. Was used as the theoretical value of the specific heat difference of the completely amorphous material in the resin. In order to bring the resin into an amorphous state, for example, a method of heating the resin to a melting point or higher to melt the resin and then rapidly cooling the resin to 20 ° C. or lower within 3 seconds can be mentioned. In addition, the method is not limited to the above method and can be used as long as it is generally an amorphous means.

(6)温度変調DSCガラス転移温度
TA Instrument社製温度変調DSCを用いて下記条件にて測定を行った。
加熱温度:270〜570K(RCS冷却法)
温度校正:高純度インジウムおよび錫の融点
温度変調振幅:±1K
温度変調周期:60秒
温度ステップ:5K
試料重量:5mg
試料容器:アルミニウム製開放型容器(22mg)
参照容器:アルミニウム製開放型容器(18mg)
なお、ガラス転移点は下記式より算出した。
ガラス転移温度=(補外ガラス転移開始温度+補外ガラス転移終了温度)/2
(6) Temperature Modulated DSC Glass Transition Temperature Measurement was performed under the following conditions using a temperature modulated DSC manufactured by TA Instrument.
Heating temperature: 270-570K (RCS cooling method)
Temperature calibration: Melting points of high-purity indium and tin Temperature modulation amplitude: ± 1K
Temperature modulation cycle: 60 seconds Temperature step: 5K
Sample weight: 5 mg
Sample container: Aluminum open container (22 mg)
Reference container: Aluminum open container (18 mg)
The glass transition point was calculated from the following formula.
Glass transition temperature = (extrapolation glass transition start temperature + extrapolation glass transition end temperature) / 2

(7)フィルム屈折率と面配向係数
ナトリウムD線(波長589nm)を光源とし、マウント液としてヨウ化メチレンを用い、25℃にてアッベ屈折計を用いてフィルム長手方向、幅方向および厚み方向の屈折率(各々、nMD、nTD、nZD)を求めた。求めた屈折率から下記の式により、面配向係数(fn)を算出した。
fn=(nMD+nTD)/2−nZD
(7) Film Refractive Index and Surface Orientation Coefficient Using sodium D-ray (wavelength 589 nm) as a light source, using methylene iodide as a mounting solution, and using an Abbe refractometer at 25 ° C., in the longitudinal direction, width direction, and thickness direction of the film. The refractive index (nMD, nTD, nZD, respectively) was determined. The plane orientation coefficient (fn) was calculated from the obtained refractive index by the following formula.
fn = (nMD + nTD) /2-nZD

(8)包装用途適性
(i)乾燥耐熱性
フィルム表面に、スクリーン印刷を行った。印刷は、ミノグループ(株)製インキU−PET(517)、スクリーンSX270Tを用いて、スキージスピード300mm/sec、スキージ角度45°の条件で行い、次いで90℃条件下の熱風オーブン中で5分間乾燥して、印刷層積層フィルムを得た。得られた印刷層積層フィルムについての外観について、下記の基準で評価を行った。
A:乾燥後もシワの発生は確認されず、良好な外観であった。
B:乾燥後に若干のシワが確認されたが、良好な外観であった。
C:乾燥後にシワが確認されたが、実用上問題ないレベルであった。
D:乾燥後にシワが確認され、実用レベルではなかった。
A、B、Cが合格レベルである。
(8) Suitability for packaging (i) Dry heat resistance Screen printing was performed on the film surface. Printing was performed using an ink U-PET (517) manufactured by Mino Group Co., Ltd. and a screen SX270T under the conditions of a squeegee speed of 300 mm / sec and a squeegee angle of 45 °, and then in a hot air oven under 90 ° C. conditions for 5 minutes. It was dried to obtain a printed layer laminated film. The appearance of the obtained printed layer laminated film was evaluated according to the following criteria.
A: No wrinkles were confirmed even after drying, and the appearance was good.
B: Some wrinkles were confirmed after drying, but the appearance was good.
C: Wrinkles were confirmed after drying, but there was no problem in practical use.
D: Wrinkles were confirmed after drying, which was not at a practical level.
A, B, and C are pass levels.

(ii)熱収縮性
(i)で作成した印刷層積層フィルムについて、フィルム両端部を溶断シールで接着し、円筒状のラベルを作成した。該ラベルを円筒形のアルミボトルの胴部(底面直径150mm)に被せ、150℃雰囲気下のトンネルオーブンに、通過時間3秒で通過させて、ボトルに装着し、収縮外観を下記基準で評価した。
A:シワ、ゆがみ、収縮不足が発生せず、意匠性に優れた外観であった。
B:シワ、ゆがみ、収縮不足の少なくともいずれかが確認できるが、意匠性に優れた外観であった。
C:シワ、ゆがみ、収縮不足の少なくともいずれかが確認できるが実用上問題なかった。
D:シワ、ゆがみ、収縮不足の少なくともいずれかが確認でき、実用レベルではなかった。
A、B、Cが合格レベルである。
(Ii) Heat Shrinkability With respect to the print layer laminated film prepared in (i), both ends of the film were bonded with a fusing seal to prepare a cylindrical label. The label was put on the body (bottom diameter of 150 mm) of a cylindrical aluminum bottle, passed through a tunnel oven in an atmosphere of 150 ° C. with a passing time of 3 seconds, attached to the bottle, and the shrinkage appearance was evaluated according to the following criteria. ..
A: No wrinkles, distortions, or insufficient shrinkage occurred, and the appearance was excellent in design.
B: At least one of wrinkles, distortion, and insufficient shrinkage can be confirmed, but the appearance was excellent in design.
C: At least one of wrinkles, distortion, and insufficient shrinkage can be confirmed, but there was no problem in practical use.
D: At least one of wrinkles, distortion, and insufficient shrinkage was confirmed, which was not at a practical level.
A, B, and C are pass levels.

(9)加飾用途適性
(i)乾燥耐熱性
フィルム表面に、アプリケーターを用いて、日本ケミカル社製892Lを塗工し、90℃で5分間乾燥を行い、接着層を形成した。接着層積層フィルムについての外観について、下記の基準で評価を行った。
A:乾燥後もシワの発生は確認されず、良好な外観であった。
B:乾燥後に若干のシワが確認されたが、良好な外観であった。
C:乾燥後にシワが確認されたが、実用上問題ないレベルであった。
D:乾燥後にシワが確認され、実用レベルではなかった。
A、B、Cが合格レベルである。
(9) Suitability for decorative use (i) Drying and heat resistance The film surface was coated with 892L manufactured by Nippon Chemical Co., Ltd. using an applicator and dried at 90 ° C. for 5 minutes to form an adhesive layer. The appearance of the adhesive layer laminated film was evaluated according to the following criteria.
A: No wrinkles were confirmed even after drying, and the appearance was good.
B: Some wrinkles were confirmed after drying, but the appearance was good.
C: Wrinkles were confirmed after drying, but there was no problem in practical use.
D: Wrinkles were confirmed after drying, which was not at a practical level.
A, B, and C are pass levels.

(ii)形状追従性
(i)で作成した接着層積層フィルムについて、接着層積層フィルムを80℃に加熱したマグネシウム筐体(底面200mm×100mm×高さ30mmの直方体)に被せ、150℃雰囲気下のトンネルオーブンに通過時間10秒で通過させて、形状追従させ、収縮外観について下記の基準で評価した。
A:高さ30mmまで追従できた。
B:高さ25mm以上30mm未満まで追従できた。
C:高さ20mm以上25mm未満まで追従できた
D:追従性が低く、高さ20mmまで追従できなかった。
A、B、Cが合格レベルである。
(Ii) Shape-following property The adhesive layer laminated film created in (i) is covered with a magnesium housing (bottom surface 200 mm × 100 mm × height 30 mm rectangular parallelepiped) heated to 80 ° C. under an atmosphere of 150 ° C. The film was passed through the tunnel oven of No. 1 with a passing time of 10 seconds to follow the shape, and the shrinkage appearance was evaluated according to the following criteria.
A: It was possible to follow up to a height of 30 mm.
B: It was possible to follow the height from 25 mm to less than 30 mm.
C: It was possible to follow up to a height of 20 mm or more and less than 25 mm. D: It was not possible to follow up to a height of 20 mm due to low followability.
A, B, and C are pass levels.

(10)光学用途適性
(i)ハンドリング性
実施例及び比較例で得られた熱収縮性フィルムの端部を切り落としたフィルムロールについて、巻出張力を100N/mとして、巻取張力を100N/m、200N/m、250N/m、300N/mとして搬送し、ハンドリング性について、下記の基準で評価を行った。
A:巻取張力300N/mにて、1000m巻取ができた。
B:巻取張力250N/mでは1000m巻取ができたが、300N/mでは1000m巻取る前にフィルム破断が発生した。
C:巻取張力200N/mでは1000m巻取ができたが、250N/mでは1000m巻取る前にフィルム破断が発生した。
D:巻取張力100N/mでも1000m巻取る前にフィルム破断が発生した
A、B、Cが合格レベルである。
(10) Optimal application for optics (i) Handleability For the film rolls obtained by cutting off the edges of the heat-shrinkable films obtained in Examples and Comparative Examples, the take-up tension is 100 N / m and the take-up tension is 100 N / m. , 200 N / m, 250 N / m, and 300 N / m, and the handleability was evaluated according to the following criteria.
A: At a winding tension of 300 N / m, 1000 m could be wound.
B: At a winding tension of 250 N / m, 1000 m could be wound, but at 300 N / m, film breakage occurred before 1000 m was wound.
C: At a winding tension of 200 N / m, 1000 m could be wound, but at 250 N / m, film breakage occurred before 1000 m was wound.
D: A, B, and C in which film breakage occurred before winding 1000 m even when the winding tension was 100 N / m are acceptable levels.

(ii)乾燥耐熱性
フィルム表面にポリカーボネート/トルエン分散体をダイコーターにて塗工・乾燥を行った(乾燥温度:90℃、乾燥時間:1分、巻出張力:200N/m、巻取張力:100N/m)。得られたポリカーボネート積層フィルムの外観について、下記の基準で評価を行った。
A:乾燥後もシワの発生は確認されず、良好な外観であった。
B:乾燥後に若干のシワが確認されたが、良好な外観であった。
C:乾燥後にシワが確認されたが、実用上問題ないレベルであった。
D:乾燥後にシワが確認され、実用レベルではなかった。
A、B、Cが合格レベルである。
(Ii) Drying heat resistance A polycarbonate / toluene dispersion was applied and dried on the film surface with a die coater (drying temperature: 90 ° C., drying time: 1 minute, unwinding tension: 200 N / m, winding tension). : 100 N / m). The appearance of the obtained polycarbonate laminated film was evaluated according to the following criteria.
A: No wrinkles were confirmed even after drying, and the appearance was good.
B: Some wrinkles were confirmed after drying, but the appearance was good.
C: Wrinkles were confirmed after drying, but there was no problem in practical use.
D: Wrinkles were confirmed after drying, which was not at a practical level.
A, B, and C are pass levels.

(iii)靱性
(ii)で作成したポリカーボネート積層フィルムについて、150℃のオーブン中で主収縮方向に収縮させながら、主収縮方向と直交する方向に微延伸して位相差層を形成した。その際、靱性について、下記の基準で評価を行った。
A:主収縮方向と直交する方向に1.2倍以上延伸できた。
B:主収縮方向と直交する方向に1.1倍以上1.2倍未満延伸できた。
C:主収縮方向と直交する方向に1.05倍以上1.1倍未満延伸できた。
D:主収縮方向と直交する方向に1.05倍延伸ができなかった。
所定の倍率まで延伸してもフィルムが破断しない場合に、延伸できたと評価した。
A、B、Cが合格レベルである。
(Iii) The polycarbonate laminated film prepared in (ii) was slightly stretched in a direction orthogonal to the main shrinkage direction while shrinking in the main shrinkage direction in an oven at 150 ° C. to form a retardation layer. At that time, the toughness was evaluated according to the following criteria.
A: It was possible to stretch 1.2 times or more in the direction orthogonal to the main contraction direction.
B: It was possible to stretch 1.1 times or more and less than 1.2 times in the direction orthogonal to the main contraction direction.
C: It was possible to stretch 1.05 times or more and less than 1.1 times in the direction orthogonal to the main contraction direction.
D: It was not possible to stretch 1.05 times in the direction orthogonal to the main contraction direction.
When the film was not broken even when stretched to a predetermined magnification, it was evaluated that the film could be stretched.
A, B, and C are pass levels.

(iv)熱収縮性
(iii)と同様にして、150℃のオーブン中で主収縮方向に収縮させたフィルムの熱収縮性について、下記の基準で評価した。
A:主収縮方向の熱収縮率が30%以上であり、収縮後のフィルム外観にシワがみられなかった。
B:主収縮方向の熱収縮率が20%以上30%未満収縮であり、収縮後のフィルム外観にシワがみられなかった。
C:主収縮方向の熱収縮率が15%以上20%未満であり、収縮後のフィルム外観にシワがみられなかった。
D:主収縮方向の熱収縮率が15%未満であるか、もしくはフィルム外観にシワがみられた。
A、B、Cが合格レベルである。
(Iv) Heat Shrinkability In the same manner as in (iii), the heat shrinkage of the film shrunk in the main shrinkage direction in an oven at 150 ° C. was evaluated according to the following criteria.
A: The heat shrinkage rate in the main shrinkage direction was 30% or more, and no wrinkles were observed in the appearance of the film after shrinkage.
B: The heat shrinkage rate in the main shrinkage direction was 20% or more and less than 30%, and no wrinkles were observed in the appearance of the film after shrinkage.
C: The heat shrinkage rate in the main shrinkage direction was 15% or more and less than 20%, and no wrinkles were observed in the appearance of the film after shrinkage.
D: The heat shrinkage rate in the main shrinkage direction was less than 15%, or the appearance of the film was wrinkled.
A, B, and C are pass levels.

(11)80℃における熱収縮応力
温度23℃、相対湿度65%に24時間静置させたフィルムをTMA/SS6000(セイコーインスツルメンツ社製)を用いて、サンプルの初期長20mm、幅2mmとして、23℃から170℃まで昇温速度5℃/分で測定し、得られた熱収縮力曲線より80℃における熱収縮力[N]を読みとり、フィルムの厚みと測定幅より求められる断面積にて割り返して、熱収縮応力[MPa]を算出した。
(11) Thermal shrinkage stress at 80 ° C. A film that has been allowed to stand at a temperature of 23 ° C. and a relative humidity of 65% for 24 hours is used as a sample using TMA / SS6000 (manufactured by Seiko Instruments) with an initial length of 20 mm and a width of 2 mm. Measure from ° C. to 170 ° C. at a heating rate of 5 ° C./min, read the heat shrinkage force [N] at 80 ° C. from the obtained heat shrinkage force curve, and divide by the cross-sectional area obtained from the film thickness and measurement width. In return, the heat shrinkage stress [MPa] was calculated.

(ポリエステルの製造)
製膜に供したポリエステル樹脂は以下のように準備した。
(Manufacturing of polyester)
The polyester resin used for film formation was prepared as follows.

(ポリエステルA)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂(固有粘度0.65)。
(Polyester A)
A polyethylene terephthalate resin (intrinsic viscosity 0.65) containing 100 mol% of a terephthalic acid component as a dicarboxylic acid component and 100 mol% of an ethylene glycol component as a glycol component.

(ポリエステルB)
ジカルボン酸成分としてテレフタル酸成分が90モル%、イソフタル酸成分が10モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエステル樹脂(固有粘度0.65)。
(Polyester B)
A polyester resin having a terephthalic acid component of 90 mol% as a dicarboxylic acid component, an isophthalic acid component of 10 mol%, and an ethylene glycol component of 100 mol% as a glycol component (intrinsic viscosity 0.65).

(ポリエステルC)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が90モル%、1,4−シクロヘキサンジメタノール成分が10モル%であるポリエステル樹脂(固有粘度0.65)。
(Polyester C)
A polyester resin (intrinsic viscosity 0.65) in which the terephthalic acid component is 100 mol% as the dicarboxylic acid component, the ethylene glycol component is 90 mol% as the glycol component, and the 1,4-cyclohexanedimethanol component is 10 mol%.

(粒子マスターの製造)
(粒子マスターA)
ポリエステルA中に数平均粒子径0.2μmの凝集シリカを粒子濃度5質量%で含有したポリエチレンテレフタレート粒子マスター(固有粘度0.63)。
(Manufacturing of particle master)
(Particle Master A)
Polyethylene terephthalate particle master (intrinsic viscosity 0.63) containing aggregated silica having a number average particle diameter of 0.2 μm in polyester A at a particle concentration of 5% by mass.

(実施例1〜10、参考実施例11、比較例1、2)
用いたポリエステルおよび粒子マスターの組成を表1の通りとして、原料を押出機に供給し、押出機シリンダー温度を270℃で溶融し、短管温度を275℃、口金温度を280℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。1縦延伸、1横延伸、熱処理、2縦延伸、2横延伸、熱処理を順に行い、それぞれ表1に示した延伸倍率、延伸温度、熱処理温度としてポリエステルフィルムを得た。なお、延伸倍率1.0倍は延伸を行わずに、表1に記載の温度にて熱処理を行ったことを示す。
(Examples 1 to 10, Reference Example 11 , Comparative Examples 1 and 2)
The composition of the polyester and particle master used is as shown in Table 1, the raw materials are supplied to the extruder, the extruder cylinder temperature is melted at 270 ° C, the short tube temperature is 275 ° C, the base temperature is 280 ° C, and the T die. The sheet was discharged onto a cooling drum whose temperature was controlled to 25 ° C. At that time, an unstretched sheet was obtained by electrostatically applying static electricity using a wire-shaped electrode having a diameter of 0.1 mm and bringing it into close contact with a cooling drum. 1 longitudinal stretching, 1 transverse stretching, heat treatment, 2 longitudinal stretching, 2 transverse stretching, and heat treatment were performed in this order to obtain a polyester film as the stretching ratio, stretching temperature, and heat treatment temperature shown in Table 1, respectively. The stretching ratio of 1.0 times indicates that the heat treatment was performed at the temperatures shown in Table 1 without stretching.

得られたフィルムの物性、特性の測定、評価結果を、表2、表3に示す。実施例は全て90℃熱収縮率が15%未満、かつ150℃熱収縮率は25%以上であり、この熱収縮特性が必要な用途への適合性に優れていた。 Tables 2 and 3 show the measurement and evaluation results of the physical properties and characteristics of the obtained film. In all the examples, the heat shrinkage rate at 90 ° C. was less than 15%, and the heat shrinkage rate at 150 ° C. was 25% or more, and this heat shrinkage characteristic was excellent in compatibility with applications required.

一方、比較例1は1縦延伸の倍率が3.0倍であったために、1横延伸にて収縮成分が偏向して歪んだため、最終的に取れたフィルム長手方向の150℃熱収縮率が15%未満となった。 On the other hand, in Comparative Example 1, since the magnification of one longitudinal stretching was 3.0 times, the shrinkage component was deflected and distorted by one transverse stretching, so that the finally obtained film had a thermal shrinkage rate of 150 ° C. in the longitudinal direction. Was less than 15%.

また、比較例2はガラス転移温度が90℃未満であったため、90℃における熱収縮率が大きくなってしまった。 Further, in Comparative Example 2, since the glass transition temperature was less than 90 ° C., the heat shrinkage rate at 90 ° C. became large.

実施例は各種機能層塗布後の乾燥適正に優れ、その後、150℃で大きく収縮させるシュリンク性に好適なものであった。 The examples were excellent in drying suitability after coating various functional layers, and were suitable for shrinkability in which they were then greatly shrunk at 150 ° C.

また、参考実施例11は、加飾用途において求められる実用性は満足し得ないものであったが、80℃における熱収縮応力が1MPa未満であったため、包装用途および光学用途では実用上問題ないレベルであった。 Further, in Reference Example 11, the practicality required for the decorative application was not satisfactory, but since the heat shrinkage stress at 80 ° C. was less than 1 MPa, there is no practical problem in the packaging application and the optical application. It was a level.

Figure 0006789821
Figure 0006789821

Figure 0006789821
Figure 0006789821

Figure 0006789821
Figure 0006789821

本発明のポリエステルフィルムは、90℃程度では収縮せず、150℃程度では大きく収縮する特殊な熱収縮特性を有する。これにより、90℃程度で収縮変形することなく各種機能層塗布後の乾燥が可能であり、その後、150℃程度で大きく収縮させる必要がある用途での使用が可能となる。 The polyester film of the present invention has a special heat shrinkage property that does not shrink at about 90 ° C. and shrinks significantly at about 150 ° C. As a result, it is possible to dry after applying various functional layers without shrinking and deforming at about 90 ° C., and then it can be used in applications that require large shrinkage at about 150 ° C.

Claims (8)

主収縮方向の150℃熱収縮率が15%以上かつ主収縮方向と直交する方向の150℃熱収縮率が15%未満であって、温度変調DSCより得られるガラス転移温度が100℃以上であることを特徴とするポリエステルフィルム。 The 150 ° C. heat shrinkage in the main shrinkage direction is 15% or more, the 150 ° C. heat shrinkage in the direction orthogonal to the main shrinkage direction is less than 15%, and the glass transition temperature obtained from the temperature-modulated DSC is 100 ° C. or higher. A polyester film characterized by that. 温度変調DSCより得られるガラス転移温度が120℃未満である請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the glass transition temperature obtained from the temperature-modulated DSC is less than 120 ° C. 主収縮方向の90℃熱収縮率が14%以下である、請求項1または2に記載のポリエステルフィルム。 The polyester film according to claim 1 or 2 , wherein the 90 ° C. heat shrinkage rate in the main shrinkage direction is 14% or less. 主収縮方向の屈折率が1.6以上1.64以下かつ、主収縮方向と直交する方向の屈折率が主収縮方向の屈折率よりも大きく、かつ面配向係数が0.1以上0.14以下である請求項1〜3のいずれかに記載のポリエステルフィルム。 The refractive index in the main contraction direction is 1.6 or more and 1.64 or less, the refractive index in the direction orthogonal to the main contraction direction is larger than the refractive index in the main contraction direction, and the plane orientation coefficient is 0.1 or more and 0.14. The polyester film according to any one of claims 1 to 3 below. 温度変調DSCより得られる可動非晶量(分率)が25%以上である請求項1〜4のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 4 , wherein the amount of movable amorphous (parts) obtained from the temperature-modulated DSC is 25% or more. 破断伸度が主収縮方向、主収縮方向と直交する方向ともに100%以上である請求項1〜5のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 5, wherein the elongation at break is 100% or more in both the main contraction direction and the direction orthogonal to the main contraction direction. 主収縮方向の80℃における熱収縮応力が1MPa以下である請求項1〜6のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 6, wherein the heat shrinkage stress at 80 ° C. in the main shrinkage direction is 1 MPa or less. 包装用途、加飾用途、光学用途のいずれかの用途に用いられる請求項1〜7のいずれかに記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 7, which is used for any of packaging, decorative, and optical applications.
JP2016560834A 2015-08-06 2016-08-02 Polyester film Active JP6789821B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015155886 2015-08-06
JP2015155886 2015-08-06
PCT/JP2016/072608 WO2017022742A1 (en) 2015-08-06 2016-08-02 Polyester film

Publications (2)

Publication Number Publication Date
JPWO2017022742A1 JPWO2017022742A1 (en) 2018-05-24
JP6789821B2 true JP6789821B2 (en) 2020-11-25

Family

ID=57943526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016560834A Active JP6789821B2 (en) 2015-08-06 2016-08-02 Polyester film

Country Status (5)

Country Link
JP (1) JP6789821B2 (en)
KR (1) KR102538384B1 (en)
CN (1) CN107848193B (en)
TW (1) TWI720006B (en)
WO (1) WO2017022742A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11608204B2 (en) 2016-07-27 2023-03-21 Toyobo Co., Ltd. Heat-shrinkable film, heat shrink label, and package
CN109401212B (en) * 2017-08-16 2022-12-13 中国石油化工股份有限公司 Polyester composition, heat-shrinkable film and process for producing the same
CN108665810A (en) * 2018-05-31 2018-10-16 昆山国显光电有限公司 Metal wire, display screen, metal wire production method and metal wire restorative procedure
EP4005941A4 (en) * 2019-07-26 2023-08-09 Toyobo Co., Ltd. Heat-shrinkable polyester-based film
CN115210071A (en) * 2020-03-11 2022-10-18 杰富意钢铁株式会社 Resin-coated metal sheet for container

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256117A (en) * 1985-09-06 1987-03-11 Mitsui Toatsu Chem Inc Shrinkable film for label
JP2615303B2 (en) * 1992-03-13 1997-05-28 三井東圧化学株式会社 Heat shrinkable label
JP3448356B2 (en) * 1994-07-21 2003-09-22 三菱レイヨン株式会社 Heat shrinkable polyester film
JP3442867B2 (en) * 1994-07-21 2003-09-02 三菱レイヨン株式会社 Heat shrinkable polyester film
JP3585056B2 (en) * 1995-03-08 2004-11-04 東レ株式会社 Polyester shrink film
JP3829353B2 (en) * 1996-03-05 2006-10-04 東洋紡績株式会社 Heat-shrinkable polyester film
EP0985701B1 (en) * 1998-09-11 2007-07-11 Toray Industries, Inc. Biaxially oriented polyester film and a process for its production
US6974620B1 (en) * 2000-02-28 2005-12-13 Toray Industries, Inc. Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same
JP5001487B2 (en) * 2000-12-28 2012-08-15 株式会社フジシールインターナショナル Battery exterior label
CA2485265C (en) * 2002-04-24 2009-12-29 Toyo Boseki Kabushiki Kaisha A heat-shrinkable polyester film
KR100946163B1 (en) * 2007-07-16 2010-03-11 도레이새한 주식회사 Heat-shrinkable polyester film for improving curled shape problem and manufacturing method thereof
JP4809419B2 (en) * 2007-12-13 2011-11-09 東洋紡績株式会社 Heat-shrinkable polyester film and method for producing the same
JP2011079229A (en) 2009-10-07 2011-04-21 C I Kasei Co Ltd Heat-shrinkable polyester film
JP2013087153A (en) * 2011-10-14 2013-05-13 Toray Ind Inc Copolyester, and polyester fiber with excellent moisture absorbency including the same
KR102058768B1 (en) 2012-08-03 2019-12-23 도요보 가부시키가이샤 Heat-shrinkable polyester-based film
US9920162B2 (en) * 2012-08-29 2018-03-20 Toyobo Co., Ltd. Heat-shrinkable polyester film

Also Published As

Publication number Publication date
JPWO2017022742A1 (en) 2018-05-24
WO2017022742A1 (en) 2017-02-09
TW201714730A (en) 2017-05-01
KR20180037181A (en) 2018-04-11
CN107848193B (en) 2020-01-10
CN107848193A (en) 2018-03-27
KR102538384B1 (en) 2023-05-31
TWI720006B (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7254730B2 (en) Copolyester raw materials for amorphous films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
JP6789821B2 (en) Polyester film
KR101725576B1 (en) Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film
JP6459533B2 (en) Heat-shrinkable polyester film and package
JP6485054B2 (en) Heat-shrinkable polyester film and package
US8722161B2 (en) Heat shrinkable polyester film, method for producing same, and packaged body
JP6641767B2 (en) A method for producing a heat shrinkable film.
JP2019147954A (en) Heat-shrinkable polyester-based film, and package
WO2012053821A2 (en) Heat-shrinkable polyester film
JP2023178331A (en) Heat-shrinkable polyester film, heat-shrinkable label, and package
JP2018001422A (en) Laminated film, laminated body, and package
JP3960741B2 (en) Heat-shrinkable polyester multilayer film
JP2021152094A (en) Polyester film
JP2021130728A (en) Polyester film
JP4250383B2 (en) Heat-shrinkable polyester film
JPWO2017022743A1 (en) Polyester film
JP6690337B2 (en) Laminated polyester film
JP2017030320A (en) Method for producing heat-shrinkable film
JP2019051727A (en) Heat-shrinkable polyester-based film and package thereof
JP2017030318A (en) Method for producing heat-shrinkable film
JP2017030321A (en) Method for producing heat-shrinkable film
JP2005335308A (en) Biaxially oriented polyester film
JP2009035006A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201104

R150 Certificate of patent or registration of utility model

Ref document number: 6789821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250