JP6789086B2 - Board side horn antenna - Google Patents

Board side horn antenna Download PDF

Info

Publication number
JP6789086B2
JP6789086B2 JP2016236113A JP2016236113A JP6789086B2 JP 6789086 B2 JP6789086 B2 JP 6789086B2 JP 2016236113 A JP2016236113 A JP 2016236113A JP 2016236113 A JP2016236113 A JP 2016236113A JP 6789086 B2 JP6789086 B2 JP 6789086B2
Authority
JP
Japan
Prior art keywords
horn
angle
structures
substrate
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236113A
Other languages
Japanese (ja)
Other versions
JP2018093397A (en
Inventor
真行 菅野
真行 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2016236113A priority Critical patent/JP6789086B2/en
Publication of JP2018093397A publication Critical patent/JP2018093397A/en
Application granted granted Critical
Publication of JP6789086B2 publication Critical patent/JP6789086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本開示は、広角に目標物の存在及び方位を検知する技術に関する。 The present disclosure relates to a technique for detecting the presence and orientation of a target object at a wide angle.

広角に目標物の存在を検知する技術が、特許文献1〜3に開示されている。特許文献1では、基板平面に形成される平面アンテナを用いて、正面方向の目標物の存在を検知し、基板側面に形成される電磁波反射面を用いて、側面方向の目標物の存在を検知する。特許文献2では、基板平面に形成される平面アンテナを用いて、正面方向の目標物の存在を検知し、基板側面の近傍の基板平面の端部に形成されるアンテナパターンを用いて、側面方向の目標物の存在を検知する。特許文献3では、基板平面に形成される平面アンテナを用いて、正面方向の目標物の存在を検知し、基板側面の近傍の基板平面の端部に形成されるダイポールアンテナを用いて、側面方向の目標物の存在を検知する。 Patent Documents 1 to 3 disclose techniques for detecting the presence of a target object in a wide angle. In Patent Document 1, the presence of a target object in the front direction is detected by using a flat antenna formed on the plane of the substrate, and the presence of the target object in the side surface direction is detected by using the electromagnetic wave reflecting surface formed on the side surface of the substrate. To do. In Patent Document 2, a planar antenna formed on a substrate plane is used to detect the presence of a target object in the front direction, and an antenna pattern formed at an end of the substrate plane near the side surface of the substrate is used in the side surface direction. Detects the presence of the target. In Patent Document 3, the presence of a target object in the front direction is detected by using a plane antenna formed on a substrate plane, and a dipole antenna formed at an end of the substrate plane near the side surface of the substrate is used in the side surface direction. Detects the presence of the target.

特開2007−049691号公報Japanese Unexamined Patent Publication No. 2007-049691 特許5464152号公報Japanese Patent No. 5464152 特許5609772号公報Japanese Patent No. 56097772

ところで、特許文献1、3では、広角に目標物の存在を検知することは、考慮されているが、広角に目標物の方位を検知することは、考慮されていない。もっとも、特許文献2では、基板正面の方向の広角に目標物の存在を検知することが、考慮されているし、基板正面の方向の広角に目標物の方位を検知することも、考慮されている。それでも、特許文献2では、空間的に離れたアンテナを基板側面にどのように形成すれば、基板側面の方向の広角に目標物の存在を検知するのみならず、基板側面の方向の広角に目標物の方位を検知するうえに、広角方位検知システムの小型化、製造容易化及び低コスト化を図ることができるのか、窺い知ることはできなかった。 By the way, in Patent Documents 1 and 3, detecting the presence of a target object at a wide angle is considered, but detecting the orientation of the target object at a wide angle is not considered. However, in Patent Document 2, it is considered that the presence of the target object is detected at a wide angle in the direction of the front surface of the substrate, and that the orientation of the target object is detected at a wide angle in the direction of the front surface of the substrate. There is. Nevertheless, in Patent Document 2, how to form spatially separated antennas on the side surface of the substrate not only detects the presence of the target object at a wide angle in the direction of the side surface of the substrate, but also targets the wide angle in the direction of the side surface of the substrate. In addition to detecting the orientation of an object, it was not possible to know whether the wide-angle orientation detection system could be made smaller, easier to manufacture, and lower in cost.

そこで、前記課題を解決するために、本開示は、空間的に離れたアンテナを基板側面に形成する方法を工夫して、基板側面の方向の広角に目標物の存在を検知するのみならず、基板側面の方向の広角に目標物の方位を検知するうえに、広角方位検知システムの小型化、製造容易化及び低コスト化を図ることを目的とする。 Therefore, in order to solve the above-mentioned problems, the present disclosure not only detects the presence of a target object at a wide angle in the direction of the side surface of the substrate by devising a method of forming spatially separated antennas on the side surface of the substrate. The purpose is to detect the orientation of the target object at a wide angle in the direction of the side surface of the substrate, and to reduce the size, manufacture, and cost of the wide-angle orientation detection system.

上記目的を達成するために、2個のホーンアンテナを用いて、モノパルス測角方式を採用するとともに、アンテナ指向性を容易に調整可能とする。ここで、広角方位検知システムの小型化、製造容易化及び低コスト化を図るためには、各々のホーン構造に接続される各々の導波路を、誘電体基板の厚さ方向のなるべく同一位置に形成することが望ましい。 In order to achieve the above object, a monopulse angle measurement method is adopted by using two horn antennas, and the antenna directivity can be easily adjusted. Here, in order to reduce the size, manufacture, and cost of the wide-angle orientation detection system, the waveguides connected to the respective horn structures should be positioned at the same position as possible in the thickness direction of the dielectric substrate. It is desirable to form.

しかし、誘電体基板の厚さ方向と平行方向について、2個のホーン構造の開き方向を同一方向とすれば、2個のホーンアンテナの間隔を実効的に0とするため、モノパルス測角方式を採用することができない。そこで、誘電体基板の厚さ方向と平行方向について、2個のホーン構造の開き方向を異なる方向とすれば、2個のホーンアンテナの間隔を実効的に有限値とするため、モノパルス測角方式を採用することができる。 However, if the opening directions of the two horn structures are the same in the direction parallel to the thickness direction of the dielectric substrate, the distance between the two horn antennas is effectively set to 0, so a monopulse angle measurement method is used. Cannot be adopted. Therefore, if the opening directions of the two horn structures are different in the direction parallel to the thickness direction of the dielectric substrate, the distance between the two horn antennas is effectively set to a finite value. Therefore, a monopulse angle measurement method is used. Can be adopted.

具体的には、誘電体基板については、基板内部において基板平面と平行方向に2本の導波路の導波部を形成され、基板側面において2本の導波路の開口部を形成される。そして、金属部材については、2個の受信ホーン構造を形成され、2本の導波路の開口部と2個の受信ホーン構造の接続部が接続されるように、誘電体基板に接続される。 Specifically, for a dielectric substrate, two waveguides are formed inside the substrate in a direction parallel to the plane of the substrate, and openings of two waveguides are formed on the side surface of the substrate. Then, the metal member is connected to the dielectric substrate so that two receiving horn structures are formed and the openings of the two waveguides and the connecting portion of the two receiving horn structures are connected.

ここで、金属部材については、各々の受信ホーン構造の4面の管壁のうち、少なくとも1面の管壁において、平面構造を形成されず、階段構造を形成される。よって、広角方位検知システムの製造容易化及び低コスト化を図りながら、通常のホーン構造そのものを実現するわけではないが、通常のホーン構造に近い構造を実現することができる。 Here, with respect to the metal member, a planar structure is not formed but a staircase structure is formed on at least one of the four pipe walls of each receiving horn structure. Therefore, while facilitating the manufacture and reducing the cost of the wide-angle directional detection system, the normal horn structure itself is not realized, but a structure close to the normal horn structure can be realized.

具体的には、本開示は、基板内部において基板平面と平行方向に2本の導波路の導波部を形成され、基板側面において前記2本の導波路の開口部を形成される誘電体基板と、2個の受信ホーン構造を形成され、前記2本の導波路の開口部と前記2個の受信ホーン構造の接続部が接続されるように、前記誘電体基板に接続される金属部材と、を備え、前記誘電体基板の厚さ方向と平行方向について、前記2個の受信ホーン構造の開口部が、互いに離れるように配置され、前記各々の受信ホーン構造の開き方向が、前記各々の受信ホーン構造の開口部の離れ方向と同一方向に設定され、前記2個の受信ホーン構造により、前記誘電体基板の厚さ方向と平行方向の目標物測角が可能であり、前記誘電体基板の厚さ方向と垂直方向について、前記2個の受信ホーン構造の開口部が、互いに離れるように配置され、前記2個の受信ホーン構造により、前記誘電体基板の厚さ方向と垂直方向の目標物測角が可能であり、前記各々の受信ホーン構造の4面の管壁のうち、少なくとも1面の管壁において、階段構造を形成されることを特徴とする基板側面ホーンアンテナである。 Specifically, the present disclosure is a dielectric substrate in which two waveguides are formed inside the substrate in a direction parallel to the plane of the substrate, and openings of the two waveguides are formed on the side surface of the substrate. And a metal member connected to the dielectric substrate so that two receiving horn structures are formed and the openings of the two waveguides and the connecting portion of the two receiving horn structures are connected. , And the openings of the two receiving horn structures are arranged so as to be separated from each other in a direction parallel to the thickness direction of the dielectric substrate, and the opening direction of each of the receiving horn structures is It is set in the same direction as the separation direction of the opening of the receiving horn structure, and the two receiving horn structures enable the target angle measurement in the direction parallel to the thickness direction of the dielectric substrate, and the dielectric substrate can be measured. The openings of the two receiving horn structures are arranged so as to be separated from each other in the thickness direction and the vertical direction of the above, and the target in the thickness direction and the direction perpendicular to the thickness direction of the dielectric substrate is provided by the two receiving horn structures. The substrate side surface horn antenna is capable of measuring an object angle, and has a stepped structure formed on at least one of the four tube walls of each of the receiving horn structures.

この構成によれば、各々のホーン構造に接続される各々の導波路の導波部を、誘電体基板の厚さ方向のなるべく同一位置に形成することができる。そして、各々の受信ホーン構造の4面の管壁のうち、少なくとも1面の管壁において、階段構造を形成されることにより、通常のホーン構造に近い構造を実現することができる。よって、基板側面にホーンアンテナを形成するのみならず、基板平面に平面アンテナを形成することにより、広角に目標物の存在を検知する他、広角に目標物の方位を検知するうえに、広角方位検知システムの小型化、製造容易化及び低コスト化を図ることができる。 According to this configuration, the waveguides of the respective waveguides connected to the respective horn structures can be formed at the same position as possible in the thickness direction of the dielectric substrate. Then, by forming a staircase structure in at least one of the four tube walls of each receiving horn structure, a structure close to a normal horn structure can be realized. Therefore, not only by forming a horn antenna on the side surface of the substrate, but also by forming a planar antenna on the plane of the substrate, the presence of the target object can be detected at a wide angle, and the orientation of the target object can be detected at a wide angle. The detection system can be miniaturized, easy to manufacture, and low in cost.

また、本開示は、前記各々の受信ホーン構造の階段構造の各段のサイズのうち、前記誘電体基板の厚さ方向と平行方向のサイズが、前記基板側面ホーンアンテナの帯域中心波長の半分以下であることを特徴とする基板側面ホーンアンテナである。 Further, in the present disclosure, among the sizes of each step of the staircase structure of each of the receiving horn structures, the size in the direction parallel to the thickness direction of the dielectric substrate is half or less of the band center wavelength of the substrate side horn antenna. It is a substrate side horn antenna characterized by being.

この構成によれば、階段構造の不連続性が小さいため、階段構造による不要なモードが発生することなく、ホーン構造の指向性が設計しやすくなる。なお、ホーン構造の管壁のうち、全体に渡り階段構造を形成してもよく、一部のみに階段構造を形成してもよい。また、基板側面ホーンアンテナの帯域中心波長は、後述のレドーム部材が埋め込まれないときには、真空中での波長を表わし、後述のレドーム部材が埋め込まれるときには、後述のレドーム部材の内部での波長又は真空中での波長を表わす。 According to this configuration, since the discontinuity of the staircase structure is small, the directivity of the horn structure can be easily designed without generating unnecessary modes due to the staircase structure. It should be noted that the staircase structure may be formed over the entire pipe wall of the horn structure, or the staircase structure may be formed only in a part thereof. Further, the band center wavelength of the substrate side horn antenna represents the wavelength in vacuum when the radome member described later is not embedded, and when the radome member described later is embedded, the wavelength or vacuum inside the radome member described later. Represents the wavelength inside.

また、本開示は、前記各々の受信ホーン構造の開口部において埋め込まれるにあたり、前記各々の受信ホーン構造の階段構造を用いて埋め込み深さを調整されるレドーム部材、をさらに備えることを特徴とする基板側面ホーンアンテナである。 Further, the present disclosure is further provided with a radome member whose embedding depth is adjusted by using the staircase structure of each of the receiving horn structures when it is embedded in the opening of each of the receiving horn structures. It is a board side horn antenna.

この構成によれば、各々の受信ホーン構造の開口面を塞ぐようにして、レドーム部材を「貼り付ける」構造を採用しないで、各々の受信ホーン構造の階段構造をストッパーとして、レドーム部材を「埋め込む」構造を採用している。よって、広角方位検知システムの小型化、製造容易化及び低コスト化並びに風雨等に対する高耐性化を図ることができる。 According to this configuration, the radome member is "embedded" by using the staircase structure of each receiving horn structure as a stopper without adopting the structure of "pasting" the radome member so as to close the opening surface of each receiving horn structure. "The structure is adopted. Therefore, it is possible to reduce the size of the wide-angle directional detection system, facilitate manufacturing, reduce the cost, and increase the resistance to wind and rain.

そして、貼り付けたレドーム部材において、内部での繰り返し反射波が端部から漏れ出す影響をなくすことができる。よって、受信信号の位相差は、反射波の到来角に対して、ほとんどリップルを生じることがなく、ほとんど単調に変化すると考えてもよい。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応することがほとんどないと考えてもよく、モノパルス測角方式の測角精度を高くすることができる。 Then, in the attached radome member, the influence of the repeatedly reflected wave inside leaking from the end portion can be eliminated. Therefore, it may be considered that the phase difference of the received signal changes almost monotonously with respect to the arrival angle of the reflected wave with almost no ripple. That is, it may be considered that the arrival angles of the plurality of reflected waves rarely correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method can be improved.

ここで、2個のホーン構造の開口部は、広角方位検知システムの広がりが有限な筐体面に形成される。すると、2個のホーンアンテナは、広角方位検知システムの筐体角を回折源とする回折波の影響を受ける。よって、受信信号の位相差は、反射波の到来角に対して、単調に変化せずリップルを生じる。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応するようになり、モノパルス測角方式の測角精度が低くなる。 Here, the openings of the two horn structures are formed on a housing surface having a finite spread of the wide-angle directional detection system. Then, the two horn antennas are affected by the diffracted wave whose diffraction source is the housing angle of the wide-angle directional detection system. Therefore, the phase difference of the received signal does not change monotonically with respect to the arrival angle of the reflected wave and causes ripple. That is, the arrival angles of the plurality of reflected waves correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method becomes low.

そこで、発明者は、自社出願の特開2015−061231号公報を参照して、広角方位検知システムの筐体角を回折源とする回折波の影響が、広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離に応じて、相違することに着目した。 Therefore, the inventor referred to Japanese Patent Application Laid-Open No. 2015-061231 of the in-house application, and the influence of the diffracted wave whose diffraction source is the housing angle of the wide-angle directional detection system is the same as the housing angle of the wide-angle azimuth detection system. It was noted that the difference depends on the distance between the openings of the individual horn structures.

広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離が「短距離」のときには、回折波の波長が広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離と比べて十分に長くなるため、受信信号の位相差は、反射波の到来角に対して、長周期を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。 When the distance between the housing angle of the wide-angle orientation detection system and the openings of the two horn structures is "short distance", the wavelength of the diffracted wave is the housing angle of the wide-angle orientation detection system and the openings of the two horn structures. Since it is sufficiently long compared to the distance between the parts, the phase difference of the received signal only produces a ripple having a long period with respect to the arrival angle of the reflected wave, and it may be considered that the phase difference changes almost monotonously. ..

広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離が「長距離」のときには、回折波の振幅が広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離において十分に減衰するため、受信信号の位相差は、反射波の到来角に対して、小振幅を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。 When the distance between the housing angle of the wide-angle orientation detection system and the openings of the two horn structures is "long distance", the amplitude of the diffracted wave is the housing angle of the wide-angle orientation detection system and the openings of the two horn structures. Since it is sufficiently attenuated in the distance between the parts, the phase difference of the received signal only produces a ripple having a small amplitude with respect to the arrival angle of the reflected wave, and it may be considered that the phase difference changes almost monotonously.

広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離が「中距離」のときには、受信信号の位相差は、反射波の到来角に対して、中程度の周期及び有限の振幅を有するリップルを生じるため、ほとんど単調に変化すると考えることができない。 When the distance between the housing angle of the wide-angle orientation detection system and the openings of the two horn structures is "medium distance", the phase difference of the received signal has a moderate period with respect to the arrival angle of the reflected wave. Since it produces ripples with a finite amplitude, it cannot be considered to change almost monotonously.

よって、広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離が「中距離」のときには、モノパルス測角方式の測角精度を高くするためには、以下に示す手段を適用することが望ましい。むろん、広角方位検知システムの筐体角と2個のホーン構造の開口部の間の距離が「短距離」又は「長距離」のときにも、モノパルス測角方式の測角精度がある程度高いものの、以下に示す手段を適用することは問題ない。 Therefore, when the distance between the housing angle of the wide-angle directional detection system and the openings of the two horn structures is "medium distance", the following means are used to improve the angle measurement accuracy of the monopulse angle measurement method. It is desirable to apply. Of course, even when the distance between the housing angle of the wide-angle directional detection system and the openings of the two horn structures is "short distance" or "long distance", the angle measurement accuracy of the monopulse angle measurement method is high to some extent. , There is no problem in applying the means shown below.

その手段とは、広角方位検知システムの筐体角と2個のホーン構造の開口部の間において、受信波に対して回折源となる回折構造を、広角方位検知システムの筐体角とは別に、形成することである。ここで、受信波に対して回折源となる回折構造と2個のホーン構造の開口部の間の距離は、以上で言う「短距離」である。よって、受信波に対して回折源となる回折構造からの回折波は、モノパルス測角方式の測角精度を低くしない。そして、広角方位検知システムの筐体角からの回折波は、受信波に対して回折源となる回折構造からの回折波と干渉した結果減衰するため、モノパルス測角方式の測角精度に影響しない。 The means is that the diffraction structure that is the diffraction source for the received wave between the housing angle of the wide-angle directional detection system and the openings of the two horn structures is set separately from the housing angle of the wide-angle directional detection system. , To form. Here, the distance between the diffraction structure that is the diffraction source for the received wave and the openings of the two horn structures is the above-mentioned "short distance". Therefore, the diffracted wave from the diffracted structure which is the diffraction source with respect to the received wave does not lower the angle measurement accuracy of the monopulse angle measurement method. The diffracted wave from the housing angle of the wide-angle orientation detection system is attenuated as a result of interfering with the diffracted wave from the diffracted structure that is the diffraction source with respect to the received wave, and therefore does not affect the angle measurement accuracy of the monopulse angle measurement method. ..

具体的には、本開示は、受信波に対して回折源となる回折構造が、前記2個の受信ホーン構造の開口部が形成される前記金属部材の筐体面において、かつ、前記誘電体基板の厚さ方向と平行方向における前記金属部材の筐体角と前記2個の受信ホーン構造の開口部の間において、前記誘電体基板の厚さ方向と垂直方向に延伸して形成されることを特徴とする基板側面ホーンアンテナである。 Specifically, in the present disclosure, the diffraction structure that serves as a diffraction source for the received wave is on the housing surface of the metal member on which the openings of the two receiving horn structures are formed, and the dielectric substrate. Between the housing angle of the metal member and the openings of the two receiving horn structures in a direction parallel to the thickness direction of the dielectric substrate, the dielectric substrate is formed by being stretched in a direction perpendicular to the thickness direction of the dielectric substrate. It is a featured substrate side horn antenna.

この構成によれば、受信信号の位相差は、反射波の到来角に対して、長周期を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応することがほとんどないと考えてもよく、モノパルス測角方式の測角精度を高くすることができる。 According to this configuration, the phase difference of the received signal only causes a ripple having a long period with respect to the arrival angle of the reflected wave, and it may be considered that the phase difference changes almost monotonously. That is, it may be considered that the arrival angles of the plurality of reflected waves rarely correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method can be improved.

このように、本開示は、空間的に離れたアンテナを基板側面に形成する方法を工夫して、基板側面の方向の広角に目標物の存在を検知するのみならず、基板側面の方向の広角に目標物の方位を検知するうえに、広角方位検知システムの小型化、製造容易化及び低コスト化を図ることができる。 As described above, the present disclosure devises a method of forming spatially separated antennas on the side surface of the substrate, and not only detects the presence of a target at a wide angle in the direction of the side surface of the substrate, but also wide-angle in the direction of the side surface of the substrate. In addition to detecting the orientation of the target object, the wide-angle orientation detection system can be miniaturized, easy to manufacture, and low in cost.

本開示の広角方位検知システムの構成を示す図である。It is a figure which shows the structure of the wide-angle directional detection system of this disclosure. 本開示のモノパルス測角方式の原理を示す図である。It is a figure which shows the principle of the monopulse angle measurement system of this disclosure. 本開示の基板側面のホーンアンテナの形状及び位置を示す図である。It is a figure which shows the shape and position of the horn antenna on the side surface of the substrate of this disclosure. 本開示の基板側面のホーンアンテナの形状及び位置を示す図である。It is a figure which shows the shape and position of the horn antenna on the side surface of the substrate of this disclosure. 測角方向の開き角が大きいときにおける、本開示の基板側面のホーンアンテナの形状を示す図である。It is a figure which shows the shape of the horn antenna on the side surface of the substrate of this disclosure when the opening angle in the angle measuring direction is large. 測角方向の開き角が小さいときにおける、本開示の基板側面のホーンアンテナの形状を示す図である。It is a figure which shows the shape of the horn antenna on the side surface of the substrate of this disclosure when the opening angle in the angle measuring direction is small. 変形例の基板側面のホーンアンテナの形状を示す図である。It is a figure which shows the shape of the horn antenna on the side surface of the substrate of the modification. 本開示の基板側面のホーンアンテナのレドーム部材の配置方法を示す図である。It is a figure which shows the arrangement method of the radome member of the horn antenna on the side surface of the substrate of this disclosure. 従来技術の基板平面のアンテナ素子のモノパルス測角方式を示す図である。It is a figure which shows the monopulse angle measurement system of the antenna element of the substrate plane of the prior art. 変形例の基板側面のホーンアンテナの近傍の回折構造の位置を示す図である。It is a figure which shows the position of the diffraction structure in the vicinity of the horn antenna on the side surface of the substrate of the modification. 本開示の基板側面のホーンアンテナの近傍の回折構造の構造を示す図である。It is a figure which shows the structure of the diffraction structure in the vicinity of the horn antenna on the side surface of the substrate of this disclosure. 本開示の基板側面のホーンアンテナの近傍の回折構造の構造を示す図である。It is a figure which shows the structure of the diffraction structure in the vicinity of the horn antenna on the side surface of the substrate of this disclosure. 比較例の基板側面のホーンアンテナのモノパルス測角精度を示す図である。It is a figure which shows the monopulse angle measurement accuracy of the horn antenna on the side surface of the substrate of the comparative example. 本開示の基板側面のホーンアンテナのモノパルス測角精度を示す図である。It is a figure which shows the monopulse angle measurement accuracy of the horn antenna on the side surface of the substrate of this disclosure.

添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。 Embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments described below are examples of the embodiments of the present disclosure, and the present disclosure is not limited to the following embodiments.

(広角方位検知システムの構成)
本開示の広角方位検知システムの構成を図1に示す。本開示の広角方位検知システムSは、誘電体基板1及び金属部材2から構成される。誘電体基板1は、基板内部において基板平面と平行方向に導波路11、12、13の導波部(図3を参照。)を形成され、基板側面において導波路11、12、13の開口部(図3を参照。)を形成され、基板平面において基板平面アンテナ14を形成される。金属部材2は、ホーン構造21、22、23を形成され、導波路11、12、13の開口部(図3を参照。)とホーン構造21、22、23の接続部がそれぞれ接続されるように、誘電体基板1に接続される。
(Structure of wide-angle directional detection system)
The configuration of the wide-angle directional detection system of the present disclosure is shown in FIG. The wide-angle orientation detection system S of the present disclosure is composed of a dielectric substrate 1 and a metal member 2. In the dielectric substrate 1, waveguides 11, 12, and 13 are formed inside the substrate in a direction parallel to the plane of the substrate (see FIG. 3), and openings of the waveguides 11, 12, and 13 are formed on the side surface of the substrate. (See FIG. 3) is formed, and the substrate plane antenna 14 is formed on the substrate plane. The metal member 2 is formed with horn structures 21, 22 and 23 so that the openings of the waveguides 11, 12 and 13 (see FIG. 3) and the connection portions of the horn structures 21, 22 and 23 are connected, respectively. Is connected to the dielectric substrate 1.

ホーン構造21、22は、受信用のものであり、ホーン構造23は、送信用のものである。基板平面アンテナ14は、受信用のもの及び送信用のものを、様々な監視方式に応じて、高い自由度で配置する。以下の説明では、誘電体基板1の厚さ方向と平行方向を「水平方向」と定義し、誘電体基板1の厚さ方向と垂直方向を「垂直方向」と定義する。 The horn structures 21 and 22 are for reception, and the horn structure 23 is for transmission. As the substrate flat antenna 14, the one for reception and the one for transmission are arranged with a high degree of freedom according to various monitoring methods. In the following description, the direction parallel to the thickness direction of the dielectric substrate 1 is defined as the "horizontal direction", and the direction perpendicular to the thickness direction of the dielectric substrate 1 is defined as the "vertical direction".

(基板側面のホーンアンテナの構成)
本開示のモノパルス測角方式の原理を図2に示す。モノパルス測角方式では、空間的に距離dだけ離れたアンテナを用いて、受信信号の位相差2π(dsinθ/λ)(λは、電磁波の真空波長。)を測定して、反射波の到来角θを測定する。
(Structure of horn antenna on the side of the board)
The principle of the monopulse angle measurement method of the present disclosure is shown in FIG. In the monopulse angle measurement method, the phase difference of the received signal is measured by 2π (dsinθ / λ 0 ) (λ 0 is the vacuum wavelength of the electromagnetic wave) using antennas spatially separated by the distance d, and the reflected wave is measured. The arrival angle θ is measured.

本開示の基板側面のホーンアンテナの形状及び位置を図3及び図4に示す。基板側面のホーンアンテナの形状及び位置について、最も望ましい実施形態を、図3を用いて説明する。基板側面のホーンアンテナの形状及び位置について、最も望ましい実施形態として、図3の実施形態を選択する理由を、図4を用いて説明する。 The shape and position of the horn antenna on the side surface of the substrate of the present disclosure are shown in FIGS. 3 and 4. The most desirable embodiment of the shape and position of the horn antenna on the side surface of the substrate will be described with reference to FIG. Regarding the shape and position of the horn antenna on the side surface of the substrate, the reason for selecting the embodiment of FIG. 3 as the most desirable embodiment will be described with reference to FIG.

まず、図3について説明する。導波路11、12、13の導波部及び開口部は、水平方向の同一位置に形成される。導波路11、12、13のうち、基板平面に平行方向の広壁面は、例えば、導体箔を用いて形成され、基板平面に垂直方向の狭壁面は、例えば、金属柱を用いて形成される。導波路11、12、13の開口部を導波路11、12、13の広壁面の方向に狭める金属柱は、インピーダンス整合器として機能し、導波路11、12、13の開口部を導波路11、12、13の広壁面の方向に拡げる金属柱は、反射器として機能する。導波路11、12、13の形成方法は、例えば、特開2011−109438号公報及び特許第5669043号公報に開示されている。 First, FIG. 3 will be described. The waveguides and openings of the waveguides 11, 12, and 13 are formed at the same positions in the horizontal direction. Of the waveguides 11, 12, and 13, the wide wall surface in the direction parallel to the substrate plane is formed by using, for example, a conductor foil, and the narrow wall surface in the direction perpendicular to the substrate plane is formed by, for example, using a metal column. .. The metal column that narrows the openings of the waveguides 11, 12, and 13 in the direction of the wide wall surface of the waveguides 11, 12, and 13 functions as an impedance matching box, and the openings of the waveguides 11, 12, and 13 are closed to the waveguide 11. , 12, 13 metal columns extending in the direction of the wide wall surface function as a reflector. Methods for forming the waveguides 11, 12, and 13 are disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-109438 and Japanese Patent No. 5669043.

ホーン構造21、22の開口部は、水平方向に互いに離れるように配置される。図3では、ホーン構造21の開口部は、導波路11の開口部を基準として、紙面右方向にずれて、ホーン構造22の開口部は、導波路12の開口部を基準として、紙面左方向にずれる。ホーン構造21、22の開き方向の水平成分は、ホーン構造21、22の開口部の上述した離れ方向と同一方向に設定される。図3では、ホーン構造21の開き方向の水平成分は、導波路11の導波方向を基準として、紙面右方向にずれて、ホーン構造22の開き方向の水平成分は、導波路12の導波方向を基準として、紙面左方向にずれる。ホーン構造21、22により、水平方向の目標物測角が可能である。 The openings of the horn structures 21 and 22 are arranged so as to be separated from each other in the horizontal direction. In FIG. 3, the opening of the horn structure 21 is displaced to the right of the paper surface with reference to the opening of the waveguide 11, and the opening of the horn structure 22 is to the left of the paper surface with reference to the opening of the waveguide 12. It shifts. The horizontal component in the opening direction of the horn structures 21 and 22 is set in the same direction as the above-mentioned separation direction of the openings of the horn structures 21 and 22. In FIG. 3, the horizontal component in the opening direction of the horn structure 21 is shifted to the right on the paper surface with reference to the waveguide direction of the waveguide 11, and the horizontal component in the opening direction of the horn structure 22 is the waveguide of the waveguide 12. It shifts to the left of the page with respect to the direction. The horn structures 21 and 22 enable horizontal target angle measurement.

ホーン構造21、22の開口部は、垂直方向に互いに離れるように配置される。図3では、ホーン構造21の開口部は、導波路11の開口部の位置に従い、紙面上方向に位置して、ホーン構造22の開口部は、導波路12の開口部の位置に従い、紙面下方向に位置する。ホーン構造21、22により、垂直方向の目標物測角が可能である。 The openings of the horn structures 21 and 22 are arranged so as to be vertically separated from each other. In FIG. 3, the opening of the horn structure 21 is located on the paper surface according to the position of the opening of the waveguide 11, and the opening of the horn structure 22 is located below the paper surface according to the position of the opening of the waveguide 12. Located in the direction. The horn structures 21 and 22 enable vertical target angle measurement.

次に、図4について説明する。本開示では、2個のホーン構造21、22を用いて、モノパルス測角方式を採用するとともに、アンテナ指向性を容易に調整可能とする。ここで、広角方位検知システムSの小型化、製造容易化及び低コスト化を図るためには、各々のホーン構造21、22に接続される各々の導波路11、12を、誘電体基板1の厚さ方向のなるべく同一位置に形成することが望ましい(図4の左上欄を参照。)。 Next, FIG. 4 will be described. In the present disclosure, the monopulse angle measurement method is adopted by using the two horn structures 21 and 22, and the antenna directivity can be easily adjusted. Here, in order to reduce the size, manufacture, and cost of the wide-angle directional detection system S, the waveguides 11 and 12 connected to the horn structures 21 and 22 are connected to the dielectric substrate 1. It is desirable to form them at the same position as possible in the thickness direction (see the upper left column of FIG. 4).

しかし、図4の左上欄に示すように、ホーン構造21、22の開き方向の水平成分を同一方向とすれば、ホーン構造21、22の水平方向の実効的な間隔dを0とするため、水平方向のモノパルス測角方式を採用することができず、広角方位検知システムSの小型化、製造容易化及び低コスト化以前の問題である。そして、図4の右上欄に示すように、導波路11、12を誘電体基板1の厚さ方向の大きく異なる位置(誘電体基板1の厚さ方向の隔離距離l)に形成すれば、ホーン構造21、22の水平方向の実効的な間隔dを有限値とするため、水平方向のモノパルス測角方式を採用することができるが、広角方位検知システムSの小型化、製造容易化及び低コスト化を図ることができない。 However, as shown in the upper left column of FIG. 4, if the horizontal components in the opening direction of the horn structures 21 and 22 are the same direction, the effective horizontal distance d of the horn structures 21 and 22 is 0. It is not possible to adopt the monopulse angle measurement method in the horizontal direction, which is a problem before the miniaturization, manufacturing simplification, and cost reduction of the wide-angle directional detection system S. Then, as shown in the upper right column of FIG. 4, if the waveguides 11 and 12 are formed at positions significantly different in the thickness direction of the dielectric substrate 1 (separation distance l in the thickness direction of the dielectric substrate 1), the horn Since the effective horizontal distance d of the structures 21 and 22 is set to a finite value, a horizontal monopulse angle measurement method can be adopted, but the wide-angle direction detection system S is miniaturized, easy to manufacture, and low in cost. It cannot be converted.

そこで、図4の左下欄に示すように、ホーン構造21、22の開き方向の水平成分を異なる方向とすれば、導波路11、12を誘電体基板1の厚さ方向のあまり異ならない位置(誘電体基板1の厚さ方向の隔離距離l’(<l))に形成しても、ホーン構造21、22の水平方向の実効的な間隔dを図4の右上欄とほぼ同程度の有限値とする。よって、水平方向のモノパルス測角方式を採用することができるうえに、広角方位検知システムSの小型化、製造容易化及び低コスト化を図ることができる。 Therefore, as shown in the lower left column of FIG. 4, if the horizontal components in the opening directions of the horn structures 21 and 22 are different, the waveguides 11 and 12 are located at positions that are not so different in the thickness direction of the dielectric substrate 1 ( Even if the dielectric substrate 1 is formed at an isolation distance l'(<l) in the thickness direction, the effective horizontal spacing d of the horn structures 21 and 22 is as finite as in the upper right column of FIG. Use as a value. Therefore, in addition to being able to adopt the horizontal monopulse angle measurement method, it is possible to reduce the size, manufacture, and cost of the wide-angle direction detection system S.

そして、図4の右下欄に示すように、ホーン構造21、22の開き方向の水平成分を異なる方向とすれば、導波路11、12を誘電体基板1の厚さ方向の同一位置に形成しても、ホーン構造21、22の水平方向の実効的な間隔dを図4の左下欄ほどではないが有限値とする。よって、水平方向のモノパルス測角方式を採用することができるうえに、広角方位検知システムSのさらなる小型化、製造容易化及び低コスト化を図ることができる。 Then, as shown in the lower right column of FIG. 4, if the horizontal components in the opening directions of the horn structures 21 and 22 are different, the waveguides 11 and 12 are formed at the same positions in the thickness direction of the dielectric substrate 1. Even so, the effective horizontal spacing d of the horn structures 21 and 22 is set to a finite value, though not as much as in the lower left column of FIG. Therefore, in addition to being able to adopt the horizontal monopulse angle measurement method, it is possible to further reduce the size, manufacture, and cost of the wide-angle direction detection system S.

(基板側面のホーンアンテナの形状)
図3及び図4において、ホーン構造21、22、23は、通常のホーン構造ではない。ホーン構造21、22、23の形状について、図5から図7までを用いて説明する。
(Shape of horn antenna on the side of the board)
In FIGS. 3 and 4, the horn structures 21, 22, and 23 are not ordinary horn structures. The shapes of the horn structures 21, 22 and 23 will be described with reference to FIGS. 5 to 7.

測角方向の開き角が「大きい」ときにおける、本開示の基板側面のホーンアンテナの形状を図5に示す。図5では、測角方向として水平方向を採用したうえで、ホーン構造21の水平方向の形状について説明するが、ホーン構造22、23の水平方向の形状及びホーン構造21、22、23の垂直方向の形状についてもほぼ同様である。 FIG. 5 shows the shape of the horn antenna on the side surface of the substrate of the present disclosure when the opening angle in the angle measurement direction is “large”. In FIG. 5, the horizontal shape of the horn structure 21 will be described after adopting the horizontal direction as the angle measurement direction. The horizontal shape of the horn structures 22 and 23 and the vertical direction of the horn structures 21, 22 and 23 will be described. The shape of is almost the same.

図5の左欄に示すように、水平方向にホーン構造21を開く管壁において、階段構造の段数が少ない(図5の左欄では、2段の階段構造)ときには、階段構造の不連続性が大きく、通常のホーン構造から遠いホーン構造21となる。よって、階段構造による不要なモードが発生することにより、ホーン構造21の指向性が設計しにくくなる。 As shown in the left column of FIG. 5, in the pipe wall that opens the horn structure 21 in the horizontal direction, when the number of steps of the staircase structure is small (in the left column of FIG. 5, the two-step staircase structure), the discontinuity of the staircase structure Is large, and the horn structure 21 is far from the normal horn structure. Therefore, it becomes difficult to design the directivity of the horn structure 21 due to the generation of unnecessary modes due to the staircase structure.

図5の右欄に示すように、水平方向にホーン構造21を開く管壁において、階段構造の段数が多い(図5の右欄では、4段の階段構造)ときには、階段構造の不連続性が小さく、通常のホーン構造に近いホーン構造21となる。よって、階段構造による不要なモードが発生することなく、ホーン構造21の指向性が設計しやすくなる。 As shown in the right column of FIG. 5, in the pipe wall that opens the horn structure 21 in the horizontal direction, when the number of steps of the staircase structure is large (in the right column of FIG. 5, the four-step staircase structure), the discontinuity of the staircase structure Is small, and the horn structure 21 is close to the normal horn structure. Therefore, the directivity of the horn structure 21 can be easily designed without generating an unnecessary mode due to the staircase structure.

測角方向の開き角が「小さい」ときにおける、本開示の基板側面のホーンアンテナの形状を図6に示す。図6では、測角方向として水平方向を採用したうえで、ホーン構造21の水平方向の形状について説明するが、ホーン構造22、23の水平方向の形状及びホーン構造21、22、23の垂直方向の形状についてもほぼ同様である。 FIG. 6 shows the shape of the horn antenna on the side surface of the substrate of the present disclosure when the opening angle in the angle measurement direction is “small”. In FIG. 6, the horizontal shape of the horn structure 21 will be described after adopting the horizontal direction as the angle measurement direction. However, the horizontal shape of the horn structures 22 and 23 and the vertical direction of the horn structures 21, 22 and 23 will be described. The shape of is almost the same.

図6に示すように、水平方向にホーン構造21を開く管壁において、階段構造の段数が少ない(図6では、2段の階段構造)ときでも、階段構造の不連続性が小さく、通常のホーン構造に近いホーン構造21となる。よって、階段構造による不要なモードが発生することなく、ホーン構造21の指向性が設計しやすくなる。 As shown in FIG. 6, in the pipe wall that opens the horn structure 21 in the horizontal direction, even when the number of steps of the staircase structure is small (in FIG. 6, the two-step staircase structure), the discontinuity of the staircase structure is small, which is normal. The horn structure 21 is similar to the horn structure. Therefore, the directivity of the horn structure 21 can be easily designed without generating an unnecessary mode due to the staircase structure.

具体的には、ホーン構造21の階段構造の各段のサイズのうち、誘電体基板1の厚さ方向と平行方向のサイズが、広角方位検知システムSの帯域中心波長λの半分λ/2以下である。すると、水平方向にホーン構造21を開く管壁において、階段構造の不連続性が小さく、通常のホーン構造に近いホーン構造21となる。よって、階段構造による不要なモードが発生することなく、ホーン構造21の指向性が設計しやすくなる。 Specifically, of the sizes of each step of the staircase structure of the horn structure 21, the size in the direction parallel to the thickness direction of the dielectric substrate 1 is half λ g / of the band center wavelength λ g of the wide-angle orientation detection system S. It is 2 or less. Then, in the pipe wall that opens the horn structure 21 in the horizontal direction, the discontinuity of the staircase structure is small, and the horn structure 21 is close to the normal horn structure. Therefore, the directivity of the horn structure 21 can be easily designed without generating an unnecessary mode due to the staircase structure.

そして、広角方位検知システムSの製造容易化及び低コスト化を図りながら、通常のホーン構造そのものを実現するわけではないが、通常のホーン構造に近いホーン構造21を実現することができる。例えば、テーパ形状の角穴加工を用いることができる。 Then, while facilitating the manufacture and reducing the cost of the wide-angle directional detection system S, the normal horn structure itself is not realized, but the horn structure 21 close to the normal horn structure can be realized. For example, tapered square hole processing can be used.

なお、図7で後述するように、ホーン構造21の管壁のうち、全体に渡り階段構造を形成してもよく、一部のみに階段構造を形成してもよい。また、広角方位検知システムSの帯域中心波長λは、図8で後述のレドーム部材31が埋め込まれないときには、真空中での波長λを表わし、図8で後述のレドーム部材31が埋め込まれるときには、図8で後述のレドーム部材31の内部での波長λ又は真空中での波長λを表わす。 As will be described later in FIG. 7, a staircase structure may be formed over the entire pipe wall of the horn structure 21, or a staircase structure may be formed only in a part thereof. Further, the band center wavelength λ g of the wide-angle orientation detection system S represents the wavelength λ 0 in vacuum when the radome member 31 described later is not embedded in FIG. 8, and the radome member 31 described later is embedded in FIG. Occasionally, FIG. 8 represents the wavelength λ g inside the radome member 31, which will be described later, or the wavelength λ 0 in vacuum.

図3及び図4に示した本実施形態のホーン構造21、22について説明する。水平方向にホーン構造21、22を開く1面の管壁において、2段の階段構造を形成される。垂直方向にホーン構造21、22を開く2面の管壁において、2段の階段構造を形成される。導波路11、12を誘電体基板1の厚さ方向の同一位置に形成するために、ホーン構造21、22の残りの1面の管壁においては、水平方向にホーン構造21、22を開いておらず、階段構造を形成されていない。 The horn structures 21 and 22 of the present embodiment shown in FIGS. 3 and 4 will be described. A two-step staircase structure is formed on a single pipe wall that opens the horn structures 21 and 22 in the horizontal direction. A two-step staircase structure is formed on the two-sided pipe wall that opens the horn structures 21 and 22 in the vertical direction. In order to form the waveguides 11 and 12 at the same position in the thickness direction of the dielectric substrate 1, the horn structures 21 and 22 are opened horizontally in the remaining one tube wall of the horn structures 21 and 22. No, no staircase structure is formed.

図3及び図4に示した本実施形態のホーン構造23について説明する。水平方向及び垂直方向にホーン構造23を開く各面の管壁において、階段構造を形成されてもよく、通常のホーン構造のような平面構造を形成されてもよい。 The horn structure 23 of the present embodiment shown in FIGS. 3 and 4 will be described. A staircase structure may be formed on the pipe wall of each surface that opens the horn structure 23 in the horizontal direction and the vertical direction, or a planar structure such as a normal horn structure may be formed.

図7の左上欄に示した第1の変形例のホーン構造21について説明する。水平方向にホーン構造21を開く1面の管壁において、開口面側では1段の階段構造を形成され、導波路11側では通常のホーン構造のような平面構造を形成される。垂直方向にホーン構造21を開く2面の管壁において、2段の階段構造を形成される。導波路11、12を誘電体基板1の厚さ方向の同一位置に形成するために、ホーン構造21の残りの1面の管壁においては、水平方向にホーン構造21を開いておらず、ホーン構造21を開く階段構造や平面構造を形成されていない。 The horn structure 21 of the first modification shown in the upper left column of FIG. 7 will be described. In the one-sided pipe wall that opens the horn structure 21 in the horizontal direction, a one-step staircase structure is formed on the opening surface side, and a planar structure like a normal horn structure is formed on the waveguide 11 side. A two-step staircase structure is formed on the two-sided pipe wall that opens the horn structure 21 in the vertical direction. In order to form the waveguides 11 and 12 at the same position in the thickness direction of the dielectric substrate 1, the horn structure 21 is not opened in the horizontal direction in the tube wall on the remaining one surface of the horn structure 21, and the horn. The staircase structure or the horizontal structure that opens the structure 21 is not formed.

図7の右上欄に示した第2の変形例のホーン構造21について説明する。水平方向にホーン構造21を開く1面の管壁において、通常のホーン構造のような平面構造を形成される。垂直方向にホーン構造21を開く2面の管壁において、2段の階段構造を形成される。導波路11、12を誘電体基板1の厚さ方向の同一位置に形成するために、ホーン構造21の残りの1面の管壁においては、水平方向にホーン構造21を開いておらず、ホーン構造21を開く階段構造や平面構造を形成されていない。 The horn structure 21 of the second modification shown in the upper right column of FIG. 7 will be described. A planar structure similar to a normal horn structure is formed on one pipe wall that opens the horn structure 21 in the horizontal direction. A two-step staircase structure is formed on the two-sided pipe wall that opens the horn structure 21 in the vertical direction. In order to form the waveguides 11 and 12 at the same position in the thickness direction of the dielectric substrate 1, the horn structure 21 is not opened in the horizontal direction in the tube wall on the remaining one surface of the horn structure 21, and the horn. The staircase structure or the horizontal structure that opens the structure 21 is not formed.

図7の左下欄に示した第3の変形例のホーン構造21について説明する。水平方向にホーン構造21を開く1面の管壁において、2段の階段構造を形成される。垂直方向にホーン構造21を開く2面の管壁において、通常のホーン構造のような平面構造を形成される。導波路11、12を誘電体基板1の厚さ方向の同一位置に形成するために、ホーン構造21の残りの1面の管壁においては、水平方向にホーン構造21を開いておらず、ホーン構造21を開く階段構造や平面構造を形成されていない。 The horn structure 21 of the third modification shown in the lower left column of FIG. 7 will be described. A two-step staircase structure is formed on one pipe wall that opens the horn structure 21 in the horizontal direction. A planar structure like a normal horn structure is formed on the two-sided pipe wall that opens the horn structure 21 in the vertical direction. In order to form the waveguides 11 and 12 at the same position in the thickness direction of the dielectric substrate 1, the horn structure 21 is not opened in the horizontal direction in the tube wall on the remaining one surface of the horn structure 21, and the horn. The staircase structure or the horizontal structure that opens the structure 21 is not formed.

図7の右下欄に示した第4の変形例のホーン構造21について説明する。水平方向にホーン構造21を開く1面の管壁において、開口面側では1段の階段構造を形成され、導波路11側では通常のホーン構造のような平面構造を形成される。垂直方向にホーン構造21を開く2面の管壁において、通常のホーン構造のような平面構造を形成される。導波路11、12を誘電体基板1の厚さ方向の同一位置に形成するために、ホーン構造21の残りの1面の管壁においては、水平方向にホーン構造21を開いておらず、ホーン構造21を開く階段構造や平面構造を形成されていない。 The horn structure 21 of the fourth modified example shown in the lower right column of FIG. 7 will be described. In the one-sided pipe wall that opens the horn structure 21 in the horizontal direction, a one-step staircase structure is formed on the opening surface side, and a planar structure like a normal horn structure is formed on the waveguide 11 side. A planar structure like a normal horn structure is formed on the two-sided pipe wall that opens the horn structure 21 in the vertical direction. In order to form the waveguides 11 and 12 at the same position in the thickness direction of the dielectric substrate 1, the horn structure 21 is not opened in the horizontal direction in the tube wall on the remaining one surface of the horn structure 21, and the horn. The staircase structure or the horizontal structure that opens the structure 21 is not formed.

(レドーム部材の配置方法)
図3及び図4において、ホーン構造21、22、23は、レドーム部材31、32、33を開口部に埋め込まれて、フィルム部材31’、32’、33’を開口面に貼り付けられる。ホーン構造21、22、23のレドーム部材31、32、33及びフィルム部材31’、32’、33’の配置方法について、図8を用いて説明する。
(Arrangement method of radome member)
In FIGS. 3 and 4, in the horn structures 21, 22, 23, the radome members 31, 32, 33 are embedded in the opening, and the film members 31', 32', 33'are attached to the opening surface. The arrangement method of the radome members 31, 32, 33 and the film members 31', 32', 33'of the horn structures 21, 22, and 23 will be described with reference to FIG.

本開示の基板側面のホーンアンテナのレドーム部材の配置方法を図8に示す。図8では、測角方向として水平方向を採用したうえで、ホーン構造21のレドーム部材31及びフィルム部材31’の水平方向の配置方法について説明するが、ホーン構造22、23のレドーム部材32、33及びフィルム部材32’、33’の水平方向の配置方法及びホーン構造21、22、23のレドーム部材31、32、33及びフィルム部材31’、32’、33’の垂直方向の配置方法についてもほぼ同様である。 FIG. 8 shows a method of arranging the radome member of the horn antenna on the side surface of the substrate of the present disclosure. In FIG. 8, a method of arranging the radome member 31 and the film member 31'of the horn structure 21 in the horizontal direction after adopting the horizontal direction as the angle measurement direction will be described. However, the radome members 32 and 33 of the horn structures 22 and 23 will be described. Also, the horizontal arrangement method of the film members 32'and 33'and the vertical arrangement method of the radome members 31, 32, 33 and the film members 31', 32', 33'of the horn structures 21, 22, 23 are almost the same. The same is true.

図8の左欄に示すように、ホーン構造21の開口面を塞ぐようにして、レドーム部材31(例えば、半波長レドーム)を「貼り付ける」構造を採用するときについて説明する。すると、広角方位検知システムSの製造容易化及び低コスト化並びに風雨等に対する高耐性化を図ることができても、広角方位検知システムSの小型化を図ることができない。 As shown in the left column of FIG. 8, a case where a structure in which the radome member 31 (for example, a half-wave radome) is “attached” is adopted so as to close the opening surface of the horn structure 21 will be described. Then, even if the wide-angle directional detection system S can be easily manufactured, the cost can be reduced, and the resistance to wind and rain can be increased, the wide-angle directional detection system S cannot be miniaturized.

そして、貼り付けた厚みのある(例えば、半波長分程度)レドーム部材31において、内部での繰り返し反射波が端部から漏れ出す影響をなくすことができない。よって、受信信号の位相差は、反射波の到来角に対して、大きなリップル(図13を参照。)を生じることがあり、単調に変化すると考えることができない。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応することがないと考えることができず、モノパルス測角方式の測角精度を高くすることができない。 Then, in the attached thick radome member 31 (for example, about half a wavelength), the influence of the repeatedly reflected wave inside leaking from the end portion cannot be eliminated. Therefore, the phase difference of the received signal may cause a large ripple (see FIG. 13) with respect to the arrival angle of the reflected wave, and cannot be considered to change monotonically. That is, it cannot be considered that the arrival angles of the plurality of reflected waves do not correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method cannot be improved.

図8の右欄に示すように、ホーン構造21の階段構造をストッパーとして、レドーム部材31(例えば、半波長レドーム)を「埋め込む」構造を採用するときについて説明する。ここで、ホーン構造21の開口面を塞ぐようにして、フィルム部材31’(例えば、半波長分未満の厚さのフィルム)を貼り付けてもよい。すると、広角方位検知システムSの小型化、製造容易化及び低コスト化並びに風雨等に対する高耐性化を図ることができる。 As shown in the right column of FIG. 8, a case where a structure in which the radome member 31 (for example, a half-wave radome) is “embedded” is adopted by using the step structure of the horn structure 21 as a stopper will be described. Here, the film member 31'(for example, a film having a thickness of less than half a wavelength) may be attached so as to close the opening surface of the horn structure 21. Then, the wide-angle directional detection system S can be miniaturized, easy to manufacture, low cost, and highly resistant to wind and rain.

そして、貼り付けた厚みのない(例えば、半波長分未満)フィルム部材31’において、内部での繰り返し反射波が端部から漏れ出す影響をなくすことができる。よって、受信信号の位相差は、反射波の到来角に対して、ほとんどリップル(図14を参照。)を生じることがなく、ほとんど単調に変化すると考えてもよい。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応することがほとんどないと考えてもよく、モノパルス測角方式の測角精度を高くすることができる。 Then, in the film member 31'with no thickness (for example, less than half a wavelength) attached, it is possible to eliminate the influence of the repeatedly reflected wave inside leaking from the end portion. Therefore, it may be considered that the phase difference of the received signal changes almost monotonously with respect to the arrival angle of the reflected wave with almost no ripple (see FIG. 14). That is, it may be considered that the arrival angles of the plurality of reflected waves rarely correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method can be improved.

図3及び図4に示した本実施形態のホーン構造21、22について説明する。まず、水平方向にホーン構造21、22を開く1面の管壁に形成される2段の階段構造と、垂直方向にホーン構造21、22を開く2面の管壁に形成される2段の階段構造と、をストッパーとして、直方体形状のレドーム部材31、32を埋め込む。次に、ホーン構造21、22の開口面を塞ぐようにして、フィルム部材31’、32’を貼り付けてもよい。 The horn structures 21 and 22 of the present embodiment shown in FIGS. 3 and 4 will be described. First, a two-step staircase structure formed on one tube wall that opens the horn structures 21 and 22 in the horizontal direction and a two-step structure formed on the two-sided tube wall that opens the horn structures 21 and 22 in the vertical direction. The rectangular parallelepiped radome members 31 and 32 are embedded using the staircase structure as a stopper. Next, the film members 31'and 32'may be attached so as to close the opening surfaces of the horn structures 21 and 22.

図3及び図4に示した本実施形態のホーン構造23について説明する。まず、水平方向にホーン構造23を開く2面の管壁に形成される階段構造と、垂直方向にホーン構造23を開く2面の管壁に形成される階段構造と、を形成されているときには、これらの階段構造をストッパーとして、直方体形状のレドーム部材33を埋め込む。次に、ホーン構造23の開口面を塞ぐようにして、フィルム部材33’を貼り付けてもよい。 The horn structure 23 of the present embodiment shown in FIGS. 3 and 4 will be described. First, when a staircase structure formed on two pipe walls that open the horn structure 23 in the horizontal direction and a staircase structure formed on the two pipe walls that open the horn structure 23 in the vertical direction are formed. With these staircase structures as stoppers, a rectangular parallelepiped radome member 33 is embedded. Next, the film member 33'may be attached so as to close the opening surface of the horn structure 23.

図7の左上欄に示した第1の変形例のホーン構造21について説明する。まず、水平方向にホーン構造21を開く1面の管壁に形成される1段の階段構造と、垂直方向にホーン構造21を開く2面の管壁に形成される2段の階段構造と、をストッパーとして、直方体形状のレドーム部材31を埋め込む。次に、ホーン構造21の開口面を塞ぐようにして、フィルム部材31’を貼り付けてもよい。 The horn structure 21 of the first modification shown in the upper left column of FIG. 7 will be described. First, a one-step staircase structure formed on a one-sided pipe wall that opens the horn structure 21 in the horizontal direction, and a two-step staircase structure formed on the two-sided pipe wall that opens the horn structure 21 in the vertical direction. Is used as a stopper to embed a rectangular parallelepiped radome member 31. Next, the film member 31'may be attached so as to close the opening surface of the horn structure 21.

図7の右上欄に示した第2の変形例のホーン構造21について説明する。まず、垂直方向にホーン構造21を開く2面の管壁に形成される2段の階段構造をストッパーとして、4面の管壁に沿う形状のレドーム部材31を埋め込む。次に、ホーン構造21の開口面を塞ぐようにして、フィルム部材31’を貼り付けてもよい。 The horn structure 21 of the second modification shown in the upper right column of FIG. 7 will be described. First, the radome member 31 having a shape along the four pipe walls is embedded by using the two-step staircase structure formed on the two pipe walls that open the horn structure 21 in the vertical direction as a stopper. Next, the film member 31'may be attached so as to close the opening surface of the horn structure 21.

図7の左下欄に示した第3の変形例のホーン構造21について説明する。まず、水平方向にホーン構造21を開く1面の管壁に形成される2段の階段構造をストッパーとして、4面の管壁に沿う形状のレドーム部材31を埋め込む。次に、ホーン構造21の開口面を塞ぐようにして、フィルム部材31’を貼り付けてもよい。 The horn structure 21 of the third modification shown in the lower left column of FIG. 7 will be described. First, the radome member 31 having a shape along the four pipe walls is embedded by using the two-step staircase structure formed on the one pipe wall that opens the horn structure 21 in the horizontal direction as a stopper. Next, the film member 31'may be attached so as to close the opening surface of the horn structure 21.

図7の右下欄に示した第4の変形例のホーン構造21について説明する。まず、水平方向にホーン構造21を開く1面の管壁に形成される1段の階段構造をストッパーとして、4面の管壁に沿う形状のレドーム部材31を埋め込む。次に、ホーン構造21の開口面を塞ぐようにして、フィルム部材31’を貼り付けてもよい。 The horn structure 21 of the fourth modified example shown in the lower right column of FIG. 7 will be described. First, the radome member 31 having a shape along the four pipe walls is embedded by using the one-step staircase structure formed on the one-sided pipe wall that opens the horn structure 21 in the horizontal direction as a stopper. Next, the film member 31'may be attached so as to close the opening surface of the horn structure 21.

(受信波に対する回折源の原理)
受信波に対する回折源の原理に関連して、従来技術(自社出願の特開2015−061231号公報)の基板平面のアンテナ素子のモノパルス測角方式を示す図を図9に示す。
(Principle of diffraction source for received wave)
FIG. 9 shows a diagram showing a monopulse angle measurement method of an antenna element on a substrate plane according to a prior art (Japanese Patent Application Laid-Open No. 2015-061231) in relation to the principle of a diffraction source for a received wave.

ここで、ホーン構造21、22の開口部は、金属部材2の広がりが有限な筐体面24に形成される。すると、ホーン構造21、22は、金属部材2の筐体角25、26を回折源とする回折波の影響を受ける。よって、受信信号の位相差は、反射波の到来角に対して、単調に変化せずリップルを生じる。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応するようになり、モノパルス測角方式の測角精度が低くなる。 Here, the openings of the horn structures 21 and 22 are formed on the housing surface 24 where the spread of the metal member 2 is finite. Then, the horn structures 21 and 22 are affected by the diffracted wave having the housing angles 25 and 26 of the metal member 2 as the diffraction source. Therefore, the phase difference of the received signal does not change monotonically with respect to the arrival angle of the reflected wave and causes ripple. That is, the arrival angles of the plurality of reflected waves correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method becomes low.

そこで、発明者は、自社出願の特開2015−061231号公報を参照して、金属部材2の筐体角25、26を回折源とする回折波の影響が、金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離に応じて、相違することに着目した。 Therefore, the inventor refers to Japanese Patent Application Laid-Open No. 2015-061231 of the in-house application, and the influence of the diffracted wave having the housing angles 25 and 26 of the metal member 2 as the diffraction source affects the housing angle 25 of the metal member 2. , 26 and the openings of the horn structures 21 and 22 are different depending on the distance.

従来技術では、図9の上段に示したように、平面アンテナ素子と基板平面端部の間の距離が「短距離」のときには、回折波の波長が平面アンテナ素子と基板平面端部の間の距離と比べて十分に長くなるため、受信信号の位相差は、反射波の到来角に対して、長周期を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。 In the prior art, as shown in the upper part of FIG. 9, when the distance between the flat antenna element and the flat end of the substrate is "short distance", the wavelength of the diffracted wave is between the flat antenna element and the flat end of the substrate. Since it is sufficiently long compared to the distance, the phase difference of the received signal only produces a ripple having a long period with respect to the arrival angle of the reflected wave, and it may be considered that the phase difference changes almost monotonously.

本開示では、図9の上段に示した従来技術を参照して、金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離が「短距離」のときには、回折波の波長が金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離と比べて十分に長くなるため、受信信号の位相差は、反射波の到来角に対して、長周期を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。 In the present disclosure, referring to the prior art shown in the upper part of FIG. 9, diffraction occurs when the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22 is "short distance". Since the wavelength of the wave is sufficiently long compared to the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22, the phase difference of the received signal is relative to the arrival angle of the reflected wave. Therefore, it only produces ripples with a long period, and it may be considered that the change is almost monotonous.

従来技術では、図9の下段に示したように、平面アンテナ素子と基板平面端部の間の距離が「長距離」のときには、回折波の振幅が平面アンテナ素子と基板平面端部の間の距離において十分に減衰するため、受信信号の位相差は、反射波の到来角に対して、小振幅を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。 In the prior art, as shown in the lower part of FIG. 9, when the distance between the flat antenna element and the flat end of the substrate is "long distance", the amplitude of the diffracted wave is between the flat antenna element and the flat end of the substrate. Since it is sufficiently attenuated at a distance, the phase difference of the received signal only produces a ripple having a small amplitude with respect to the arrival angle of the reflected wave, and it may be considered that the phase difference changes almost monotonously.

本開示では、図9の下段に示した従来技術を参照して、金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離が「長距離」のときには、回折波の振幅が金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離において十分に減衰するため、受信信号の位相差は、反射波の到来角に対して、小振幅を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。 In the present disclosure, referring to the prior art shown in the lower part of FIG. 9, diffraction occurs when the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22 is “long distance”. Since the wave amplitude is sufficiently attenuated at the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22, the phase difference of the received signal is relative to the arrival angle of the reflected wave. It only produces ripples with small amplitudes and may be considered to vary almost monotonically.

従来技術では、図9の中段に示したように、平面アンテナ素子と基板平面端部の間の距離が「中距離」のときには、受信信号の位相差は、反射波の到来角に対して、中程度の周期及び有限の振幅を有するリップルを生じるため、ほとんど単調に変化すると考えることができない。 In the prior art, as shown in the middle part of FIG. 9, when the distance between the flat antenna element and the flat end of the substrate is "medium distance", the phase difference of the received signal is relative to the arrival angle of the reflected wave. It cannot be considered to change almost monotonically because it produces ripples with moderate period and finite amplitude.

本開示では、図9の中段に示した従来技術を参照して、金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離が「中距離」のときには、受信信号の位相差は、反射波の到来角に対して、中程度の周期及び有限の振幅を有するリップルを生じるため、ほとんど単調に変化すると考えることができない。 In the present disclosure, referring to the prior art shown in the middle part of FIG. 9, when the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22 is "medium distance", reception is performed. The phase difference of the signal cannot be considered to change almost monotonically because it produces ripples with a moderate period and finite amplitude with respect to the arrival angle of the reflected wave.

よって、金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離が「中距離」のときには、モノパルス測角方式の測角精度を高くするためには、以下に示す手段を適用することが望ましい。むろん、金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離が「短距離」又は「長距離」のときにも、モノパルス測角方式の測角精度がある程度高いものの、以下に示す手段を適用することは問題ない。 Therefore, when the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22 is "medium distance", in order to improve the angle measurement accuracy of the monopulse angle measurement method, the following It is desirable to apply the means shown. Of course, even when the distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22 is "short distance" or "long distance", the angle measurement accuracy of the monopulse angle measurement method is to some extent. Although expensive, it is okay to apply the means shown below.

その手段とは、図1、図3及び図4にすでに示したように、金属部材2の筐体角25、26とホーン構造21、22の開口部の間において、受信波に対して回折源となる回折構造27を、金属部材2の筐体角25、26とは別に、形成することである。ここで、受信波に対して回折源となる回折構造27とホーン構造21、22の開口部の間の距離は、図9で言う「短距離」である。よって、受信波に対して回折源となる回折構造27からの回折波は、モノパルス測角方式の測角精度を低くしない。そして、金属部材2の筐体角25、26からの回折波は、受信波に対して回折源となる回折構造27からの回折波と干渉した結果減衰するため、モノパルス測角方式の測角精度に影響しない。 As already shown in FIGS. 1, 3 and 4, the means is a diffraction source for the received wave between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22. The diffraction structure 27 is formed separately from the housing angles 25 and 26 of the metal member 2. Here, the distance between the diffraction structure 27, which is the diffraction source for the received wave, and the openings of the horn structures 21 and 22, is the “short distance” referred to in FIG. Therefore, the diffracted wave from the diffracted structure 27 which is the diffracted source with respect to the received wave does not lower the angle measurement accuracy of the monopulse angle measurement method. Then, the diffracted waves from the housing angles 25 and 26 of the metal member 2 are attenuated as a result of interfering with the diffracted waves from the diffractive structure 27 which is the diffraction source with respect to the received waves. Does not affect.

よって、受信信号の位相差は、反射波の到来角に対して、長周期を有するリップルを生じるのみであり、ほとんど単調に変化すると考えてもよい。つまり、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応することがほとんどないと考えてもよく、モノパルス測角方式の測角精度を高くすることができる。 Therefore, it may be considered that the phase difference of the received signal only causes a ripple having a long period with respect to the arrival angle of the reflected wave, and changes almost monotonously. That is, it may be considered that the arrival angles of the plurality of reflected waves rarely correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method can be improved.

ここで、不図示の信号処理回路が、基板平面アンテナ14が形成されない誘電体基板1の一平面に接続され、モノパルス測角方式を適用して受信信号を処理する。 Here, a signal processing circuit (not shown) is connected to one plane of the dielectric substrate 1 on which the substrate plane antenna 14 is not formed, and a monopulse angle measurement method is applied to process the received signal.

そして、受信波に対して回折源となる回折構造27が、ホーン構造21、22、23の開口部が形成される金属部材2の筐体面24において、かつ、水平方向における金属部材2の「信号処理回路側」の筐体角25とホーン構造21、22、23の開口部の間において、垂直方向に延伸して形成されることが出来れば望ましい。 Then, the diffraction structure 27, which is a diffraction source for the received wave, is on the housing surface 24 of the metal member 2 on which the openings of the horn structures 21, 22, and 23 are formed, and the “signal” of the metal member 2 in the horizontal direction. It is desirable that the housing angle 25 on the "processing circuit side" and the openings of the horn structures 21, 22 and 23 can be formed so as to extend in the vertical direction.

一方で、受信波に対して回折源となる回折構造27は、ホーン構造21、22、23の開口部が形成される金属部材2の筐体面24において、かつ、水平方向における金属部材2の「誘電体基板1側」の筐体角26とホーン構造21、22、23の開口部の間において、垂直方向に延伸して形成されることを必ずしも要しない。 On the other hand, the diffraction structure 27, which serves as a diffraction source for the received wave, is formed on the housing surface 24 of the metal member 2 on which the openings of the horn structures 21, 22, and 23 are formed, and in the horizontal direction, the metal member 2 is " It is not always required to be formed by extending in the vertical direction between the housing angle 26 on the "dielectric substrate 1 side" and the openings of the horn structures 21, 22, and 23.

(受信波に対する回折源を備える変形例)
変形例の基板側面のホーンアンテナの近傍の回折構造の位置を図10に示す。第1及び第2の変形例に示した回折構造27は、形成箇所がそれぞれ相違する。
(Modification example provided with a diffraction source for the received wave)
FIG. 10 shows the position of the diffraction structure in the vicinity of the horn antenna on the side surface of the substrate of the modified example. The diffraction structures 27 shown in the first and second modifications have different formation locations.

金属部材2の筐体角25、26とホーン構造21、22の開口部の間の距離は、誘電体基板1及び信号処理回路が有する厚さに応じて決まる。 The distance between the housing angles 25 and 26 of the metal member 2 and the openings of the horn structures 21 and 22 is determined according to the thickness of the dielectric substrate 1 and the signal processing circuit.

ここで、金属部材2の「信号処理回路側」の筐体角25とホーン構造21、22の開口部の間の距離は、信号処理回路が有する厚さを考慮すれば、図9で言う「中距離」となることが多い。よって、金属部材2の「信号処理装置側」の筐体角25とホーン構造21、22の開口部の間において、受信波に対して回折源となる回折構造27を、金属部材2の「信号処理装置側」の筐体角25とは別に、形成することが望ましい。 Here, the distance between the housing angle 25 on the “signal processing circuit side” of the metal member 2 and the openings of the horn structures 21 and 22 is referred to in FIG. 9 in consideration of the thickness of the signal processing circuit. It is often "medium distance". Therefore, between the housing angle 25 on the “signal processing device side” of the metal member 2 and the openings of the horn structures 21 and 22, the diffraction structure 27 that serves as a diffraction source for the received wave is transferred to the “signal” of the metal member 2. It is desirable to form it separately from the housing angle 25 on the "processing device side".

第1の変形例では、金属部材2の「信号処理装置側」の筐体角25とホーン構造21、22、23の開口部の間において、受信波に対して回折源となる回折構造27を、金属部材2の「信号処理装置側」の筐体角25とは別に、形成している。そして、ホーン構造21、22の開口部が、水平方向に大きく離れている場合には、ホーン構造21の開口部と回折構造27の間の距離と、ホーン構造22の開口部と回折構造27の間の距離が、ほぼ等しく図9で言う「短距離」となるように、ホーン構造21、22の開口部の境界近傍において、回折構造27を屈曲させることが望ましい。 In the first modification, a diffraction structure 27 that serves as a diffraction source for received waves is formed between the housing angle 25 on the “signal processing device side” of the metal member 2 and the openings of the horn structures 21, 22, and 23. , The metal member 2 is formed separately from the housing angle 25 on the “signal processing device side”. When the openings of the horn structures 21 and 22 are largely separated in the horizontal direction, the distance between the opening of the horn structure 21 and the diffraction structure 27 and the opening of the horn structure 22 and the diffraction structure 27 It is desirable to bend the diffraction structure 27 in the vicinity of the boundary between the openings of the horn structures 21 and 22 so that the distances between them are almost equal to each other as referred to in FIG.

一方で、金属部材2の「誘電体基板1側」の筐体角26とホーン構造21、22の開口部の間の距離は、誘電体基板1が有する基板平面アンテナ14を考慮すれば、図9で言う「短距離」となることが多い。よって、金属部材2の「誘電体基板1側」の筐体角26とホーン構造21、22の開口部の間において、受信波に対して回折源となる回折構造27を、金属部材2の「誘電体基板1側」の筐体角26とは別に、特に形成するまでもない。 On the other hand, the distance between the housing angle 26 on the “dielectric substrate 1 side” of the metal member 2 and the openings of the horn structures 21 and 22 is shown in the figure in consideration of the substrate plane antenna 14 of the dielectric substrate 1. It is often the "short distance" referred to in 9. Therefore, between the housing angle 26 on the “dielectric substrate 1 side” of the metal member 2 and the openings of the horn structures 21 and 22, the diffraction structure 27 that serves as a diffraction source for the received wave is set on the metal member 2. It is not necessary to form it separately from the housing angle 26 on the "dielectric substrate 1 side".

第2の変形例では、金属部材2の「誘電体基板1側」の筐体角26とホーン構造21、22、23の開口部の間において、受信波に対して回折源となる回折構造27を、金属部材2の「誘電体基板1側」の筐体角26とは別に、形成している。そして、ホーン構造21、22の開口部が、水平方向に大きく離れている場合には、ホーン構造21の開口部と回折構造27の間の距離と、ホーン構造22の開口部と筐体角26の間の距離が、ほぼ等しく図9で言う「短距離」となるように、ホーン構造21の開口部の筐体角26側の水平方向側方において、回折構造27を延伸させることが望ましい。 In the second modification, the diffraction structure 27 that serves as a diffraction source for the received wave between the housing angle 26 of the “dielectric substrate 1 side” of the metal member 2 and the openings of the horn structures 21, 22, and 23. Is formed separately from the housing angle 26 of the “dielectric substrate 1 side” of the metal member 2. When the openings of the horn structures 21 and 22 are largely separated in the horizontal direction, the distance between the opening of the horn structure 21 and the diffraction structure 27 and the opening of the horn structure 22 and the housing angle 26 It is desirable to extend the diffraction structure 27 in the horizontal direction on the housing angle 26 side of the opening of the opening of the horn structure 21 so that the distances between the two are substantially equal to each other as referred to in FIG.

(受信波に対する回折源の構成)
本開示の基板側面のホーンアンテナの近傍の回折構造の構造を図11及び図12に示す。図11及び図12に示した回折構造27は、構成要素がそれぞれ相違する。
(Composition of diffraction source for received wave)
The structure of the diffraction structure in the vicinity of the horn antenna on the side surface of the substrate of the present disclosure is shown in FIGS. 11 and 12. The components of the diffraction structure 27 shown in FIGS. 11 and 12 are different from each other.

図1、図3、図4及び図10では、回折構造27は、受信波に対して回折源となる限りにおいて、不特定の構造を有する。図11及び図12においては、回折構造27は、受信波に対して回折源となるだけではなく、チョーク構造を有する。 In FIGS. 1, 3, 4 and 10, the diffraction structure 27 has an unspecified structure as long as it serves as a diffraction source for the received wave. In FIGS. 11 and 12, the diffraction structure 27 not only serves as a diffraction source for the received wave, but also has a choke structure.

ここで、チョーク構造は、ホーン構造21、22の開口部が形成される金属部材2の筐体面24に沿って、かつ、水平方向における金属部材2の筐体角25、26とホーン構造21、22の開口部の間において、電磁波が伝搬することを低減する。 Here, the choke structure is formed along the housing surface 24 of the metal member 2 on which the openings of the horn structures 21 and 22 are formed, and the housing angles 25 and 26 of the metal member 2 and the horn structure 21 in the horizontal direction. It reduces the propagation of electromagnetic waves between the 22 openings.

よって、チョーク構造を経由する/素通りする電磁波の間の弱め合い干渉により、金属部材2の筐体角25、26からの回折波がホーン構造21、22の開口部において減衰するため、モノパルス測角方式の測角精度を高くすることができる。 Therefore, due to the weakening interference between the electromagnetic waves passing through / passing through the choke structure, the diffracted waves from the housing angles 25 and 26 of the metal member 2 are attenuated at the openings of the horn structures 21 and 22, so that the monopulse angle measurement is performed. The angle measurement accuracy of the method can be improved.

図11に示した本開示では、チョーク構造は、金属部材2の筐体面24と垂直方向の深さh=λ/4を有し、金属部材2の筐体面24と平行方向の幅w≦λ/2を有する。よって、金属部材2の筐体面24と垂直な方向の電界を有する、金属部材2の筐体角25、26からの回折波を、ホーン構造21、22の開口部において減衰させることができる。 In the present disclosure shown in FIG. 11, the choke structure has a depth of housing surface 24 in the vertical direction h = λ 0/4 of the metal member 2, the width w ≦ a direction parallel to the housing surface 24 of the metal member 2 It has a λ 0/2. Therefore, the diffracted wave from the housing angles 25 and 26 of the metal member 2 having an electric field in the direction perpendicular to the housing surface 24 of the metal member 2 can be attenuated at the openings of the horn structures 21 and 22.

図12に示した本開示では、チョーク構造は、金属部材2の筐体面24と平行方向の深さh=λ/4を有し、金属部材2の筐体面24と垂直方向の幅w≦λ/2を有する。よって、金属部材2の筐体面24と平行な方向の電界を有する、金属部材2の筐体角25、26からの回折波を、ホーン構造21、22の開口部において減衰させることができる。 In the present disclosure shown in FIG. 12, the choke structure has a housing surface 24 and the direction parallel to the depth h = λ 0/4 of the metal member 2, the width w ≦ vertical and housing surface 24 of the metal member 2 It has a λ 0/2. Therefore, the diffracted wave from the housing angles 25 and 26 of the metal member 2 having an electric field in the direction parallel to the housing surface 24 of the metal member 2 can be attenuated at the openings of the horn structures 21 and 22.

(受信波に対する回折源を備えない比較例)
比較例の基板側面のホーンアンテナのモノパルス測角精度を図13に示す。
(Comparative example without a diffraction source for the received wave)
FIG. 13 shows the monopulse angle measurement accuracy of the horn antenna on the side surface of the substrate of the comparative example.

図13に示した比較例では、受信波に対して回折源となる回折構造27は、ホーン構造21、22、23の開口部が形成される金属部材2の筐体面24において、かつ、水平方向における金属部材2の「信号処理回路側」の筐体角25とホーン構造21、22、23の開口部の間において、垂直方向に延伸して形成されていない。ただし、ホーン構造21、22、23は、レドーム部材31、32、33を開口部に埋め込まれており、フィルム部材31’、32’、33’を開口面に貼り付けられている。 In the comparative example shown in FIG. 13, the diffraction structure 27, which is a diffraction source for the received wave, is on the housing surface 24 of the metal member 2 in which the openings of the horn structures 21, 22, and 23 are formed, and in the horizontal direction. Between the housing angle 25 on the "signal processing circuit side" of the metal member 2 and the openings of the horn structures 21, 22 and 23, the metal member 2 is not formed so as to extend in the vertical direction. However, in the horn structures 21, 22, 23, the radome members 31, 32, 33 are embedded in the opening, and the film members 31', 32', 33'are attached to the opening surface.

すると、比較例では、受信信号の位相差は、反射波の到来角に対して、単調に変化せずリップルを生じる。つまり、比較例では、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応するようになり、モノパルス測角方式の測角精度が低くなる。 Then, in the comparative example, the phase difference of the received signal does not change monotonically with respect to the arrival angle of the reflected wave, and ripple occurs. That is, in the comparative example, the arrival angles of the plurality of reflected waves correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method becomes low.

なぜならば、比較例では、ホーン構造21、22、23の水平方向指向性は、広角方位検知システムSの水平方向角度に対して、大きなリップルを生じるからである。つまり、比較例では、ホーン構造21、22、23の信号対雑音比が、広角方位検知システムSの特定の水平方向角度において、極度に低くなり得て、モノパルス測角方式の測角精度が低くなる。 This is because, in the comparative example, the horizontal directivity of the horn structures 21, 22, and 23 causes a large ripple with respect to the horizontal angle of the wide-angle directional detection system S. That is, in the comparative example, the signal-to-noise ratio of the horn structures 21, 22, and 23 can be extremely low at a specific horizontal angle of the wide-angle directional detection system S, and the angle measurement accuracy of the monopulse angle measurement method is low. Become.

(受信波に対する回折源を備える本開示)
本開示の基板側面のホーンアンテナのモノパルス測角精度を図14に示す。
(The present disclosure including a diffraction source for received waves)
FIG. 14 shows the monopulse angle measurement accuracy of the horn antenna on the side surface of the substrate of the present disclosure.

図14に示した本開示では、受信波に対して回折源となる回折構造27は、ホーン構造21、22、23の開口部が形成される金属部材2の筐体面24において、かつ、水平方向における金属部材2の「信号処理回路側」の筐体角25とホーン構造21、22、23の開口部の間において、垂直方向に延伸して形成されている。そして、ホーン構造21、22、23は、レドーム部材31、32、33を開口部に埋め込まれており、フィルム部材31’、32’、33’を開口面に貼り付けられている。 In the present disclosure shown in FIG. 14, the diffraction structure 27, which is a diffraction source for the received wave, is on the housing surface 24 of the metal member 2 in which the openings of the horn structures 21, 22, and 23 are formed, and in the horizontal direction. It is formed so as to extend in the vertical direction between the housing angle 25 on the “signal processing circuit side” of the metal member 2 and the openings of the horn structures 21, 22 and 23. In the horn structures 21, 22 and 23, the radome members 31, 32 and 33 are embedded in the opening, and the film members 31', 32' and 33'are attached to the opening surface.

すると、本開示では、受信信号の位相差は、反射波の到来角に対して、リップルを生じず単調に変化する。つまり、本開示では、複数の反射波の到来角が、単一の受信信号の位相差に対して、対応することがなく、モノパルス測角方式の測角精度が高くなる。 Then, in the present disclosure, the phase difference of the received signal changes monotonically with respect to the arrival angle of the reflected wave without causing ripple. That is, in the present disclosure, the arrival angles of the plurality of reflected waves do not correspond to the phase difference of a single received signal, and the angle measurement accuracy of the monopulse angle measurement method is improved.

なぜならば、本開示では、ホーン構造21、22、23の水平方向指向性は、広角方位検知システムSの水平方向角度に対して、大きなリップルを生じないからである。つまり、本開示では、ホーン構造21、22、23の信号対雑音比が、広角方位検知システムSの特定の水平方向角度において、極度に低くなり得ず、モノパルス測角方式の測角精度が高くなる。 This is because, in the present disclosure, the horizontal directivity of the horn structures 21, 22, and 23 does not cause a large ripple with respect to the horizontal angle of the wide-angle directional detection system S. That is, in the present disclosure, the signal-to-noise ratio of the horn structures 21, 22, and 23 cannot be extremely low at a specific horizontal angle of the wide-angle directional detection system S, and the angle measurement accuracy of the monopulse angle measurement method is high. Become.

ここで、反射波の到来角が、−60°より大きくかつ+60°より小さいときには、受信信号の位相差は、反射波の到来角に応じて単調に変化するため、水平方向の測角が可能である。そして、反射波の到来角が、−60°より小さい又は+60°より大きいときには、受信信号の位相差は、反射波の到来角に関わらずほぼ変化しないため、水平方向の測角が不能である。これは、ホーン構造21、22の水平方向の開き角度が、有限であるためである。 Here, when the arrival angle of the reflected wave is larger than -60 ° and smaller than + 60 °, the phase difference of the received signal changes monotonically according to the arrival angle of the reflected wave, so that the angle can be measured in the horizontal direction. Is. When the arrival angle of the reflected wave is smaller than -60 ° or larger than + 60 °, the phase difference of the received signal hardly changes regardless of the arrival angle of the reflected wave, so that the horizontal angle cannot be measured. .. This is because the opening angles of the horn structures 21 and 22 in the horizontal direction are finite.

さらに、ホーン構造21、22からなるホーンアンテナの水平方向指向性は、基板側面と垂直方向から水平方向にそれぞれ逆の方向に利得が若干ではあるが偏っている。これは、ホーン構造21、22の開き方向の水平成分が、基板側面と垂直方向からずれているためである。 Further, the horizontal directivity of the horn antenna composed of the horn structures 21 and 22 is slightly biased in the opposite directions from the vertical direction to the horizontal direction with respect to the side surface of the substrate. This is because the horizontal component in the opening direction of the horn structures 21 and 22 deviates from the direction perpendicular to the side surface of the substrate.

ホーン構造21、22の水平方向の開き角度が大きければ、ホーン構造21、22の水平方向の実効的な間隔dが広くなり、ホーン構造21、22の位相中心ずれが大きくなり、水平方向の測角範囲が狭くなり、水平方向指向性の利得の偏りが大きくなる。ホーン構造21、22の水平方向の開き角度が小さければ、ホーン構造21、22の水平方向の実効的な間隔dが狭くなり、ホーン構造21、22の位相中心ずれが小さくなり、水平方向の測角範囲が広くなり、水平方向指向性の利得の偏りが小さくなる。 If the horizontal opening angle of the horn structures 21 and 22 is large, the effective horizontal distance d of the horn structures 21 and 22 becomes wide, the phase center shift of the horn structures 21 and 22 becomes large, and the horizontal measurement is performed. The angular range becomes narrower, and the horizontal directivity gain bias increases. If the horizontal opening angle of the horn structures 21 and 22 is small, the effective horizontal distance d of the horn structures 21 and 22 is narrowed, the phase center shift of the horn structures 21 and 22 is small, and the horizontal measurement is performed. The angular range becomes wider and the bias of the horizontal directivity gain becomes smaller.

もっとも、ホーン構造21、22の水平方向の開き角度が小さくなり過ぎれば、ホーン構造21、22の水平方向の実効的な間隔dも小さくなり過ぎるため、モノパルス測角方式を採用することができない。そして、ホーン構造21、22の水平方向の開き角度は、監視範囲や監視精度に応じて、高い自由度で設定することができる。 However, if the horizontal opening angle of the horn structures 21 and 22 becomes too small, the effective horizontal distance d of the horn structures 21 and 22 also becomes too small, so that the monopulse angle measurement method cannot be adopted. The horizontal opening angles of the horn structures 21 and 22 can be set with a high degree of freedom according to the monitoring range and monitoring accuracy.

本開示の基板側面ホーンアンテナは、基板平面アンテナと組み合わせて、広角に目標物の存在を検知するのみならず、広角に目標物の方位を検知するうえに、広角方位検知システムの小型化、製造容易化及び低コスト化を図るにあたり、適用することができる。 The substrate side surface horn antenna of the present disclosure not only detects the presence of a target object at a wide angle, but also detects the orientation of the target object at a wide angle in combination with the substrate plane antenna, and miniaturizes and manufactures a wide-angle orientation detection system. It can be applied for facilitation and cost reduction.

S:広角方位検知システム
1:誘電体基板
2:金属部材
11、12、13:導波路
14:基板平面アンテナ
21、22、23:ホーン構造
24:筐体面
25、26:筐体角
27:回折構造
31、32、33:レドーム部材
31’、32’、33’:フィルム部材
S: Wide-angle orientation detection system 1: Dielectric substrate 2: Metal members 11, 12, 13: Waveguide 14: Substrate plane antenna 21, 22, 23: Horn structure 24: Housing surface 25, 26: Housing angle 27: Diffraction Structures 31, 32, 33: Radome members 31', 32', 33': Film members

Claims (4)

基板内部において基板平面と平行方向に2本の導波路の導波部を形成され、基板側面において前記2本の導波路の開口部を形成される誘電体基板と、2個の受信ホーン構造を形成され、前記2本の導波路の開口部と前記2個の受信ホーン構造の接続部が接続されるように、前記誘電体基板に接続される金属部材と、を備え、
前記誘電体基板の厚さ方向と平行方向について、前記2個の受信ホーン構造の開口部が、互いに離れるように配置され、前記各々の受信ホーン構造の開き方向が、前記各々の受信ホーン構造の開口部の離れ方向と同一方向に設定され、前記2個の受信ホーン構造により、前記誘電体基板の厚さ方向と平行方向の目標物測角が可能であり、
前記誘電体基板の厚さ方向と垂直方向について、前記2個の受信ホーン構造の開口部が、互いに離れるように配置され、前記2個の受信ホーン構造により、前記誘電体基板の厚さ方向と垂直方向の目標物測角が可能であり、
前記各々の受信ホーン構造の4面の管壁のうち、少なくとも1面の管壁において、階段構造を形成されることを特徴とする基板側面ホーンアンテナ。
A dielectric substrate in which two waveguides are formed inside the substrate in a direction parallel to the substrate plane and openings of the two waveguides are formed on the side surface of the substrate, and two receiving horn structures. A metal member which is formed and connected to the dielectric substrate so as to connect the openings of the two waveguides and the connecting portions of the two receiving horn structures is provided.
The openings of the two receiving horn structures are arranged so as to be separated from each other in a direction parallel to the thickness direction of the dielectric substrate, and the opening direction of each receiving horn structure is the opening direction of each receiving horn structure. It is set in the same direction as the separation direction of the opening, and the two receiving horn structures enable target angle measurement in the direction parallel to the thickness direction of the dielectric substrate.
The openings of the two receiving horn structures are arranged so as to be separated from each other in the direction perpendicular to the thickness direction of the dielectric substrate, and the two receiving horn structures are arranged in the thickness direction of the dielectric substrate. Vertical target angle measurement is possible,
A substrate side surface horn antenna characterized in that a staircase structure is formed on at least one of the four tube walls of each of the receiving horn structures.
前記各々の受信ホーン構造の階段構造の各段のサイズのうち、前記誘電体基板の厚さ方向と平行方向のサイズが、前記基板側面ホーンアンテナの帯域中心波長の半分以下であることを特徴とする、請求項1に記載の基板側面ホーンアンテナ。 Among the sizes of each step of the staircase structure of each of the receiving horn structures, the size in the direction parallel to the thickness direction of the dielectric substrate is not more than half of the band center wavelength of the substrate side horn antenna. The substrate side surface horn antenna according to claim 1. 前記各々の受信ホーン構造の開口部において埋め込まれるにあたり、前記各々の受信ホーン構造の階段構造を用いて埋め込み深さを調整されるレドーム部材、をさらに備えることを特徴とする、請求項1又は2に記載の基板側面ホーンアンテナ。 Claim 1 or 2 further comprises a radome member whose embedding depth is adjusted by using the staircase structure of each of the receiving horn structures when it is embedded in the opening of each of the receiving horn structures. Board side horn antenna described in. 受信波に対して回折源となる回折構造が、前記2個の受信ホーン構造の開口部が形成される前記金属部材の筐体面において、かつ、前記誘電体基板の厚さ方向と平行方向における前記金属部材の筐体角と前記2個の受信ホーン構造の開口部の間において、前記誘電体基板の厚さ方向と垂直方向に延伸して形成されることを特徴とする、請求項1から3のいずれかに記載の基板側面ホーンアンテナ。 The diffraction structure that serves as a diffraction source for the received wave is on the housing surface of the metal member in which the openings of the two receiving horn structures are formed, and in the direction parallel to the thickness direction of the dielectric substrate. Claims 1 to 3 are characterized in that they are formed by extending in a direction perpendicular to the thickness direction of the dielectric substrate between the housing angle of the metal member and the openings of the two receiving horn structures. Board side horn antenna described in any of.
JP2016236113A 2016-12-05 2016-12-05 Board side horn antenna Active JP6789086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236113A JP6789086B2 (en) 2016-12-05 2016-12-05 Board side horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236113A JP6789086B2 (en) 2016-12-05 2016-12-05 Board side horn antenna

Publications (2)

Publication Number Publication Date
JP2018093397A JP2018093397A (en) 2018-06-14
JP6789086B2 true JP6789086B2 (en) 2020-11-25

Family

ID=62564651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236113A Active JP6789086B2 (en) 2016-12-05 2016-12-05 Board side horn antenna

Country Status (1)

Country Link
JP (1) JP6789086B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036340A (en) * 1999-03-19 2001-02-09 Matsushita Electric Ind Co Ltd Antenna system
ATE521106T1 (en) * 2006-04-25 2011-09-15 Thruvision Systems Ltd FEEDHORN ASSEMBLY AND PRODUCTION PROCESS THEREOF
US9121930B2 (en) * 2012-06-25 2015-09-01 Autoliv Asp, Inc. Two-channel monopulse radar for three-dimensional detection

Also Published As

Publication number Publication date
JP2018093397A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
KR102261723B1 (en) Radar device for vehicle
EP3178131B1 (en) Folded radiation slots for short wall waveguide radiation
US9543643B2 (en) Antenna device and radar device
EP2717381A1 (en) Radome for a radar sensor assembly
US9812784B2 (en) Planar horn array antenna
US10718859B2 (en) Radar device and radar detection method
JP2019174246A (en) Radar device
WO2005011057A1 (en) Dual polarised antenna device for an antenna array and method for manufacturing the same
JP6789086B2 (en) Board side horn antenna
KR20110000882A (en) Beam forming antenna using rotman lens
TWI646732B (en) Antenna architecture consisting of multiple sub-arrays and baseband signal processors
US20120127035A1 (en) Electrically small, source direction resolving antennas
JP6360088B2 (en) Radar equipment
TW202119776A (en) Fast spatial search using phased array antenna
Bankov et al. Design and experimental investigation of a multibeam integrated reflector antenna of the millimeter wave band
JP6571465B2 (en) Substrate side horn antenna
JP6585440B2 (en) Substrate side horn antenna
US20170328994A1 (en) Radar system
JP5230359B2 (en) Antenna device
JP6840564B2 (en) Planar antenna device
JP6268512B2 (en) Antenna device
JP7057457B2 (en) Horn antenna and horn antenna array
JP6873802B2 (en) Horn antenna and horn antenna array
Gu et al. Enhancement of angular resolution of a flat-base Luneburg lens antenna by using correlation method
JP2009044509A (en) Antenna device and antenna device construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6789086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150