JP6787826B2 - Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment - Google Patents

Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment Download PDF

Info

Publication number
JP6787826B2
JP6787826B2 JP2017063103A JP2017063103A JP6787826B2 JP 6787826 B2 JP6787826 B2 JP 6787826B2 JP 2017063103 A JP2017063103 A JP 2017063103A JP 2017063103 A JP2017063103 A JP 2017063103A JP 6787826 B2 JP6787826 B2 JP 6787826B2
Authority
JP
Japan
Prior art keywords
hydrogen
particles
hydrogen generation
generation cell
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063103A
Other languages
Japanese (ja)
Other versions
JP2018165228A (en
Inventor
丈司 大隈
丈司 大隈
秋山 雅英
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017063103A priority Critical patent/JP6787826B2/en
Publication of JP2018165228A publication Critical patent/JP2018165228A/en
Application granted granted Critical
Publication of JP6787826B2 publication Critical patent/JP6787826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Description

本開示は、水素生成用セル、集光型水素生成用セルおよび水素製造装置に関する。 The present disclosure relates to a hydrogen generation cell, a concentrating hydrogen generation cell, and a hydrogen production apparatus.

近年、化石燃料の消費に伴う二酸化炭素の増加による地球温暖化などの問題の解決策として、化石燃料に代わって二酸化炭素を排出しないクリーンな再生可能エネルギーの開発が重要度を増している。 In recent years, as a solution to problems such as global warming due to an increase in carbon dioxide due to the consumption of fossil fuels, the development of clean renewable energy that does not emit carbon dioxide instead of fossil fuels has become more important.

再生エネルギーの一つである太陽光エネルギーは枯渇の心配が無く、また、温室効果ガスの削減に貢献できる。また、近年、燃料電池が普及し始め、水素エネルギー社会の牽引役として期待されている。現在製造されている水素の大半は原料として化石燃料を用いており、根本的な化石燃料削減の面では課題がある。 Solar energy, which is one of the renewable energies, does not have to be depleted and can contribute to the reduction of greenhouse gases. In recent years, fuel cells have begun to spread and are expected to play a leading role in the hydrogen energy society. Most of the hydrogen currently produced uses fossil fuels as a raw material, and there are problems in terms of fundamental fossil fuel reduction.

このような状況の中、一次エネルギーを太陽光に求め、二次エネルギーを水素で支える形は、理想的なクリーンエネルギーシステムの一つであり、その確立が急務である。 Under these circumstances, the form of seeking primary energy from sunlight and supporting secondary energy with hydrogen is one of the ideal clean energy systems, and its establishment is urgently needed.

例えば、太陽光エネルギーを化学エネルギーに変換する方法の一つとして、セリア(CeO)などのセラミック部材を反応系担体として用いたときに発生する2段階水分解反応を利用することが提案されている(例えば、特許文献1を参照)。 For example, as one of the methods for converting solar energy into chemical energy, it has been proposed to utilize a two-step water splitting reaction that occurs when a ceramic member such as Celia (CeO 2 ) is used as a reaction system carrier. (See, for example, Patent Document 1).

これは、第1のステップでは、太陽光エネルギーを用いて反応系担体であるセラミック部材を1400〜1800℃に加熱し、当該セラミック部材を還元して酸素を生成し、次いで、第2のステップでは、還元されたセラミック部材を300〜1200℃で水と反応させて還元されたセラミック部材を酸化して水素を生成するというものである。 This is because in the first step, the ceramic member which is the reaction system carrier is heated to 1400 to 1800 ° C. using solar energy, and the ceramic member is reduced to generate oxygen, and then in the second step. The reduced ceramic member is reacted with water at 300 to 1200 ° C. to oxidize the reduced ceramic member to generate hydrogen.

特開2009−263165号公報JP-A-2009-263165

ところが、現段階では、太陽光エネルギーからの熱を利用して、セラミック部材からなる反応系単体を直接加熱するようにして、水蒸気から水素を直接生成させた例は無いというのが実際のところである。 However, at this stage, in reality, there is no example in which hydrogen is directly generated from water vapor by directly heating a single reaction system composed of ceramic members using heat from solar energy. ..

本開示は上記課題に鑑みてなされたものであり、その目的は、水蒸気から水素を効率良く生成させることのできる水素生成用セル、集光型水素生成用セルおよび水素製造装置を提供することにある。 The present disclosure has been made in view of the above problems, and an object of the present invention is to provide a hydrogen generation cell, a concentrating hydrogen generation cell, and a hydrogen production apparatus capable of efficiently generating hydrogen from water vapor. is there.

本開示の水素生成用セルは、ラミック粒子と、属粒子との複合体を、気体で満たされている筐体内に備えている水素生成用セルであって、前記セラミック粒子は、La 0.6 Sr 0.4 Co 0.2 Fe 0.8 3−δ またはBa 0.5 Sr 0.5 Co 0.8 Fe 0.2 3−δ であり、前記金属粒子は、Niを主成分とする母材粒子の表面に、Ptを主成分とする被覆粒子が担持されたものであり、前記被覆粒子は、前記母材粒子の表面の全面を被覆しているか、または前記被覆粒子は、前記母材粒子の表面に凹凸を形成するように、一部離間した状態で付着しているか、のいずれかである
Hydrogen generation cell of the present disclosure, the ceramic particles, the complex of the metallic particles, a hydrogen generating cell that provides in a housing which is filled with gas, the ceramic particles, La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ or Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ , and the metal particles are Ni. Coating particles containing Pt as a main component are supported on the surface of the base material particles as the main component, and the coating particles cover the entire surface of the base material particles or the coating particles. Is either attached in a partially separated state so as to form irregularities on the surface of the base material particles .

本開示の集光型水素生成用セルは、上記の水素生成用セルによって構成さる水素生成部と、La 0.8 Sr 0.2 MnO を主成分とし、MnサイトにFeを0.5モル置換したペロブスカイト材料とホウケイ酸ガラスとからなる光吸収部と、で構成されるものである。 The concentrating hydrogen generation cell of the present disclosure contains a hydrogen generation unit composed of the above hydrogen generation cell and La 0.8 Sr 0.2 MnO 3 as main components, and 0.5 mol of Fe at the Mn site. It is composed of a light absorbing portion composed of a substituted perovskite material and borosilicate glass .

本開示の水素製造装置は、太陽光エネルギーを受けて酸化・還元反応を起こす反応部と、該反応部に水を供給する水蒸気供給部と、前記反応部から発生する水素ガスを回収する回収部とを備え、前記反応部に上記の集光型水素生成用セルが設置されているものである。 The hydrogen production apparatus of the present disclosure includes a reaction unit that undergoes an oxidation / reduction reaction by receiving solar energy, a water vapor supply unit that supplies water to the reaction unit, and a recovery unit that recovers hydrogen gas generated from the reaction unit. The above-mentioned concentrating hydrogen generation cell is installed in the reaction unit.

本開示によれば、水蒸気から水素を効率良く生成させることができる。 According to the present disclosure, hydrogen can be efficiently generated from water vapor.

本開示の水素生成用セルの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the hydrogen generation cell of this disclosure. 金属粒子の他の態様を示す断面模式図である。It is sectional drawing which shows the other aspect of a metal particle. 本開示の集光型水素生成用セルの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the condensing type hydrogen generation cell of this disclosure. (a)は、光吸収部の内側に水素生成部が配置されている本実施形態の集光型水素生成用セルの構成を示す斜視図であり、(b)は、(a)のX−X線断面図である。(A) is a perspective view showing the structure of the condensing type hydrogen generation cell of this embodiment in which the hydrogen generation part is arranged inside the light absorption part, and (b) is the X-ray of (a). It is an X-ray sectional view. 本実施形態の水素製造装置を模式的に示す断面図である。It is sectional drawing which shows typically the hydrogen production apparatus of this embodiment.

図1は、本開示の水素生成用セルの一実施形態を模式的に示す断面図である。本実施形態の水素生成用セルAは、セラミック粒子1と金属粒子3との複合体5よって構成されている。また、複合体5は気体で満たされた筐体7内に備えられている。 FIG. 1 is a cross-sectional view schematically showing an embodiment of the hydrogen generation cell of the present disclosure. The hydrogen generation cell A of the present embodiment is composed of a composite 5 of ceramic particles 1 and metal particles 3. Further, the complex 5 is provided in a housing 7 filled with gas.

この場合、セラミック粒子1は、組成式がAXO3±δ(但し、0≦δ≦1、A:希土類元素、アルカリ土類元素、およびアルカリ金属元素のうちの少なくとも1種の元素、X:遷移金属元素およびメタロイド元素のうちの少なくとも1種、O:酸素)で表される複合金属酸化物である。一方、金属粒子3は、Rh、Ru、Pd、Pt、Ni、CoおよびFeのうちの少なくとも1種の元素を主成分として含むものである。ここで、主成分とは、当該元素を90質量%以上含む場合を意味する。 In this case, the composition formula of the ceramic particle 1 is AXO 3 ± δ (however, 0 ≦ δ ≦ 1, A: at least one element among rare earth element, alkaline earth element, and alkali metal element, X: transition. It is a composite metal oxide represented by at least one of a metal element and a metalloid element, O: oxygen). On the other hand, the metal particles 3 contain at least one element of Rh, Ru, Pd, Pt, Ni, Co and Fe as a main component. Here, the main component means a case where the element is contained in an amount of 90% by mass or more.

複合体5が気体(空気)で満たされた空間9を有する筐体7内に置かれた状態で、複合体5に水蒸気を触れさせると、図1に示すように、水蒸気(HO)が水素(H)と酸素(O)とに分解する。この場合、水蒸気(HO)から分解した酸素(O)は、O2−として表される陰イオンとしてセラミック粒子1の内部へ移動し、一旦、セラミック粒子1内に存在することになる。一方、水素(H)は、複合体5から離れて筐体7の空間9内に拡散する。 When the complex 5 is placed in a housing 7 having a space 9 filled with gas (air) and the complex 5 is brought into contact with water vapor, as shown in FIG. 1, water vapor (H 2 O) Decomposes into hydrogen (H 2 ) and oxygen (O 2 ). In this case, oxygen (O 2 ) decomposed from water vapor (H 2 O) moves to the inside of the ceramic particle 1 as an anion represented as O 2- , and once exists in the ceramic particle 1. .. On the other hand, hydrogen (H 2 ) is separated from the complex 5 and diffuses into the space 9 of the housing 7.

本実施形態の水素生成用セルAによれば、空気で満たされた空間9に、空気以外の気体として水蒸気(HO)を存在させた状態で、その水蒸気(HO)の分解反応によって水素(H)を生成させることができる。本実施形態の場合、複合体5の周囲に水などの液体が存在しないことから、複合体5の表面に接触する水蒸気量を大幅に増やすことができる。その結果、水素(H)の生成効率を高めることができる。 According to the hydrogen generation cell A of the present embodiment, the decomposition reaction of water vapor (H 2 O) in a state where water vapor (H 2 O) is present as a gas other than air in the space 9 filled with air. Can generate hydrogen (H 2 ). In the case of the present embodiment, since there is no liquid such as water around the complex 5, the amount of water vapor in contact with the surface of the complex 5 can be significantly increased. As a result, the efficiency of hydrogen (H 2 ) production can be increased.

この場合、セラミック粒子1としては、鉄酸ランタンを主相とし、ストロンチウムおよびコバルトを含むLa系複合金属酸化物、または鉄酸バリウムを主相とし、ストロンチウムおよびコバルトを含むBa系複合金属酸化物が良い。 In this case, the ceramic particles 1 include a La-based composite metal oxide containing lanthanum iron acid as the main phase and containing strontium and cobalt, or a Ba-based composite metal oxide containing barium ferrate as the main phase and containing strontium and cobalt. good.

La系複合金属酸化物のモル比で表される組成としては、La=0.5〜0.7、Sr
=0.3〜0.5、Co=0.1〜0.3、Fe=0.7〜0.9、O=3±0.1〜0.9が良い。一方、Ba系複合金属酸化物のモル比で表される組成としては、Ba=0.4〜0.6、Sr=0.4〜0.6、Co=0.7〜1.0、Fe=0.1〜0.3、O=3±0.1〜0.9が良い。
The composition represented by the molar ratio of the La-based composite metal oxide is La = 0.5 to 0.7, Sr.
= 0.3 to 0.5, Co = 0.1 to 0.3, Fe = 0.7 to 0.9, O = 3 ± 0.1 to 0.9 are preferable. On the other hand, the composition represented by the molar ratio of the Ba-based composite metal oxide is Ba = 0.4 to 0.6, Sr = 0.4 to 0.6, Co = 0.7 to 1.0, Fe. = 0.1 to 0.3 and O = 3 ± 0.1 to 0.9 are preferable.

ここで、主成分とは、例えば、セラミック粒子1をX線回折によって同定を行ったときに、メインピークとして現れる結晶相のことを意味する。 Here, the principal component means, for example, a crystal phase that appears as a main peak when the ceramic particles 1 are identified by X-ray diffraction.

図2は、金属粒子の他の態様を示す断面模式図である。金属粒子3としては、上記したRh、Ru、Pd、Pt、Ni、CoおよびFeのうちの少なくとも1種の元素を主成分として単独で含むものを用いても良いが、コストの点および金属粒子3の耐食性の点から、Ni、CoおよびFeの群から選ばれる少なくとも1種の卑金属を主成分とする母材粒子3aの表面に、Rh、Ru、PdおよびPtの群から選ばれる少なくとも1種の貴金属を主成分とする被覆粒子3bが担持された複合粒子であるのが良い。この場合、被覆粒子3bは、母材粒子3aの表面の全面を被覆した状態でも良いが、金属粒子3の比表面積を向上できるという点から、母材粒子3aの表面に凹凸を形成するように、一部離間した状態で付着しているのが良い。 FIG. 2 is a schematic cross-sectional view showing another aspect of the metal particles. As the metal particles 3, those containing at least one element of the above-mentioned Rh, Ru, Pd, Pt, Ni, Co and Fe as a main component alone may be used, but in terms of cost and metal particles From the viewpoint of corrosion resistance of 3, at least one selected from the group of Rh, Ru, Pd and Pt is placed on the surface of the base metal particles 3a containing at least one base metal as a main component selected from the group of Ni, Co and Fe. It is preferable that the composite particles are supported by the coating particles 3b containing the noble metal as a main component. In this case, the coated particles 3b may be in a state of covering the entire surface of the base material particles 3a, but from the viewpoint that the specific surface area of the metal particles 3 can be improved, the surface of the base material particles 3a is formed with irregularities. , It is good that they are attached in a partially separated state.

次に、本実施形態の集光型水素生成用セルについて説明する。図3は、本開示の集光型水素生成用セルの一実施形態を模式的に示す断面図である。本実施形態の集光型水素生成用セルBは、水素生成部11と光吸収部13とで構成されている。この場合、水素生成部11と光吸収部13とは主面同士で接触している。ここで主面とは、水素生成部11および光吸収部13が複数の平坦な表面を有している場合に、最も面積の大きい表面のことである。 Next, the concentrating hydrogen generation cell of the present embodiment will be described. FIG. 3 is a cross-sectional view schematically showing an embodiment of the concentrating hydrogen generation cell of the present disclosure. The concentrating hydrogen generation cell B of the present embodiment is composed of a hydrogen generation unit 11 and a light absorption unit 13. In this case, the hydrogen generating unit 11 and the light absorbing unit 13 are in contact with each other on the main surfaces. Here, the main surface is the surface having the largest area when the hydrogen generating unit 11 and the light absorbing unit 13 have a plurality of flat surfaces.

水素生成部11は上記した水素生成用セルAによって形成されている。水素生成部11は、セラミック粒子1と金属粒子3とで構成される複合体5が複数の空隙14を有するように多孔質の状態で焼結した構造となっている。 The hydrogen generation unit 11 is formed by the above-mentioned hydrogen generation cell A. The hydrogen generation unit 11 has a structure in which the composite 5 composed of the ceramic particles 1 and the metal particles 3 is sintered in a porous state so as to have a plurality of voids 14.

集光型水素生成用セルBにおいても、水素生成部11および光吸収部13はともに気体で満たされた筐体7内に設置されている。 Also in the condensing type hydrogen generation cell B, the hydrogen generation unit 11 and the light absorption unit 13 are both installed in the housing 7 filled with gas.

本実施形態の集光型水素生成用セルBによれば、水素生成部11に光吸収部13が取り付けられていることから、太陽光エネルギーを熱に変換する効率が高まり、水素生成部11の温度をより高くすることができる。これにより水蒸気(HO)の分解反応の速度が高まり、水素(H)の生成効率をさらに高めることができる。 According to the concentrating hydrogen generation cell B of the present embodiment, since the light absorption unit 13 is attached to the hydrogen generation unit 11, the efficiency of converting solar energy into heat is increased, and the hydrogen generation unit 11 The temperature can be higher. As a result, the rate of decomposition reaction of water vapor (H 2 O) is increased, and the efficiency of hydrogen (H 2 ) production can be further increased.

この場合、集光型水素生成用セルBは、筐体7の内部に存在する媒体が空気であることから光の透過性が高い。このため、筐体7の内部に設置されている集光型水素生成用セルBは光の減衰率の低い状態で光を受けることができる。これにより光吸収部13における発熱効率とともに、水素生成部11における水素(H)の生成効率を高めることができる。 In this case, the concentrating hydrogen generation cell B has high light transmission because the medium existing inside the housing 7 is air. Therefore, the condensing hydrogen generation cell B installed inside the housing 7 can receive light in a state where the light attenuation rate is low. As a result, it is possible to increase the heat generation efficiency of the light absorption unit 13 as well as the hydrogen (H 2 ) production efficiency of the hydrogen generation unit 11.

光吸収部13は、開気孔率が5%以下のセラミックス13a中に当該セラミックス13aとは組成が異なる複合酸化物粒子13bを複数有するセラミック複合体によって形成されているのが良い。この場合、複合酸化物粒子13bとしては正の抵抗温度特性を示すセラミック材料が好適なものとなる。この複合酸化物粒子13bは金属と同様の抵抗温度特性を示すものであるため、複合酸化物粒子13b中に電子と同様のキャリア(電子)を有している。そのため複合酸化物粒子13bはキャリア(電子)による高い表面プラズモン効果を発現する。その結果、光吸収部13はその全体が発熱するものとなり、高い発熱効
率を得ることができる。
The light absorption unit 13 is preferably formed of a ceramic composite having a plurality of composite oxide particles 13b having a composition different from that of the ceramics 13a in the ceramics 13a having a porosity of 5% or less. In this case, as the composite oxide particles 13b, a ceramic material exhibiting positive resistance temperature characteristics is suitable. Since the composite oxide particles 13b exhibit the same resistance temperature characteristics as the metal, the composite oxide particles 13b have carriers (electrons) similar to electrons. Therefore, the composite oxide particles 13b exhibit a high surface plasmon effect due to carriers (electrons). As a result, the entire light absorbing unit 13 generates heat, and high heat generation efficiency can be obtained.

ここで、複合酸化物粒子13bの材料としては、ABOとして表されるペロブスカイト型のセラミック材料が好適なものとなる。例えば、ABOのAサイトに希土類元素を含み、一方、Bサイトに遷移金属元素を含み、さらに、複合酸化物粒子13bに、AサイトおよびBサイトの元素とは価数の異なる元素を微量含むものが良い。例えば、ABOのAサイトがランタン(La)であり、Bサイトがマンガン(Mn)であり、これに微量のSrを含む材料を好適な例として挙げることができる。例えば、La1−xSrMnO3+δ(x=0.01〜0.9、δは任意。)として表される複合酸化物が代表的なものとなる。この場合、複合酸化物粒子13bのサイズ(平均粒径)としては、微細であるのが良く、表面プラズモン効果を高められるという点から5〜100nmが良い。 Here, as the material of the composite oxide particles 13b, a perovskite-type ceramic material represented as ABO 3 is suitable. For example, the A site of ABO 3 contains a rare earth element, while the B site contains a transition metal element, and the composite oxide particles 13b contain a small amount of an element having a valence different from that of the A site and the B site element. Things are good. For example, a material in which the A site of ABO 3 is lanthanum (La) and the B site is manganese (Mn), which contains a trace amount of Sr, can be mentioned as a suitable example. For example, a composite oxide represented as La 1-x Sr x MnO 3 + δ (x = 0.01 to 0.9, δ is arbitrary) is typical. In this case, the size (average particle size) of the composite oxide particles 13b is preferably fine, and is preferably 5 to 100 nm from the viewpoint of enhancing the surface plasmon effect.

セラミックス13aとしては、クラックなどが生じにくく、光の透過性および耐熱性に優れるという点で酸化ケイ素を主成分とする低熱膨張性のガラスが好適なものとなる。この場合、セラミックス13aとしては、色の明度としてマンセルカラーシステムで区別される明度表示で5以上であるものが良い。また、セラミックス13aに複合酸化物粒子13bを含む状態(セラミック複合体)での熱膨張率として、9×10−6/℃以下であるものが良い。セラミック複合体の熱膨張率が9×10−6/℃以下であると、耐熱衝撃性が高まり、高寿命の光吸収部13を形成することができる。 As the ceramics 13a, low thermal expansion glass containing silicon oxide as a main component is suitable in that cracks and the like are unlikely to occur, and light transmission and heat resistance are excellent. In this case, the ceramic 13a preferably has a color brightness of 5 or more in the lightness display distinguished by the Munsell color system. Further, the coefficient of thermal expansion in the state where the ceramics 13a contains the composite oxide particles 13b (ceramic composite) is preferably 9 × 10 -6 / ° C. or less. When the coefficient of thermal expansion of the ceramic composite is 9 × 10 -6 / ° C. or less, the thermal shock resistance is enhanced, and the light absorbing portion 13 having a long life can be formed.

さらに、複合酸化物粒子13bの表面プラズモン効果を高められるという点から、セラミック複合体中に含まれる複合酸化物粒子13bの割合は、体積比で10〜80%であるのが良い。 Further, from the viewpoint that the surface plasmon effect of the composite oxide particles 13b can be enhanced, the ratio of the composite oxide particles 13b contained in the ceramic composite is preferably 10 to 80% by volume.

なお、光吸収部13を構成する複合酸化物粒子13bの割合は、セラミック複合体の断面を電子顕微鏡およびこれに付設の分析器(EPMA)を用いて求める。例えば、セラミック複合体を研磨して複合酸化物粒子13bを露出させ、その断面に存在する複合酸化物粒子13bが30〜100個入る所定の領域を指定する。次に、この領域の面積およびこの領域内に存在する複合酸化物粒子13bの合計面積を求め、領域の面積に対する複合酸化物粒子13bの合計面積を求める。こうして求めた面積割合を体積割合と考える。複合酸化物粒子13bがセラミックス1中において単一の粒子として孤立した状態で存在しているか否かの判定も上記の観察から個数をカウントして行う。 The ratio of the composite oxide particles 13b constituting the light absorption unit 13 is determined by using an electron microscope and an analyzer (EPMA) attached to the cross section of the ceramic composite. For example, the ceramic composite is polished to expose the composite oxide particles 13b, and a predetermined region in which 30 to 100 composite oxide particles 13b existing in the cross section are contained is designated. Next, the area of this region and the total area of the composite oxide particles 13b existing in this region are obtained, and the total area of the composite oxide particles 13b with respect to the area of the region is obtained. The area ratio thus obtained is considered as the volume ratio. Whether or not the composite oxide particles 13b exist in the ceramics 1 in an isolated state as a single particle is also determined by counting the number from the above observation.

図4(a)は、本実施形態の集光型水素生成用セルの他の態様を示すものであり、光吸収部の内側に水素生成部が配置されている構成を示す斜視図であり、(b)は、(a)のX−X線断面図である。図4に示した集光型水素生成用セルについては筐体7を描いていないが、この集光型水素生成用セルも図3に示した集光型水素生成用セルと同様、筐体7内に設置される構成となる。 FIG. 4A is a perspective view showing another aspect of the concentrating hydrogen generating cell of the present embodiment, showing a configuration in which the hydrogen generating portion is arranged inside the light absorbing portion. (B) is a cross-sectional view taken along line XX of (a). Although the housing 7 is not drawn for the concentrating hydrogen generation cell shown in FIG. 4, the condensing hydrogen generation cell also has the same housing 7 as the condensing hydrogen generation cell shown in FIG. It will be installed inside.

図4(a)(b)に示す集光型水素生成用セルCでは、光吸収部13が太陽光を受けると、光吸収部13および水素生成部11が加熱されて高温状態となる。この状態において、水素生成部11に水蒸気を導入すると、水素生成部11内に水素が発生する。発生した水素は、例えば、図4(b)に示すように、水蒸気を導入した端部の反対側から回収される。 In the concentrating hydrogen generation cell C shown in FIGS. 4A and 4B, when the light absorption unit 13 receives sunlight, the light absorption unit 13 and the hydrogen generation unit 11 are heated to a high temperature state. When water vapor is introduced into the hydrogen generation unit 11 in this state, hydrogen is generated in the hydrogen generation unit 11. The generated hydrogen is recovered, for example, from the opposite side of the end where water vapor is introduced, as shown in FIG. 4 (b).

図4(a)(b)に示す集光型水素生成用セルCの場合、円柱状の水素生成部11が円筒状の光吸収部13に囲まれた構造であることから、光吸収部13は集光性が高く、水素生成部11は放射による熱損失の小さい集光型水素生成用セルCとなる。 In the case of the concentrating hydrogen generation cell C shown in FIGS. 4 (a) and 4 (b), since the columnar hydrogen generation unit 11 has a structure surrounded by the cylindrical light absorption unit 13, the light absorption unit 13 Is a concentrating hydrogen generating cell C having a high condensing property and a hydrogen generating unit 11 having a small heat loss due to radiation.

図5は、本実施形態の水素製造装置を模式的に示す断面図である。本実施形態の水素製
造装置Dは、太陽光エネルギーを受けて酸化・還元反応を起こす反応部21と、反応部21に水蒸気を供給する水蒸気供給部23と、反応部21から発生する水素ガスまたは酸素ガスを回収する回収部25とを備えたものである。この場合、反応部21に上記した集光型水素生成用セルCが設置されている。また、反応部21はこの場合も空気を媒体とする筐体7内に設置されている。なお、図5に示した水素製造装置Dにおいて、水素分離モジュール27と回収部25との間および筐体7の回収部25側には減圧用ポンプ31a、31bが設置されている。
FIG. 5 is a cross-sectional view schematically showing the hydrogen production apparatus of the present embodiment. The hydrogen production apparatus D of the present embodiment includes a reaction unit 21 that receives solar energy to cause an oxidation / reduction reaction, a water vapor supply unit 23 that supplies water vapor to the reaction unit 21, and hydrogen gas or hydrogen gas generated from the reaction unit 21. It is provided with a recovery unit 25 for recovering oxygen gas. In this case, the above-mentioned concentrating hydrogen generation cell C is installed in the reaction unit 21. Further, the reaction unit 21 is also installed in the housing 7 using air as a medium in this case as well. In the hydrogen production apparatus D shown in FIG. 5, decompression pumps 31a and 31b are installed between the hydrogen separation module 27 and the recovery unit 25 and on the recovery unit 25 side of the housing 7.

水素製造装置Dにおいて、反応部21を構成する光吸収部13が太陽光を吸収すると、水素生成部11が光吸収部13とともに高温の状態となる。このとき反応部21を構成している水素生成部11に水蒸気(HO)を流すと、水素生成部11の内部において水素ガスが発生する。こうして本実施形態の水素製造装置によれば、太陽光からの熱を吸収して水素を効率良く発生させることができる。 In the hydrogen production apparatus D, when the light absorption unit 13 constituting the reaction unit 21 absorbs sunlight, the hydrogen generation unit 11 becomes a high temperature state together with the light absorption unit 13. At this time, when water vapor (H 2 O) is passed through the hydrogen generating unit 11 constituting the reaction unit 21, hydrogen gas is generated inside the hydrogen generating unit 11. In this way, according to the hydrogen production apparatus of the present embodiment, it is possible to absorb heat from sunlight and efficiently generate hydrogen.

ここで、反応部21は、図5に示しているように、筐体7の中に減圧された状態で収容されているのが良い。これにより光吸収部13によって生成した熱が反応部21以外の外界へ移動するのを防ぐことができる。こうして光吸収部13で蓄えられた熱を水素生成部11へ効率良く供給することができる。 Here, as shown in FIG. 5, the reaction unit 21 is preferably housed in the housing 7 in a decompressed state. As a result, it is possible to prevent the heat generated by the light absorbing unit 13 from moving to the outside world other than the reaction unit 21. In this way, the heat stored in the light absorption unit 13 can be efficiently supplied to the hydrogen generation unit 11.

なお、本実施形態の水素製造装置Dでは、反応部21と回収部25との間に水素分離モジュール27を設置している。これにより反応部21から回収部25へ向けて移動してくる水素をより高い純度で回収することが可能になる。 In the hydrogen production apparatus D of the present embodiment, the hydrogen separation module 27 is installed between the reaction unit 21 and the recovery unit 25. This makes it possible to recover hydrogen moving from the reaction unit 21 to the recovery unit 25 with higher purity.

水素分離モジュール27としては、例えば、多孔質のセラミック管27aをガラス管27b内に設置した構成を例として挙げることができる。 As the hydrogen separation module 27, for example, a configuration in which a porous ceramic tube 27a is installed in a glass tube 27b can be mentioned as an example.

また、筐体7の中には集光板29を設置しておくのが良い。これにより太陽光の入射側と反対側の反応部21の裏側にも太陽光を当てることができる。こうして反応部21において、水素生成反応の効率の低い部分の面積を小さくすることができる。その結果、水素の生成効率を高めることができる。 Further, it is preferable to install the light collecting plate 29 in the housing 7. As a result, sunlight can be applied to the back side of the reaction unit 21 on the side opposite to the incident side of sunlight. In this way, in the reaction unit 21, the area of the portion where the efficiency of the hydrogen production reaction is low can be reduced. As a result, the hydrogen production efficiency can be increased.

以下、水素製造装置を作製し、水素の生成量を測定した。まず、水素生成用セルを形成するためのセラミック粒子として、La0.6Sr0.4Co0.2Fe0.83−δおよびBa0.5Sr0.5Co0.8Fe0.23−δを用意した。金属粒子としては、Pt単体の場合と、Niを母材粒子としPtを被覆粒子とした複合金属の場合との2種類を用意した。光吸収部には、La0.8Sr0.2MnOを主成分とし、MnサイトにFeを0.5モル置換したペロブスカイト材料を用いた。 Hereinafter, a hydrogen production apparatus was manufactured, and the amount of hydrogen produced was measured. First, as ceramic particles for forming a hydrogen generation cell, La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ and Ba 0.5 Sr 0.5 Co 0.8 Fe 0. .2 O 3-δ was prepared. Two types of metal particles were prepared: a case of Pt alone and a case of a composite metal using Ni as a base particle and Pt as a coating particle. For the light absorbing portion, a perovskite material containing La 0.8 Sr 0.2 MnO 3 as a main component and 0.5 mol of Fe substituted at the Mn site was used.

次に、準備したセラミック粒子と金属粒子とをボールミルを用いて混合して成形体を作製し、大気雰囲気中、1150℃にて焼結させて円柱状の水素生成用セルを作製した。 Next, the prepared ceramic particles and metal particles were mixed using a ball mill to prepare a molded product, which was sintered at 1150 ° C. in an air atmosphere to prepare a columnar hydrogen generation cell.

光吸収部は、ホウケイ酸ガラスと上記したペロブスカイト材料とを混合して、円筒状の成形体を作製し、大気中、1400℃の温度にて焼結させて作製した。作製した光吸収部の開気孔率は4.5%であった。 The light absorption unit was prepared by mixing borosilicate glass and the above-mentioned perovskite material to prepare a cylindrical molded product, which was sintered in the air at a temperature of 1400 ° C. The open porosity of the prepared light absorbing part was 4.5%.

次に、光吸収部と水素生成部とをセラミックボンドによって接合して集光型水素生成用セルを作製した。 Next, the light absorption unit and the hydrogen generation unit were joined by a ceramic bond to prepare a concentrating hydrogen generation cell.

また、筐体として石英ガラスの窓を備えたSUS304製の箱型容器を用意し、図5に
示した構成の水素製造装置を作製した。
Further, a box-shaped container made of SUS304 equipped with a quartz glass window was prepared as a housing, and a hydrogen production apparatus having the configuration shown in FIG. 5 was manufactured.

次に、筐体中に集光型水素生成用セルを装着し、水素の製造試験を行い、水素の生成量を評価した。 Next, a concentrating hydrogen generation cell was mounted in the housing, a hydrogen production test was conducted, and the amount of hydrogen produced was evaluated.

水素の生成量は、水素製造装置の回収部にガスクロマトグラフ装置を設置して測定した。この場合、水素製造装置は、筐体内を減圧した上で太陽光を1SUNの状態で受ける条件に設定した。太陽光の照射回数は10サイクルとした。 The amount of hydrogen produced was measured by installing a gas chromatograph device in the recovery section of the hydrogen production device. In this case, the hydrogen production apparatus is set to a condition in which the inside of the housing is depressurized and the sunlight is received in a state of 1 SUN. The number of irradiations of sunlight was 10 cycles.

試験の結果、セラミック粒子に金属粒子を担持させた試料No.1(金属粒子:Pt)および試料No.2(金属粒子はNiを母材粒子とし、Ptを被覆粒子としたもの)の水素生成用セルは、水素の生成量がそれぞれ0.4ml/g、1.1ml/gであったが、水素生成用セルをセラミック粒子だけで作製した試料No.3では、水素の生成量は0.01ml/g以下であった。 As a result of the test, the sample No. in which the metal particles were supported on the ceramic particles. 1 (metal particles: Pt) and sample No. In the hydrogen generation cell of 2 (metal particles using Ni as a base particle and Pt as a coating particle), the amounts of hydrogen produced were 0.4 ml / g and 1.1 ml / g, respectively, but hydrogen. Sample No. in which the generation cell was prepared only with ceramic particles. In No. 3, the amount of hydrogen produced was 0.01 ml / g or less.

1・・・・セラミック粒子
3・・・・金属粒子
3a・・・母材粒子
3b・・・被覆粒子
5・・・・複合体
7・・・・筐体
9・・・・空間
11・・・水素生成部
13・・・光吸収部
21・・・反応部
23・・・水蒸気供給部
25・・・回収部
A・・・・水素生成用セル
B、C・・集光型水素生成用セル
D・・・・水素製造装置
1 ... Ceramic particles 3 ... Metal particles 3a ... Base particles 3b ... Coating particles 5 ... Composite 7 ... Housing 9 ... Space 11 ... -Hydrogen generation unit 13 ... Light absorption unit 21 ... Reaction unit 23 ... Steam supply unit 25 ... Recovery unit A ... Hydrogen generation cells B, C ... Concentrating hydrogen generation Cell D ... Hydrogen production equipment

Claims (5)

ラミック粒子と、属粒子との複合体を、気体で満たされている筐体内に備えている水素生成用セルであって、
前記セラミック粒子は、La 0.6 Sr 0.4 Co 0.2 Fe 0.8 3−δ またはBa 0.5 Sr 0.5 Co 0.8 Fe 0.2 3−δ であり、
前記金属粒子は、Niを主成分とする母材粒子の表面に、Ptを主成分とする被覆粒子が担持されたものであり、
前記被覆粒子は、前記母材粒子の表面の全面を被覆しているか、
または前記被覆粒子は、前記母材粒子の表面に凹凸を形成するように、一部離間した状態で付着しているか、のいずれかである、水素生成用セル。
Se and ceramic particles, the complex of the metallic particles, a hydrogen generating cell that provides in a housing which is filled with a gas,
The ceramic particles are La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ or Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ .
The metal particles are formed by supporting coated particles containing Pt as a main component on the surface of base material particles containing Ni as a main component.
Whether the coating particles cover the entire surface of the base material particles
Alternatively, the coating particles are either attached in a partially separated state so as to form irregularities on the surface of the base material particles, or are hydrogen generation cells.
請求項1に記載の水素生成用セルによって構成さる水素生成部と、La 0.8 Sr 0.2 MnO を主成分とし、MnサイトにFeを0.5モル置換したペロブスカイト材料とホウケイ酸ガラスとからなる光吸収部と、
で構成される、集光型水素生成用セル。
A perovskite material containing 0.5 mol of Fe in Mn sites and a perovskite material containing La 0.8 Sr 0.2 MnO 3 as a main component and a hydrogen silicate glass composed of the hydrogen generation cell according to claim 1. Light absorber consisting of
Concentrating hydrogen generation cell composed of.
前記光吸収部は、開気孔率が5%以下のセラミックス中に、該セラミックスとは組成が異なる複合酸化物粒子を複数有するセラミック複合体である、請求項に記載の集光型水素生成用セル。 The concentrating hydrogen generation according to claim 2 , wherein the light absorbing portion is a ceramic composite having a plurality of composite oxide particles having a composition different from that of the ceramics in a ceramic having an open porosity of 5% or less. cell. 前記水素生成部および前記光吸収部がともに円柱状を成しており、前記光吸収部内に前記水素生成部が配置されている、請求項またはに記載の集光型水素生成用セル。 The concentrating hydrogen generation cell according to claim 2 or 3 , wherein both the hydrogen generating section and the light absorbing section have a columnar shape, and the hydrogen generating section is arranged in the light absorbing section. 太陽光エネルギーを受けて酸化・還元反応を起こす反応部と、該反応部に水を供給する水蒸気供給部と、前記反応部から発生する水素ガスを回収する回収部とを備え、前記反応部に請求項乃至のうちいずれかに記載の集光型水素生成用セルが設置されていることを特徴とする水素製造装置。 The reaction unit is provided with a reaction unit that receives solar energy to cause an oxidation / reduction reaction, a water vapor supply unit that supplies water to the reaction unit, and a recovery unit that recovers hydrogen gas generated from the reaction unit. A hydrogen production apparatus according to any one of claims 2 to 4 , wherein the concentrating hydrogen generation cell is installed.
JP2017063103A 2017-03-28 2017-03-28 Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment Active JP6787826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063103A JP6787826B2 (en) 2017-03-28 2017-03-28 Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063103A JP6787826B2 (en) 2017-03-28 2017-03-28 Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2018165228A JP2018165228A (en) 2018-10-25
JP6787826B2 true JP6787826B2 (en) 2020-11-18

Family

ID=63921639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063103A Active JP6787826B2 (en) 2017-03-28 2017-03-28 Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP6787826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683875A1 (en) * 2019-01-15 2020-07-22 simatec ag Electrochemical gas development cell, in particular mercury-free hydrogen development cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046808A (en) * 2003-07-31 2005-02-24 Seimi Chem Co Ltd Catalyst for generating hydrogen
JP4848294B2 (en) * 2007-02-08 2011-12-28 国立大学法人 東京大学 Hydrogen production catalyst for fuel cell and fuel cell for DSS operation
KR100891925B1 (en) * 2007-06-22 2009-04-08 한국에너지기술연구원 Metal-Oxide based Apparatus for Solar Hydrogen-Generation
JP2009263165A (en) * 2008-04-25 2009-11-12 Tokyo Institute Of Technology Reactive ceramic and method for producing the same, and hydrogen production method and hydrogen production apparatus
US20130004801A1 (en) * 2011-07-01 2013-01-03 Asegun Henry Reactor, system and method for solid reactant based thermochemical processes
US20130252808A1 (en) * 2012-03-23 2013-09-26 Yoshihiro Yamazaki Catalysts for thermochemical fuel production and method of producing fuel using thermochemical fuel production
CN104418298A (en) * 2013-09-02 2015-03-18 中国科学院大连化学物理研究所 Method for photothermal decomposition of H2O and/or CO2 of perovskite type active material containing trace precious metals
KR101594665B1 (en) * 2014-02-10 2016-02-29 인하대학교 산학협력단 Apparatus for producing hydrogen using solar thermochemistry

Also Published As

Publication number Publication date
JP2018165228A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP5594800B2 (en) Catalyst for producing thermochemical fuel and method for producing thermochemical fuel
Luo et al. Influence of the preparation methods on the microstructure and oxygen permeability of a CO2‐stable dual phase membrane
JP6276480B2 (en) Hydrogen production member and hydrogen production apparatus
EP2702623A1 (en) H20 - based electrochemical hydrogen - catalyst power system
JP2008520426A (en) Ionic and electronically conductive mixed oxide composites for hydrogen separation
US20170100697A1 (en) Catalytic layer and use thereof in oxygen-permeable membranes
JP4931361B2 (en) Fuel cell and fuel cell
Deka et al. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system
Zhao et al. Investigation of the relationship between electronic properties and reactivity of 3DOM LaFe1− xCoxO3 for methane reforming to produce syngas
JP6787826B2 (en) Hydrogen generation cell, concentrating hydrogen generation cell and hydrogen production equipment
Al-Yousef et al. Synthesis of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3 (BSCF) nanoceramic cathode powders by sol-gel process for solid oxide fuel cell (SOFC) application
JP6224871B1 (en) Hydrogen production member and hydrogen production apparatus
Ellett Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process
JP2005097036A (en) Multi-component glass material for hydrogen treatment and hydrogen treated composite
JP6698512B2 (en) Hydrogen production equipment
Cohn et al. Electrochemical and Catalytic Properties of Fe-Doped SrCo0. 9-xNb0. 1FexO3-δ Cathode Materials
Fukada et al. Proton transfer in SrCeO3-based oxide with internal reformation under supply of CH4 and H2O
JP5276204B2 (en) Metal oxygen battery
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
Kumar et al. Future Materials for Thermoelectric and Hydrogen Energy
Bouwmeester T05: Ceramics for novel energy conversion, storage and use
Lu Degradation and Performance of Oxygen Electrodes for Low and Intermediate Temperature Reversible Solid Oxide Cells for Energy Storage
Raj Development of Anode Materials for Electrocatalytic Synthesis of HCN
Liu Using Oligomer/polymer Thin Film To Immobilize Fly Ash
Nenoff et al. Membranes for H2 generation from nuclear powered thermochemical cycles.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201029

R150 Certificate of patent or registration of utility model

Ref document number: 6787826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150