JP6787753B2 - Gas nozzle for stove burner - Google Patents

Gas nozzle for stove burner Download PDF

Info

Publication number
JP6787753B2
JP6787753B2 JP2016210959A JP2016210959A JP6787753B2 JP 6787753 B2 JP6787753 B2 JP 6787753B2 JP 2016210959 A JP2016210959 A JP 2016210959A JP 2016210959 A JP2016210959 A JP 2016210959A JP 6787753 B2 JP6787753 B2 JP 6787753B2
Authority
JP
Japan
Prior art keywords
nozzle
gas
nozzle hole
obstacle
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016210959A
Other languages
Japanese (ja)
Other versions
JP2018071873A (en
Inventor
佐藤 裕康
裕康 佐藤
悠輔 中村
悠輔 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2016210959A priority Critical patent/JP6787753B2/en
Publication of JP2018071873A publication Critical patent/JP2018071873A/en
Application granted granted Critical
Publication of JP6787753B2 publication Critical patent/JP6787753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンロバーナの混合管の流入口に向けて燃料ガスを噴射するコンロバーナ用ガスノズルに関する。 The present invention relates to a gas nozzle for a stove burner that injects fuel gas toward the inflow port of a mixing pipe of the stove burner.

元来、この種のガスノズルは、先端にノズル孔が形成されたノズル本体内のガス流路に燃料ガスを供給することで、ノズル孔から燃料ガスが噴射されるように構成されている。ノズル孔から燃料ガスが噴射されると、エゼクタ効果で燃料ガスに一次空気が吸引され、混合管内で燃料ガスと一次空気の混合気が生成され、この混合気がコンロバーナの炎孔から噴出してブンゼン燃焼する。然し、コンロバーナの火力調節操作により小火力状態に調節されて、燃料ガスの噴出速度が低下すると、一次空気の吸引比率が低下して失火しやすくなる。 Originally, this type of gas nozzle is configured to inject fuel gas from the nozzle hole by supplying the fuel gas to the gas flow path in the nozzle body having the nozzle hole formed at the tip. When the fuel gas is injected from the nozzle hole, the primary air is sucked into the fuel gas by the ejector effect, a mixture of the fuel gas and the primary air is generated in the mixing pipe, and this mixture is ejected from the flame hole of the control burner. It burns. However, when the heating power of the stove is adjusted to a small heating power state and the ejection speed of the fuel gas is reduced, the suction ratio of the primary air is reduced and misfire is likely to occur.

そこで、従来、特許文献1により、ノズル本体内のガス流路に、ノズル孔に向かう燃料ガスの流れに乱れを生じさせる障害物を配置したコンロ用ガスノズルが知られている。このガスノズルでは、ノズル孔に入るガス流が乱流状態になり、小火力でガス噴出速度が低下しても噴出ガス流が層流状態にならず、一次空気が十分に吸引されて保炎性が高められる。 Therefore, conventionally, according to Patent Document 1, there is known a gas nozzle for a stove in which an obstacle that causes turbulence in the flow of fuel gas toward the nozzle hole is arranged in a gas flow path in the nozzle body. In this gas nozzle, the gas flow entering the nozzle hole becomes turbulent, and even if the gas ejection speed decreases due to small heat, the ejected gas flow does not become a laminar flow state, and the primary air is sufficiently sucked to retain flame. Is enhanced.

尚、特許文献1に記載のものにおいて、障害物は、ノズル孔の中心軸線に直交する底部とガス流路の周面に接する筒部とを有する有底筒状であって、底部に、ノズル孔の中心軸線から離れた部分に位置させて、燃料ガスが通過する開口部が複数形成されている。そして、ノズル孔の中心軸線に合致する障害物の底部中心から開口部までの最小寸法はノズル孔の半径よりも小さい。 In the one described in Patent Document 1, the obstacle is a bottomed tubular shape having a bottom portion orthogonal to the central axis of the nozzle hole and a tubular portion in contact with the peripheral surface of the gas flow path, and the nozzle is provided at the bottom portion. A plurality of openings through which fuel gas passes are formed so as to be located at a portion away from the central axis of the hole. The minimum dimension from the center of the bottom of the obstacle that matches the central axis of the nozzle hole to the opening is smaller than the radius of the nozzle hole.

ところで、最近では、コンロバーナに付設した鍋底温度センサにより調理容器の底面(鍋底)の温度を検出して自動調理を行うガスコンロが普及している。このようなガスコンロでは、コンロバーナの大火力⇔小火力の火力切替が自動で頻繁に実行されるが、特許文献1に記載の従来例のガスノズルを用いても、小火力→大火力への火力切替時に以下の不具合を生ずる。即ち、小火力→大火力の火力切替時は、急激なガス量増加により、吸引される一次空気量の増加が遅れて、混合気がガスリッチ状態になり、鍋底への煤付着の原因となる。 By the way, recently, a gas stove that automatically cooks by detecting the temperature of the bottom surface (pot bottom) of a cooking container by a pot bottom temperature sensor attached to a stove burner has become widespread. In such a gas stove, switching between the large thermal power and the small thermal power of the stove burner is automatically and frequently performed, but even if the conventional gas nozzle described in Patent Document 1 is used, the thermal power from the small thermal power to the large thermal power is used. The following problems occur when switching. That is, when the thermal power is switched from small thermal power to large thermal power, the increase in the amount of primary air sucked is delayed due to the rapid increase in the amount of gas, and the air-fuel mixture becomes gas-rich, causing soot to adhere to the bottom of the pot.

特開平11−211028号公報JP-A-11-21128

本発明は、以上の点に鑑み、小火力での保炎性を確保して、且つ、小火力→大火力の火力切替時に混合気がガスリッチ状態になることも防止できるようにしたコンロバーナ用ガスノズルを提供することをその課題としている。 In view of the above points, the present invention is for a stove burner that ensures flame retention at a small thermal power and also prevents the air-fuel mixture from becoming gas-rich when switching from a small thermal power to a large thermal power. The challenge is to provide a gas nozzle.

上記課題を解決するために、本発明は、コンロバーナの混合管の流入口に向けて燃料ガスを噴射するコンロバーナ用ガスノズルであって、先端にノズル孔が形成されたノズル本体内のガス流路に、ノズル孔に向かう燃料ガスの流れに乱れを生じさせる障害物が配置され、この障害物は、ノズル孔の中心軸線に直交する底部とガス流路の周面に接する筒部とを有する有底筒状であって、底部に、ノズル孔の中心軸線から離れた部分に位置させて、燃料ガスが通過する開口部が複数形成されるものにおいて、ノズル孔の中心軸線に合致する障害物の底部中心から開口部までの最小距離は、ノズル孔の半径より大きく、ノズル孔の軸線方向から見た開口部の合計面積は、ノズル孔の断面積の7倍以上で、障害物が配置されたガス流路の部分の断面積の70%以下であることを特徴とする。 In order to solve the above problems, the present invention is a gas nozzle for a controller that injects fuel gas toward the inlet of the mixing tube of the controller, and the gas flow in the nozzle body having a nozzle hole formed at the tip thereof. An obstacle is placed on the path that causes turbulence in the flow of fuel gas toward the nozzle hole, and this obstacle has a bottom portion orthogonal to the central axis of the nozzle hole and a cylinder portion in contact with the peripheral surface of the gas flow path. An obstacle that has a bottomed tubular shape and has a plurality of openings through which fuel gas passes, which are located at a portion away from the central axis of the nozzle hole at the bottom and match the central axis of the nozzle hole. The minimum distance from the center of the bottom to the opening is larger than the radius of the nozzle hole, and the total area of the opening seen from the axial direction of the nozzle hole is 7 times or more the cross-sectional area of the nozzle hole, and obstacles are placed. It was characterized der Rukoto 70% or less of the cross-sectional area of the portion of the gas channel.

本発明によれば、上記従来例と同様に、ノズル孔に入るガス流が乱流状態になり、小火力でガス噴出速度が低下しても噴出ガス流が層流状態にならず、一次空気が十分に吸引されて保炎性が高められる。また、障害物の底部のうち開口部が形成されていない部分を障壁部として、本発明によれば、障壁部がノズル孔の投影面積以上の広がりを持つことになる。そのため、ノズル孔の投影面積部分を通るガス流は、必ず障壁部の影響を受けて、ノズル孔に向けて直進することなく迂回する。その結果、小火力→大火力の火力切替で急激にガス量が増加しても、ノズル孔から噴出するガス量の増加が効果的に緩和され、吸引される一次空気量の増加がガス量増加に遅れることはなく、混合気がガスリッチ状態になることを防止できる。 According to the present invention, as in the above conventional example, the gas flow entering the nozzle hole is in a turbulent state, and even if the gas ejection speed is reduced by a small amount of heat, the ejected gas flow does not become a laminar flow state, and the primary air Is sufficiently sucked and the flame retention property is enhanced. Further, according to the present invention, the portion of the bottom of the obstacle in which the opening is not formed is used as the barrier portion, and the barrier portion has a spread larger than the projected area of the nozzle hole. Therefore, the gas flow passing through the projected area portion of the nozzle hole is always affected by the barrier portion and detours toward the nozzle hole without going straight. As a result, even if the amount of gas suddenly increases due to the switching from small thermal power to large thermal power, the increase in the amount of gas ejected from the nozzle hole is effectively mitigated, and the increase in the amount of primary air sucked increases the amount of gas. It is possible to prevent the air-fuel mixture from becoming gas-rich without delay.

ところで、ノズル孔の軸線方向から見た開口部の合計面積が、ノズル孔の断面積の7倍を下回ると、ガスノズル内での通過抵抗が大きくなって、大火力状態で十分な噴出ガス量を得られなくなる。また、ノズル孔の軸線方向から見た開口部の合計面積が、障害物が配置されたガス流路の部分の断面積の70%を上回ると、小火力状態で噴出ガス流が一次空気を吸引するのに十分な乱流状態にならず、失火しやすくなる。従って、ノズル孔の軸線方向から見た開口部の合計面積は、上記の如くノズル孔の断面積の7倍以上で、障害物が配置されたガス流路の部分の断面積の70%以下であることが望ましい。 By the way, when the total area of the openings seen from the axial direction of the nozzle hole is less than 7 times the cross-sectional area of the nozzle hole, the passing resistance in the gas nozzle becomes large, and a sufficient amount of ejected gas is produced in a large thermal power state. You will not be able to obtain it. Further, when the total area of the openings seen from the axial direction of the nozzle hole exceeds 70% of the cross-sectional area of the gas flow path where the obstacle is arranged, the ejected gas flow sucks the primary air in a small thermal power state. It does not become turbulent enough to do so, and it is easy to misfire. Therefore, the total area of the openings seen from the axial direction of the nozzle holes is 7 times or more the cross-sectional area of the nozzle holes as described above, and 70% or less of the cross-sectional area of the gas flow path where obstacles are arranged. It is desirable to have.

また、本発明においては、ノズル本体の先端部寄りの外周面を先細りのテーパー面に形成することが望ましい。これによれば、ノズル本体の径方向外方空間からも一次空気がテーパー面に沿ってノズル孔からの噴出ガス流にスムーズに吸引されるようになり、火力切替時や定常時の何れにおいても、吸引される一次空気量が増す。従って、混合気がガスリッチ状態になって鍋底への煤付着を生ずることをより効果的に防止できる。 Further, in the present invention, it is desirable to form the outer peripheral surface of the nozzle body near the tip end as a tapered surface. According to this, the primary air is smoothly sucked into the jet gas flow from the nozzle hole along the tapered surface from the radial outer space of the nozzle body, and it is possible to smoothly suck the primary air into the jet gas flow from the nozzle hole at both the thermal power switching and the steady state. , The amount of primary air sucked increases. Therefore, it is possible to more effectively prevent the air-fuel mixture from becoming gas-rich and causing soot adhesion to the bottom of the pot.

本発明の実施形態のガスノズルの切断側面図。The cut side view of the gas nozzle of embodiment of this invention. 図1のII−II線で切断した拡大断面図。An enlarged cross-sectional view taken along the line II-II of FIG. 実施形態のガスノズルに設けられる障害物の斜視図。The perspective view of the obstacle provided in the gas nozzle of an embodiment.

図1を参照して、Aは、コンロバーナの混合管であり、この混合管Aの流入口A1に向けて本発明の実施形態のコンロバーナ用ガスノズル1から燃料ガスを噴射する。このガスノズル1は、図外のガス供給部材に取付けられるノズル本体2を備えている。ノズル本体2内には、ガス供給部材から供給される燃料ガスが流れるガス流路3が設けられ、また、ノズル本体2の先端には、ガス流路3と同軸上に位置するノズル孔4が形成されている。 With reference to FIG. 1, reference numeral A denotes a mixing pipe of the stove burner, and fuel gas is injected from the gas nozzle 1 for the stove burner of the embodiment of the present invention toward the inflow port A1 of the mixing pipe A. The gas nozzle 1 includes a nozzle body 2 attached to a gas supply member (not shown). A gas flow path 3 through which fuel gas supplied from a gas supply member flows is provided in the nozzle body 2, and a nozzle hole 4 located coaxially with the gas flow path 3 is provided at the tip of the nozzle body 2. It is formed.

ガス流路3は、ノズル本体2の尾端寄りの円柱状部分31と、円柱状部分31からノズル孔4に向けて次第に縮径する円錐状部分32とを有している。ガス流路3の円柱状部分31には、ノズル孔4に向かう燃料ガスの流れに乱れを生じさせる障害物5が配置されている。 The gas flow path 3 has a columnar portion 31 near the tail end of the nozzle body 2 and a conical portion 32 whose diameter gradually decreases from the columnar portion 31 toward the nozzle hole 4. An obstacle 5 that causes turbulence in the flow of fuel gas toward the nozzle hole 4 is arranged in the columnar portion 31 of the gas flow path 3.

図2、図3も参照して、障害物5は、ノズル孔4の中心軸線4aに直交する底部51と、ガス流路3の円柱状部分31の周面に接する筒部52とを有する有底筒状に形成されている。筒部52には、底部51と反対の尾端側に向けて拡径するテーパーが付けられており、筒部52の底部51寄りの部分の外径は、円柱状部分31の径より若干小さく、筒部52の尾端側部分の外径は、円柱状部分31の径より若干大きい。そして、筒部52の尾端側部分に周方向の間隔を存して複数の切欠き53を形成し、筒部52の尾端側部分を縮径させた状態で円柱状部分31の周面に圧接させることにより、障害物5が動かないようにしている。 With reference to FIGS. 2 and 3, the obstacle 5 has a bottom portion 51 orthogonal to the central axis 4a of the nozzle hole 4 and a tubular portion 52 in contact with the peripheral surface of the columnar portion 31 of the gas flow path 3. It is formed in the shape of a bottom cylinder. The tubular portion 52 is provided with a taper that expands in diameter toward the tail end side opposite to the bottom portion 51, and the outer diameter of the portion of the tubular portion 52 near the bottom portion 51 is slightly smaller than the diameter of the cylindrical portion 31. The outer diameter of the tail end side portion of the tubular portion 52 is slightly larger than the diameter of the cylindrical portion 31. Then, a plurality of notches 53 are formed in the tail end side portion of the tubular portion 52 with a circumferential interval, and the peripheral surface of the columnar portion 31 is in a state where the tail end side portion of the tubular portion 52 is reduced in diameter. The obstacle 5 is prevented from moving by being pressed against.

障害物5の底部51には、ノズル孔4の中心軸線4aから離れた部分に位置させて、燃料ガスが通過する開口部54が複数、例えば、中心軸線4aに関して点対称の位置関係で2個形成されている。尚、開口部54は、筒部52に亘って形成されているが、開口部54の形成範囲を底部51に限定してもよい。 The bottom 51 of the obstacle 5 has a plurality of openings 54 through which fuel gas passes, which are located at a portion away from the central axis 4a of the nozzle hole 4, for example, two openings 54 in a point-symmetrical positional relationship with respect to the central axis 4a. It is formed. Although the opening 54 is formed over the tubular portion 52, the formation range of the opening 54 may be limited to the bottom portion 51.

以上の如くノズル本体2内のガス流路3に障害物5を配置すれば、ノズル孔4に入るガス流が乱流状態になり、小火力でガス噴出速度が低下しても噴出ガス流が層流状態にならず、一次空気が十分に吸引されて保炎性が高められる。 If the obstacle 5 is arranged in the gas flow path 3 in the nozzle body 2 as described above, the gas flow entering the nozzle hole 4 becomes a turbulent flow state, and even if the gas ejection speed is reduced by a small amount of heat, the ejected gas flow is generated. The laminar flow state does not occur, the primary air is sufficiently sucked, and the flame retention property is enhanced.

更に、本実施形態では、ノズル孔4の中心軸線4aに合致する底部51中心から開口部54までの最小距離Lをノズル孔4の半径よりも大きくしている。従って、底部51のうち開口部54が形成されていない部分を障壁部として、障壁部がノズル孔4の投影面積以上の広がりを持つことになる。 Further, in the present embodiment, the minimum distance L from the center of the bottom 51 corresponding to the central axis 4a of the nozzle hole 4 to the opening 54 is made larger than the radius of the nozzle hole 4. Therefore, the portion of the bottom portion 51 in which the opening 54 is not formed is used as the barrier portion, and the barrier portion has a spread equal to or larger than the projected area of the nozzle hole 4.

これによれば、ノズル孔4の投影面積部分を通るガス流は、必ず障壁部の影響を受けて、ノズル孔4に向けて直進することなく迂回する。その結果、小火力→大火力の火力切替で急激にガス量が増加しても、ノズル孔4から噴出するガス量の増加が効果的に緩和され、吸引される一次空気量の増加がガス量増加に遅れることはなく、混合気がガスリッチ状態になることを防止できる。 According to this, the gas flow passing through the projected area portion of the nozzle hole 4 is always affected by the barrier portion and detours toward the nozzle hole 4 without going straight. As a result, even if the amount of gas suddenly increases due to the switching from small thermal power to large thermal power, the increase in the amount of gas ejected from the nozzle hole 4 is effectively mitigated, and the increase in the amount of primary air sucked is the amount of gas. There is no delay in the increase, and it is possible to prevent the air-fuel mixture from becoming gas-rich.

ところで、ノズル孔4の軸線方向から見た開口部54の合計面積が、ノズル孔4の断面積の7倍を下回ると、ガスノズル1内での通過抵抗が大きくなって、大火力状態で十分な噴出ガス量を得られなくなる。また、ノズル孔4の軸線方向から見た開口部54の合計面積が、障害物5が配置されたガス流路3の部分である円柱状部分31の断面積の70%を上回ると、小火力状態で噴出ガス流が一次空気を吸引するのに十分な乱流状態にならず、失火しやすくなる。従って、ノズル孔4の軸線方向から見た開口部54の合計面積は、ノズル孔4の断面積の7倍以上で、円柱状部分31の断面積の70%以下であることが望ましい。本実施形態では、ノズル孔4の軸線方向から見た開口部54の合計面積をノズル孔4の断面積の7倍、円柱状部分31の断面積の38%にしている。 By the way, when the total area of the openings 54 seen from the axial direction of the nozzle hole 4 is less than 7 times the cross-sectional area of the nozzle hole 4, the passing resistance in the gas nozzle 1 becomes large, and a large thermal power state is sufficient. The amount of ejected gas cannot be obtained. Further, when the total area of the opening 54 seen from the axial direction of the nozzle hole 4 exceeds 70% of the cross-sectional area of the columnar portion 31 which is the portion of the gas flow path 3 in which the obstacle 5 is arranged, the small thermal power is generated. In this state, the ejected gas flow does not become a turbulent state sufficient to suck the primary air, and misfire is likely to occur. Therefore, it is desirable that the total area of the openings 54 seen from the axial direction of the nozzle hole 4 is 7 times or more the cross-sectional area of the nozzle hole 4 and 70% or less of the cross-sectional area of the columnar portion 31. In the present embodiment, the total area of the openings 54 seen from the axial direction of the nozzle hole 4 is 7 times the cross-sectional area of the nozzle hole 4 and 38% of the cross-sectional area of the columnar portion 31.

また、本実施形態では、ノズル本体2の先端部寄りの外周面が先細りのテーパー面21に形成されている。これによれば、ノズル本体2の径方向外方空間からも一次空気がテーパー面21に沿ってノズル孔4からの噴出ガス流にスムーズに吸引されるようになり、火力切替時や定常時の何れにおいても、吸引される一次空気量が増す。従って、混合気がガスリッチ状態になって鍋底への煤付着を生ずることをより効果的に防止できる。 Further, in the present embodiment, the outer peripheral surface of the nozzle body 2 near the tip end is formed on the tapered surface 21. According to this, the primary air is smoothly sucked into the jet gas flow from the nozzle hole 4 along the tapered surface 21 from the radial outer space of the nozzle body 2, and is used during thermal power switching or steady operation. In either case, the amount of primary air sucked increases. Therefore, it is possible to more effectively prevent the air-fuel mixture from becoming gas-rich and causing soot adhesion to the bottom of the pot.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the present invention.

A…混合管、A1…流入口、1…ガスノズル、2…ノズル本体、21…テーパー面、3…ガス流路、4…ノズル孔、4a…ノズル孔の中心軸線、5…障害物、51…底部、52…筒部、54…開口部。
A ... Mixing pipe, A1 ... Inflow port, 1 ... Gas nozzle, 2 ... Nozzle body, 21 ... Tapered surface, 3 ... Gas flow path, 4 ... Nozzle hole, 4a ... Central axis of nozzle hole, 5 ... Obstacle, 51 ... Bottom, 52 ... Cylinder, 54 ... Opening.

Claims (2)

コンロバーナの混合管の流入口に向けて燃料ガスを噴射するコンロバーナ用ガスノズルであって、先端にノズル孔が形成されたノズル本体内のガス流路に、ノズル孔に向かう燃料ガスの流れに乱れを生じさせる障害物が配置され、この障害物は、ノズル孔の中心軸線に直交する底部とガス流路の周面に接する筒部とを有する有底筒状であって、底部に、ノズル孔の中心軸線から離れた部分に位置させて、燃料ガスが通過する開口部が複数形成されるものにおいて、
ノズル孔の中心軸線に合致する障害物の底部中心から開口部までの最小距離は、ノズル孔の半径より大きく、ノズル孔の軸線方向から見た開口部の合計面積は、ノズル孔の断面積の7倍以上で、障害物が配置されたガス流路の部分の断面積の70%以下であることを特徴とするコンロバーナ用ガスノズル。
A gas nozzle for a controller that injects fuel gas toward the inlet of the mixing pipe of the controller, and in the gas flow path inside the nozzle body with a nozzle hole formed at the tip, for the flow of fuel gas toward the nozzle hole. An obstacle that causes turbulence is arranged, and this obstacle is a bottomed tubular shape having a bottom portion orthogonal to the central axis of the nozzle hole and a tubular portion in contact with the peripheral surface of the gas flow path, and the nozzle is provided at the bottom portion. In the case where a plurality of openings through which fuel gas passes are formed so as to be located away from the central axis of the hole.
The minimum distance from the bottom center of the obstacle that matches the central axis of the nozzle hole to the opening is larger than the radius of the nozzle hole, and the total area of the opening seen from the axial direction of the nozzle hole is the cross-sectional area of the nozzle hole. 7 times or more, the gas nozzle stove burners, characterized in der Rukoto 70% or less of the cross-sectional area of the portion of the gas channel an obstacle is located.
前記ノズル本体の先端部寄りの外周面が先細りのテーパー面に形成されることを特徴とする請求項1記載のガスノズル。 Claim 1 Symbol placement of the gas nozzle, characterized in that the outer peripheral surface of the distal end portion toward the nozzle body is formed on the tapered surface of the tapered.
JP2016210959A 2016-10-27 2016-10-27 Gas nozzle for stove burner Active JP6787753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210959A JP6787753B2 (en) 2016-10-27 2016-10-27 Gas nozzle for stove burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210959A JP6787753B2 (en) 2016-10-27 2016-10-27 Gas nozzle for stove burner

Publications (2)

Publication Number Publication Date
JP2018071873A JP2018071873A (en) 2018-05-10
JP6787753B2 true JP6787753B2 (en) 2020-11-18

Family

ID=62114697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210959A Active JP6787753B2 (en) 2016-10-27 2016-10-27 Gas nozzle for stove burner

Country Status (1)

Country Link
JP (1) JP6787753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964053B (en) * 2019-05-19 2022-03-18 宁波方太厨具有限公司 Air door adjusting mechanism for gas stove

Also Published As

Publication number Publication date
JP2018071873A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6787753B2 (en) Gas nozzle for stove burner
JP4353619B2 (en) Furnace heating burner
JP2010242982A (en) Nozzle-mix burner
JP5491476B2 (en) Stove burner
JP2002364812A (en) Combustion device
JP6479071B2 (en) Burner device and heat treatment equipment
JP2006138593A (en) Cooking stove burner
JP5794844B2 (en) Turbulence generator in gas stove
JP2014132205A (en) Gas cooking stove
JP5620738B2 (en) Tubular burner
KR20120082647A (en) Low nitrogen oxide burner
JP6842957B2 (en) Stove
JP2008275259A (en) Burner
US9726370B2 (en) Tubular burner
JP6038750B2 (en) Tubular burner
JP2015178911A5 (en) Burner device for mixed firing, gas nozzle, swirler and boiler
JP7105437B2 (en) heating heater
JP2004077012A (en) Radiant tube type heating device
JP5406819B2 (en) Gas burner
JP2004205176A (en) Two-stage combustion device
JP2781926B2 (en) NOx reduction burner
JPS6222748Y2 (en)
JP5939658B2 (en) Turbulence generator in gas stove
AU2014250702B2 (en) Tubular burner
JPH11257610A (en) Gas burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201029

R150 Certificate of patent or registration of utility model

Ref document number: 6787753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250