JP6786977B2 - Laminated joint and its manufacturing method - Google Patents

Laminated joint and its manufacturing method Download PDF

Info

Publication number
JP6786977B2
JP6786977B2 JP2016177077A JP2016177077A JP6786977B2 JP 6786977 B2 JP6786977 B2 JP 6786977B2 JP 2016177077 A JP2016177077 A JP 2016177077A JP 2016177077 A JP2016177077 A JP 2016177077A JP 6786977 B2 JP6786977 B2 JP 6786977B2
Authority
JP
Japan
Prior art keywords
melt
joint
solidified
metal plates
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016177077A
Other languages
Japanese (ja)
Other versions
JP2017052006A (en
Inventor
仁寿 ▲徳▼永
仁寿 ▲徳▼永
富士本 博紀
博紀 富士本
晃樹 阪本
晃樹 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2017052006A publication Critical patent/JP2017052006A/en
Application granted granted Critical
Publication of JP6786977B2 publication Critical patent/JP6786977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、重ね接合継手とその製造方法に関し、特に、自動車車体に用いられる高強度鋼板の重ね接合継手とその製造方法に関するものである。 The present invention relates to a lap joint and a method for manufacturing the lap joint, and more particularly to a lap joint for a high-strength steel sheet used for an automobile body and a method for manufacturing the same.

近年、自動車分野では、低燃費化やCO排出量の削減のため、車体を軽量化することや、衝突安全性の向上のため、車体部材を高強度化することが求められている。これらの要求を満たすためには、車体部材や各種部品などに高強度鋼板を使用することが有効である。 In recent years, in the automobile field, it has been required to reduce the weight of the vehicle body in order to reduce fuel consumption and CO 2 emissions, and to increase the strength of the vehicle body member in order to improve collision safety. In order to satisfy these requirements, it is effective to use high-strength steel plates for vehicle body members and various parts.

このような高強度鋼板よりなる車体の組立や部品の取付けなどの工程では、主として、抵抗加熱を用いたスポット状の溶融接合が広く普及しているが、近年、この抵抗スポット接合に替えて、一部で高パワー密度を有する光線(以下、光線とする)を用いた溶融接合(以下、単に接合とする)が使用されるようになってきている。光線を用いた接合は、高速施工が可能であり、また、既存の接合部への接合電流の分流が発生しないため、接合部のピッチ間隔を短くすることができ、多点接合による車体剛性の向上も可能である。 In processes such as assembling a car body made of such a high-strength steel plate and attaching parts, spot-shaped melt bonding using resistance heating has become widespread, but in recent years, instead of this resistance spot bonding, Molten bonding (hereinafter, simply referred to as bonding) using light rays having high power density (hereinafter, referred to as light rays) has come to be used in some parts. Joining using light rays enables high-speed construction, and since the joining current does not shunt to the existing joint, the pitch interval of the joint can be shortened, and the rigidity of the vehicle body due to multi-point joining can be achieved. Improvement is also possible.

溶融接合により形成された継手(以下、接合継手とする)の品質指標の一つである継手強度には、せん断方向に引張荷重を負荷して測定する引張せん断強さ(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張強さ(CTS)がある。光線を用いた接合継手において、特に、CTSは、従来の抵抗スポット接合と同程度、又は、低下する傾向があり、炭素量の多い高強度鋼板の場合には特にCTSが低くなることがあった。このため、高強度鋼板に光線を用いた接合を行った場合に、CTS等の継手強度を向上させる技術が望まれていた。 The joint strength, which is one of the quality indicators of joints formed by melt joints (hereinafter referred to as joint joints), includes tensile shear strength (TSS) measured by applying a tensile load in the shear direction and peeling direction. There is a cross tensile strength (CTS) measured by applying a tensile load to. In joints using light rays, CTS tends to be as low as or lower than that of conventional resistance spot joints, and in the case of high-strength steel sheets with a large amount of carbon, CTS may be particularly low. .. Therefore, a technique for improving the joint strength of CTS or the like when joining a high-strength steel sheet using a light beam has been desired.

このような状況のもと、光線を用いた接合において、継手強度を向上させる技術として、接合部の近傍に他の接合部を形成する技術(特許文献1、参照)、閉ループ状の本ビードの内側に、本ビードを焼き戻すことを目的とした他のビードを形成する技術(特許文献2、3、参照)が知られている。 Under such circumstances, as a technique for improving the joint strength in joining using light rays, a technique for forming another joint in the vicinity of the joint (see Patent Document 1), a closed loop-shaped main bead. A technique for forming another bead for the purpose of tempering the present bead on the inside (see Patent Documents 2 and 3) is known.

一方、自動車車体の組立工程においては、スポット接合が多用されているが、この接合法で形成される、平面視で点形状の重ね接合継手と同様の形状を光線による接合で得る方法が特許文献4に開示されている。重ね鋼板の両側から電極で挟めない場合などにおいて、スポット接合継手に代替する技術として、光線による点状の重ね接合継手が注目されている。 On the other hand, in the assembly process of an automobile body, spot joining is often used, and a method of obtaining a shape similar to a point-shaped lap joint in a plan view by joining with light rays, which is formed by this joining method, is patented. It is disclosed in 4. Point-shaped lap joints using light rays are attracting attention as an alternative technique to spot joints when electrodes cannot be sandwiched from both sides of a lap steel plate.

特開2010−012504号公報Japanese Unexamined Patent Publication No. 2010-012504 特開2012−240086号公報Japanese Unexamined Patent Publication No. 2012-241986 国際公開第2012/050097号International Publication No. 2012/05007 特開昭60−68185号公報Japanese Unexamined Patent Publication No. 60-68185

しかしながら、上記光線によって形成される点状の重ね接合継手は、特に高強度鋼板の重ね接合継手の場合、十字引張強さ(CTS)が十分に得られないという問題があり、継手強度を向上させることが望まれていた。 However, the point-shaped lap joint formed by the above-mentioned light rays has a problem that sufficient cross tensile strength (CTS) cannot be obtained, particularly in the case of a lap joint made of high-strength steel plate, and the joint strength is improved. Was desired.

本発明は、このような実情に鑑み、継手強度に優れた重ね接合継手を提供することを課題とする。 In view of such circumstances, it is an object of the present invention to provide a lap joint with excellent joint strength.

本発明者らは、金属板に光線による接合を実施し、点状の接合部を形成した接合継手の継手強度を向上させるために、点状の接合部の溶融境界近傍の靱性を向上させる手段について鋭意検討した。 The present inventors are means for improving the toughness in the vicinity of the melting boundary of the point-shaped joint in order to improve the joint strength of the joint in which the metal plate is joined by a light beam to form the point-shaped joint. Diligently examined.

本発明者らは、点状の接合部を熱処理することに着想し、熱処理箇所及び熱処理方法について種々調査した。その結果、光線の照射側から点状の接合部の溶融凝固部を平面視したとき、当該溶融凝固部の内側に光線を照射して、外側輪郭が略円形状で、その中心まで再溶融凝固している形状(以下、「点状」という)の略中心部を、複数の金属板に跨って、再溶融凝固させて再溶融凝固部を形成するとともに、点状の接合部の溶融境界付近を焼き戻すように再加熱して凝固再加熱部を形成することで、CTSが向上することを見出した。 The present inventors have conceived of heat-treating a point-shaped joint, and have investigated various heat-treated locations and heat-treated methods. As a result, when the melt-solidified portion of the point-shaped joint is viewed in a plan view from the irradiation side of the light beam, the light beam is irradiated to the inside of the melt-solidified portion, the outer contour is substantially circular, and the melt-solidified portion is re-melted and solidified to the center. The substantially central portion of the shape (hereinafter referred to as "dotted") is remelted and solidified across a plurality of metal plates to form a remelted solidified portion, and near the melting boundary of the dotted joint. It was found that CTS is improved by forming a coagulation reheating portion by reheating so as to reheat.

本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)重ね合わされた複数の金属板で構成され、点状の接合部を有する重ね接合継手において、
前記点状の接合部は、前記複数の金属板に跨る溶融凝固部を有し、
前記溶融凝固部は、再溶融凝固部と、凝固再加熱部とを有し、
前記再溶融凝固部は、前記溶融凝固部を平面視したとき、当該溶融凝固部の円相当中心を含む点状で、前記複数の金属板に跨っており、
前記凝固再加熱部は、前記再溶融凝固部の周囲に位置し、前記点状の接合部の溶融境界を含んでおり、前記再溶融凝固部より軟化している
ことを特徴とする重ね接合継手。
(2)前記凝固再加熱部のうち、前記金属板の重ね合わせ面の前記溶融境界から、前記再溶融凝固部に向かって0.5mmの範囲のビッカース硬さの平均値は、Hv390以下であり、かつ、前記再溶融凝固部のビッカース硬さの平均値よりHv70以上低いことを特徴とする前記(1)に記載の重ね接合継手。
(3)前記複数の金属板が、表面処理皮膜を有する金属板を1枚以上含むことを特徴とする前記(1)又は(2)に記載の重ね接合継手。
(4)複数の金属板を重ね合わせ、光線を照射して接合する重ね接合継手の製造方法において、
重ね合わされた一方の金属板に光線を照射して、前記複数の金属板に跨って点状に溶融凝固した溶融凝固部を有する点状の接合部を形成し、
前記光線の照射側から前記溶融凝固部を平面視したとき、当該溶融凝固部の内側に前記光線を再照射し、当該溶融凝固部の円相当中心を含む点状に、前記複数の金属板に跨って再溶融凝固させて再溶融凝固部を形成し、更に、当該再溶融凝固部の周囲に前記点状の接合部の溶融境界を含む凝固再加熱部を形成するとともに、その際の再加熱条件を調整して前記凝固再加熱部を前記再溶融凝固部より軟化させることを特徴とする重ね接合継手の製造方法。
(5)前記光線の再照射は、前記複数の金属板の板厚方向断面において、前記再溶融凝固した再溶融凝固部の外側端部から前記点状の接合部の溶融境界までの距離が1.0〜3.0mmとなるように行われることを特徴とする前記(4)に記載の重ね接合継手の製造方法。
(6)前記複数の金属板に、表面処理皮膜を形成した金属板を1枚以上用いることを特徴とする前記(4)又は(5)に記載の重ね接合継手の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In a lap joint that is composed of a plurality of lapped metal plates and has point-shaped joints.
The point-shaped joint has a melt-solidified portion that straddles the plurality of metal plates.
The melt-solidified portion has a remelt-solidified portion and a solidified / reheated portion.
When the melt-solidified portion is viewed in a plan view, the re-melt-solidified portion has a point shape including a circular equivalent center of the melt-solidified portion and straddles the plurality of metal plates.
The solidification reheating portion is located around the remelt solidification portion, includes a melting boundary of the point-shaped joint portion, and is softened from the remelt solidification portion. ..
(2) Of the solidification and reheating portions, the average value of Vickers hardness in the range of 0.5 mm from the melting boundary of the overlapping surface of the metal plates toward the remelting and solidifying portion is Hv390 or less. The lap joint joint according to (1) above, wherein the Vickers hardness of the remelted solidified portion is lower than the average value of Hv70 or more.
(3) The lap joint according to (1) or (2) above, wherein the plurality of metal plates include one or more metal plates having a surface treatment film.
(4) In a method for manufacturing a lap joint, in which a plurality of metal plates are overlapped and joined by irradiating a light beam.
One of the overlapped metal plates is irradiated with light rays to form a point-shaped joint having a melt-solidified portion that is melt-solidified in a dot shape over the plurality of metal plates.
When the melt-solidified portion is viewed in a plan view from the irradiation side of the light beam, the light beam is re-irradiated to the inside of the melt-solidified portion, and the plurality of metal plates are formed into dots including the circular equivalent center of the melt-solidified portion. A remelt solidification portion is formed by remelting and solidifying across the remelt solidification portion, and a solidification reheating portion including a melting boundary of the point-shaped joint portion is formed around the remelt solidification portion, and reheating at that time is performed. A method for manufacturing a lap joint, which comprises adjusting conditions to soften the solidified and reheated portion from the remelted solidified portion.
(5) In the re-irradiation of the light beam, the distance from the outer end portion of the remelted solidified portion of the remelted solidified portion to the melting boundary of the point-shaped joint portion is 1 in the plate thickness direction cross section of the plurality of metal plates. The method for manufacturing a lap joint according to (4) above, wherein the thickness is 0 to 3.0 mm.
(6) The method for manufacturing a lap joint according to (4) or (5) above, wherein one or more metal plates having a surface treatment film formed on the plurality of metal plates are used.

本発明によれば、点状の接合部の溶融境界近傍に、靱性に優れる凝固再加熱部を設けたので、重ね接合継手の継手強度、特に、十字引張強さ(CTS)を向上させることができる。そして、本発明の接合継手を自動車部品に適用することで、自動車部品の信頼性を向上させることができる。 According to the present invention, since the solidification reheating portion having excellent toughness is provided near the melting boundary of the point-shaped joint portion, the joint strength of the lap joint, particularly the cross tensile strength (CTS) can be improved. it can. Then, by applying the joint of the present invention to an automobile part, the reliability of the automobile part can be improved.

点状の接合部を有する接合継手のビッカース硬さ分布の概略を示す図である。(a)は接合継手の断面の構造を模式的に示し、(b)は接合継手のビッカース硬さ分布を示す。It is a figure which shows the outline of the Vickers hardness distribution of a joint joint which has a punctate joint part. (A) schematically shows the structure of the cross section of the joint, and (b) shows the Vickers hardness distribution of the joint. 点状の接合部の中心部に光線を照射した接合継手のビッカース硬さ分布の概略を示す図である。(a)は接合継手の断面の構造を模式的に示し、(b)は接合継手のビッカース硬さ分布を示す。It is a figure which shows the outline of the Vickers hardness distribution of a joint joint which irradiated the central part of the point-like joint part with a light beam. (A) schematically shows the structure of the cross section of the joint, and (b) shows the Vickers hardness distribution of the joint. 本発明の接合継手の断面の構造を模式的に示す図である。It is a figure which shows typically the structure of the cross section of the joint of this invention. 点状の接合部の形成の概要を示す斜視図である。(a)は異なる照射直径で光線を照射する概要図を示し、(b)は集光面積を広くして光線を照射する概要図を示し、(c)は形成された点状の接合部の斜視図を示す。It is a perspective view which shows the outline of formation of the point-like joint part. (A) shows a schematic diagram of irradiating light rays with different irradiation diameters, (b) shows a schematic diagram of irradiating light rays with a wide condensing area, and (c) shows a schematic diagram of formed point-shaped joints. A perspective view is shown. 点状の接合部の熱処理の概要を示す斜視図である。(a)は異なる照射直径で光線を照射する概要図を示し、(b)は集光面積を広くして光線を照射する概要図を示し、(c)は再溶融凝固部と凝固再加熱部とを有する点状の接合部の斜視図を示す。It is a perspective view which shows the outline of the heat treatment of a punctate joint part. (A) shows a schematic diagram of irradiating light rays with different irradiation diameters, (b) shows a schematic diagram of irradiating light rays with a wide condensing area, and (c) shows a remelt solidification portion and a solidification reheating portion. The perspective view of the point-shaped joint portion having and is shown.

本発明の重ね接合継手(以下、「本発明の接合継手」という)は、複数の金属板に、光線を照射して形成された点状の接合部を有する重ね接合継手であって、前記点状の接合部が、溶融凝固部を有し、該溶融凝固部が、再溶融凝固部と、凝固再加熱部とで構成され、該凝固再加熱部が再溶融凝固部より軟化している点に特徴を有する。 The lap joint of the present invention (hereinafter referred to as "joint of the present invention") is a lap joint having a point-shaped joint formed by irradiating a plurality of metal plates with light rays, and is the above-mentioned point. The joint portion has a melt-solidified portion, and the melt-solidified portion is composed of a re-melted solidified portion and a solidified and reheated portion, and the solidified and reheated portion is softened from the remelted solidified portion. It has the characteristics of.

以下、本発明の接合継手に至った検討の経緯について説明するとともに、本発明の接合継手について説明する。
点状の接合部を有する重ね接合継手において、更に、継手強度を向上させることが望まれていた。そこで、本発明者らは、点状の接合部に熱処理することを検討し、点状の接合部の熱処理箇所及び熱処理方法について調査した。
Hereinafter, the background of the study leading to the joint of the present invention will be described, and the joint of the present invention will be described.
In a lap joint having a point-shaped joint, it has been desired to further improve the joint strength. Therefore, the present inventors examined heat treatment on the punctate joints, and investigated the heat treatment points and the heat treatment method of the punctate joints.

重ね接合継手は、剥離方向に接合部に荷重が負荷されると、溶融境界の近傍に応力が集中し、破断に至り易い。そこで、光線の照射側から直径約6.0mmの点状の接合部の溶融凝固部を平面視したとき、この溶融凝固部の内側に光線径約3.0mmの光線を点状に再照射し、点状に再溶融凝固させるともに、溶融凝固部の溶融境界を熱処理することを実施し、接合継手のビッカース硬さ分布を調査した。その結果、再照射により溶融境界が焼き戻され、靱性の向上が確認された。この試験について、図面を用いて説明する。 When a load is applied to the joint portion in the peeling direction of the lap joint, stress is concentrated in the vicinity of the melting boundary, and the lap joint is likely to break. Therefore, when the melt-solidified portion of the point-shaped joint portion having a diameter of about 6.0 mm is viewed in a plan view from the irradiation side of the light beam, the light beam having a ray diameter of about 3.0 mm is re-irradiated in a dot shape inside the melt-solidified portion. In addition to remelting and solidifying in dots, heat treatment was performed on the molten boundary of the melted and solidified part, and the Vickers hardness distribution of the joint was investigated. As a result, it was confirmed that the melting boundary was tempered by re-irradiation and the toughness was improved. This test will be described with reference to the drawings.

図1に、点状の接合部を有する接合継手のビッカース硬さ分布の概略図を示す。図1(a)は、溶融凝固部を有する接合継手の断面の模式図を示し、図1(b)は、溶融凝固部とその近傍における接合継手のビッカース硬さ分布の概略図を示す。図2に、点状の接合部の中心部に光線を再照射した接合継手のビッカース硬さ分布の概略図を示す。図2(a)は、接合継手の断面の模式図を示し、図2(b)は、接合継手のビッカース硬さ分布の概略図を示す。 FIG. 1 shows a schematic view of the Vickers hardness distribution of a joint having a point-shaped joint. FIG. 1A shows a schematic view of a cross section of a joint joint having a melt-solidified portion, and FIG. 1B shows a schematic diagram of a Vickers hardness distribution of the joint joint in the melt-solidified portion and its vicinity. FIG. 2 shows a schematic diagram of the Vickers hardness distribution of the joint joint in which the central portion of the point-shaped joint portion is re-irradiated with light rays. FIG. 2A shows a schematic view of a cross section of the joint joint, and FIG. 2B shows a schematic view of the Vickers hardness distribution of the joint joint.

まず、ビッカース硬さの分布を調査した接合継手について、図1(a)及び図2(a)を用いて説明する。図1(a)及び図2(a)は、点状の接合部の溶融凝固部を含むように板厚方向に切断した接合継手の断面の模式図を示している。接合継手1は、金属板2a、2bを重ね合わせ、接合されたものである。金属板2a、2bは、引張強さ1500MPaホットスタンプ鋼板であり、接合され、点状の接合部の溶融凝固部3により接合されている。 First, a joint joint whose distribution of Vickers hardness has been investigated will be described with reference to FIGS. 1 (a) and 2 (a). 1 (a) and 2 (a) show a schematic view of a cross section of a joint joint cut in the plate thickness direction so as to include a melt-solidified portion of the point-shaped joint portion. The joint joint 1 is formed by superimposing and joining metal plates 2a and 2b. The metal plates 2a and 2b are hot stamped steel plates having a tensile strength of 1500 MPa, and are joined by a melt-solidified portion 3 of a point-shaped joint portion.

図1(a)に示す接合継手1は、点状の接合部の溶融凝固部3に光線を再照射する熱処理を施す前のものである。図2(a)に示す接合継手1は、光線の照射側から点状の接合部の溶融凝固部を平面視したとき、溶融凝固部3の内側に光線を再照射し、点状に再溶融凝固した再溶融凝固部3aと、それにより再加熱された凝固再加熱部3bを有するものである。 The joint joint 1 shown in FIG. 1A is before the heat treatment for re-irradiating the melt-solidified portion 3 of the point-shaped joint portion with light rays. In the joint joint 1 shown in FIG. 2A, when the melt-solidified portion of the point-shaped joint is viewed in a plan view from the light irradiation side, the inside of the melt-solidified portion 3 is re-irradiated with light rays and re-melted in a dot shape. It has a solidified remelt solidification unit 3a and a solidification / reheating unit 3b reheated thereby.

次に、これらの接合継手のビッカース硬さ分布について、図1(b)及び図2(b)を用いて説明する。図1(b)及び図2(b)に示すビッカース硬さ分布の図は、それぞれ図1(a)及び図2(a)に示す、点線Xの位置(板厚方向のビッカース硬さの測定位置)を金属板表面と平行方向のビッカース硬さの測定範囲L1にわたって求めた概略図である。点線Xは、板厚方向において、金属板2a、2bの重ね合わせ面から金属板2a側に0.2mmの位置である。また、L2は、溶融凝固部のビッカース硬さの測定範囲である。L3は、再溶融凝固部のビッカース硬さの測定範囲である。 Next, the Vickers hardness distribution of these joints will be described with reference to FIGS. 1 (b) and 2 (b). The Vickers hardness distribution diagrams shown in FIGS. 1 (b) and 2 (b) are the positions of the dotted lines X (measurement of Vickers hardness in the plate thickness direction) shown in FIGS. 1 (a) and 2 (a), respectively. It is a schematic diagram which obtained the position) over the measurement range L1 of the Vickers hardness in the direction parallel to the surface of a metal plate. The dotted line X is a position 0.2 mm from the overlapping surface of the metal plates 2a and 2b to the metal plate 2a side in the plate thickness direction. Further, L2 is a measurement range of Vickers hardness of the melt-solidified portion. L3 is a measurement range of Vickers hardness of the remelted solidified portion.

図1(b)に示すように、溶融凝固部3に光線を再照射する熱処理を施す前の接合継手1のビッカース硬さは、溶融凝固部3の内側(L2)において、HV460程度と硬く、ほぼ一定となっている。L2のすぐ外側は、溶融凝固部ではないが、高温域まで加熱され、焼入れられるので、硬さが大きい。なお、さらに外側に硬さの低い部位があるが、これは母材であるホットスタンプ鋼板のHAZ軟化部である。 As shown in FIG. 1 (b), the Vickers hardness of the joint joint 1 before the heat treatment for re-irradiating the melt-solidified portion 3 with light rays is as hard as about HV460 inside the melt-solidified portion 3 (L2). It is almost constant. Immediately outside of L2 is not a melt-solidified portion, but it is heated to a high temperature range and hardened, so that it has a high hardness. In addition, although there is a portion having a low hardness on the outer side, this is a HAZ softened portion of the hot stamped steel sheet which is the base material.

一方、図2(b)に示すように、溶融凝固部3の内側に光線を再照射し、再溶融凝固部3a及び凝固再加熱部3bを有する接合継手1のビッカース硬さは、再溶融凝固部3aの内側(L3)では、HV約460と高い値である。L3のすぐ外側は、再溶融凝固部3aではないが、高温域まで加熱され、焼入れられるので、硬さが大きい。さらに外側にビッカース硬さが低い部位が形成された。溶融境界(半径約3mm付近)及びその内側の1mm弱までの平均硬さがHV320程度にまで低下した。なお、溶融凝固部3の外側の母材のHAZ軟化部はそのままの硬さとして残っている。 On the other hand, as shown in FIG. 2B, the Vickers hardness of the joint joint 1 having the remelt solidification portion 3a and the solidification reheating portion 3b is determined by re-irradiating the inside of the melt solidification portion 3 with light rays. Inside the portion 3a (L3), the HV is as high as about 460. Immediately outside of L3 is not the remelt and solidification portion 3a, but it is heated to a high temperature range and hardened, so that it has a high hardness. Further, a portion having a low Vickers hardness was formed on the outside. The average hardness of the melting boundary (around a radius of about 3 mm) and the inside thereof up to a little less than 1 mm was reduced to about HV320. The HAZ softened portion of the base material on the outer side of the melt-solidified portion 3 remains as it is.

そして、両者の接合継手の十字引張強さ(CTS)を調査したところ、溶融凝固部の内側に光線を再照射して形成された凝固再加熱部を有する接合継手の方の十字引張強さが高くなることが判明した。これより、図2(a)に示す点状の接合部が再溶融凝固部より軟化している凝固再加熱部を有するものは、溶融境界が焼き戻されて硬さが低減し、靱性が向上するものであることを知見した。また、金属板の組合せを変えても、点状の接合部が再溶融凝固部より軟化している凝固再加熱部を有するものでは、CTSの向上が確認された。 Then, when the cross tensile strength (CTS) of both joints was investigated, the cross tensile strength of the joint having the solidified and reheated portion formed by re-irradiating the inside of the molten solidified portion was found. It turned out to be higher. As a result, in the case where the point-shaped joint shown in FIG. 2A has a solidification / reheating portion that is softened from the remelting / solidifying portion, the melting boundary is tempered to reduce the hardness and improve the toughness. It was found that it was something to do. Further, even if the combination of the metal plates was changed, the improvement of CTS was confirmed in the case where the point-shaped joint portion had a solidification reheating portion softened from the remelt solidification portion.

本発明は、以上のような検討過程を経て上記(1)に記載の発明に至ったものであり、そのような本発明について、さらに、必要な要件や好ましい要件について順次説明する。 The present invention has led to the invention described in (1) above through the above-mentioned examination process, and necessary requirements and preferable requirements will be sequentially described for such an invention.

次に、本発明の接合継手について、図3を用いて説明する。図3は、接合部を含むように板厚方向に切断した本発明の接合継手の断面図を示している。 Next, the joint joint of the present invention will be described with reference to FIG. FIG. 3 shows a cross-sectional view of the joint joint of the present invention cut in the plate thickness direction so as to include the joint portion.

本発明の接合継手10は、複数の金属板20a、20bを重ね合わせ、金属板20a側から金属板20a表面の一部の限られた領域内に光線を照射し、点状の接合部を形成して複数の金属板20a、20bを重ね接合したものである。金属板20a、20bは、点状の接合部の溶融凝固部30により接合されている。溶融凝固部30は、光線の照射側から溶融凝固部30を平面視したとき、中心部に溶融凝固したままの組織である再溶融凝固部30aと、凝固後に再加熱された凝固再加熱部30b、30cとにより構成されている。
以下、点状の接合部、及び、複数の金属板の順で詳細に説明する。
In the joint 10 of the present invention, a plurality of metal plates 20a and 20b are overlapped and a light beam is irradiated from the metal plate 20a side into a limited area on the surface of the metal plate 20a to form a point-shaped joint. Then, a plurality of metal plates 20a and 20b are laminated and joined. The metal plates 20a and 20b are joined by the melt-solidified portion 30 of the point-shaped joint portion. When the melt-solidified portion 30 is viewed in a plan view from the light irradiation side, the melt-solidified portion 30 has a remelted solidified portion 30a which is a structure which remains melt-solidified in the central portion and a solidified reheated portion 30b which is reheated after solidification. , 30c.
Hereinafter, the point-shaped joints and the plurality of metal plates will be described in detail in this order.

<点状の接合部>
点状の接合部は、複数の金属板20a、20bを重ね合わせ、光線の照射により溶融凝固した溶融凝固部30を有するものである。点状の接合部の溶融凝固部30は、複数の金属板20a、20bに跨って形成されていれば、複数の金属板を貫通していても、貫通していなくてもよい。
<Dot-shaped joint>
The point-shaped joint portion has a melt-solidified portion 30 in which a plurality of metal plates 20a and 20b are superposed and melt-solidified by irradiation with light rays. The melt-solidified portion 30 of the point-shaped joint portion may or may not penetrate the plurality of metal plates as long as it is formed so as to straddle the plurality of metal plates 20a and 20b.

点状とは、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部の外周輪郭が円形状又多角形状で、その輪郭の中心まで溶融凝固していることを意味する。円形状とは、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部が円形や楕円形の場合以外に、直径の異なる半円や半楕円を組み合わせたものも含むものである。また、金属板に光線を渦巻状に、外周側から中心側又は中心側から外周側に向かって照射して形成した溶融凝固部の形状も点状に含まれる。 The point-like shape means that when the melt-solidified portion is viewed in a plan view from the irradiation side of the light beam, the outer peripheral contour of the melt-solidified portion is circular or polygonal, and melt-solidified to the center of the contour. The circular shape includes not only the case where the melt-solidified portion is circular or elliptical when the melt-solidified portion is viewed in a plan view from the light irradiation side, but also a combination of semicircles or semi-ellips having different diameters. Further, the shape of the melt-solidified portion formed by irradiating the metal plate with light rays in a spiral shape from the outer peripheral side to the center side or from the center side to the outer peripheral side is also included in a dot shape.

点状の接合部の溶融凝固部30の幅W(光線の照射側から溶融凝固部を平面視したときの溶融凝固部の円相当径)は、継手強度等に応じて調整すればよく、特に限定されるものでないが、3〜12mmが例示される。好ましくは、4〜10mmである。 The width W of the melt-solidified portion 30 of the point-shaped joint (the equivalent circle diameter of the melt-solidified portion when the melt-solidified portion is viewed in a plan view from the light irradiation side) may be adjusted according to the joint strength and the like, and in particular. By way of example, but not limited to, 3 to 12 mm. It is preferably 4 to 10 mm.

(再溶融凝固部)
再溶融凝固部30aは、点状の接合部の溶融凝固部30の内側に光線を再照射し、点状に溶融凝固させて得られる部分であり、溶融凝固したままの組織となっている。点状とは、光線の照射側から再溶融凝固部を平面視したとき、再溶融凝固部の外周輪郭が円形状又多角形状で、その輪郭の中心まで溶融凝固していることを意味する。円形状とは、光線の照射側から再溶融凝固部を平面視したとき、再溶融凝固部が円形や楕円形の場合以外に、直径の異なる半円や半楕円を組み合わせたものも含むものである。また、金属板に光線を渦巻状に、外周側から中心側又は中心側から外周側に向かって照射して形成した再溶融凝固部の形状も点状に含まれる。
(Remelt solidification part)
The remelting and solidifying portion 30a is a portion obtained by re-irradiating the inside of the melting and solidifying portion 30 of the point-shaped joint portion with light rays to melt and solidify the dots, and has a structure as it is melted and solidified. The point-like shape means that when the remelted solidified portion is viewed in a plan view from the irradiation side of the light beam, the outer peripheral contour of the remelted solidified portion is circular or polygonal, and the remelted solidified portion is melted and solidified to the center of the contour. The circular shape includes not only the case where the remelted solidified portion is circular or elliptical when the remelted solidified portion is viewed in a plan view from the irradiation side of light rays, but also a combination of semicircles or semicircles having different diameters. In addition, the shape of the remelted solidification portion formed by irradiating the metal plate with light rays in a spiral shape from the outer peripheral side to the center side or from the center side to the outer peripheral side is also included in a dot shape.

再溶融凝固部30aは、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部の円相当の中心を含み、溶融凝固部30の溶融境界を含まないように形成されている。ただし、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部の円相当の中心と、再溶融凝固部30aの円相当の中心とは、一致する必要はない。 The remelt and solidified portion 30a is formed so as to include the center corresponding to the circle of the melt and solidified portion and not to include the melting boundary of the melt and solidified portion 30 when the melt and solidified portion is viewed in a plan view from the irradiation side of the light beam. However, when the melt-solidified portion is viewed in a plan view from the irradiation side of the light beam, the center corresponding to the circle of the melt-solidified portion and the center corresponding to the circle of the re-melt-solidified portion 30a do not have to coincide with each other.

また、再溶融凝固部30aは、接合継手10の板厚方向において、複数の金属板20a、20bに跨って形成されている。すなわち、図3に示すように、再溶融凝固部30aは、少なくとも複数の金属板に跨って形成されていれば、金属板20bを貫通してもしていなくてもどちらでもよい。 Further, the remelt solidification portion 30a is formed so as to straddle the plurality of metal plates 20a and 20b in the plate thickness direction of the joint joint 10. That is, as shown in FIG. 3, the remelting and solidifying portion 30a may or may not penetrate the metal plate 20b as long as it is formed so as to straddle at least a plurality of metal plates.

再溶融凝固部30aの幅Wa(光線の照射側から溶融凝固部を平面視したときの再溶融凝固部の円相当径)の上限は、特に限定されるものでなく、再溶融凝固部30aの周囲にある凝固再加熱部30b、30cの幅Wbとの関係で決められる。 The upper limit of the width Wa of the remelt solidification portion 30a (the equivalent circle diameter of the remelt solidification portion when the melt solidification portion is viewed in a plan view from the light irradiation side) is not particularly limited, and the remelt solidification portion 30a It is determined by the relationship with the width Wb of the solidifying and reheating portions 30b and 30c in the surroundings.

(凝固再加熱部)
凝固再加熱部30b、30cは、点状の接合部の溶融凝固部30に光線を再照射し、再溶融凝固部30aの周囲に溶融境界を含むように形成される部分であり、再溶融凝固部30aより軟化している部分を含むものである。再溶融凝固部30aに隣接した凝固再加熱部30bは、母材の融点以下Ac1点温度以上に再加熱された部位である。凝固再加熱部30cは、Ac1点温度以下に再加熱された部位であり、焼き戻された組織を有し、少なくとも金属板の重ね合わせ面近傍の溶融境界の周囲に形成されている。接合継手10に剥離方向に荷重が負荷されると、金属板の重ね合わせ面近傍の溶融境界に応力が集中し、破断に至るため、少なくとも凝固再加熱部30cの靱性を向上させる。
(Coagulation and reheating section)
The solidification and reheating portions 30b and 30c are portions formed by re-irradiating the melt and solidification portion 30 of the point-shaped joint portion with light rays so as to include a fusion boundary around the remelt and solidification portion 30a, and are formed so as to include a fusion boundary. It includes a portion softened from the portion 30a. The solidification / reheating unit 30b adjacent to the remelt / solidification unit 30a is a portion that has been reheated to a temperature equal to or lower than the melting point of the base metal and above the Ac1 point temperature. The solidification / reheating portion 30c is a portion that has been reheated to an Ac 1 point temperature or lower, has a tempered structure, and is formed at least around a melting boundary near the overlapping surface of the metal plate. When a load is applied to the joint 10 in the peeling direction, stress concentrates on the melting boundary near the overlapping surface of the metal plate, leading to fracture, so that at least the toughness of the solidification reheating portion 30c is improved.

また、金属板の重ね合わせ面の溶融境界近傍の凝固再加熱部30cは、応力が集中し易いため、ビッカース硬さの平均値を、Hv390以下とし、また、再溶融凝固部30aのビッカース硬さの平均値よりHv70以上低くすることが好ましい。また、このような凝固再加熱部30cの幅Wcを、少なくとも0.5mmとすることで、溶融境界近傍の靱性を向上させることができる。凝固再加熱部30cの幅Wcを、少なくとも0.5mmとするためには、凝固再加熱部30b、30cの幅Wbとして、1.0〜3.0mmとすることが好ましい。 Further, since stress tends to concentrate in the solidification / reheating portion 30c near the melting boundary of the overlapping surfaces of the metal plates, the average value of the Vickers hardness is set to Hv390 or less, and the Vickers hardness of the remelting solidification portion 30a. It is preferable that Hv70 or more is lower than the average value of. Further, by setting the width Wc of the solidification / reheating portion 30c to at least 0.5 mm, the toughness in the vicinity of the melting boundary can be improved. In order to make the width Wc of the solidification / reheating portion 30c at least 0.5 mm, the width Wb of the solidification / reheating portions 30b and 30c is preferably 1.0 to 3.0 mm.

再溶融凝固部30a、及び、凝固再加熱部30cのビッカース硬さの平均値の測定では、中心軸Cを含む板厚方向の断面において、金属板の重ね合わせ面と接する溶融凝固部30の溶融境界同士を結んだ線上を測定する。そして、再溶融凝固部30a、及び、凝固再加熱部30cにおいて、各部分の中央と両端近傍を含む3点以上等間隔でビッカース硬さを測定し、平均値を求める。具体的な測定条件の一例として、試験力0.3kgで、両端から0.15mmピッチで硬さを測定し、0.15mm、0.30mm、0.45mmでの硬さの平均値を求める。両端近傍とは、両端から幅の5〜10%の範囲である。また、金属板の重ね合わせ面が複数あるときは、それぞれの金属板の重ね合わせ面と接する溶融凝固部30の溶融境界同士を結んだ線上で測定する。なお、再溶融凝固部と凝固再加熱部とは、ミクロ組織の観察により、判別することができる。 In the measurement of the average value of the Vickers hardness of the remelt solidification section 30a and the solidification reheating section 30c, the melt solidification section 30 in contact with the overlapping surface of the metal plate is melted in the cross section in the plate thickness direction including the central axis C. Measure on the line connecting the boundaries. Then, in the remelt and solidification section 30a and the solidification and reheating section 30c, the Vickers hardness is measured at three or more points including the center and the vicinity of both ends of each portion at equal intervals, and the average value is obtained. As an example of specific measurement conditions, the hardness is measured at a pitch of 0.15 mm from both ends with a test force of 0.3 kg, and the average value of the hardness at 0.15 mm, 0.30 mm, and 0.45 mm is obtained. The vicinity of both ends is a range of 5 to 10% of the width from both ends. When there are a plurality of overlapping surfaces of the metal plates, the measurement is performed on the line connecting the fusion boundaries of the melt solidification portions 30 in contact with the overlap surfaces of the metal plates. The remelted solidified portion and the solidified and reheated portion can be distinguished by observing the microstructure.

<複数の金属板>
次に、本発明の接合継手を構成する複数の金属板について説明する。
<Multiple metal plates>
Next, a plurality of metal plates constituting the joint of the present invention will be described.

(金属板の種類、組成)
金属板は、特に限定されるものでなく、種々の金属の板とすることができるが、鋼板とすることが好ましい。鋼板の成分組成は、特に限定されるものでなく、用途に応じた機械特性等が得られる成分組成の鋼板とすればよい。また、本発明の接合継手に炭素含有量を0.10質量%以上の高強度鋼板を適用すると、十字引張強さの向上が顕著であり、このような鋼板を対象とすることが好ましい。
(Type and composition of metal plate)
The metal plate is not particularly limited and may be a plate of various metals, but a steel plate is preferable. The composition of the steel sheet is not particularly limited, and a steel sheet having a composition that can obtain mechanical properties and the like according to the intended use may be used. Further, when a high-strength steel sheet having a carbon content of 0.10% by mass or more is applied to the joint of the present invention, the cross tensile strength is remarkably improved, and such a steel sheet is preferably targeted.

(金属板の板厚)
金属板の板厚は、特に限定されるものでなく、0.5〜3.2mmの範囲とすることができる。板厚が0.5mm未満であっても、接合部の継手強度の向上の効果は得られるが、継手強度が板厚に影響するので、接合継手全体の強度向上の効果が小さくなり、接合継手の適用範囲が限定される。また、板厚が3.2mm超であっても、接合部の継手強度の向上の効果は得られるが、部材の軽量化の観点から、接合継手の適用範囲が限定される。
(Thickness of metal plate)
The thickness of the metal plate is not particularly limited and can be in the range of 0.5 to 3.2 mm. Even if the plate thickness is less than 0.5 mm, the effect of improving the joint strength of the joint can be obtained, but since the joint strength affects the plate thickness, the effect of improving the strength of the entire joint is reduced, and the joint is joined. The scope of application is limited. Further, even if the plate thickness exceeds 3.2 mm, the effect of improving the joint strength of the joint portion can be obtained, but the applicable range of the joint joint is limited from the viewpoint of weight reduction of the member.

(金属板の表面処理皮膜)
複数の金属板は、少なくとも接合箇所の両面又は片面に表面処理皮膜を形成した金属板を1枚以上含んでいてもよい。表面処理皮膜は、めっき皮膜を含むものであり、更に、塗装皮膜等を含むものとすることができる。めっき皮膜としては、例えば、亜鉛めっき、アルミニウムめっき、亜鉛・ニッケルめっき、亜鉛・鉄めっき、亜鉛・アルミニウム・マグネシウム系めっき等であり、めっきの製造方法としては、溶融めっき、電気めっき等である。またホットスタンプされた亜鉛めっきやアルミニウムのめっきでもよい。
(Surface treatment film of metal plate)
The plurality of metal plates may include at least one metal plate having a surface treatment film formed on both sides or one side of the joint. The surface treatment film includes a plating film, and may further include a coating film and the like. Examples of the plating film include zinc plating, aluminum plating, zinc / nickel plating, zinc / iron plating, zinc / aluminum / magnesium-based plating, and the plating manufacturing method includes hot-dip plating and electroplating. It may also be hot stamped galvanized or aluminum plated.

(金属板の形態)
金属板の形態は、少なくとも接合継手を形成する部分が板状であればよく、全体が板でなくてもよい。例えば、断面ハット形の特定の形状にプレス成型された部材のフランジ部、パイプの平面部などを含むものである。重ね合わせる金属板の枚数は、2枚に限らず、3枚以上としてもよい。また、各金属板の、種類、成分組成及び板厚は、全て同じとしても、相互に異なっていてもよい。また、別々の金属板から構成されるものに限定されず、1枚の金属板を管状などの所定の形状に成形して、端部を重ね合わせたものの重ね接合継手であってもよい。
(Metal plate form)
The form of the metal plate may be at least as long as the portion forming the joint is plate-shaped, and the entire metal plate does not have to be a plate. For example, it includes a flange portion of a member press-molded into a specific shape having a hat-shaped cross section, a flat portion of a pipe, and the like. The number of metal plates to be stacked is not limited to two, and may be three or more. Further, the type, composition and thickness of each metal plate may be the same or different from each other. Further, the joint is not limited to those composed of separate metal plates, and may be a lap joint joint formed by molding one metal plate into a predetermined shape such as a tubular shape and overlapping the ends.

以下、これに限定されるものではないが、自動車での重ね接合継手の例を示す。
Aピラーの場合、270〜340MPa級の合金化溶融亜鉛めっき鋼板と、590〜1800MPa級非めっき鋼板もしくはホットスタンプ鋼板と、590〜1800MPa級非めっき鋼板もしくはホットスタンプ鋼板の3枚重ねの組み合わせでの重ね接合継手が例示される。
Hereinafter, an example of a lap joint in an automobile is shown, although not limited to this.
In the case of A-pillar, it is a combination of 270-340 MPa class alloyed hot-dip galvanized steel sheet, 590-1800 MPa class non-plated steel sheet or hot stamped steel sheet, and 590-1800 MPa class non-plated steel sheet or hot stamped steel sheet. A lap joint is exemplified.

Bピラーの場合、引張強さが270〜340MPa級の合金化溶融亜鉛めっき鋼板と、590〜1800MPa級非めっき鋼板もしくはホットスタンプ鋼板と、440〜980MPa級非めっき鋼板の3枚重ねの組み合わせでの重ね接合継手が例示される。 In the case of B-pillar, it is a combination of three layers of alloyed hot-dip galvanized steel sheet with tensile strength of 270-340 MPa class, 590-1800 MPa class non-plated steel sheet or hot stamped steel sheet, and 440-980 MPa class non-plated steel sheet. A lap joint is exemplified.

サイドシルの場合、270〜340MPa級の合金化溶融亜鉛めっき鋼板と、590〜1800MPa級合金化溶融亜鉛めっき鋼板と、590〜1800MPa級合金化溶融亜鉛めっき鋼板の3枚重ねの組み合わせでの重ね接合継手が例示される。 In the case of side sill, a lap joint joint consisting of a combination of 270-340 MPa class alloyed hot-dip galvanized steel sheet, 590-1800 MPa class alloyed hot-dip galvanized steel sheet, and 590-1800 MPa class alloyed hot-dip galvanized steel sheet. Is exemplified.

フロアメンバーの場合、270〜590MPa級の合金化溶融亜鉛めっき鋼板のフロアパネルと、440〜1800MPa級非めっき鋼板もしくは合金化溶融亜鉛めっき鋼板のフロアメンバーとの2枚重ねでの組み合わせでの重ね接合継手が例示される。 In the case of floor members, the floor panel of 270-590 MPa class alloyed hot-dip galvanized steel sheet and the floor member of 440-1800 MPa class non-plated steel sheet or alloyed hot-dip galvanized steel sheet are lap-bonded in a double-layered combination. A joint is exemplified.

次に、本発明の重ね接合継手の製造方法(以下、「本発明の製法」という)について説明する。
本発明の製法は、
(a)複数の金属板を重ね合わせ、光線を照射し、金属板表面側から平面視したとき、外側輪郭が略円形状で、その中心まで溶融凝固した点状の接合部を形成すること、及び、
(b)点状の接合部の内側に光線を再照射し、光線の照射側から溶融凝固部を平面視したとき、外側輪郭が略円形状で、その中心まで再溶融凝固した形状に再溶融凝固させるともに、再溶融凝固部より軟化するように溶融境界を再加熱することを含むものである。
Next, the manufacturing method of the lap joint of the present invention (hereinafter, referred to as "the manufacturing method of the present invention") will be described.
The manufacturing method of the present invention
(A) When a plurality of metal plates are superposed, irradiated with light rays, and viewed in a plan view from the surface side of the metal plates, the outer contour is substantially circular, and a punctate joint formed by melting and solidifying to the center thereof. as well as,
(B) When the inside of the point-shaped joint is re-irradiated with a light beam and the melt-coagulated portion is viewed in a plan view from the irradiated side of the light beam, the outer contour is substantially circular and re-melted to the center. It includes solidifying and reheating the molten boundary so that it softens from the remelted solidified portion.

まず、(a)複数の金属板を重ね合わせ、光線を照射し、金属板表面側から平面視したとき、外側輪郭が略円形状で、その中心まで溶融凝固した点状の接合部を形成することについて、図4を用いて説明する。 First, (a) when a plurality of metal plates are superposed, irradiated with light rays, and viewed in a plan view from the surface side of the metal plates, the outer contour is substantially circular, and a point-like joint formed by melting and solidifying to the center thereof is formed. This will be described with reference to FIG.

図4は、点状の接合部の形成の概要を示す斜視図である。図4(a)は、異なる照射直径で光線を照射する概要を示し、図4(b)は、集光面積を広くして光線を照射する概要を示し、図4(c)は、形成された点状の接合部を示す。 FIG. 4 is a perspective view showing an outline of the formation of a point-shaped joint. FIG. 4A shows an outline of irradiating light rays with different irradiation diameters, FIG. 4B shows an outline of irradiating light rays with a wide condensing area, and FIG. 4C is formed. A dotted joint is shown.

図4(a)には、光線50を照射する方法の一例を示しており、異なる照射直径で光線50を照射するものである。この図には、光線50の照射予定箇所60aを点線で示しており、照射直径の異なる3つの照射予定箇所60aが示されている。 FIG. 4A shows an example of a method of irradiating the light ray 50, which irradiates the light ray 50 with different irradiation diameters. In this figure, the planned irradiation points 60a of the light beam 50 are shown by dotted lines, and three planned irradiation points 60a having different irradiation diameters are shown.

点状の接合部の形成では、まず、複数の金属板20a、20bを重ね合わせ、一方の金属板20a側から光線50を照射して接合を行う。光線50の照射では、光線50の照射側から照射予定箇所60aを平面視したとき、白抜き矢印で示すように、略円状に光線を走査する。その際に、光線50の照射を、外側の照射予定箇所60aに行い、その後、内側の照射予定箇所60aに行っても、内側の照射予定箇所60aに行い、その後、外側の照射予定箇所60aに行ってもよい。光線の走査方向は、特に限定されるものでなく、時計回り、反時計回りのいずれでもよい。 In the formation of the point-shaped joint portion, first, a plurality of metal plates 20a and 20b are overlapped, and light rays 50 are irradiated from one of the metal plates 20a side to perform the joint. In the irradiation of the light ray 50, when the planned irradiation portion 60a is viewed in a plane from the irradiation side of the light ray 50, the light ray is scanned in a substantially circular shape as shown by a white arrow. At that time, the light beam 50 is irradiated to the outer scheduled irradiation portion 60a, and then to the inner scheduled irradiation portion 60a, but also to the inner scheduled irradiation portion 60a, and then to the outer scheduled irradiation portion 60a. You may go. The scanning direction of the light beam is not particularly limited, and may be clockwise or counterclockwise.

また、光線50の照射側からの照射予定箇所60aを平面視した場合、光線50の照射予定箇所60aの外周形状を円としているが、楕円状、多角形状、直径の異なる半円や半楕円を組み合わせた形状、渦巻状の形状としてもよい。光線50の照射予定箇所60aを渦巻状の形状とした場合、光線50の照射は、渦巻状の照射予定箇所60bの外側の端部から、内側の端部に向かって、又は、渦巻状の照射予定箇所60bの内側の端部から、外側の端部に向かって、渦巻状に光線を走査して行う。渦巻の方向は、特に限定されるものでなく、時計回り、反時計回りのいずれでもよい。 Further, when the planned irradiation point 60a from the irradiation side of the light beam 50 is viewed in a plan view, the outer peripheral shape of the planned irradiation point 60a of the light beam 50 is a circle, but a semicircle or a semicircle having an elliptical shape, a polygonal shape, or a different diameter is used. It may be a combined shape or a spiral shape. When the planned irradiation point 60a of the light ray 50 has a spiral shape, the light beam 50 is irradiated from the outer end portion of the spiral irradiation planned irradiation portion 60b toward the inner end portion or in a spiral shape. The light beam is scanned in a spiral shape from the inner end of the planned portion 60b toward the outer end. The direction of the spiral is not particularly limited, and may be clockwise or counterclockwise.

図4(a)では、直径の異なる3つの照射予定箇所を例示したが、光線の焦点面積や、点状の接合部の接合面積に応じて、直径の異なる照射予定箇所の数を増減させることができる。 In FIG. 4A, three planned irradiation points having different diameters are illustrated, but the number of planned irradiation points having different diameters can be increased or decreased according to the focal area of the light beam and the joint area of the point-shaped joints. Can be done.

図4(b)には、光線50を照射する方法の他の例を示しており、集光面積を広くして光線50を照射するものである。この図には、光線50の照射予定箇所60bを点線で示している。そして、光線50の照射は、光線の集光面積を広くして、1回で行われる。 FIG. 4B shows another example of the method of irradiating the light ray 50, which irradiates the light ray 50 with a wide condensing area. In this figure, the planned irradiation portion 60b of the light beam 50 is shown by a dotted line. Then, the light beam 50 is irradiated at one time by widening the light collecting area.

図4(a)または図4(b)に示すように光線50を照射することで、溶融した溶融部が外側から中心側に凝固し、図4(c)に示すように点状の接合部の溶融凝固部30を形成できる。 By irradiating the light beam 50 as shown in FIG. 4 (a) or FIG. 4 (b), the melted melted portion solidifies from the outside to the center side, and the point-shaped joint is formed as shown in FIG. 4 (c). The melt-solidified portion 30 of the above can be formed.

また、複数の金属板に、表面処理皮膜を形成した金属板を1枚以上用いる場合、光線50の照射を、外側の照射予定箇所60aに行い、その後、内側の照射予定箇所60aに行うことが好ましい。これにより、接合部内に欠陥を生じさせる気体となった皮膜を、溶融部の中心付近に集め、攪拌除去することが容易となる。なお、光線50の照射を、内側の照射予定箇所60aに行い、その後、外側の照射予定箇所60aに行っても、光線50の集光面積を広くして行っても、気体となった皮膜を溶融部から除去することができるため、これらの光線の照射方法を採用することを排除するものでない。 Further, when one or more metal plates having a surface treatment film formed on the plurality of metal plates are used, the light beam 50 may be irradiated to the outer scheduled irradiation portion 60a and then to the inner scheduled irradiation portion 60a. preferable. As a result, it becomes easy to collect the film which has become a gas that causes defects in the joint portion near the center of the molten portion and remove it by stirring. Even if the light beam 50 is irradiated to the inner scheduled irradiation portion 60a and then to the outer scheduled irradiation portion 60a, or if the light collecting area of the light ray 50 is widened, the film that has become a gas is formed. Since it can be removed from the molten portion, it does not exclude the adoption of these light beam irradiation methods.

次に、(b)点状の接合部の内側に光線を再照射し、光線の照射側から溶融凝固部を平面視したとき、外側輪郭が略円形状で、その中心まで再溶融凝固した形状(点状)に再溶融凝固させるともに、再溶融凝固部より軟化するように溶融境界を再加熱することについて説明する。 Next, (b) when the inside of the point-shaped joint is re-irradiated with a light beam and the melt-solidified portion is viewed in a plan view from the light-emitting side, the outer contour is substantially circular and the shape is re-melt-solidified to the center. It will be described that the molten boundary is reheated so as to be softened from the remelted solidified portion while being remelted and solidified (dotted).

点状の接合部の熱処理では、図4で示す方法等により得られた点状の接合部の溶融凝固部30の温度が所定温度以下、例えば、鋼板ではMs点−50℃(Ms点:マルテンサイト変態開始温度)以下となるまで待機し、その後に、金属板20a側から溶融凝固部30の内側に光線50を照射して行う。内側とは、溶融凝固部30の溶融境界を除く溶融凝固部30内をいう。 In the heat treatment of the punctate joint, the temperature of the melt-solidified portion 30 of the punctate joint obtained by the method shown in FIG. 4 is below a predetermined temperature, for example, in the case of a steel plate, the Ms point is −50 ° C. (Ms point: marten). Wait until the temperature becomes lower than the site transformation start temperature), and then irradiate the inside of the melt solidification portion 30 with the light beam 50 from the metal plate 20a side. The inside means the inside of the melt-solidified portion 30 excluding the melt boundary of the melt-solidified portion 30.

溶融凝固部30の温度をMs点−50℃以下とすると、鋼板中に一定量以上のマルテンサイトが生成されるため、点状の接合部の溶融凝固部30を熱処理することで、このマルテンサイトが焼戻されて軟化し、継手強度が向上する。また、点状の接合部の溶融凝固部30の熱処理の開始するときの溶融凝固部30の温度の下限は、特に限定されないが、Ms点−250℃以下とするのが好ましい。Ms点−250℃で、一般の鋼板はマルテンサイト変態を終了するからである。 When the temperature of the melt-solidified portion 30 is Ms point −50 ° C. or lower, a certain amount or more of martensite is generated in the steel sheet. Therefore, by heat-treating the melt-solidified portion 30 of the point-shaped joint, the martensite is formed. Is tempered and softened, improving joint strength. The lower limit of the temperature of the melt-solidified portion 30 at the start of the heat treatment of the melt-solidified portion 30 of the point-shaped joint is not particularly limited, but is preferably Ms point −250 ° C. or lower. This is because a general steel sheet completes martensitic transformation at an Ms point of −250 ° C.

次に、点状の接合部の熱処理における光線50の照射のうち、光線50の走査について、図5を用いて説明する。
図5は、点状の接合部の熱処理の概要を示す斜視図である。図5(a)は、異なる照射直径で光線を照射する概要を示し、図5(b)は、集光面積を広くして光線を照射する概要を示し、図5(c)は、再溶融凝固部と凝固再加熱部とを有する点状の接合部を示す。
Next, among the irradiations of the light rays 50 in the heat treatment of the point-shaped joints, the scanning of the light rays 50 will be described with reference to FIG.
FIG. 5 is a perspective view showing an outline of heat treatment of the point-shaped joint. FIG. 5 (a) shows an outline of irradiating light rays with different irradiation diameters, FIG. 5 (b) shows an outline of irradiating light rays with a wide condensing area, and FIG. 5 (c) shows remelting. A punctate joint having a solidified portion and a solidified and reheated portion is shown.

図5(a)には、再溶融予定箇所に光線50を照射する方法の一例を示しており、異なる照射直径で光線を照射するものである。この図には、光線50の照射予定箇所70aを点線で示しており、溶融凝固部30の内側に、照射直径の異なる2つの照射予定箇所70aが示されている。 FIG. 5A shows an example of a method of irradiating the planned remelting portion with the light beam 50, and irradiates the light beam with different irradiation diameters. In this figure, the planned irradiation points 70a of the light beam 50 are shown by dotted lines, and two planned irradiation points 70a having different irradiation diameters are shown inside the melt-solidified portion 30.

光線50の照射では、白抜き矢印で示すように略円状に光線を走査する。その際に、光線50の照射を、内側の照射予定箇所70aに行い、その後、外側の照射予定箇所70aに行っても、外側の照射予定箇所70aに行い、その後、内側の照射予定箇所70aに行ってもよい。光線の走査方向は、特に限定されるものでなく、時計回り、反時計回りのいずれでもよい。 In the irradiation of the light beam 50, the light beam is scanned in a substantially circular shape as indicated by the white arrow. At that time, the light beam 50 is irradiated to the inner scheduled irradiation portion 70a, and then to the outer scheduled irradiation portion 70a, but also to the outer scheduled irradiation portion 70a, and then to the inner scheduled irradiation portion 70a. You may go. The scanning direction of the light beam is not particularly limited, and may be clockwise or counterclockwise.

光線50の照射予定箇所70aは、光線50の照射側から溶融凝固部30を平面視したとき、溶融凝固部30の円相当中心を含む点状に再溶融され、溶融凝固部30の溶融境界が焼き戻されるように設定される。 When the melt-solidified portion 30 is viewed in a plan view from the irradiation side of the light beam 50, the planned irradiation portion 70a of the light beam 50 is remelted into a dot shape including the center corresponding to the circle of the melt-solidified portion 30, and the melting boundary of the melt-solidified portion 30 is formed. Set to be burned back.

また、光線50の照射側から接合部を平面視した場合、光線50の照射予定箇所70aの外周形状を円としているが、楕円状、多角形状、直径の異なる半円や半楕円を組み合わせた形状、渦巻状の形状としてもよい。また、直径の異なる2つの照射予定箇所を例示したが、光線の焦点面積や、点状の接合部の溶融凝固部の面積に応じて、直径の異なる照射予定箇所の数を増減させることができる。 Further, when the joint portion is viewed in a plan view from the irradiation side of the light ray 50, the outer peripheral shape of the planned irradiation portion 70a of the light ray 50 is a circle, but a shape obtained by combining an ellipse, a polygonal shape, and a semicircle or a semicircle having different diameters. , May have a spiral shape. Further, although two planned irradiation points having different diameters are illustrated, the number of planned irradiation points having different diameters can be increased or decreased depending on the focal area of the light beam and the area of the melt-solidified portion of the point-shaped joint. ..

図5(b)には、再溶融予定箇所に光線50を照射する方法の他の例を示しており、集光面積を広くして光線50を照射するものである。この図には、溶融凝固部30の内側に、光線50の照射予定箇所80bを点線で示している。そして、光線50の照射は、光線の集光面積を広くして、1回で行われる。この例においても、光線50の照射予定箇所80bは、光線50の照射側から溶融凝固部30を平面視したとき、溶融凝固部30の円相当中心を含む点状に再溶融され、溶融凝固部30の溶融境界が焼き戻されるように設定される。 FIG. 5B shows another example of a method of irradiating the planned remelting portion with the light beam 50, in which the light collecting area is widened and the light beam 50 is irradiated. In this figure, the planned irradiation portion 80b of the light beam 50 is shown by a dotted line inside the melt-solidifying portion 30. Then, the light beam 50 is irradiated at one time by widening the light collecting area. Also in this example, the planned irradiation portion 80b of the light beam 50 is remelted into a point shape including the circular equivalent center of the melt solidification portion 30 when the melt solidification portion 30 is viewed in a plan view from the irradiation side of the light ray 50, and the melt solidification portion 30 is formed. The melting boundaries of 30 are set to be burned back.

図5(a)、図5(b)に示すように光線50を照射することで、図5(c)に示すように、光線50の照射側から溶融凝固部30を平面視したとき、当該溶融凝固部の円相当中心を含む点状に再溶融凝固部30aが形成され、その周囲に凝固再加熱部30b、30cが形成される。そして、溶融境界を含む凝固再加熱部30cが焼き戻され、靱性が向上する。 By irradiating the light beam 50 as shown in FIGS. 5 (a) and 5 (b), the melt-solidified portion 30 is viewed in a plan view from the irradiation side of the light beam 50 as shown in FIG. 5 (c). The remelt and solidification portion 30a is formed in a dot shape including the circular equivalent center of the melt and solidification portion, and the solidification and reheating portions 30b and 30c are formed around the remelt and solidification portion 30a. Then, the solidification / reheating portion 30c including the melting boundary is tempered, and the toughness is improved.

また、点状の接合部の形成、及び、点状の接合部の溶融境界の熱処理において、光線の照射方法は、同じ照射方法でも、異なる照射方法でもよい。例えば、異なる照射直径で光線を照射して、点状の接合部を形成し、異なる照射直径で光線を照射して、点状の接合部の溶融境界を熱処理しても、集光面積を広くして光線を照射して、点状の接合部の形成し、異なる照射直径で光線を照射して、点状の接合部の溶融境界を熱処理してもよい。 Further, in the formation of the point-shaped joint and the heat treatment of the molten boundary of the point-shaped joint, the light beam irradiation method may be the same irradiation method or different irradiation methods. For example, even if light rays are irradiated with different irradiation diameters to form point-shaped joints, and light rays are irradiated with different irradiation diameters to heat the melting boundary of the point-shaped joints, the condensing area is widened. Then, the point-shaped joint may be formed by irradiating the light beam, and the molten boundary of the point-shaped joint may be heat-treated by irradiating the light with different irradiation diameters.

次に、光線50の照射のうち、凝固再加熱部30b、30cの加熱温度について説明する。
点状の接合部の溶融凝固部30のうち、少なくとも金属板20a、20bの重ね合わせ面近傍の溶融境界から0.5mmの範囲の領域が、焼き戻されるように(凝固再加熱部30cが得られるように)再加熱するとよい。
Next, among the irradiations of the light beam 50, the heating temperatures of the solidification and reheating portions 30b and 30c will be described.
Of the melt-solidified portions 30 of the point-shaped joints, at least the region within 0.5 mm from the melt boundary near the overlapping surfaces of the metal plates 20a and 20b is tempered (the solidified reheated portion 30c is obtained). It is better to reheat (so that it can be done).

重ね合わせ面近傍の溶融境界から0.5mmの範囲の領域を焼き戻すには、この範囲の最高到達温度がAc1点以下の所定の温度(例えば、500℃以上700℃以下)となる条件で、光線50を溶融凝固部30の内側に照射する。凝固再加熱部30cの温度は、鋼板表面で測定した温度を代表値として用いることができる。温度は、放射温度計や熱電対を用いて測定することができる。 In order to burn back a region in the range of 0.5 mm from the melting boundary near the overlapping surface, the maximum temperature reached in this range is a predetermined temperature of Ac 1 point or less (for example, 500 ° C. or higher and 700 ° C. or lower). The light beam 50 is applied to the inside of the melt-solidified portion 30. As the temperature of the solidification reheating unit 30c, the temperature measured on the surface of the steel sheet can be used as a representative value. The temperature can be measured using a radiation thermometer or a thermocouple.

このような温度とするには、予め、再溶融予定箇所(光線の照射予定箇所)の円相当直径又は形成される凝固再加熱部の幅Wbと、光線の再照射中の前記範囲の温度との関係や、光線の再照射時間と前記範囲の温度との関係等を調査しておき、再溶融予定箇所(光線の照射予定箇所)の円相当直径、凝固再加熱部の幅Wb、光線の再照射時間等を調整することで行うことができる。また、凝固再加熱部30cを500℃以上700℃以下とするには、凝固再加熱部の幅Wbを1.0〜3.0mmとなるように光線の照射を調整することが例示される。好ましくは、1.5〜2.5mmである。 In order to obtain such a temperature, the diameter equivalent to the circle of the planned remelting portion (the portion scheduled to be irradiated with the light beam) or the width Wb of the solidified reheating portion to be formed and the temperature in the above range during the re-irradiation of the light beam are obtained in advance. The relationship between the above and the relationship between the re-irradiation time of the light beam and the temperature in the above range, etc., the circle-equivalent diameter of the planned remelting location (the planned irradiation location of the light beam), the width Wb of the solidification reheating part, and the light beam This can be done by adjusting the re-irradiation time and the like. Further, in order to set the solidification / reheating portion 30c to 500 ° C. or higher and 700 ° C. or lower, it is exemplified that the irradiation of light is adjusted so that the width Wb of the solidification / reheating portion is 1.0 to 3.0 mm. It is preferably 1.5 to 2.5 mm.

次に、点状の接合部の形成、及び、点状の接合部の熱処理で使用する光線について説明する。光線にはレーザを用いるのが一般的であり、その種類は、特に限定されるものでないが、リモート接合装置とすることが好ましい。リモート接合装置は、ロボットアームの先端に取り付けたガルバノミラーにより、光線を接合打点の間を高速で移動させるものであり、接合の作業時間の大幅な短縮が可能になる。また、発振器としては、気体励起タイプや固体励起タイプ、半導体タイプなどを用いることができる。 Next, the light rays used in the formation of the point-shaped joints and the heat treatment of the point-shaped joints will be described. A laser is generally used as the light beam, and the type thereof is not particularly limited, but a remote joining device is preferable. The remote joining device uses a galvano mirror attached to the tip of the robot arm to move light rays between joining points at high speed, which makes it possible to significantly reduce the joining work time. Further, as the oscillator, a gas excitation type, a solid excitation type, a semiconductor type and the like can be used.

また、接合の条件は、従来の条件を採用することができる。例えば、出力2〜30kW、集光面の光線径0.1〜8.0mm、接合速度0.1〜60m/minの接合条件で行うことができる。 Further, as the joining conditions, the conventional conditions can be adopted. For example, the bonding conditions can be such that the output is 2 to 30 kW, the light beam diameter of the condensing surface is 0.1 to 8.0 mm, and the bonding speed is 0.1 to 60 m / min.

また、自動車の組み立ては、複数の接合工程からなるが、1つの工程内で本発明の製法を実施する場合、1つ1つの接合点に対して、光線照射による接合と再溶融を実施してもよいが、Ms点−250℃以下までの冷却の待ち時間を低減するため、より好適には、光線照射により複数の溶融接合を実施し、その後、光線照射により複数の再溶融を実施するとことが好ましい。また複数の接合工程で本発明の製法を実施する場合、光線照射による溶融接合工程と、光線照射による再溶融工程を別々の工程とすることで、冷却の待ち時間を無くすことができる。 Further, assembling an automobile consists of a plurality of joining steps, but when the manufacturing method of the present invention is carried out in one step, joining and remelting by light irradiation are carried out at each joining point. However, in order to reduce the waiting time for cooling to the Ms point of −250 ° C. or lower, more preferably, a plurality of melt bondings are carried out by light irradiation, and then a plurality of remelts are carried out by light irradiation. Is preferable. Further, when the manufacturing method of the present invention is carried out in a plurality of joining steps, the waiting time for cooling can be eliminated by setting the melt joining step by light irradiation and the remelting step by light irradiation as separate steps.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is described in this one condition example. It is not limited. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

表1に、被接合部材とする鋼板を示す。 Table 1 shows steel plates to be joined.

Figure 0006786977
Figure 0006786977

表1に示す、同種の鋼板を2枚重ね合わせて、ガルバノミラーを有するリモート接合装置を用い、ファイバーレーザにより接合を行い、点状の接合部を有する試験片を作成した。表2に、点状の接合部の形成条件を示す。光線径は、集光面での光線の直径である。 Two steel plates of the same type shown in Table 1 were superposed and joined by a fiber laser using a remote joining device having a galvanometer mirror to prepare a test piece having a point-shaped joint. Table 2 shows the conditions for forming the point-shaped joints. The ray diameter is the diameter of the ray on the condensing surface.

Figure 0006786977
Figure 0006786977

次に、各試験片の点状の接合部の熱処理を行った。この熱処理では、光線の照射側から溶融凝固部を平面視したとき、溶融凝固部と再溶融凝固部の中心が一致するようにし、試験片を貫通するように再溶融凝固部を形成して行った。表3に、点状のレーザ接合部の熱処理条件を示す。光線径は、集光面での光線の直径である。なお、熱処理では、点状の接合部の形成と同じリモート接合装置を用いた。 Next, the point-shaped joints of each test piece were heat-treated. In this heat treatment, when the melt-solidified portion is viewed in a plan view from the light irradiation side, the center of the melt-solidified portion and the re-melted-solidified portion are aligned with each other, and the re-melted-solidified portion is formed so as to penetrate the test piece. It was. Table 3 shows the heat treatment conditions for the point-shaped laser joint. The ray diameter is the diameter of the ray on the condensing surface. In the heat treatment, the same remote joining device as for forming the point-shaped joint was used.

Figure 0006786977
Figure 0006786977

表4に、熱処理後の試験片について、凝固再加熱部の幅Wb、再溶融凝固部の平均ビッカース硬さA(引け巣は除く)、溶融凝固部の溶融境界から0.5mmの範囲の平均ビッカース硬さB、平均ビッカース硬さAとBの差、十字引張強さ(CTS)について示す。 Table 4 shows the width Wb of the solidification / reheating portion, the average Vickers hardness A of the remelted solidification portion (excluding shrinkage cavities), and the average of 0.5 mm from the melting boundary of the melt solidification portion for the test pieces after the heat treatment. The Vickers hardness B, the difference between the average Vickers hardness A and B, and the cross tensile strength (CTS) are shown.

CTSは、JIS Z3137にスポット接合の強度試験方法として記載されている方法を採用した。また、接合後、点状接合部の中心を通り、板面に垂直に鋼板を切断し研磨し、引け巣の大きさを観察するととともに、ビッカース硬さを測定した。なお、比較例1、5、14のビッカース硬さAは、溶融凝固部の中心部の平均ビッカース硬さである。 For CTS, the method described in JIS Z3137 as a strength test method for spot bonding was adopted. After joining, the steel sheet was cut and polished through the center of the punctate joint and perpendicular to the plate surface, the size of the shrinkage cavities was observed, and the Vickers hardness was measured. The Vickers hardness A of Comparative Examples 1, 5 and 14 is the average Vickers hardness of the central portion of the melt-solidified portion.

Figure 0006786977
Figure 0006786977

No.2〜4、6〜8、10〜13は、点状の接合部に熱処理を行い、本発明の接合継手で規定する構成を満足するため、溶融凝固部の溶融境界から0.5mmの範囲の靱性が向上し、十字引張強さ(CTS)が高い。 No. In Nos. 2, 4, 6 to 8, 10 to 13, the point-shaped joints are heat-treated, and in order to satisfy the configuration specified by the joint of the present invention, the range is 0.5 mm from the melting boundary of the melt-solidified portion. The toughness is improved and the cross tensile strength (CTS) is high.

それに対して、No.1、No.5、及び、No.14は、点状の接合部に熱処理を行っていないため、溶融凝固部の溶融境界の靱性が向上せず、十字引張強さ(CTS)が低い。また、No.9は、溶融凝固部の全部に熱処理を行ったため、溶融凝固部の溶融境界の靱性が向上せず、十字引張強さ(CTS)が低い。 On the other hand, No. 1, No. 5 and No. In No. 14, since the point-shaped joints were not heat-treated, the toughness of the melt boundary of the melt-solidified portion was not improved, and the cross tensile strength (CTS) was low. In addition, No. In No. 9, since the entire melt-solidified portion was heat-treated, the toughness of the melt boundary of the melt-solidified portion was not improved, and the cross tensile strength (CTS) was low.

本発明によれば、点状の接合部の溶融境界近傍に、靱性に優れる凝固再加熱部を設けたので、重ね接合継手の継手強度、特に、十字引張強さ(CTS)を向上させることができ、接合継手の信頼性を向上させることができる。そして、本発明の接合継手を自動車部品に適用することで、自動車部品の信頼性を向上させることができる。よって、本発明は、産業上の利用可能性が高いものである。 According to the present invention, since the solidification reheating portion having excellent toughness is provided near the melting boundary of the point-shaped joint portion, the joint strength of the lap joint, particularly the cross tensile strength (CTS) can be improved. It is possible to improve the reliability of the joint joint. Then, by applying the joint of the present invention to an automobile part, the reliability of the automobile part can be improved. Therefore, the present invention has high industrial applicability.

1 接合継手
2a、2b 金属板
3 点状の接合部の溶融凝固部
3a 再溶融凝固部
3b 凝固再加熱部
10 接合継手
20a、20b 金属板
30 点状の接合部の溶融凝固部
30a 再溶融凝固部
30b 凝固再加熱部
30c 凝固再加熱部
50 光線
60a、60b 照射予定箇所
70a、70b 照射予定箇所
X 板厚方向のビッカース硬さの測定位置
L1 金属板表面と平行方向のビッカース硬さの測定範囲
L2 溶融凝固部のビッカース硬さの測定範囲
L3 再溶融凝固部のビッカース硬さの測定範囲
C 中心軸
W 溶融凝固部の幅
Wa 再溶融凝固部の幅
Wb 凝固再加熱部の幅
Wc 溶融境界近傍の凝固再加熱部の幅
1 Joint joint 2a, 2b Metal plate 3 Point-shaped joint melt solidification part 3a Remelt solidification part 3b Solidification reheating part 10 Joint joint 20a, 20b Metal plate 30 Point-shaped joint melt solidification part 30a Remelt solidification Part 30b Solidification reheating part 30c Solidification reheating part 50 Rays 60a, 60b Scheduled irradiation location 70a, 70b Scheduled irradiation location X Vickers hardness measurement position in the plate thickness direction L1 Vickers hardness measurement range in the direction parallel to the metal plate surface L2 Measuring range of Vickers hardness of melt-solidified part L3 Measuring range of Vickers hardness of re-melted-solidified part C Central axis W Width of melt-solidified part Wa Width of re-melted-solidified part Wb Width of solidifying and reheating part Width of solidification and reheating part of

Claims (6)

重ね合わされた複数の金属板で構成され、点状の光線照射接合部を有する重ね接合継手において、
前記点状の接合部は、前記複数の金属板に跨る溶融凝固部を有し、
前記溶融凝固部は、再溶融凝固部と、凝固再加熱部とを有し、
前記再溶融凝固部は、前記溶融凝固部を平面視したとき、当該溶融凝固部の中心を含む点状で、前記複数の金属板に跨っており、
前記凝固再加熱部は、前記再溶融凝固部の周囲に位置し、前記溶融凝固部と母材との間の溶融境界、及び、当該溶融境界から前記再溶融凝固部に向かって0.5mmの範囲を含んでおり、前記再溶融凝固部より軟化している部分をも含む
ことを特徴とする重ね接合継手。
In a lap joint that is composed of a plurality of lapped metal plates and has a point-shaped light irradiation joint.
The point-shaped joint has a melt-solidified portion that straddles the plurality of metal plates.
The melt-solidified portion has a remelt-solidified portion and a solidified / reheated portion.
When the melt-solidified portion is viewed in a plan view, the re-melt-solidified portion has a dot shape including the center of the melt-solidified portion and straddles the plurality of metal plates.
The solidification and reheating portion is located around the remelt and solidification portion, and is 0.5 mm from the fusion boundary between the fusion and solidification portion and the base metal and the fusion boundary toward the remelt and solidification portion. A lap joint that includes a range and includes a portion that is softened from the remelted and solidified portion.
前記凝固再加熱部のうち、前記金属板の重ね合わせ面の前記溶融境界から、前記再溶融凝固部に向かって0.5mmの範囲のビッカース硬さの平均値は、Hv390以下であり、かつ、前記再溶融凝固部のビッカース硬さの平均値よりHv70以上低いことを特徴とする請求項1に記載の重ね接合継手。 Among the solidification and reheating portions, the average value of Vickers hardness in the range of 0.5 mm from the melting boundary of the overlapping surface of the metal plates toward the remelting and solidifying portion is Hv390 or less and The lap joint joint according to claim 1, wherein the Vickers hardness of the remelted solidified portion is lower than the average value of Hv70 or more. 前記複数の金属板が、表面処理皮膜を有する金属板を1枚以上含むことを特徴とする請求項1又は2に記載の重ね接合継手。 The lap joint according to claim 1 or 2, wherein the plurality of metal plates include one or more metal plates having a surface treatment film. 複数の金属板を重ね合わせ、高いパワー密度を有する光線を照射して接合する重ね接合継手の製造方法において、
重ね合わされた一方の金属板に高いパワー密度を有する光線を照射して、前記複数の金属板に跨って点状に溶融凝固した溶融凝固部を有する点状の接合部を形成し、
前記高いパワー密度を有する光線の照射側から前記溶融凝固部を平面視したとき、当該溶融凝固部の内側に前記高いパワー密度を有する光線を再照射し、当該溶融凝固部の円相当中心を含む点状に、前記複数の金属板に跨って再溶融凝固させて再溶融凝固部を形成するとともに、当該再溶融凝固部の周囲に、前記溶融凝固部と母材との間の溶融境界、及び、当該溶融境界から前記再溶融凝固部に向かって0.5mmの範囲を含む凝固再加熱部を形成し、更に、その際の再加熱条件を調整して前記凝固再加熱部を前記再溶融凝固部より軟化させることを特徴とする重ね接合継手の製造方法。
In a method for manufacturing a lap joint, in which a plurality of metal plates are superposed and irradiated with a light beam having a high power density to join them.
One of the overlapped metal plates is irradiated with a light beam having a high power density to form a dot-shaped joint having a melt-solidified portion that is melt-solidified in a dot shape over the plurality of metal plates.
When the melt-solidified portion is viewed in a plan view from the irradiation side of the light beam having a high power density, the light beam having the high power density is re-irradiated inside the melt-solidified portion, and includes the circular equivalent center of the melt-solidified portion. A remelt solidification portion is formed by remelting and solidifying across the plurality of metal plates in a dotted manner , and a melting boundary between the melt solidifying portion and the base metal is formed around the remelting and solidifying portion. to form a solidified reheating portion from the fusion boundary includes the range of 0.5mm toward the remelted and solidified portion, further to the re-melt the solidified reheating portion by adjusting the re-heating conditions at that time A method for manufacturing a lap joint, which is characterized by being softened from a solidified portion.
前記高いパワー密度を有する光線の再照射は、前記複数の金属板の板厚方向断面において、前記再溶融凝固した再溶融凝固部の外側端部から前記点状の接合部の溶融境界までの距離が1.0〜3.0mmとなるように行われることを特徴とする請求項4に記載の重ね接合継手の製造方法。 The re-irradiation of the light beam having a high power density is the distance from the outer end portion of the remelt solidified portion of the remelted solidified portion to the melting boundary of the point-shaped joint portion in the plate thickness direction cross section of the plurality of metal plates. The method for manufacturing a lap joint according to claim 4, wherein the lap joint is set to 1.0 to 3.0 mm. 前記複数の金属板に、表面処理皮膜を形成した金属板を1枚以上用いることを特徴とする請求項4又は5に記載の重ね接合継手の製造方法。 The method for manufacturing a lap joint according to claim 4 or 5, wherein one or more metal plates having a surface treatment film formed on the plurality of metal plates are used.
JP2016177077A 2015-09-10 2016-09-09 Laminated joint and its manufacturing method Active JP6786977B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015178433 2015-09-10
JP2015178433 2015-09-10

Publications (2)

Publication Number Publication Date
JP2017052006A JP2017052006A (en) 2017-03-16
JP6786977B2 true JP6786977B2 (en) 2020-11-18

Family

ID=58320205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177077A Active JP6786977B2 (en) 2015-09-10 2016-09-09 Laminated joint and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6786977B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173681B2 (en) * 2017-05-22 2022-11-16 日本メクトロン株式会社 Joining structure of thin metal plate and base material, and method for welding thin metal plate and base material
WO2019198725A1 (en) * 2018-04-09 2019-10-17 日本製鉄株式会社 Spot welding joint, automobile frame part provided with spot welding joint, and method for producing spot welding joint
MX2020013834A (en) 2018-06-27 2021-03-25 Smc Corp Butt welded joint of steel material and method for manufacturing same.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798084B1 (en) * 1999-09-03 2001-10-19 Renault METHOD AND DEVICE FOR WELDING SHEETS
JP2002160083A (en) * 2000-11-29 2002-06-04 Nippon Steel Corp Method of laser welding for overlapped zinc steel plates
JP4936718B2 (en) * 2005-12-12 2012-05-23 ミヤチテクノス株式会社 Laser welding method
JP5630373B2 (en) * 2011-05-19 2014-11-26 新日鐵住金株式会社 Manufacturing method of steel plate welded portion excellent in delayed fracture resistance and steel structure having the welded portion
JP2014147962A (en) * 2013-02-01 2014-08-21 Olympus Medical Systems Corp Member joining method, member-joined structure and joined pipe

Also Published As

Publication number Publication date
JP2017052006A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
KR101463702B1 (en) Laser welding method
JP6430070B2 (en) Laser welding method for producing semi-finished sheet metal products made of hardenable steel and having an aluminum or aluminum-silicon coating
CA2939839C (en) Method for laser welding one or more workpieces made of hardenable steel in a butt joint
CN104507628B (en) The welding method of overlapping portion, the manufacture method of overlap welding component, overlap welding component and automotive part
US10589380B2 (en) Lap welding method, lap joint, production method of lap joint, and an automobile part
JP6690540B2 (en) Laser welded joint and laser welding method
JP5505369B2 (en) Laser welded joint with excellent joint strength and manufacturing method thereof
JP5999253B2 (en) Manufacturing method of arc spot welded joint
KR20150095649A (en) Method for laser welding one or more workpieces of hardenable steel with a butt joint using a filler wire
KR20180019214A (en) Fillet arc welded joint and manufacturing method thereof
JP6786977B2 (en) Laminated joint and its manufacturing method
JP2010012504A (en) Laser beam welding structural member and its manufacturing method
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP2017113781A (en) Lap laser spot welding joint and manufacturing method of the welding joint
JP6288287B2 (en) Brazing joint manufacturing method and brazing joint
JP6379819B2 (en) Lap welding member, lap resistance seam welding method of lap welding member, and lap welding member for automobile having lap welding part
KR102398807B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint and skeletal parts for automobiles
JP6798359B2 (en) Laminated joint and its manufacturing method
JP6866691B2 (en) Laminated joint and its manufacturing method
JP2017052005A (en) Lap joint coupler and method for manufacturing same
JP6885523B2 (en) Manufacturing method of spot welded joints and spot welded joints
JP7151762B2 (en) SPOT WELD JOINTS, MOTOR VEHICLE STRUCTURE COMPONENTS WITH SPOT WELD JOINTS, AND METHOD FOR MANUFACTURING THE SPOT WELD JOINTS
JP6852797B2 (en) Laminated laser welded joints, manufacturing methods of lap laser welded joints and skeleton parts for automobiles
JP6176428B1 (en) Lap laser welded joint, method for producing the welded joint, and automotive framework component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R151 Written notification of patent or utility model registration

Ref document number: 6786977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151