JP6786848B2 - Support methods, equipment and programs for molten steel temperature control in the steelmaking process - Google Patents

Support methods, equipment and programs for molten steel temperature control in the steelmaking process Download PDF

Info

Publication number
JP6786848B2
JP6786848B2 JP2016075406A JP2016075406A JP6786848B2 JP 6786848 B2 JP6786848 B2 JP 6786848B2 JP 2016075406 A JP2016075406 A JP 2016075406A JP 2016075406 A JP2016075406 A JP 2016075406A JP 6786848 B2 JP6786848 B2 JP 6786848B2
Authority
JP
Japan
Prior art keywords
value
target temperature
molten steel
secondary refining
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016075406A
Other languages
Japanese (ja)
Other versions
JP2017186601A (en
Inventor
宏 北田
宏 北田
康輔 伊藤
康輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016075406A priority Critical patent/JP6786848B2/en
Publication of JP2017186601A publication Critical patent/JP2017186601A/en
Application granted granted Critical
Publication of JP6786848B2 publication Critical patent/JP6786848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Description

本発明は、1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御の支援方法、装置及びプログラムに関する。 INDUSTRIAL APPLICABILITY The present invention relates to a method, an apparatus, and a method, an apparatus for supporting molten steel temperature control in a steelmaking process in which molten steel is dispensed into a ladle after primary refining in a primary refining furnace, secondary refining, and continuous casting. Regarding the program.

製鋼工場での製鋼工程では、電気炉又は転炉等の1次精錬炉から吹錬完了後、取鍋に溶鋼を出鋼し、取鍋に溶鋼を満たしたままRH脱ガス装置又は取鍋精錬装置(LF)等の2次精錬設備により精錬処理を行い、連続鋳造機に搬送して鋳片を製造する。
製鋼工程においては、予め転炉吹錬開始前に定めた操業スケジュール、製造材質(鋼種)に関する合金投入及び2次精錬の条件設定値を用いて、連続鋳造開始時の溶鋼温度が目標温度となるように、取鍋に出鋼した溶鋼が連続鋳造で鋳造されるまでの間の、取鍋への出鋼完了時の狙い温度指示値、2次精錬開始時の狙い温度指示値、及び2次精錬終了時の狙い温度指示値を、転炉吹錬前に決定する。
狙い温度指示値の決定方法には、鋼種や操業方法ごとに詳細な条件表を基に決定する方法や、溶鋼温度の処理間及び処理中の変化を処理間の取鍋搬送時間及び2次精錬処理中の操業条件実績データから回帰式で表わすモデルで表現し、そのモデルを基に数理計画法等の最適化手段により決定する方法等がある。
In the steelmaking process at a steelmaking factory, after the smelting is completed from a primary smelting furnace such as an electric furnace or a converter, molten steel is discharged into a ladle, and the RH degassing device or ladle smelting is performed while the ladle is filled with molten steel. The refining process is performed by a secondary refining facility such as an apparatus (LF), and the pieces are transported to a continuous casting machine to produce slabs.
In the steelmaking process, the target temperature is the molten steel temperature at the start of continuous casting, using the operation schedule set in advance before the start of converter smelting, the alloy input for the manufacturing material (steel type), and the condition setting values for secondary refining. As described above, the target temperature indication value at the time of completion of steelmaking to the ladle and the target temperature indication value at the start of secondary refining until the molten steel discharged to the ladle is cast by continuous casting, and the secondary The target temperature indication value at the end of refining is determined before the converter blown.
The target temperature indicated value can be determined based on a detailed condition table for each steel type and operating method, and the ladle transfer time and secondary refining between treatments and changes in the molten steel temperature during treatment. There is a method of expressing by a model expressed by a regression equation from the operating condition actual data during processing and determining by an optimization means such as a mathematical programming method based on the model.

通常は、一連の処理(以下、取鍋ごとにチャージと呼ぶ)について、鋼種ごとに、取鍋への出鋼完了時の溶鋼温度の上下限制約、2次精錬開始時の溶鋼温度の上下限制約、及び2次精錬終了時の溶鋼温度の上下限制約が定められており、各狙い温度指示値は、これらの温度制約を守るように決定されなければならない。
しかしながら、転炉吹錬前に定められる2次精錬開始及び連続鋳造開始のスケジュールが適切でない場合には、上記温度制約を守る狙い温度指示値を決定することができないことがある。そのため、取鍋への出鋼後の冷材投入、2次精錬における昇温処理又は冷材投入等の温度調整処理が必要になることがある。或いは、狙い温度指示値通りの操業をした場合には、連続鋳造中の溶鋼温度が過度に高温となるため鋳造速度を当初の予定速度より低下させざるを得なかったり、過度に低温となるため鋳造を早期に打切らざるを得なかったりする等、操業の途中変更が生じることがある。
Normally, for a series of processes (hereinafter referred to as charge for each ladle), the upper and lower limits of the molten steel temperature at the completion of steel delivery to the ladle are restricted for each steel type, and the upper and lower limits of the molten steel temperature at the start of secondary refining are applied. The upper and lower limit constraints of the molten steel temperature at the end of the secondary refining are set, and each target temperature indication value must be determined so as to comply with these temperature constraints.
However, if the schedule for the start of secondary refining and the start of continuous casting set before the converter blowing is not appropriate, it may not be possible to determine the target temperature indication value that keeps the above temperature constraints. Therefore, it may be necessary to perform a temperature adjustment process such as a temperature raising process or a cold material input in the secondary refining after the steel is discharged into the ladle. Alternatively, if the operation is performed according to the target temperature indicated value, the molten steel temperature during continuous casting becomes excessively high, and the casting speed must be lowered from the originally planned speed, or the casting speed becomes excessively low. Changes may occur during the operation, such as the casting being forced to be terminated early.

このような課題は、従来、溶鋼温度と操業スケジュールを同時に最適化することで解決が図られてきた。
特許文献1では、少なくとも1基以上の転炉、少なくとも1基以上の2次精錬設備、及び、少なくとも1基以上の連続鋳造機を用いた製鋼プロセスにおける操業スケジュールを作成する方法であって、対象期間における複数のチャージの操業予定情報を読み込む、予定情報読込工程と、前記複数のチャージのうち既に各設備における処理を開始しているチャージがある場合に、該処理を開始しているチャージの処理開始実績時刻または処理終了実績時刻に関する操業実績情報を読み込む、実績情報読込工程と、前記操業予定情報及び前記操業実績情報に基づいて、制約条件として、少なくとも、処理を実施する各設備における処理開始時刻及び処理終了時刻の条件、及び、各設備の開始時及び終了時における溶鋼温度の条件を生成する、制約条件生成工程と、連続鋳造機における溶鋼温度により計算される指標を含む目的関数を生成する、目的関数生成工程と、前記制約条件のもとで、前記目的関数を最大化又は最小化するようなスケジュールを決定する、最適スケジュール決定工程と、を備える、操業スケジュール作成方法が開示されている。
しかしながら、特許文献1の手法は、溶鋼温度の制約を満たすために操業スケジュールを変更するものであるといえる。転炉吹錬開始前に2次精錬以降の操業スケジュールが確定する場合、特許文献1のように2次精錬開始時刻や連続鋳造開始時刻を変更することができない。
したがって、操業及び品質上許容できる範囲で温度制約を緩和して操業可能な目標温度経路を立案することが求められ、制約条件を完全に満たさなくても次善の解を提示することが重要である。
Conventionally, such problems have been solved by optimizing the molten steel temperature and the operation schedule at the same time.
Patent Document 1 is a method for creating an operation schedule in a steelmaking process using at least one converter, at least one secondary refining facility, and at least one continuous casting machine. A schedule information reading process that reads operation schedule information of a plurality of charges in a period, and processing of a charge that has already started processing when there is a charge that has already started processing in each facility among the plurality of charges. Based on the performance information reading process that reads the operation performance information related to the start actual time or the processing end actual time, and the operation schedule information and the operation performance information, as a constraint condition, at least the processing start time in each facility that performs the processing. And the condition of the processing end time, and the condition of the molten steel temperature at the start and end of each facility, the constraint condition generation process, and the objective function including the index calculated by the molten steel temperature in the continuous casting machine are generated. Disclosed is an operation schedule creation method including an objective function generation step and an optimum schedule determination step for determining a schedule for maximizing or minimizing the objective function under the constraint condition. ..
However, it can be said that the method of Patent Document 1 changes the operation schedule in order to satisfy the constraint of the molten steel temperature. If the operation schedule after the secondary refining is determined before the start of the converter blowing, the secondary refining start time and the continuous casting start time cannot be changed as in Patent Document 1.
Therefore, it is required to relax the temperature constraints within the allowable range for operation and quality and to formulate a target temperature path that can be operated, and it is important to present the next best solution even if the constraints are not completely satisfied. is there.

また、特許文献2では、LP法(線形計画法)による計算で得られるLP解を使用していくつかの加熱制約条件の下で加熱炉の各帯炉を個々に制御し、燃料消費量を最少に保ちつつ、前記加熱炉内に装入された各スラブを目標抽出温度まで加熱させる加熱炉スラブ温度制御装置において、前記加熱制約条件に優先順位を持たせて格納した加熱制約条件格納部と、LP法による計算を行っても、全ての加熱制約条件を満たす最適なLP解が見つからないときには、前記加熱制約条件格納部に格納された加熱制約条件の中から優先順位が低い加熱制約条件を除き、再度LP法による計算を実行して最適なLP解を見つける演算部と、を備えたことを特徴とする加熱炉スラブ温度制御装置が開示されている。
しかしながら、特許文献2の手法は、LP解が得られるまでに制約条件を取り除く最短順序は事前には知ることができず、LP解が得られるまでに不必要に制約条件を取り除いてしまうおそれがある。
Further, in Patent Document 2, each belt furnace of the heating furnace is individually controlled under some heating constraints by using the LP solution obtained by the calculation by the LP method (linear programming method), and the fuel consumption is controlled. In the heating furnace slab temperature control device that heats each slab charged in the heating furnace to the target extraction temperature while keeping the minimum, the heating constraint condition storage unit that stores the heating constraint conditions with priority. , Even if the calculation by the LP method is performed, if the optimum LP solution satisfying all the heating constraint conditions cannot be found, the heating constraint condition having a lower priority is selected from the heating constraint conditions stored in the heating constraint condition storage unit. Except for this, a heating furnace slab temperature control device including a calculation unit for performing a calculation by the LP method again to find an optimum LP solution and a heating furnace slab temperature control device are disclosed.
However, in the method of Patent Document 2, the shortest order for removing the constraint condition until the LP solution is obtained cannot be known in advance, and there is a possibility that the constraint condition is unnecessarily removed by the time the LP solution is obtained. is there.

特開2014−36974号公報JP-A-2014-366974 特開2000−256734号公報Japanese Unexamined Patent Publication No. 2000-256734

本発明は上記のような点に鑑みてなされたものであり、操業スケジュールの変更を行わずに、かつ、温度制約を適切に緩和しながら、取鍋への出鋼完了時の狙い温度指示値、2次精錬開始時の狙い温度指示値、2次精錬終了時の狙い温度指示値、及び連続鋳造開始時の溶鋼温度の予測値を提示できるようにすることを目的とする。 The present invention has been made in view of the above points, and is a target temperature indicated value at the time of completion of steel delivery to the ladle without changing the operation schedule and appropriately relaxing the temperature constraint. The purpose is to be able to present the target temperature indicated value at the start of the secondary refining, the target temperature indicated value at the end of the secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting.

上記の課題を解決するための本発明の要旨は、以下のとおりである。
[1] 1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御の支援方法であって、
取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値と、前記各狙い温度指示値それぞれの上下限制約からの外れ量の絶対値(制約違反量と呼ぶ)を表わす変数とをそれぞれ決定変数とし、また、連続鋳造開始時の溶鋼温度の予測値と目標温度との差の絶対値と、前記制約違反量を表わす変数に非負値をとる重み係数を乗じた値の和とを含む関数を目的関数とする線形計画問題として、
取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量を推定するモデルと、2次精錬開始から2次精錬終了までの溶鋼温度の降下量を推定するモデルと、2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルとに基づいて定められ、前記各狙い温度指示値及び連続鋳造開始時の溶鋼温度の予測値を含んで表現される等式制約条件と、
取鍋への出鋼完了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、取鍋への出鋼完了時の狙い温度指示値が含まれることを表す不等式と、2次精錬開始時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬開始時の狙い温度指示値が含まれることを表す不等式と、2次精錬終了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬終了時の狙い温度指示値が含まれることを表す不等式とで表現される不等式制約条件とに基づいて、
前記重み係数の複数の組み合わせについて前記目的関数を最小化する最適解を算出する最適解算出ステップと、
前記最適解算出ステップで、前記重み係数の複数の組み合わせのそれぞれに対応して算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを提示する提示ステップとを有することを特徴とする製鋼工程における溶鋼温度制御の支援方法。
[2] 前記重み係数の複数の組み合せは、前記重み係数をすべて0にする組み合せと、前記各狙い温度指示値ごとに一の狙い温度指示値の前記重み係数を他の狙い温度指示値の前記重み係数より十分大きくする組み合わせとを含むことを特徴とする[1]に記載の製鋼工程における溶鋼温度制御の支援方法。
[3] 前記重み係数の大きさを、前記上下限制約内に入ることを重視する狙い温度指示値に対しては1以上とし、前記上下限制約内に入ることを軽視する狙い温度指示値に対しては0.01以下とすることを特徴とする[2]に記載の製鋼工程における溶鋼温度制御の支援方法。
[4] 前記提示ステップは、前記最適解算出ステップで算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを時間経過に対してプロットしたグラフを、前記それぞれの上下限制約、及び前記目標温度とともに描画して表示装置に画面表示することを特徴とする[1]乃至[3]のいずれか一つに記載の製鋼工程における溶鋼温度制御の支援方法。
[5] 1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御の支援装置であって、
取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値と、前記各狙い温度指示値それぞれの上下限制約からの外れ量の絶対値(制約違反量と呼ぶ)を表わす変数とをそれぞれ決定変数とし、また、連続鋳造開始時の溶鋼温度の予測値と目標温度との差の絶対値と、前記制約違反量を表わす変数に非負値をとる重み係数を乗じた値の和とを含む関数を目的関数とする線形計画問題として、
取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量を推定するモデルと、2次精錬開始から2次精錬終了までの溶鋼温度の降下量を推定するモデルと、2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルとに基づいて定められ、前記各狙い温度指示値及び連続鋳造開始時の溶鋼温度の予測値を含んで表現される等式制約条件と、
取鍋への出鋼完了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、取鍋への出鋼完了時の狙い温度指示値が含まれることを表す不等式と、2次精錬開始時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬開始時の狙い温度指示値が含まれることを表す不等式と、2次精錬終了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬終了時の狙い温度指示値が含まれることを表す不等式とで表現される不等式制約条件とに基づいて、
前記重み係数の複数の組み合わせについて前記目的関数を最小化する最適解を算出する最適解算出手段と、
前記最適解算出手段で、前記重み係数の複数の組み合わせのそれぞれに対応して算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを提示する提示手段とを備えたことを特徴とする製鋼工程における溶鋼温度制御の支援装置。
[6] 1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御を支援するためのプログラムであって、
取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値と、前記各狙い温度指示値それぞれの上下限制約からの外れ量の絶対値(制約違反量と呼ぶ)を表わす変数とをそれぞれ決定変数とし、また、連続鋳造開始時の溶鋼温度の予測値と目標温度との差の絶対値と、前記制約違反量を表わす変数に非負値をとる重み係数を乗じた値の和とを含む関数を目的関数とする線形計画問題として、
取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量を推定するモデルと、2次精錬開始から2次精錬終了までの溶鋼温度の降下量を推定するモデルと、2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルとに基づいて定められ、前記各狙い温度指示値及び連続鋳造開始時の溶鋼温度の予測値を含んで表現される等式制約条件と、
取鍋への出鋼完了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、取鍋への出鋼完了時の狙い温度指示値が含まれることを表す不等式と、2次精錬開始時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬開始時の狙い温度指示値が含まれることを表す不等式と、2次精錬終了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬終了時の狙い温度指示値が含まれることを表す不等式とで表現される不等式制約条件とに基づいて、
前記重み係数の複数の組み合わせについて前記目的関数を最小化する最適解を算出する最適解算出処理と、
前記最適解算出処理で、前記重み係数の複数の組み合わせのそれぞれに対応して算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを提示する提示処理とをコンピュータに実行させるためのプログラム。
The gist of the present invention for solving the above problems is as follows.
[1] A method for supporting the temperature control of molten steel in a steelmaking process in which molten steel is put out in a ladle after primary refining in a primary refining furnace and then secondary refining and continuous casting are performed.
The target temperature indication value at the completion of steel delivery to the pan, the target temperature indication value at the start of secondary refining, the target temperature indication value at the end of secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting. , The variable representing the absolute value (called the constraint violation amount) of the amount of deviation from the upper and lower limit constraints of each target temperature indicated value is used as a determination variable, and the predicted value and target of the molten steel temperature at the start of continuous casting. As a linear planning problem whose objective function is a function including the absolute value of the difference from temperature and the sum of the values obtained by multiplying the variable representing the constraint violation amount by a weighting coefficient that takes a non-negative value.
A model that estimates the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining. An equation constraint condition that is determined based on a model that estimates the amount of decrease in molten steel temperature from the end to the start of continuous casting, and is expressed including the respective target temperature indication values and the predicted value of the molten steel temperature at the start of continuous casting. When,
An inequality indicating that the target temperature indication value at the completion of steel delivery to the pan is included within the range in which the upper and lower limit constraints of the target temperature indication value at the completion of steel delivery to the pan are relaxed by the above constraint violation amount. The inequality indicating that the target temperature indicated value at the start of the secondary refining is included within the range in which the upper and lower limit constraints of the target temperature indicated value at the start of the secondary refining are relaxed by the constraint violation amount, and the end of the secondary refining. Based on the inequality constraint condition expressed by the inequality indicating that the target temperature indicated value at the end of the secondary refining is included in the range in which the upper and lower limit constraints of the target temperature indicated value at the time are relaxed by the constraint violation amount. hand,
An optimal solution calculation step for calculating an optimal solution that minimizes the objective function for a plurality of combinations of the weighting coefficients, and
In the optimum solution calculation step, the target temperature indication value at the time of completion of steelmaking to the ladle and the target temperature instruction at the start of the secondary refining in the optimum solution calculated corresponding to each of the plurality of combinations of the weight coefficients. The molten steel temperature control in the steelmaking process is characterized by having a presentation step of presenting a plurality of combinations of a value, a target temperature indicated value at the end of secondary refining, and a predicted value of the molten steel temperature at the start of continuous casting. Support method.
[2] The plurality of combinations of the weighting coefficients are a combination in which the weighting coefficients are all set to 0, and the weighting coefficient of one target temperature indicated value for each targeting temperature indicated value is used as the other targeting temperature indicated value. The method for supporting molten steel temperature control in the steelmaking process according to [1], which includes a combination that is sufficiently larger than the weighting coefficient.
[3] The magnitude of the weighting coefficient is set to 1 or more for the target temperature indicated value that emphasizes falling within the upper and lower limit constraints, and the target temperature indicated value that neglects entering the upper and lower limit constraints. On the other hand, the method for supporting the temperature control of molten steel in the steelmaking process according to [2], wherein the temperature is 0.01 or less.
[4] In the presentation step, the target temperature indicated value at the time of completion of steelmaking to the ladle in the optimum solution calculated in the optimum solution calculation step, the target temperature indicated value at the start of the secondary refining, and the secondary refining A graph in which a plurality of combinations of the target temperature indicated value at the end and the predicted value of the molten steel temperature at the start of continuous casting are plotted against the passage of time is drawn together with the upper and lower limit constraints and the target temperature. The method for supporting molten steel temperature control in a steelmaking process according to any one of [1] to [3], which comprises displaying on a screen on a display device.
[5] A support device for temperature control of molten steel in a steelmaking process in which molten steel is dispensed into a ladle after primary refining in a primary refining furnace and then secondary refining and continuous casting are performed.
The target temperature indication value at the completion of steel delivery to the pan, the target temperature indication value at the start of secondary refining, the target temperature indication value at the end of secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting. , The variable representing the absolute value (called the constraint violation amount) of the amount of deviation from the upper and lower limit constraints of each target temperature indicated value is used as a determination variable, and the predicted value and target of the molten steel temperature at the start of continuous casting. As a linear planning problem whose objective function is a function including the absolute value of the difference from temperature and the sum of the values obtained by multiplying the variable representing the constraint violation amount by a weighting coefficient that takes a non-negative value.
A model that estimates the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining. An equation constraint condition that is determined based on a model that estimates the amount of decrease in molten steel temperature from the end to the start of continuous casting, and is expressed including the respective target temperature indication values and the predicted value of the molten steel temperature at the start of continuous casting. When,
An inequality indicating that the target temperature indication value at the completion of steel delivery to the pan is included within the range in which the upper and lower limit constraints of the target temperature indication value at the completion of steel delivery to the pan are relaxed by the above constraint violation amount. The inequality indicating that the target temperature indicated value at the start of the secondary refining is included within the range in which the upper and lower limit constraints of the target temperature indicated value at the start of the secondary refining are relaxed by the constraint violation amount, and the end of the secondary refining. Based on the inequality constraint condition expressed by the inequality indicating that the target temperature indicated value at the end of the secondary refining is included in the range in which the upper and lower limit constraints of the target temperature indicated value at the time are relaxed by the constraint violation amount. hand,
An optimal solution calculation means for calculating an optimal solution that minimizes the objective function for a plurality of combinations of the weighting coefficients.
The target temperature indication value at the time of completion of steelmaking to the ladle and the target temperature instruction at the start of the secondary refining in the optimum solution calculated corresponding to each of the plurality of combinations of the weight coefficients by the optimum solution calculation means. Steelmaking temperature control in a steelmaking process, which comprises a presenting means for presenting a plurality of combinations of a value, a target temperature indicated value at the end of secondary refining, and a predicted value of the molten steel temperature at the start of continuous casting. Support device.
[6] A program to support the temperature control of molten steel in the steelmaking process of primary refining in the primary refining furnace, secondary refining after the molten steel is put out in the ladle after the primary refining, and continuous casting. There,
The target temperature indication value at the completion of steel delivery to the pan, the target temperature indication value at the start of secondary refining, the target temperature indication value at the end of secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting. , The variable representing the absolute value (called the constraint violation amount) of the amount of deviation from the upper and lower limit constraints of each target temperature indicated value is used as a determination variable, and the predicted value and target of the molten steel temperature at the start of continuous casting. As a linear planning problem whose objective function is a function including the absolute value of the difference from temperature and the sum of the values obtained by multiplying the variable representing the constraint violation amount by a weighting coefficient that takes a non-negative value.
A model that estimates the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining. An equation constraint condition that is determined based on a model that estimates the amount of decrease in molten steel temperature from the end to the start of continuous casting, and is expressed including the respective target temperature indication values and the predicted value of the molten steel temperature at the start of continuous casting. When,
An inequality indicating that the target temperature indication value at the completion of steel delivery to the pan is included within the range in which the upper and lower limit constraints of the target temperature indication value at the completion of steel delivery to the pan are relaxed by the above constraint violation amount. The inequality indicating that the target temperature indicated value at the start of the secondary refining is included within the range in which the upper and lower limit constraints of the target temperature indicated value at the start of the secondary refining are relaxed by the constraint violation amount, and the end of the secondary refining. Based on the inequality constraint condition expressed by the inequality indicating that the target temperature indicated value at the end of the secondary refining is included in the range in which the upper and lower limit constraints of the target temperature indicated value at the time are relaxed by the constraint violation amount. hand,
Optimal solution calculation processing for calculating the optimal solution that minimizes the objective function for a plurality of combinations of the weighting coefficients, and
In the optimum solution calculation process, the target temperature instruction value at the time of completion of steel delivery to the ladle and the target temperature instruction at the start of the secondary refining in the optimum solution calculated corresponding to each of the plurality of combinations of the weight coefficients. A program for causing a computer to execute a presentation process that presents a plurality of combinations of a value, a target temperature indicated value at the end of secondary refining, and a predicted value of a molten steel temperature at the start of continuous casting.

本発明によれば、操業スケジュールの変更を行わずに、かつ、温度制約を適切に緩和しながら、取鍋への出鋼完了時の狙い温度指示値、2次精錬開始時の狙い温度指示値、2次精錬終了時の狙い温度指示値、及び連続鋳造開始時の溶鋼温度の予測値の複数の組み合わせを提示することができる。これにより、複数の組み合せの中から操業に適した各狙い温度指示値、及び連続鋳造開始時の溶鋼温度の予測値の組み合せを、操業者の知見により選択することが可能となる。 According to the present invention, the target temperature indicated value at the time of completion of steel delivery to the ladle and the target temperature indicated value at the start of secondary refining without changing the operation schedule and appropriately relaxing the temperature constraint. It is possible to present a plurality of combinations of the target temperature indicated value at the end of the secondary refining and the predicted value of the molten steel temperature at the start of continuous casting. This makes it possible to select a combination of each target temperature indicated value suitable for the operation and a predicted value of the molten steel temperature at the start of continuous casting from a plurality of combinations based on the knowledge of the operator.

実施形態に係る溶鋼温度制御の支援装置の機能構成を示す図である。It is a figure which shows the functional structure of the support device of molten steel temperature control which concerns on embodiment. 取鍋への出鋼完了時の狙い温度指示値、2次精錬開始時の狙い温度指示値、2次精錬終了時の狙い温度指示値、及び連続鋳造開始時の溶鋼温度の予測値の複数の組み合わせを提示する画面表示の例を示す図である。Multiple target temperature indication values at the completion of steel delivery to the ladle, target temperature indication values at the start of secondary refining, and predicted values of molten steel temperature at the start of continuous casting. It is a figure which shows the example of the screen display which presents a combination. 実施形態に係る溶鋼温度制御の支援装置による溶鋼温度制御の支援方法を示すフローチャートである。It is a flowchart which shows the support method of the molten steel temperature control by the support device of the molten steel temperature control which concerns on embodiment.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。本実施形態では、1次精錬炉として転炉、2次精錬装置としてRH脱ガス装置を使用する製鋼工程を想定するが、電気炉及びLF等を用いる場合にも本発明は適用可能である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the present embodiment, a steelmaking process in which a converter is used as the primary refining furnace and an RH degassing device is used as the secondary refining device is assumed, but the present invention is also applicable when an electric furnace, LF, or the like is used.

図1は、実施形態に係る溶鋼温度制御の支援装置100の機能構成を示す。
101は入力部であり、演算部102で線形計画問題を定式化し、それを解くのに必要な情報を入力する。
入力部101は、対象とするチャージについて、転炉吹錬開始前に定めた操業スケジュール、製造材質(鋼種)に関する合金投入及び2次精錬の条件設定値を入力する。これらの情報は、例えば操業者が入力装置104を用いて入力するようにしてもよいし、プロセスコンピュータ等の外部装置から受信するようにしてもよい。
また、入力部101は、取鍋への出鋼完了時の狙い温度指示値TLDの上限TLDU及び下限TLDL、2次精錬開始時の狙い温度指示値TRHSの上限TRHSU及び下限TRHSL、2次精錬終了時の狙い温度指示値TRHEの上限TRHEU及び下限TRHEL、連続鋳造開始時の溶鋼温度の目標温度TCCS *を入力する。これらの情報は、例えば操業者が入力装置104を用いて毎回入力するようにしてもよいし、例えば鋼種ごとに予め設定され、記憶装置に記憶されている値を選択して利用するようにしてもよい。
FIG. 1 shows the functional configuration of the molten steel temperature control support device 100 according to the embodiment.
Reference numeral 101 denotes an input unit, and the calculation unit 102 formulates a linear programming problem and inputs information necessary for solving the problem.
The input unit 101 inputs, for the target charge, the operation schedule determined before the start of the converter blowing, the alloy input regarding the manufacturing material (steel grade), and the condition setting values for the secondary refining. These information may be input by the operator using the input device 104, or may be received from an external device such as a process computer.
The input unit 101, the upper limit T RHSU and lower T max T LDU and lower T LDL, 2 primary refining starting mark temperatures indicated value T RHS of mark temperatures indicated value T LD during tapping the completion of the ladle Enter RHSL , the upper limit T RHEU and lower limit T RHEL of the target temperature indication value T RHE at the end of secondary refining, and the target temperature T CCS * of the molten steel temperature at the start of continuous casting. This information may be input by the operator each time using the input device 104, for example, or a value preset for each steel type and stored in the storage device may be selected and used. May be good.

102は最適解算出手段として機能する演算部であり、詳細は後述するが、入力部101で入力される情報に基づいて線形計画問題を定式化し、それを解いて、取鍋への出鋼完了時の狙い温度指示値TLD、2次精錬開始時の狙い温度指示値TRHS、2次精錬終了時の狙い温度指示値TRHE、連続鋳造開始時の溶鋼温度の予測値TCCSを求める。
ここで、各狙い温度指示値TLD、TRHS、TRHEがそれぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)から逸脱した場合において、上限を超えた場合の上限からの外れ量の絶対値、下限を超えた場合の下限からの外れ量の絶対値を制約違反量と呼ぶ。
演算部102は、各狙い温度指示値TLD、TRHS、TRHE、連続鋳造開始時の溶鋼温度の予測値TCCS、及び各狙い温度指示値TLD、TRHS、TRHEそれぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)に対する制約違反量を表わす変数miを決定変数とし、また、式(1)のように、連続鋳造開始時の溶鋼温度の予測値TCCSと目標温度TCCS *との差の絶対値と、制約違反量を表わす変数miに非負値をとる重み係数Wiを乗じた値の和とを足し合わせた関数を目的関数zとする線形計画問題として定式化する。なお、iは識別番号であり、上限TLDU、下限TLDL、上限TRHSU、下限TRHSL、上限TRHEU、下限TRHELの順にi=1、・・・、6が与えられる。
z=|TCCS *−TCCS|+Σiii ・・・(1)
このとき、取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量、2次精錬開始から2次精錬終了までの溶鋼温度の降下量、及び2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルに基づく等式制約条件と、各狙い温度指示値TLD、TRHS、TRHEがそれぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)を制約違反量で緩和した範囲内に含まれることを表わす不等式制約条件とに基づいて、重み係数Wiの複数の組み合わせについて目的関数zを最小化する最適解を算出する。
Reference numeral 102 denotes a calculation unit that functions as an optimum solution calculation means, and details will be described later. However, a linear planning problem is formulated based on the information input by the input unit 101, and the problem is solved to complete the steel delivery to the ladle. Obtain the target temperature indicated value T LD at the time, the target temperature indicated value T RHS at the start of the secondary refining, the target temperature indicated value T RHE at the end of the secondary refining, and the predicted value T CCS of the molten steel temperature at the start of continuous casting.
Wherein each mark temperatures indicated value T LD, T RHS, T RHE lower limit restriction on each (T LDU, T LDL), (T RHSU, T RHSL), when deviating from the (T RHEU, T RHEL) , The absolute value of the amount of deviation from the upper limit when the upper limit is exceeded, and the absolute value of the amount of deviation from the lower limit when the lower limit is exceeded are called the constraint violation amount.
The calculation unit 102 sets the upper and lower limits of each target temperature instruction value T LD , T RHS , T R HE , the predicted value T CCS of the molten steel temperature at the start of continuous casting, and each target temperature instruction value T LD , T RHS , T R HE. about (T LDU, T LDL), and (T RHSU, T RHSL), (T RHEU, T RHEL) decision variables the variable m i representing a constraint violation amount for, also, as in equation (1), the continuous casting adding the absolute value of the difference between the predicted value T CCS at the start of the molten steel temperature and the target temperature T CCS *, a sum of values obtained by multiplying the weight coefficient W i taking non-negative value to a variable m i representing a constraint violation amount We formulate the combined function as a linear planning problem with the objective function z. Incidentally, i is an identification number, upper T LDU, lower T LDL, the upper limit T RHSU, lower T RHSL, upper T RHEU, i = 1 in the order of lower limit T RHEL, · · ·, 6 is provided.
z = | T CCS * -T CCS | + Σ i W i m i ··· (1)
At this time, the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and the amount of decrease in molten steel from the end of secondary refining to the start of continuous casting. and equality constraints based on a model for estimating the amount of drop in the molten steel temperature, the aimed temperature indicator value T LD, T RHS, T RHE lower limit restriction on each (T LDU, T LDL), (T RHSU, T Optimal to minimize the objective function z for multiple combinations of weighting coefficients Wi i based on the inequality constraint that indicates that RHSL ), (T RHEU , T RHEL ) are included within the range relaxed by the constraint violation amount. Calculate the solution.

103は提示手段として機能する出力部であり、演算部102で算出される最適解における各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせを出力する。
出力部103は、図2に示すように、演算部102で算出される最適解における各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせを時間経過に対してプロットしたグラフ、すなわち複数の目標温度経路を表わすグラフを、それぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)、及び目標温度TCCS *とともに描画して表示装置105に画面表示する。
103 is an output unit that functions as a presentation unit, the mark temperatures indicated value T LD of the optimal solution calculated by the calculating unit 102, T RHS, T RHE, and continuous casting start of the molten steel temperature predictions T CCS Output multiple combinations.
The output unit 103 includes, as shown in FIG. 2, each mark temperatures indicated value T LD of the optimal solution calculated by the calculating unit 102, T RHS, T RHE, and continuous casting start of the molten steel temperature predictions T CCS graph plotting a plurality of combinations against time, i.e. the graph representing a plurality of target temperatures path, each of the upper and lower constraints (T LDU, T LDL), (T RHSU, T RHSL), (T RHEU, T RHEL ) and the target temperature T CCS * are drawn and displayed on the screen on the display device 105.

操業者は、表示装置105に画面表示される、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせの中から操業に適すると考える組み合わせを、入力装置104を用いて選択することができる。
出力部103は、操業者により選択された各狙い温度指示値TLD、TRHS、TRHEを、不図示の転炉制御用の計算機やRH脱ガス装置制御用の計算機に送信することにより、製鋼工程における溶鋼温度を制御する。
Operating person is displayed on the screen of the display device 105, suitable for operation from a plurality of combinations of mark temperatures indicated value T LD, T RHS, T RHE , and the predicted value T CCS continuous casting starting temperature of molten steel The combination considered to be can be selected by using the input device 104.
The output unit 103 transmits each target temperature indicated value T LD , T RHS , and T R HE selected by the operator to a computer for converter control (not shown) or a computer for controlling the RH degassing device. Control the molten steel temperature in the steelmaking process.

104はポインティングデバイスやキーボード、タッチパネル等の入力装置、105は表示装置である。 Reference numeral 104 is an input device such as a pointing device, a keyboard, and a touch panel, and 105 is a display device.

ここで、本実施形態における線形計画問題の詳細を説明する。
事前に操業条件を入力として、式(2)〜式(4)のように、取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量、2次精錬中(2次精錬開始から2次精錬終了まで)の溶鋼温度の降下量、及び2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定する線形回帰式のモデルを作成する。線形回帰式のモデルは、実績データの線形多重回帰分析等統計処理又は物理的考察から作成することができる。
Here, the details of the linear programming problem in this embodiment will be described.
Entering the operating conditions in advance, as shown in equations (2) to (4), the amount of decrease in the molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, during secondary refining (start of secondary refining). Create a model of linear regression equation that estimates the amount of decrease in molten steel temperature from the end of secondary refining to the end of continuous casting) and the amount of decrease in molten steel temperature from the end of secondary refining to the start of continuous casting. The model of the linear regression equation can be created from statistical processing such as linear multiple regression analysis of actual data or physical consideration.

取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量のモデル
LD−TRHS=a0+a1LD+Σk2kk・・・(2)
Model of the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining T LD − T RHS = a 0 + a 1 T LD + Σ k2 a k x k・ ・ ・ (2)

2次精錬開始から2次精錬終了までの溶鋼温度の降下量のモデル
RHS−TRHE=b0+b1LD+b2RHS+Σk3kk・・・(3)
Model of the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining TRHS −T RHE = b 0 + b 1 T LD + b 2 TRHS + Σ k3 b k x k・ ・ ・ (3)

2次精錬終了から連続鋳造開始までの溶鋼温度の降下量のモデル
RHE−TCCS=c0+c1LD+c2RHS+c3RHE+Σk4kk・・・(4)
Model of the amount of decrease in molten steel temperature from the end of secondary refining to the start of continuous casting T RHE −T CCS = c 0 + c 1 T LD + c 2 T RHS + c 3 T RHE + Σ k4 c k x k ··· (4 )

以下では、
0+Σk2kk=Ra
0+Σk3kk=Rb
0+Σk4kk=Rc
と表記する。
kは溶鋼温度の降下量のモデルにおける説明変数とする、搬送時間や処理時間等の操業条件であり、ak、bk、ckは溶鋼温度の降下量のモデルにおける切片、係数である(k=0、1、2、・・・)。これらの値は、入力部101から入力、設定される。
転炉吹錬開始前に決定する各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSも、対象とするチャージの予定操業条件及び操業スケジュールに基づく式(2)〜式(4)のモデルを満たすものと仮定する。
Below,
a 0 + Σ k2 a k x k = R a
b 0 + Σ k3 b k x k = R b
c 0 + Σ k4 c k x k = R c
Notated as.
x k is the operating condition such as transport time and processing time, which is used as an explanatory variable in the model of the amount of decrease in molten steel temperature, and a k , b k , and kk are the intercepts and coefficients in the model of the amount of decrease in molten steel temperature. (K = 0, 1, 2, ...). These values are input and set from the input unit 101.
Each aim temperature indication value T LD to be determined before the start of converter blowing, T RHS, T RHE, and the predicted value T CCS of continuous casting at the start of molten steel temperature, the planned operating conditions and operating schedule of the charge of interest It is assumed that the models of the based equations (2) to (4) are satisfied.

まず、本実施形態における線形計画問題を説明する前に、比較のために線形計画問題-1を説明する。
線形計画問題-1では、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSを決定変数とし、また、式(5)のように、連続鋳造開始時の溶鋼温度の予測値TCCSと目標温度TCCS *との差の絶対値を目的関数z1とする線形計画問題として、目的関数z1を最小化する最適解を算出する。
[目的関数]
1=|TCCS *−TCCS|・・・(5)
[決定変数(すべて非負値とする)]
LD、TRHS、TRHE、TCCS・・・(6)
First, before explaining the linear programming problem in this embodiment, the linear programming problem-1 will be described for comparison.
In linear programming problem -1, each mark temperatures indicated value T LD, T RHS, T RHE , and the predicted value T CCS continuous casting starting temperature of molten steel and decision variable, also, as in equation (5), continuous The optimum solution that minimizes the objective function z 1 is calculated as a linear programming problem in which the absolute value of the difference between the predicted value T CCS of the molten steel temperature at the start of casting and the target temperature T CCS * is the objective function z 1 .
[Objective function]
z 1 = | T CCS * -T CCS | ... (5)
[Coefficient of determination (all non-negative values)]
T LD , T RHS , T RHE , T CCS ... (6)

また、線形計画問題を解くに際して、等式制約条件を式(2)〜式(4)のモデルに基づいて式(7)〜式(9)のように定め、また、不等式制約条件を式(10)〜式(15)のように定める。
[等式制約条件]
(1−a1)TLD−TRHS=Ra・・・(7)
−b1LD+(1−b2)TRHS−TRHE=Rb・・・(8)
−c1LD−c2RHS+(1−c3)TRHE−TCCS=Rc・・・(9)
[不等式制約条件]
−TLD≧−TLDU ・・・(10)
LD≧TLDL・・・(11)
−TRHS≧−TRHSU・・・(12)
RHS≧TRHSL・・・(13)
−TRHE≧−TRHEU・・・(14)
RHE≧TRHEL・・・(15)
Further, when solving the linear programming problem, the equation constraint conditions are defined as equations (7) to (9) based on the models of equations (2) to (4), and the inequality constraint condition is defined as equation (2). 10) ~ Formula (15).
[Equality constraint]
(1-a 1 ) T LD −T RHS = Ra・ ・ ・ (7)
−B 1 T LD + (1-b 2 ) T RHS −T RHE = R b・ ・ ・ (8)
−c 1 T LD −c 2 T RHS + (1-c 3 ) T RHE −T CCS = R c・ ・ ・ (9)
[Inequality constraint]
−T LD ≧ −T LDU・ ・ ・ (10)
T LD ≧ T LDL・ ・ ・ (11)
−T RHS ≧ −T RHSU・ ・ ・ (12)
T RHS ≧ T RHSL・ ・ ・ (13)
−T RHE ≧ −T RHEU・ ・ ・ (14)
T RHE ≧ T RHEL・ ・ ・ (15)

線形計画問題-1で実行可能解が得られる場合、取鍋への出鋼完了時の狙い温度指示値TLD、2次精錬開始時の狙い温度指示値TRHS、2次精錬終了時の狙い温度指示値TRHE、はそれぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)を満たし、かつ、溶鋼温度の降下量のモデルに従う最適解が得られる。
しかしながら、線形計画問題-1では、すべての不等式制約条件を満たすことができずに実行不能となることがありえる。
If feasible solution is obtained by linear programming problem -1, aim tapping at completion of mark temperatures indicated value T LD, 2 primary refining starting mark temperatures indicated value T RHS, 2 secondary refining at the end of the ladle temperature readings T RHE, each of the upper and lower constraints (T LDU, T LDL), (T RHSU, T RHSL), (T RHEU, T RHEL) meet, and the optimal solution according model drop of molten steel temperature Is obtained.
However, in linear programming problem-1, it is possible that all inequality constraints cannot be satisfied and it becomes infeasible.

そこで、溶鋼温度制御の支援装置100の演算部102では、線形計画問題-1に対し、決定変数として制約違反量を表わす変数miを追加し、また、目的関数を、式(1)のように、制約違反量を表わす変数miに非負値をとる重み係数Wiを乗じた値の和を加え、さらに不等式制約条件の各左辺に制約違反量を表わす変数miを加えることで、これらの不等式制約条件を緩和した線形計画問題を定式化する(以下、線形計画問題-2と称する)。 Therefore, the arithmetic unit 102 of the support apparatus 100 of the molten steel temperature control, with respect to the linear programming problem -1, add the variable m i representing a constraint violation amount as a decision variable, also the objective function, as in formula (1) to the sum of the value obtained by multiplying the weighting factor W i to take non-negative value to a variable m i representing a constraint violation amount added, the addition of the variable m i, further representing a constraint violation amounts to each left side of the inequality constraints, these Formulate a linear planning problem that relaxes the inequality constraint of (hereinafter referred to as linear planning problem-2).

[目的関数]
z=|TCCS *−TCCS|+Σiii ・・・(1)
[決定変数(すべて非負値とする)]
LD、TRHS、TRHE、TCCS、mi(i=1、・・・、6)
[等式制約条件]
線形計画問題-1と同じ(式(7)〜式(9))
[不等式制約条件]
−TLD+m1≧−TLDU・・・(16)
LD+m2≧TLDL・・・(17)
−TRHS+m3≧−TRHSU・・・(18)
RHS+m4≧TRHSL・・・(19)
−TRHE+m5≧−TRHEU・・・(20)
RHE+m6≧TRHEL・・・(21)
[Objective function]
z = | T CCS * -T CCS | + Σ i W i m i ··· (1)
[Coefficient of determination (all non-negative values)]
T LD, T RHS, T RHE , T CCS, m i (i = 1, ···, 6)
[Equality constraint]
Same as Linear Programming Problem-1 (Equations (7) to (9))
[Inequality constraint]
−T LD + m 1 ≧ −T LDU・ ・ ・ (16)
T LD + m 2 ≧ T LDL・ ・ ・ (17)
−T RHS + m 3 ≧ −T RHSU・ ・ ・ (18)
T RHS + m 4 ≧ T RHSL・ ・ ・ (19)
−T RHE + m 5 ≧ −T RHEU・ ・ ・ (20)
T RHE + m 6 ≧ T RHEL・ ・ ・ (21)

線形計画問題-1で最適解が得られる場合、線形計画問題-2でも、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSは線形計画問題-1での最適解と同値で、かつ、m1=・・・=m6=0である最適解が得られる。
そして、線形計画問題-1で実行可能解が得られない場合でも、線形計画問題-2では、不等式制約条件に含まれる制約違反量miが正値となり、等式制約条件の等号が成立する解が得られる。ただし、m2jとm2j-1(本例の場合、j=1、2、3)は同時に正値になることはない。そのときの、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSは溶鋼温度の降下量のモデルに従うが、線形計画問題-1の不等式制約条件を完全には満たさないことを意味する。
If the optimal solution can be obtained by linear programming problem -1, even linear programming problem -2, each mark temperatures indicated value T LD, T RHS, T RHE , and the predicted value T CCS continuous casting starting temperature of molten steel is linear programming An optimum solution with the same value as the optimum solution in Problem-1 and m 1 = ... = m 6 = 0 can be obtained.
Then, even if the linear programming problem feasible solution run at -1 is not obtained, the linear programming problem -2 constraint violation amount m i contained in the inequality constraint becomes positive, the equality equality constraints satisfied The solution to be obtained is obtained. However, m 2j and m 2j-1 (in this example, j = 1, 2, 3) do not become positive values at the same time. At that time, each target temperature indication T LD , T RHS , T R HE , and the predicted value T CCS of the molten steel temperature at the start of continuous casting follow the model of the amount of decrease in the molten steel temperature, but the inequality constraint of the linear programming problem-1 It means that the condition is not completely satisfied.

線形計画問題を単体法で解く場合、最適解は実行可能解の集合の中でも不等式制約条件の等号を満たす解(単体の頂点)の一つとして選ばれる性質を持つ。したがって、目的関数の重み係数Wiの値を変更しても最適解における制約違反量を表わす変数miの値は不連続に変化し、任意の重み係数Wiの値について最適解となりうる制約違反量を表わす変数miの組み合わせは有限個に限られる。また、各狙い温度指示値TLD、TRHS、TRHEがそれぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)について、式(1)の目的関数において対応する重み係数Wiが大きい場合に、制約違反量を表わす変数miが0である単体の頂点が最適解として選択されやすい。 When solving a linear programming problem by the simplex method, the optimal solution has the property of being selected as one of the solutions (single vertices) that satisfy the equal sign of the inequality constraint in the set of executable solutions. Therefore, the value of the variable m i representing a constraint violation amount in optimal solutions Changing the value of the weighting factor W i of the objective function changes discontinuously, it can be the optimum solution for any value of the weighting factor W i constraints the combination of variable m i representing the violation amount is limited to a finite number. Each mark temperatures indicated value T LD, T RHS, T RHE lower limit restriction on each (T LDU, T LDL), (T RHSU, T RHSL), (T RHEU, T RHEL) for formula (1) of if the corresponding weight coefficient W i is greater in the objective function, likely to be selected as the optimal solution is the apex of a single variable m i representing a constraint violation amount is zero.

これらの性質を利用して、目的関数zにおける制約違反量を表わす変数miの重み係数W1〜W6をすべて0にする組み合せと、各狙い温度指示値TLD、TRHS、TRHEごとに一の狙い温度指示値の重み係数Wiを他の狙い温度指示値の重み係数Wiより十分大きくする組み合わせを用意し、線形計画問題-1では実行可能解が得られない場合でも、重み係数Wiの各組み合せに対応する目的関数を最適化して得た各狙い温度指示値、及び連続鋳造開始時の溶鋼温度の予測値に関する次善の解を算出し、操業者の判断で適切なものを選択できるように提示する。ここで、上下限制約を守るべき狙い温度指示値の制約違反量の重み係数を「十分」大きくするとは、例えば、狙い温度指示値TLDが上下限制約を満たすべきものとする場合に、等式制約条件を満たしかつ狙い温度指示値TLDが上下限制約を満たさない狙い温度指示値の任意の組み合せについて、目的関数zの狙い温度指示値TLDの制約違反量に関する項が、他の狙い温度指示値TRHS及びTRHEに関する制約違反量に関する項の和よりも確実に大きくなる重み係数の組合せであることを意味する。例えば転炉RH間の取鍋搬送時間、RH処理時間及びRH連鋳間の取鍋搬送時間の操業実績データを用いて、鋳造開始時予測温度が目標値に一致する場合に等式制約条件を満たす狙い温度指示値TLD、TRHS及びTRHEの制約違反量を算出し、目的関数zにおける狙い温度指示値TLDに関する制約違反量項が正値である場合の分布の下限値(例えば分布の1%点)が、他の狙い指示温度に関する制約違反量項のいずれかが正である場合の和の分布の上限値(例えば分布の99%点)よりも大きくなる目的関数zにおける重み係数の組合せとして決定できる。この方法では具体的な値は定められないが、狙い温度指示値TLDと他の狙い温度指示値に関する制約違反量に対する重み係数の比の値を決定できる。発明者らが調べたところでは、この比は100倍程度であればよいことがわかった。
なお、上記で狙い温度指示値TLDの代わりに、狙い温度指示値TRHS又はTRHEが上下限制約を満たすべきものとする場合でも同じ意味である。
Utilizing these properties, the combination to the weight coefficient W 1 to W-6 all zeros variables m i representing a constraint violation amount in the objective function z, each mark temperatures indicated value T LD, T RHS, each T RHE Prepare a combination in which the weighting coefficient W i of one target temperature indicated value is sufficiently larger than the weighting coefficient W i of the other target temperature indicated value, and even if a feasible solution cannot be obtained in the linear planning problem-1, the weight is weighted. Calculate the next best solution for each target temperature indication value obtained by optimizing the objective function corresponding to each combination of coefficients Wi i and the predicted value of the molten steel temperature at the start of continuous casting, and make an appropriate decision by the operator. Present so that you can choose one. Here, the weighting coefficient constraint violations of mark temperatures readings should protect the upper and lower constraints by increasing "sufficient", for example, when the aimed temperature indication value T LD is assumed to satisfy the upper and lower limit constraints, etc. for any combination of mark temperatures indicated value satisfies the equation constraint and mark temperatures indicated value T LD does not satisfy the upper limit restriction, terms, other aims on the constraint violation of mark temperatures indicated value T LD of the objective function z It means that it is a combination of weighting coefficients that is surely larger than the sum of the terms related to the amount of constraint violation related to the temperature indicated values TRHS and TRHE . For example, using the operation record data of the ladle transfer time between the rotary furnaces RH, the RH processing time, and the ladle transfer time between RH continuous castings, the equation constraint condition is set when the predicted temperature at the start of casting matches the target value. mark temperatures indicated value T LD, calculates a constraint violation of T RHS and T RHE, the lower limit of the distribution when constraints violations weight section about mark temperatures indicated value T LD of the objective function z is a positive value that satisfies (e.g. distribution 1% point) is larger than the upper limit of the distribution of the sum when any of the constraint violation quantity terms related to the other target indicated temperature is positive (for example, 99% point of the distribution). Can be determined as a combination of. Although a specific value is not determined by this method, the value of the ratio of the weighting coefficient to the constraint violation amount for the target temperature indicated value TLD and other target temperature indicated values can be determined. As a result of investigation by the inventors, it was found that this ratio should be about 100 times.
Instead of mark temperatures indicated value T LD above, mark temperatures indicated value T RHS or T RHE are the same meaning even in the case of a should satisfy the upper and lower constraints.

この場合に、重み係数Wiの大きさを、例えば、上下限制約内に入ることを重視する狙い温度指示値に対しては1以上とし、上下限制約内に入ることを軽視する狙い温度指示値に対しては、1より十分小さな値として、0.01以下とする。
上下限制約を満たすべき狙い温度指示値については制約違反量を表わす変数miに重みをつけて評価することで、上下限制約を満たすべき狙い温度指示値に対する制約違反量を表わす変数miが正値になる最適解が選択されにくくなるように、他の狙い温度指示値の重み係数Wiより十分大きくする。連続鋳造開始時の溶鋼温度の予測値TCCSと目標温度TCCS *との差は、通常は狙い温度指示値の制約違反量と同程度か小さいので、目的関数zの式(1)において前記予測値TCCSと目標温度TCCS *との偏差の絶対値に比べて上下限制約内に入ることを軽視する狙い温度指示値の制約違反量に関する項の大きさが十分小さくなるように、上下限制約を満たすべき狙い温度指示値に対する重み係数Wiは、連続鋳造開始時の溶鋼温度の予測値TCCSと目標温度TCCS *との差に対する係数と同程度の1とし、反対に上下限制約内に入ることを軽視する狙い温度指示値に対する重み係数Wiの係数は十分小さい0.01とすればよい。
In this case, the magnitude of the weighting coefficient W i is set to 1 or more for, for example, the target temperature instruction value that emphasizes entering the upper / lower limit constraint, and the target temperature instruction that neglects entering the upper / lower limit constraint. The value shall be 0.01 or less as a value sufficiently smaller than 1.
By the upper limit restriction aim temperature readings to be met to evaluate weighted variable m i representing a constraint violation amount, the variable m i representing a constraint violation amount for mark temperatures readings should meet the upper and lower limit constraints Make it sufficiently larger than the weighting coefficient Wi i of other target temperature indication values so that the optimum solution that becomes a positive value is difficult to select. Since the difference between the predicted value T CCS of the molten steel temperature at the start of continuous casting and the target temperature T CCS * is usually about the same as or smaller than the constraint violation amount of the target temperature indicated value, the above equation (1) of the objective function z is used. Compared to the absolute value of the deviation between the predicted value T CCS and the target temperature T CCS * , it is neglected to fall within the upper and lower limit constraints. Up and down so that the size of the term related to the constraint violation amount of the target temperature indicated value becomes sufficiently small. The weighting coefficient Wi i for the target temperature indicated value that should satisfy the limit constraint is set to 1, which is about the same as the coefficient for the difference between the predicted value T CCS of the molten steel temperature at the start of continuous casting and the target temperature T CCS *, and conversely, the upper and lower limits are used. The coefficient of the weighting coefficient Wi with respect to the target temperature indicated value, which disregards entering the vicinity, may be 0.01, which is sufficiently small.

このように、取鍋への出鋼完了時、2次精錬開始時、及び2次精錬終了時という3つのポイントにおいて、線形計画問題で有限個に限られる制約違反量を表わす変数miを決定変数として最適解を算出するので、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの代表的な複数の組み合わせを提示することができ、その中から操業に適した組み合せを操業者の知見により選択することが可能となる。 Thus, when tapping the completion of the ladle, during secondary refining start, and at three points of the secondary refining at the end, it determines the variable m i representing the constraint violations amount is limited to a finite number in the linear programming problem since calculating the optimal solution as a variable, the mark temperatures indicated value T LD, T RHS, T RHE , and can present a plurality of typical combinations of predictive value T CCS continuous casting starting temperature of molten steel, From among them, it is possible to select a combination suitable for the operation based on the knowledge of the operator.

図3は、実施形態に係る溶鋼温度制御の支援装置100による溶鋼温度制御の支援方法を示すフローチャートである。
ステップS1で、入力部101は、ステップS2で線形計画問題を定式化し、それを解くのに必要な情報を入力する。
具体的には、上述したように、対象とするチャージについて、転炉吹錬開始前に定めた操業スケジュール、製造材質(鋼種)に関する合金投入及び2次精錬の条件設定値を入力する。
また、取鍋への出鋼完了時の狙い温度指示値TLDの上限TLDU及び下限TLDL、2次精錬開始時の狙い温度指示値TRHSの上限TRHSU及び下限TRHSL、2次精錬終了時の狙い温度指示値TRHEの上限TRHEU及び下限TRHEL、連続鋳造開始時の溶鋼温度の目標温度TCCS *を入力する。
また、溶鋼温度の降下量のモデルにおける説明変数xk、切片及び係数ak、bk、ckを入力する。
また、重み係数Wiの組み合わせ(重み係数Wiをすべて0にする組み合せと、各狙い温度指示値TLD、TRHS、TRHEごとに重み係数Wiを他の狙い温度指示値の重み係数Wiより大きくする組み合わせ)を入力する。
FIG. 3 is a flowchart showing a method of supporting the molten steel temperature control by the molten steel temperature control support device 100 according to the embodiment.
In step S1, the input unit 101 formulates the linear programming problem in step S2, and inputs the information necessary for solving the linear programming problem.
Specifically, as described above, for the target charge, the operation schedule determined before the start of converter blowing, the alloy input related to the manufacturing material (steel type), and the condition setting values for the secondary refining are input.
The upper limit T RHSU and lower T RHSL upper T LDU and lower T LDL, secondary refining at the start of mark temperatures indicated value T RHS of mark temperatures indicated value T LD during tapping the completion of the ladle, a secondary refining the upper limit T Rheu and lower T RHEL aim temperature readings T RHE at the end, and inputs the target temperature T CCS of the molten steel temperature at the start of continuous casting *.
In addition, the explanatory variables x k , intercept and coefficients a k , b k , and c k in the model of the amount of decrease in molten steel temperature are input.
Further, the weighting factor of the combination to 0 every combination of (weight coefficient W i weighting factor W i, each mark temperatures indicated value T LD, T RHS, other mark temperatures indicated value a weighting factor W i for each T RHE Enter a combination that is larger than Wi i ).

ステップS2で、演算部102は、ステップS1で入力される情報に基づいて、式(1)、式(7)〜式(9)、式(16)〜式(21)で表現される線形計画問題-2を定式化する。なお、定式化とは、予め枠組みとして与えられている式(1)、式(7)〜式(9)、式(16)〜式(21)に対して、ステップS1で与えられる情報を組み入れることをいう。 In step S2, the calculation unit 102 uses the information input in step S1 to form a linear program represented by equations (1), equations (7) to (9), and equations (16) to (21). Formulate Problem-2. In the formulation, the information given in step S1 is incorporated into the equations (1), (7) to (9), and equations (16) to (21) given in advance as a framework. Say that.

ステップS3で、演算部102は、ステップS1で与えられる重み関数Wiの各組み合わせについて、ステップS2で定式化される線形計画問題-2を解いて、すなわち目的関数zを最小化する最適解を算出して、取鍋への出鋼完了時の狙い温度指示値TLD、2次精錬開始時の狙い温度指示値TRHS、2次精錬終了時の狙い温度指示値TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSを求める。 In step S3, the operation section 102, for each combination of weight functions W i given in step S1, by solving the linear programming problem -2 is formulated in step S2, that is, the optimal solution that minimizes the objective function z Calculated, the target temperature indicated value T LD at the completion of steel delivery to the ladle, the target temperature indicated value TRHS at the start of secondary refining, the target temperature indicated value TRHE at the end of secondary refining, and the start of continuous casting. Obtain the predicted value T CCS of the molten steel temperature at that time.

ステップS4で、出力部103は、図2に示すように、ステップS3で算出される最適解における各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせを時間経過に対してプロットしたグラフを、それぞれの上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)、及び目標温度TCCS *とともに描画して表示装置105に画面表示する。
具体的には、取鍋への出鋼完了後からの経過時間を横軸にとり、上下限制約(TLDU、TLDL)、(TRHSU、TRHSL)、(TRHEU、TRHEL)を長方形201〜203で示し、また、連続鋳造開始時の溶鋼温度の目標温度TCCS *を、操業スケジュールに基づいて該当する経過時間の位置に表示する。その上に、重み係数Wiの組み合わせごとに得られる各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSを結ぶ折れ線グラフを重ねてプロットする。
操業者は、表示装置105に画面表示される、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせの中から操業に適すると考える組み合わせを、入力装置104を用いて選択することができる。
In step S4, the output unit 103, as shown in FIG. 2, each mark temperatures indicated value T LD of the optimal solution calculated in step S3, T RHS, T RHE, and continuous casting starting estimated value of the molten steel temperature the plot of the plurality of combinations of T CCS versus the time course, each of the upper and lower constraints (T LDU, T LDL), (T RHSU, T RHSL), (T RHEU, T RHEL), and the target temperature T It is drawn together with CCS * and displayed on the screen on the display device 105.
Specifically, the horizontal axis the time elapsed after tapping the completion of the ladle, the upper limit restriction (T LDU, T LDL), (T RHSU, T RHSL), (T RHEU, T RHEL) rectangular It is indicated by 201 to 203, and the target temperature T CCS * of the molten steel temperature at the start of continuous casting is displayed at the position of the corresponding elapsed time based on the operation schedule. Thereon, to overplot the line graph linking the aimed temperature readings T LD obtained for each combination of the weighting factors W i, T RHS, T RHE , and the predicted value T CCS continuous casting starting temperature of molten steel ..
Operating person is displayed on the screen of the display device 105, suitable for operation from a plurality of combinations of mark temperatures indicated value T LD, T RHS, T RHE , and the predicted value T CCS continuous casting starting temperature of molten steel The combination considered to be can be selected by using the input device 104.

ステップS5で、出力部103は、操業者により選択された各狙い温度指示値TLD、TRHS、TRHEを、不図示の転炉制御用の計算機やRH脱ガス装置制御用の計算機に送信することにより、製鋼工程における溶鋼温度を制御する。 In step S5, the output unit 103 transmits the aimed temperature readings T LD is selected by operating person, T RHS, the T RHE, the computer or the RH degassing device control computer for converter control (not shown) By doing so, the molten steel temperature in the steelmaking process is controlled.

以下、本発明を適用した狙い温度指示値を決定する手順及び効果を、シミュレーション結果に基づいて説明する。
実施対象の製鋼工場における実績データの多重回帰分析により、式(2)〜式(4)にモデルに用いられる係数を以下のように決定した。
1=0.083296
1=−0.160679、b2=0.716868
1=−0.002927、c2=0.124891、c3=0.1926405
Hereinafter, the procedure and effect of determining the target temperature indicated value to which the present invention is applied will be described based on the simulation results.
The coefficients used in the models in equations (2) to (4) were determined as follows by multiple regression analysis of actual data at the steel factory to be implemented.
a 1 = 0.083296
b 1 = -0.160679, b 2 = 0.716868
c 1 = -0.002927, c 2 = 0.124891, c 3 = 0.1926405

また、取鍋への出鋼完了時の狙い温度指示値TLDの上限TLDU及び下限TLDL、2次精錬開始時の狙い温度指示値TRHSの上限TRHSU及び下限TRHSL、2次精錬終了時の狙い温度指示値TRHEの上限TRHEU及び下限TRHEL、及び連続鋳造開始時の溶鋼温度の目標温度TCCS *を以下のように定めた。
LDL=1590℃、TLDU=1640℃
RHSL=1574.9℃、TRHSU=1618℃
RHEL=1558℃、TRHEU=1570℃
CCS *=1538℃
The upper limit T RHSU and lower T RHSL upper T LDU and lower T LDL, secondary refining at the start of mark temperatures indicated value T RHS of mark temperatures indicated value T LD during tapping the completion of the ladle, a secondary refining the upper limit T Rheu and lower T RHEL aim temperature readings T RHE at the end, and the continuous casting starting temperature of molten steel to the target temperature T CCS * was determined as follows.
T LDL = 1590 ° C, T LDU = 1640 ° C
T RHSL = 1574.9 ° C, T RHSU = 1618 ° C
T RHEL = 1558 ° C, T RHEU = 1570 ° C
T CCS * = 1538 ° C

転炉吹錬開始前に定めた操業スケジュールでは、取鍋への出鋼完了から2次精錬開始までの時間は37分、2次精錬時間(2次精錬開始から2次精錬終了までの時間)は17分、2次精錬終了から連続鋳造開始までの時間は23分である。 According to the operation schedule set before the start of converter smelting, the time from the completion of steel delivery to the ladle to the start of secondary smelting is 37 minutes, and the secondary smelting time (time from the start of secondary smelting to the end of secondary smelting). Is 17 minutes, and the time from the end of secondary refining to the start of continuous casting is 23 minutes.

線形計画問題-1(式(5)〜式(15))では、上記のパラメータ及び制約条件を用いて定式化した線形計画問題で実行可能解がないため、狙い温度指示値の上下限制約を満たす最適解を得ることができない。 In Linear programming problem-1 (Equation (5) to (15)), there is no feasible solution in the linear programming problem formulated using the above parameters and constraints, so the upper and lower limit constraints of the target temperature indication value are set. The optimum solution to be satisfied cannot be obtained.

線形計画問題-2(式(1)、式(7)〜式(9)、式(16)〜式(21))では、上記のパラメータ及び制約条件を用いるとともに、重み係数W1〜W6の組み合せを表1の(a)〜(d)の4ケースについて用意する。図2は、(a)〜(d)の4ケースについて、各狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせを提示したものである。
(a)は重み係数Wiがすべて0であり、制約違反量miはすべて負でない任意の値をとることが可能となるため、式(16)〜式(21)の不等式制約条件は必ず満たされる。すなわち、線形計画問題-1における式(10)〜式(15)の不等式条件をすべて取り除くことを意味する。
また、(b)、(c)、(d)は狙い温度指示値ごとに重み係数Wiを他の狙い温度指示値の重み係数Wiより大きくする組み合わせであり、上下限制約内に入ることを重視する狙い温度指示値に対しては1とし、上下限制約内に入ることを軽視する狙い温度指示値に対しては0.01とする。
In Linear Programming Problem-2 (Equations (1), Eqs. (7) to (9), Eqs. (16) to (21)), the above parameters and constraints are used, and the weighting factors W 1 to W 6 are used. Are prepared for the four cases (a) to (d) in Table 1. Figure 2, for four cases of (a) ~ (d), the aimed temperature indicator value T LD, T RHS, T RHE , and presented a plurality of combinations of predictive value T CCS continuous casting starting temperature of molten steel It is a thing.
(A) is a weighting factor W i are all 0, since it is possible to take any value all constraint violations amount m i is not negative, inequality constraints of formula (16) to (21) must It is filled. That is, it means that all the inequality conditions of the equations (10) to (15) in the linear programming problem-1 are removed.
Further, (b), (c) , (d) is a combination of larger than the weighting factor W i of the other mark temperatures indicated value a weighting factor W i for each mark temperatures indicated value, to enter the upper and lower limit constraint 1 is set for the target temperature indicated value that emphasizes, and 0.01 is set for the target temperature indicated value that neglects to fall within the upper and lower limit constraints.

Figure 0006786848
Figure 0006786848

表1には、(a)〜(d)の各ケースにおける線形計画問題-2の最適解を示すが、重み係数の各組み合せについて示した各狙い温度指示値の数値解において、右側に○のついたものは上下限制約を満たすもの、×のついたものは上下限制約値を満たさないものを示す。
(a)では、いずれの狙い温度指示値でも上下限制約は満たさないが、連続鋳造開始時の溶鋼温度の予測値TCCSが目標温度TCCS *に一致する解となる。(b)、(c)、(d)では、重み係数Wiを1とした上下限制約を満たす最適解が得られる。
このように、取鍋への出鋼完了時の狙い温度指示値TLD、2次精錬開始時の狙い温度指示値TRHS、2次精錬終了時の狙い温度指示値TRHEは上下限制約を完全には満たさないが、重視すべき上下限制約を満たし、かつ連続鋳造開始時の溶鋼温度の予測値が目標温度に近い各狙い温度指示値を、線形計画問題-2を各重み係数の組み合せについて1回ずつ解くだけで得ることができる。
Table 1 shows the optimum solution of the linear programming problem-2 in each of the cases (a) to (d), and in the numerical solution of each target temperature indicated value shown for each combination of weighting factors, ○ is shown on the right side. Those with x indicate those that satisfy the upper and lower limit constraints, and those with x indicate those that do not satisfy the upper and lower limit constraints.
In (a), the upper and lower limit constraints are not satisfied by any of the target temperature indicated values, but the predicted value T CCS of the molten steel temperature at the start of continuous casting is a solution that matches the target temperature T CCS * . In (b), (c), and (d), an optimum solution satisfying the upper and lower limit constraints with the weighting coefficient Wi i as 1 can be obtained.
In this way, the target temperature indicated value T LD at the completion of steel delivery to the ladle, the target temperature indicated value T RHS at the start of secondary refining, and the target temperature indicated value T RHE at the end of secondary refining are subject to upper and lower limit constraints. Although it does not completely satisfy, each target temperature indication value that satisfies the upper and lower limit constraints that should be emphasized and the predicted value of the molten steel temperature at the start of continuous casting is close to the target temperature, and the combination of each weighting coefficient for the linear planning problem-2 Can be obtained by solving about once.

以上のように、取鍋への出鋼完了時の狙い温度指示値TLD、2次精錬開始時の狙い温度指示値TRHS、2次精錬終了時の狙い温度指示値TRHEのいずれもが、それぞれの上下限制約を満たし、連続鋳造開始時の溶鋼温度の予測値TCCSが目標温度TCCS *に一致する場合、それらの温度を採用することができる。しかも、狙い温度指示値TLD、TRHS、TRHEのいずれもが、それぞれの上下限制約を満たし、連続鋳造開始時の溶鋼温度の予測値TCCSが目標温度TCCS *に一致する解が得られない場合でも、操業スケジュールの変更を行わずに、かつ、温度制約を適切に緩和しながら、次善の狙い温度指示値TLD、TRHS、TRHE、及び連続鋳造開始時の溶鋼温度の予測値TCCSの複数の組み合わせが提示され、そこから選択することができる。 As described above, the target temperature indicated value T LD at the completion of steel delivery to the ladle, the targeted temperature indicated value T RHS at the start of secondary refining, and the targeted temperature indicated value TR HE at the end of secondary refining If the upper and lower limit constraints of each are satisfied and the predicted value T CCS of the molten steel temperature at the start of continuous casting matches the target temperature T CCS * , those temperatures can be adopted. Moreover, mark temperatures indicated value T LD, T RHS, none of the T RHE will meet each upper and lower limit constraint, the solutions predicted value T CCS of the molten steel temperature at the start of continuous casting is equal to the target temperature T CCS * even if not obtained, without changing the operation schedule, and, while appropriately mitigate the temperature constraint, the next best mark temperatures indicated value T LD, T RHS, T RHE , and continuous casting starting temperature of molten steel Multiple combinations of predicted values T CCS of are presented and can be selected from them.

以上、本発明を種々の実施形態と共に説明したが、これらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。例えば上記実施形態では、取鍋への出鋼完了時の狙い温度指示値TLD、2次精錬開始時の狙い温度指示値TRHS、2次精錬終了時の狙い温度指示値TRHEに対してそれぞれ上限及び下限を設定するが、上限及び下限のいずれかだけを設定することも可能である。すなわち、本願でいう上下限制約とは、上限及び下限を有するだけでなく、上限及び下限のうちいずれか一方だけを有する制約も含む概念であるとする。
本発明を適用した溶鋼温度制御の支援装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現される。
また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
Although the present invention has been described above with various embodiments, the present invention is not limited to these embodiments, and changes and the like can be made within the scope of the present invention. For example, in the above embodiment, with respect to the target temperature indicated value T LD at the completion of steel delivery to the ladle, the targeted temperature indicated value TRHS at the start of secondary refining, and the targeted temperature indicated value TRHE at the end of secondary refining. The upper limit and the lower limit are set respectively, but it is also possible to set only one of the upper limit and the lower limit. That is, the upper / lower limit constraint referred to in the present application is a concept that includes not only an upper limit and a lower limit but also a constraint having only one of the upper limit and the lower limit.
The molten steel temperature control support device to which the present invention is applied is realized by, for example, a computer device equipped with a CPU, ROM, RAM, and the like.
The present invention also comprises supplying software (program) that realizes the functions of the present invention to a system or device via a network or various storage media, and the computer of the system or device reads and executes the program. It is feasible.

100:溶鋼温度制御の支援装置、101:入力部、102:演算部、103:出力部、104:入力装置、105:表示装置 100: Support device for molten steel temperature control, 101: Input unit, 102: Calculation unit, 103: Output unit, 104: Input device, 105: Display device

Claims (6)

1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御の支援方法であって、
取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値と、前記各狙い温度指示値それぞれの上下限制約からの外れ量の絶対値(制約違反量と呼ぶ)を表わす変数とをそれぞれ決定変数とし、また、連続鋳造開始時の溶鋼温度の予測値と目標温度との差の絶対値と、前記制約違反量を表わす変数に非負値をとる重み係数を乗じた値の和とを含む関数を目的関数とする線形計画問題として、
取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量を推定するモデルと、2次精錬開始から2次精錬終了までの溶鋼温度の降下量を推定するモデルと、2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルとに基づいて定められ、前記各狙い温度指示値及び連続鋳造開始時の溶鋼温度の予測値を含んで表現される等式制約条件と、
取鍋への出鋼完了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、取鍋への出鋼完了時の狙い温度指示値が含まれることを表す不等式と、2次精錬開始時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬開始時の狙い温度指示値が含まれることを表す不等式と、2次精錬終了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬終了時の狙い温度指示値が含まれることを表す不等式とで表現される不等式制約条件とに基づいて、
前記重み係数の複数の組み合わせについて前記目的関数を最小化する最適解を算出する最適解算出ステップと、
前記最適解算出ステップで、前記重み係数の複数の組み合わせのそれぞれに対応して算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを提示する提示ステップとを有することを特徴とする製鋼工程における溶鋼温度制御の支援方法。
It is a support method for temperature control of molten steel in the steelmaking process in which molten steel is dispensed into a ladle after primary refining in a primary refining furnace and then secondary refining and continuous casting are performed.
The target temperature indication value at the completion of steel delivery to the pan, the target temperature indication value at the start of secondary refining, the target temperature indication value at the end of secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting. , The variable representing the absolute value (called the constraint violation amount) of the amount of deviation from the upper and lower limit constraints of each target temperature indicated value is used as a determination variable, and the predicted value and target of the molten steel temperature at the start of continuous casting. As a linear planning problem whose objective function is a function including the absolute value of the difference from temperature and the sum of the values obtained by multiplying the variable representing the constraint violation amount by a weighting coefficient that takes a non-negative value.
A model that estimates the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining. An equation constraint condition that is determined based on a model that estimates the amount of decrease in molten steel temperature from the end to the start of continuous casting, and is expressed including the respective target temperature indication values and the predicted value of the molten steel temperature at the start of continuous casting. When,
An inequality indicating that the target temperature indication value at the completion of steel delivery to the pan is included within the range in which the upper and lower limit constraints of the target temperature indication value at the completion of steel delivery to the pan are relaxed by the above constraint violation amount. The inequality indicating that the target temperature indicated value at the start of the secondary refining is included within the range in which the upper and lower limit constraints of the target temperature indicated value at the start of the secondary refining are relaxed by the constraint violation amount, and the end of the secondary refining. Based on the inequality constraint condition expressed by the inequality indicating that the target temperature indicated value at the end of the secondary refining is included in the range in which the upper and lower limit constraints of the target temperature indicated value at the time are relaxed by the constraint violation amount. hand,
An optimal solution calculation step for calculating an optimal solution that minimizes the objective function for a plurality of combinations of the weighting coefficients.
In the optimum solution calculation step, the target temperature indication value at the time of completion of steelmaking to the ladle and the target temperature instruction at the start of the secondary refining in the optimum solution calculated corresponding to each of the plurality of combinations of the weight coefficients. The molten steel temperature control in the steelmaking process is characterized by having a presentation step of presenting a plurality of combinations of a value, a target temperature indicated value at the end of secondary refining, and a predicted value of the molten steel temperature at the start of continuous casting. Support method.
前記重み係数の複数の組み合せは、前記重み係数をすべて0にする組み合せと、前記各狙い温度指示値ごとに一の狙い温度指示値の前記重み係数を他の狙い温度指示値の前記重み係数より十分大きくする組み合わせとを含むことを特徴とする請求項1に記載の製鋼工程における溶鋼温度制御の支援方法。 The plurality of combinations of the weighting coefficients are a combination in which the weighting coefficients are all set to 0, and the weighting coefficient of one target temperature indicating value for each targeting temperature indicating value is obtained from the weighting coefficient of another targeting temperature indicating value. The method for supporting molten steel temperature control in a steelmaking process according to claim 1, further comprising a combination that is sufficiently large. 前記重み係数の大きさを、前記上下限制約内に入ることを重視する狙い温度指示値に対しては1以上とし、前記上下限制約内に入ることを軽視する狙い温度指示値に対しては0.01以下とすることを特徴とする請求項2に記載の製鋼工程における溶鋼温度制御の支援方法。 The magnitude of the weighting coefficient is set to 1 or more for the target temperature indicated value that emphasizes falling within the upper and lower limit constraints, and is set to 1 or more for the target temperature indicated value that disregards entering the upper and lower limit constraints. The method for supporting molten steel temperature control in the steelmaking process according to claim 2, wherein the temperature is 0.01 or less. 前記提示ステップは、前記最適解算出ステップで算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを時間経過に対してプロットしたグラフを、前記それぞれの上下限制約、及び前記目標温度とともに描画して表示装置に画面表示することを特徴とする請求項1乃至3のいずれか1項に記載の製鋼工程における溶鋼温度制御の支援方法。 The presentation step includes a target temperature indicated value at the completion of steelmaking to the ladle in the optimum solution calculated in the optimum solution calculation step, a target temperature indicated value at the start of the secondary refining, and a target temperature indicated value at the end of the secondary refining. A graph in which a plurality of combinations of the target temperature indicated value and the predicted value of the molten steel temperature at the start of continuous casting are plotted against the passage of time is drawn together with the upper and lower limit constraints and the target temperature on the display device. The method for supporting molten steel temperature control in the steelmaking process according to any one of claims 1 to 3, wherein the screen is displayed. 1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御の支援装置であって、
取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値と、前記各狙い温度指示値それぞれの上下限制約からの外れ量の絶対値(制約違反量と呼ぶ)を表わす変数とをそれぞれ決定変数とし、また、連続鋳造開始時の溶鋼温度の予測値と目標温度との差の絶対値と、前記制約違反量を表わす変数に非負値をとる重み係数を乗じた値の和とを含む関数を目的関数とする線形計画問題として、
取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量を推定するモデルと、2次精錬開始から2次精錬終了までの溶鋼温度の降下量を推定するモデルと、2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルとに基づいて定められ、前記各狙い温度指示値及び連続鋳造開始時の溶鋼温度の予測値を含んで表現される等式制約条件と、
取鍋への出鋼完了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、取鍋への出鋼完了時の狙い温度指示値が含まれることを表す不等式と、2次精錬開始時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬開始時の狙い温度指示値が含まれることを表す不等式と、2次精錬終了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬終了時の狙い温度指示値が含まれることを表す不等式とで表現される不等式制約条件とに基づいて、
前記重み係数の複数の組み合わせについて前記目的関数を最小化する最適解を算出する最適解算出手段と、
前記最適解算出手段で、前記重み係数の複数の組み合わせのそれぞれに対応して算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを提示する提示手段とを備えたことを特徴とする製鋼工程における溶鋼温度制御の支援装置。
It is a support device for temperature control of molten steel in the steelmaking process in which molten steel is dispensed into a ladle after primary refining in a primary refining furnace and then secondary refining and continuous casting are performed.
The target temperature indication value at the completion of steel delivery to the pan, the target temperature indication value at the start of secondary refining, the target temperature indication value at the end of secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting. , The variable representing the absolute value (called the constraint violation amount) of the amount of deviation from the upper and lower limit constraints of each target temperature indicated value is used as a determination variable, and the predicted value and target of the molten steel temperature at the start of continuous casting. As a linear planning problem whose objective function is a function including the absolute value of the difference from temperature and the sum of the values obtained by multiplying the variable representing the constraint violation amount by a weighting coefficient that takes a non-negative value.
A model that estimates the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining. An equation constraint condition that is determined based on a model that estimates the amount of decrease in molten steel temperature from the end to the start of continuous casting, and is expressed including the respective target temperature indication values and the predicted value of the molten steel temperature at the start of continuous casting. When,
An inequality indicating that the target temperature indication value at the completion of steel delivery to the pan is included within the range in which the upper and lower limit constraints of the target temperature indication value at the completion of steel delivery to the pan are relaxed by the above constraint violation amount. The inequality indicating that the target temperature indicated value at the start of the secondary refining is included within the range in which the upper and lower limit constraints of the target temperature indicated value at the start of the secondary refining are relaxed by the constraint violation amount, and the end of the secondary refining. Based on the inequality constraint condition expressed by the inequality indicating that the target temperature indicated value at the end of the secondary refining is included in the range in which the upper and lower limit constraints of the target temperature indicated value at the time are relaxed by the constraint violation amount. hand,
An optimal solution calculation means for calculating an optimal solution that minimizes the objective function for a plurality of combinations of the weighting coefficients.
The target temperature indication value at the time of completion of steelmaking to the ladle and the target temperature instruction at the start of the secondary refining in the optimum solution calculated corresponding to each of the plurality of combinations of the weight coefficients by the optimum solution calculation means. Steelmaking temperature control in a steelmaking process, which comprises a presenting means for presenting a plurality of combinations of a value, a target temperature indicated value at the end of secondary refining, and a predicted value of the molten steel temperature at the start of continuous casting. Support device.
1次精錬炉での1次精錬、1次精錬後に取鍋に溶鋼を出鋼してからの2次精錬、及び連続鋳造を行う製鋼工程における溶鋼温度制御を支援するためのプログラムであって、
取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値と、前記各狙い温度指示値それぞれの上下限制約からの外れ量の絶対値(制約違反量と呼ぶ)を表わす変数とをそれぞれ決定変数とし、また、連続鋳造開始時の溶鋼温度の予測値と目標温度との差の絶対値と、前記制約違反量を表わす変数に非負値をとる重み係数を乗じた値の和とを含む関数を目的関数とする線形計画問題として、
取鍋への出鋼完了から2次精錬開始までの溶鋼温度の降下量を推定するモデルと、2次精錬開始から2次精錬終了までの溶鋼温度の降下量を推定するモデルと、2次精錬終了から連続鋳造開始までの溶鋼温度の降下量を推定するモデルとに基づいて定められ、前記各狙い温度指示値及び連続鋳造開始時の溶鋼温度の予測値を含んで表現される等式制約条件と、
取鍋への出鋼完了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、取鍋への出鋼完了時の狙い温度指示値が含まれることを表す不等式と、2次精錬開始時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬開始時の狙い温度指示値が含まれることを表す不等式と、2次精錬終了時の狙い温度指示値の上下限制約を前記制約違反量で緩和した範囲内に、2次精錬終了時の狙い温度指示値が含まれることを表す不等式とで表現される不等式制約条件とに基づいて、
前記重み係数の複数の組み合わせについて前記目的関数を最小化する最適解を算出する最適解算出処理と、
前記最適解算出処理で、前記重み係数の複数の組み合わせのそれぞれに対応して算出される最適解における取鍋への出鋼完了時の狙い温度指示値と、2次精錬開始時の狙い温度指示値と、2次精錬終了時の狙い温度指示値と、連続鋳造開始時の溶鋼温度の予測値との複数の組み合わせを提示する提示処理とをコンピュータに実行させるためのプログラム。
It is a program to support the temperature control of molten steel in the steelmaking process of primary refining in the primary refining furnace, secondary refining after the molten steel is put out in the ladle after the primary refining, and continuous casting.
The target temperature indication value at the completion of steel delivery to the pan, the target temperature indication value at the start of secondary refining, the target temperature indication value at the end of secondary refining, and the predicted value of the molten steel temperature at the start of continuous casting. , The variable representing the absolute value (called the constraint violation amount) of the amount of deviation from the upper and lower limit constraints of each target temperature indicated value is used as a determination variable, and the predicted value and target of the molten steel temperature at the start of continuous casting. As a linear planning problem whose objective function is a function including the absolute value of the difference from temperature and the sum of the values obtained by multiplying the variable representing the constraint violation amount by a weighting coefficient that takes a non-negative value.
A model that estimates the amount of decrease in molten steel temperature from the completion of steel delivery to the ladle to the start of secondary refining, a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining, and a model that estimates the amount of decrease in molten steel temperature from the start of secondary refining to the end of secondary refining. An equation constraint condition that is determined based on a model that estimates the amount of decrease in molten steel temperature from the end to the start of continuous casting, and is expressed including the respective target temperature indication values and the predicted value of the molten steel temperature at the start of continuous casting. When,
An inequality indicating that the target temperature indication value at the completion of steel delivery to the pan is included within the range in which the upper and lower limit constraints of the target temperature indication value at the completion of steel delivery to the pan are relaxed by the above constraint violation amount. The inequality indicating that the target temperature indicated value at the start of the secondary refining is included within the range in which the upper and lower limit constraints of the target temperature indicated value at the start of the secondary refining are relaxed by the constraint violation amount, and the end of the secondary refining. Based on the inequality constraint condition expressed by the inequality indicating that the target temperature indicated value at the end of the secondary refining is included in the range in which the upper and lower limit constraints of the target temperature indicated value at the time are relaxed by the constraint violation amount. hand,
Optimal solution calculation processing for calculating the optimal solution that minimizes the objective function for a plurality of combinations of the weighting coefficients, and
In the optimum solution calculation process, the target temperature instruction value at the time of completion of steel delivery to the ladle and the target temperature instruction at the start of the secondary refining in the optimum solution calculated corresponding to each of the plurality of combinations of the weight coefficients. A program for causing a computer to execute a presentation process that presents a plurality of combinations of a value, a target temperature indicated value at the end of secondary refining, and a predicted value of a molten steel temperature at the start of continuous casting.
JP2016075406A 2016-04-04 2016-04-04 Support methods, equipment and programs for molten steel temperature control in the steelmaking process Active JP6786848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075406A JP6786848B2 (en) 2016-04-04 2016-04-04 Support methods, equipment and programs for molten steel temperature control in the steelmaking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075406A JP6786848B2 (en) 2016-04-04 2016-04-04 Support methods, equipment and programs for molten steel temperature control in the steelmaking process

Publications (2)

Publication Number Publication Date
JP2017186601A JP2017186601A (en) 2017-10-12
JP6786848B2 true JP6786848B2 (en) 2020-11-18

Family

ID=60046229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075406A Active JP6786848B2 (en) 2016-04-04 2016-04-04 Support methods, equipment and programs for molten steel temperature control in the steelmaking process

Country Status (1)

Country Link
JP (1) JP6786848B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114787394A (en) * 2019-11-29 2022-07-22 杰富意钢铁株式会社 Operating method for ladle refining treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144984B2 (en) * 1994-06-15 2001-03-12 新日本製鐵株式会社 Adjustment method of molten steel temperature in steelmaking process
JP6398579B2 (en) * 2013-12-06 2018-10-03 新日鐵住金株式会社 Operation schedule creation device, operation schedule creation method, and program

Also Published As

Publication number Publication date
JP2017186601A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP4734024B2 (en) Hot rolling mill heating / rolling schedule creation apparatus, creation method, computer program, and computer-readable recording medium
JP5462750B2 (en) Molten steel temperature management method, apparatus and program
JP6394208B2 (en) Operation schedule preparation method and preparation apparatus in a steelmaking factory
JP5363238B2 (en) Output value prediction method, apparatus, and program for the method
WO2019115655A1 (en) Method of controlling a gas furnace for melting metal and control system therefor
JP6786848B2 (en) Support methods, equipment and programs for molten steel temperature control in the steelmaking process
CN109358581B (en) Two-stream different-width batch planning optimization method for steelmaking-continuous casting process
JP4727431B2 (en) Method for operating steel manufacturing process and operating device used therefor
JP2012133633A (en) Production plan creation device
JP2013252531A (en) Operation support system of heating furnace
JP6098553B2 (en) Rejuvenated phosphorus amount prediction device, recovered phosphorus amount prediction method, and converter dephosphorization control method
JP2012030282A (en) Device and method for preparing hot rolling schedule and computer program
JP5488184B2 (en) Scheduling parameter correcting method and correcting apparatus, schedule generating method and generating apparatus, and steel material manufacturing method
JP2005342787A (en) Device and method for creating heating/rolling schedule in heating/rolling plant, computer program and readable storage medium
JP4791170B2 (en) Steel temperature prediction method
Botnikov et al. Development of a steel temperature prediction model in a steel ladle and tundish in a casting and rolling complex
JP7156023B2 (en) Continuous casting operation support device, continuous casting operation support method, and program
JP2017071815A (en) Furnace temperature setting method and furnace temperature setting device
JP4959125B2 (en) Processing plan creation device, operation control device, processing plan creation method, operation control method, computer program, and recording medium
JP5621507B2 (en) Method for allocating steel out of ladle and apparatus for allocating steel out of ladle
JP2018028853A (en) Production plan creation method and production plan creation device
JP5672041B2 (en) Method for allocating steel out of ladle and apparatus for allocating steel out of ladle
JP2010090455A (en) Method, apparatus and program for controlling speed in continuous heat-treatment facility
JP7031350B2 (en) How to estimate the casting time in the steelmaking process
JP6427936B2 (en) Manufacturing process operation support method, apparatus and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R151 Written notification of patent or utility model registration

Ref document number: 6786848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151