JP6786445B2 - Hydrogen concentration measurement system, method and program - Google Patents

Hydrogen concentration measurement system, method and program Download PDF

Info

Publication number
JP6786445B2
JP6786445B2 JP2017115270A JP2017115270A JP6786445B2 JP 6786445 B2 JP6786445 B2 JP 6786445B2 JP 2017115270 A JP2017115270 A JP 2017115270A JP 2017115270 A JP2017115270 A JP 2017115270A JP 6786445 B2 JP6786445 B2 JP 6786445B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
resistance
detection value
hydrogen
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017115270A
Other languages
Japanese (ja)
Other versions
JP2019002707A (en
Inventor
青山 肇
肇 青山
清貴 脇田
清貴 脇田
加藤 康裕
康裕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017115270A priority Critical patent/JP6786445B2/en
Publication of JP2019002707A publication Critical patent/JP2019002707A/en
Application granted granted Critical
Publication of JP6786445B2 publication Critical patent/JP6786445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

本発明の実施形態は、水素吸蔵材を用いた水素濃度計測技術に関する。 An embodiment of the present invention relates to a hydrogen concentration measuring technique using a hydrogen storage material.

水素吸蔵材を用いた水素濃度計測システムは、この水素吸蔵材における水素吸蔵量の増加に伴い電気抵抗値が増加する性質を利用して、周囲環境の水素濃度を計測する。
そのため、周囲環境の変化が無く水素吸蔵材に吸蔵される水素の出入りが無い状態においては、その電気抵抗値は一定であることが理想である。
The hydrogen concentration measurement system using the hydrogen storage material measures the hydrogen concentration in the surrounding environment by utilizing the property that the electric resistance value increases as the hydrogen storage amount of the hydrogen storage material increases.
Therefore, it is ideal that the electric resistance value is constant when there is no change in the surrounding environment and there is no inflow and outflow of hydrogen stored in the hydrogen storage material.

しかし水素吸蔵材の内部歪み等の経年変化により、周囲環境の水素濃度が不変にもかかわらず電気抵抗値が変化し、水素濃度の計測精度が低下する場合がある。
このため水素濃度計測システムは、校正を定期的に実施することにより、水素濃度の計測精度の維持が図られている。
However, due to aging such as internal strain of the hydrogen storage material, the electric resistance value may change even though the hydrogen concentration in the surrounding environment does not change, and the measurement accuracy of the hydrogen concentration may decrease.
For this reason, the hydrogen concentration measurement system maintains the measurement accuracy of the hydrogen concentration by periodically performing calibration.

特開2015−145859号公報Japanese Unexamined Patent Publication No. 2015-145859

しかし、従来の水素濃度計測システムの校正作業は、水素濃度の計測が一時的に中断することやプラント内で同時進行する他の作業と干渉する等の問題があるため、その実施頻度を低減させたいという要望がある。 However, the calibration work of the conventional hydrogen concentration measurement system has problems such as temporary interruption of hydrogen concentration measurement and interference with other work simultaneously progressing in the plant, so the frequency of implementation is reduced. There is a desire to do so.

本発明の実施形態はこのような事情を考慮してなされたもので、プラント内の水素濃度計測を中断したり機器の着脱を伴ったりすることの無い校正作業が実施できる水素濃度計測技術の提供を目的とする。 An embodiment of the present invention has been made in consideration of such circumstances, and provides a hydrogen concentration measurement technique capable of performing calibration work without interrupting hydrogen concentration measurement in a plant or involving attachment / detachment of equipment. With the goal.

実施形態に係る水素濃度計測システムは、雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得する温度信号取得部と、前記温度検出値を算出式に入力し前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出する算出部と、前記水素吸蔵材の抵抗検出値の信号を取得する抵抗信号取得部と、前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算する演算部と、前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出する導出部と、前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合に前記算出式の校正を実行する校正部と、を備え、前記算出式は、前記抵抗検出値の経時変化を時間変数で定義した関数式が、パラメータとして導入される。 The hydrogen concentration measuring system according to the embodiment includes a temperature signal acquisition unit that acquires a signal of a temperature detection value from a temperature sensor arranged in the vicinity of a hydrogen storage material that changes the hydrogen storage amount according to the hydrogen concentration in the atmosphere, and the above. A calculation unit that inputs the temperature detection value into the calculation formula to calculate the standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero, and a resistance signal acquisition that acquires the signal of the resistance detection value of the hydrogen storage material. A unit, a calculation unit that calculates the resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value, a derivation unit that derives the hydrogen concentration of the atmosphere based on the resistance change rate, and the above. and a calibration unit that executes a calibration before hexane Deshiki when hydrogen storage capacity baseline of the resistance detection value or the resistance change rate in a direction further decreases from zero drift, the calculating formula, the function expression that defines the temporal change of the resistance value detected by the time variable, Ru is introduced as a parameter.

本発明の実施形態により、プラント内の水素濃度計測を中断したり機器の着脱を伴ったりすることの無い校正作業が実施できる水素濃度計測技術が提供される。 An embodiment of the present invention provides a hydrogen concentration measurement technique capable of performing calibration work without interrupting hydrogen concentration measurement in a plant or involving attachment / detachment of equipment.

本発明の実施形態に係る水素濃度計測システムのブロック図。The block diagram of the hydrogen concentration measurement system which concerns on embodiment of this invention. 実施形態に係る水素濃度計測システムにおける校正の概念の説明図。The explanatory view of the concept of calibration in the hydrogen concentration measurement system which concerns on embodiment. 実施形態に係る水素濃度計測方法及び水素濃度計測プログラムのフローチャート。The flowchart of the hydrogen concentration measurement method and the hydrogen concentration measurement program which concerns on embodiment.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように実施形態に係る水素濃度計測システム10は、水素検出器20と信号処理部30とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the hydrogen concentration measuring system 10 according to the embodiment includes a hydrogen detector 20 and a signal processing unit 30.

水素濃度計測システムの信号処理部30は、雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材21の近傍に配置された温度センサ22から温度検出値Tの信号を取得する温度信号取得部31と、この温度検出値Tを入力し水素吸蔵量がゼロであるときの水素吸蔵材21の標準抵抗値Sを算出する算出部35と、水素吸蔵材21の抵抗検出値Rの信号を取得する抵抗信号取得部32と、抵抗検出値Rと標準抵抗値Sに基づいて水素吸蔵材21の抵抗変化率Qを演算する演算部36と、抵抗変化率Qに基づいて雰囲気の水素濃度Gを導出する導出部39と、水素吸蔵量がゼロからさらに減少する方向に抵抗検出値R又は抵抗変化率Qのベースラインがドリフトする場合に標準抵抗値Sの算出式33の校正を実行する校正部38と、を備えている。 The signal processing unit 30 of the hydrogen concentration measurement system acquires a temperature signal of a temperature detection value T from a temperature sensor 22 arranged in the vicinity of the hydrogen storage material 21 that changes the hydrogen storage amount according to the hydrogen concentration in the atmosphere. A signal of the resistance detection value R of the hydrogen storage material 21 and the calculation unit 35 for inputting the temperature detection value T and calculating the standard resistance value S of the hydrogen storage material 21 when the hydrogen storage amount is zero is input to the unit 31. The resistance signal acquisition unit 32 to be acquired, the calculation unit 36 that calculates the resistance change rate Q of the hydrogen storage material 21 based on the resistance detection value R and the standard resistance value S, and the hydrogen concentration G in the atmosphere based on the resistance change rate Q. When the baseline of the resistance detection value R or the resistance change rate Q drifts in the direction in which the hydrogen storage amount further decreases from zero, the derivation unit 39 that derives the standard resistance value S is calibrated. It includes a part 38 and.

さらに水素濃度計測システムの信号処理部30は、抵抗検出値R又は抵抗変化率Qのベースラインのドリフトを判定する判定部37と、オペレータが設定部42に温度情報を入力することにより水素吸蔵材21の温度を可変させるヒータ制御部41と、をさらに備えている。 Further, the signal processing unit 30 of the hydrogen concentration measurement system includes a determination unit 37 that determines a baseline drift of the resistance detection value R or the resistance change rate Q, and a hydrogen storage material by the operator inputting temperature information to the setting unit 42. A heater control unit 41 that changes the temperature of 21 is further provided.

水素検出器20は、第1巻芯23に互いに絶縁を保ちながらソレノイド状に巻きつけられた水素吸蔵材21及び温度センサ22と、第1巻芯23の外側に同軸に配置された第2巻芯27にソレノイド状に巻きつけられたヒータ線25と、このヒータ線25の温度制御用の測温計26と、から構成される。 The hydrogen detector 20 includes a hydrogen storage material 21 and a temperature sensor 22 wound in a solenoid shape around the first winding core 23 while maintaining insulation from each other, and a second volume coaxially arranged on the outside of the first winding core 23. It is composed of a heater wire 25 wound in a solenoid shape around a core 27 and a temperature gauge 26 for temperature control of the heater wire 25.

第1巻芯23及び第2巻芯27は、絶縁材料からなる中実または中空の円柱形状を有している。水素吸蔵材21は、冷却や加圧により水素を吸収し加熱や減圧により水素を放出する性質を有するものである。水素吸蔵材21は、材質として合金製のものが広く知られているが、特に限定はない。 The first winding core 23 and the second winding core 27 have a solid or hollow cylindrical shape made of an insulating material. The hydrogen storage material 21 has a property of absorbing hydrogen by cooling or pressurizing and releasing hydrogen by heating or depressurizing. The hydrogen storage material 21 is widely known to be made of an alloy as a material, but is not particularly limited.

この水素吸蔵材21への水素の吸蔵量は水素の圧力および温度によって変化し、一定温度における水素圧力と水素吸蔵量との間の関係を示したPCT曲線(図示略)が知られている。このPCT曲線によれば、水素吸蔵材21における水素の吸蔵量が少ない場合、水素吸蔵量は水素圧力の1/2乗に比例して増加する。さらに水素吸蔵量が増加すると、水素化物が形成されはじめ、水素の吸蔵量は増加するが水素圧力が増加しない領域(プラトー領域)が出現する。全てが水素化物になると水素圧力の上昇とともに再び水素吸蔵量は増加する。 The amount of hydrogen stored in the hydrogen storage material 21 changes depending on the pressure and temperature of hydrogen, and a PCT curve (not shown) showing the relationship between the hydrogen pressure at a constant temperature and the amount of hydrogen stored is known. According to this PCT curve, when the amount of hydrogen stored in the hydrogen storage material 21 is small, the amount of hydrogen stored increases in proportion to the 1/2 power of the hydrogen pressure. When the hydrogen storage amount further increases, hydrides begin to be formed, and a region (plateau region) appears in which the hydrogen storage amount increases but the hydrogen pressure does not increase. When all are hydrides, the amount of hydrogen stored increases again as the hydrogen pressure rises.

また、水素吸蔵材21の温度が上昇すると、プラトー領域が出現する圧力も上昇していき、プラトー領域そのものも徐々に消滅していく。
水素吸蔵材21を水素濃度計測センサとして用いる場合、水素圧力と水素吸蔵量とが互いに一対一の関係になるように、プラトー領域が消滅する温度まで加熱する必要がある。
Further, when the temperature of the hydrogen storage material 21 rises, the pressure at which the plateau region appears also rises, and the plateau region itself gradually disappears.
When the hydrogen storage material 21 is used as a hydrogen concentration measurement sensor, it is necessary to heat it to a temperature at which the plateau region disappears so that the hydrogen pressure and the hydrogen storage amount have a one-to-one relationship with each other.

ヒータ制御部41は、ヒータ線25の近傍に配置された測温計26が設定部42で設定した温度になるように、ヒータ線25への通電量をフィードバック制御する。この設定部42で設定する温度は、水素吸蔵材21のPCT曲線上のプラトー領域が、十分に消滅する温度に設定される。 The heater control unit 41 feedback-controls the amount of electricity supplied to the heater wire 25 so that the temperature gauge 26 arranged in the vicinity of the heater wire 25 reaches the temperature set by the setting unit 42. The temperature set by the setting unit 42 is set to a temperature at which the plateau region on the PCT curve of the hydrogen storage material 21 sufficiently disappears.

温度信号取得部31は、水素吸蔵材21の近傍に配置された温度センサ22から出力される温度検出値Tの信号を取得する。この温度センサ22は、測温抵抗体で構成され、温度変化によって電気抵抗値が変化する特性を利用し、検出した電気抵抗を温度検出値Tに変換して出力する。この温度センサ22にはブリッジ回路(図示略)が接続されており、このブリッジ回路により抵抗を検出し、温度検出値Tに変換してから取得部31に信号出力される。 The temperature signal acquisition unit 31 acquires a signal of the temperature detection value T output from the temperature sensor 22 arranged in the vicinity of the hydrogen storage material 21. The temperature sensor 22 is composed of a resistance temperature detector, and utilizes the characteristic that the electric resistance value changes with a temperature change, converts the detected electric resistance into a temperature detection value T, and outputs the detected electric resistance. A bridge circuit (not shown) is connected to the temperature sensor 22, and the resistance is detected by the bridge circuit, converted into a temperature detection value T, and then a signal is output to the acquisition unit 31.

抵抗信号取得部32は、水素吸蔵材21の抵抗検出値Rの信号を取得する。この水素吸蔵材21にも、ブリッジ回路(図示略)が接続されており、このブリッジ回路により検出された抵抗検出値Rが、取得部32に信号出力される。
この水素吸蔵材21の抵抗検出値Rは、自身の温度上昇だけでなく水素吸蔵量の増加に応じても、大きくなる性質を有している。このために水素吸蔵材21の温度検出値Tと抵抗検出値Rとを取得することにより、最終的に雰囲気の水素濃度Gを導くことができる。
The resistance signal acquisition unit 32 acquires a signal of the resistance detection value R of the hydrogen storage material 21. A bridge circuit (not shown) is also connected to the hydrogen storage material 21, and the resistance detection value R detected by the bridge circuit is output as a signal to the acquisition unit 32.
The resistance detection value R of the hydrogen storage material 21 has a property of increasing not only with its own temperature rise but also with an increase in the hydrogen storage amount. Therefore, by acquiring the temperature detection value T and the resistance detection value R of the hydrogen storage material 21, the hydrogen concentration G in the atmosphere can be finally derived.

算出部35は、取得した温度検出値Tを、次式で表される算出式33に代入し、水素吸蔵量がゼロであるときの水素吸蔵材21の標準抵抗値Sを算出する。
ここで算出式33におけるA,B,Cは、水素濃度がゼロの雰囲気において温度を可変しながら抵抗値を測定することにより、水素検出器20の個体毎に実験的に決定される定数である。
標準抵抗値S=A×T2+B×T+C (33)
The calculation unit 35 substitutes the acquired temperature detection value T into the calculation formula 33 represented by the following formula, and calculates the standard resistance value S of the hydrogen storage material 21 when the hydrogen storage amount is zero.
Here, A, B, and C in the calculation formula 33 are constants experimentally determined for each individual hydrogen detector 20 by measuring the resistance value while changing the temperature in an atmosphere where the hydrogen concentration is zero. ..
Standard resistance value S = A × T 2 + B × T + C (33)

演算部36は、取得した抵抗検出値Rと算出した標準抵抗値Sを、次式に代入して水素吸蔵材21の抵抗変化率Qを演算する。
抵抗変化率Q(%)=(抵抗検出値R−標準抵抗値S)/標準抵抗値S×100
The calculation unit 36 substitutes the acquired resistance detection value R and the calculated standard resistance value S into the following equation to calculate the resistance change rate Q of the hydrogen storage material 21.
Resistance change rate Q (%) = (resistance detection value R-standard resistance value S) / standard resistance value S x 100

理想状態では、雰囲気の水素濃度がゼロである状態では、周囲温度に関わらず抵抗変化率Qは0%に近い値を取るはずである。しかし、抵抗検出値Rのベースラインが経時的に負の方向にドリフトする場合は、水素濃度Gの計測精度が低下するだけでなく、現実よりも水素濃度Gが低めに導出される、お手盛り評価となってしまう。 In the ideal state, when the hydrogen concentration in the atmosphere is zero, the resistance change rate Q should take a value close to 0% regardless of the ambient temperature. However, when the baseline of the resistance detection value R drifts in the negative direction over time, not only the measurement accuracy of the hydrogen concentration G decreases, but also the hydrogen concentration G is derived to be lower than the actual value. Will be.

判定部37は、図2(A)に示すように、抵抗変化率Qの一定期間Mの平均値Aと設定閾値mとを対比する。判定部37では、抵抗検出値Rから抵抗変化率Qが新たに演算される毎に、その時点から一定期間Mの複数の抵抗変化率Qの平均値Aを算出する。
この平均値Aが、マイナス値に設定されている閾値mよりも大きい場合は、抵抗検出値Rのベースラインの減少方向ドリフトは無いと判定され、この抵抗変化率Qに基づいて水素濃度Gが導出される。
他方で、この平均値Aが、マイナス値に設定されている閾値mよりも小さい場合は、抵抗検出値Rのベースラインの減少方向ドリフトは有りと判定され、校正部38において算出式33の校正シーケンスが開始される。
As shown in FIG. 2A, the determination unit 37 compares the average value A of the resistance change rate Q for a certain period M with the set threshold value m. Each time the resistance change rate Q is newly calculated from the resistance detection value R, the determination unit 37 calculates the average value A of the plurality of resistance change rates Q for a certain period of time M from that time point.
When this average value A is larger than the threshold value m set as a negative value, it is determined that there is no downward drift of the baseline of the resistance detection value R, and the hydrogen concentration G is determined based on this resistance change rate Q. Derived.
On the other hand, when this average value A is smaller than the threshold value m set as a negative value, it is determined that there is a downward drift of the baseline of the resistance detection value R, and the calibration unit 38 calibrates the calculation formula 33. The sequence is started.

校正部38では、ドリフト有りの判定が出た際に、図2(B)に示すように、抵抗検出値Rの経時変化に基づき次式で示される関数式△Rを算出式33のパラメータに導入する。ここで、関数式△Rにおけるtは時間変数であり、D,Eは近似により得られた一次式の係数である。
△R = D・t+E
When the calibration unit 38 determines that there is a drift, as shown in FIG. 2 (B), the function formula ΔR represented by the following formula is used as a parameter of the calculation formula 33 based on the change over time of the resistance detection value R. Introduce. Here, t in the function equation ΔR is a time variable, and D and E are coefficients of the linear equation obtained by approximation.
ΔR = D ・ t + E

この校正シーケンスにより、標準抵抗値Sの算出式33は、次式のように更新される。
更新標準抵抗値S´=A×T2+B×T+C−△R
By this calibration sequence, the calculation formula 33 of the standard resistance value S is updated as follows.
Update standard resistance value S'= A × T 2 + B × T + C− △ R

なお、この関数式△Rを導くための期間N(図2(B))は、ドリフト有りの判定が出た時点を基点にした過去としてもよいし、水素検出器20をプラントに設置する以前の検査期間を採用してもよく、特に限定されない。
これにより、抵抗検出値Rのベースラインの減少方向ドリフトによる誤差が補正され、導出部39における水素濃度Gの計測精度を向上させることができる。
The period N (FIG. 2 (B)) for deriving this functional formula ΔR may be the past based on the time when it is determined that there is drift, or before the hydrogen detector 20 is installed in the plant. The inspection period may be adopted, and is not particularly limited.
As a result, the error due to the downward drift of the baseline of the resistance detection value R is corrected, and the measurement accuracy of the hydrogen concentration G in the derivation unit 39 can be improved.

導出部39は、さまざまな温度検出値Tにおいて抵抗変化率Qと水素濃度Gとの関係を表したテーブルを予め備えている。そして、このテーブルを参照しつつ、入力した抵抗変化率Qに基づいて雰囲気の水素濃度Gを導出する。 The derivation unit 39 is provided in advance with a table showing the relationship between the resistance change rate Q and the hydrogen concentration G at various temperature detection values T. Then, while referring to this table, the hydrogen concentration G of the atmosphere is derived based on the input resistance change rate Q.

なお、抵抗検出値Rのベースラインがドリフトする場合、ヒータ温度設定部42の入力を変更し、水素吸蔵材21の温度を可変して温度が安定してから上述の校正シーケンスを開始する場合もある。
これにより、算出部35において算出式33に代入される温度検出値Tが更新され、演算部36に入力される標準抵抗値Sと抵抗検出値Rも変化して、出力される抵抗変化率Qも変化する。その後の判定部37及び校正部38の動作は、上述した通りである。
その結果、より精度の高い補正を実行することができる場合がある。
When the baseline of the resistance detection value R drifts, the input of the heater temperature setting unit 42 may be changed to change the temperature of the hydrogen storage material 21 to stabilize the temperature before starting the above calibration sequence. is there.
As a result, the temperature detection value T assigned to the calculation formula 33 in the calculation unit 35 is updated, the standard resistance value S and the resistance detection value R input to the calculation unit 36 also change, and the output resistance change rate Q Also changes. Subsequent operations of the determination unit 37 and the calibration unit 38 are as described above.
As a result, it may be possible to perform a more accurate correction.

図3のフローチャートに基づいて実施形態に係る水素濃度計測方法及び水素濃度計測プログラムについて説明する(適宜、図1参照)。
設定部42にヒータ温度の設定値を入力し(S11)、水素検出器20から取得される温度検出値Tが安定するのを待つ(S12 No,Yes)。そして、温度を入力変数とし、実験的に決定された定数A,B,Cを含み、水素吸蔵量がゼロであるときの水素吸蔵材21の標準抵抗値Sを算出する算出式33を取得する(S13)。水素検出器20から取得した水素吸蔵材21の温度検出値Tの信号を(S14)、この算出式33に代入し、温度検出値Tにおける水素吸蔵材21の標準抵抗値Sを算出する(S15)。
The hydrogen concentration measuring method and the hydrogen concentration measuring program according to the embodiment will be described with reference to the flowchart of FIG. 3 (see FIG. 1 as appropriate).
A set value of the heater temperature is input to the setting unit 42 (S11), and the temperature detection value T acquired from the hydrogen detector 20 is waited for stabilization (S12 No, Yes). Then, the calculation formula 33 for calculating the standard resistance value S of the hydrogen storage material 21 when the hydrogen storage amount is zero, including the experimentally determined constants A, B, and C, is acquired with the temperature as an input variable. (S13). The signal of the temperature detection value T of the hydrogen storage material 21 acquired from the hydrogen detector 20 is substituted into this calculation formula 33 (S14), and the standard resistance value S of the hydrogen storage material 21 at the temperature detection value T is calculated (S15). ).

次に、水素検出器20から水素吸蔵材21の抵抗検出値Rの信号を取得し(S16)、この抵抗検出値Rと標準抵抗値Sに基づいて水素吸蔵材の抵抗変化率Qを演算する(S17)。そして、この抵抗変化率Qに基づいて雰囲気の水素濃度Gが出力される(S17)。さらに水素濃度の計測を継続する場合は(S19 Yes)、水素吸蔵量がゼロからさらに減少する方向に抵抗変化率Qのベースラインがドリフトしているか否かについて判定が行われる。 Next, the signal of the resistance detection value R of the hydrogen storage material 21 is acquired from the hydrogen detector 20 (S16), and the resistance change rate Q of the hydrogen storage material is calculated based on the resistance detection value R and the standard resistance value S. (S17). Then, the hydrogen concentration G of the atmosphere is output based on the resistance change rate Q (S17). Further, when the measurement of the hydrogen concentration is continued (S19 Yes), it is determined whether or not the baseline of the resistance change rate Q drifts in the direction in which the hydrogen storage amount further decreases from zero.

このドリフト判定は、抵抗変化率Qの一定期間Mの平均値Aと設定閾値mとを対比し、この平均値Aが、マイナス設定された閾値mよりも大きければ、ベースラインのドリフトは無いと判定され(S20 No)、(S14)からのフローを繰り返す。 In this drift determination, the average value A of the resistance change rate Q for a certain period M and the set threshold value m are compared, and if the average value A is larger than the negatively set threshold value m, there is no baseline drift. The determination is made (S20 No), and the flow from (S14) is repeated.

他方において、平均値Aが、マイナス設定された閾値m以下であれば、ベースラインのドリフト有り判定され(S20 Yes)、算出式33の校正に移る。この校正により、過去(期間N)の抵抗検出値Rの経時変化に基づき得られる関数式△Rが、パラメータとして導入され、算出式33が更新される(S21)。
そして、ベースラインのドリフト有り判定がなされた場合は、この更新された算出式33が再取得され(S13)、その後のフローが繰り返され、水素濃度の計測が継続が中断されるまで続く(S19 Yes No END)。
On the other hand, if the average value A is equal to or less than the negatively set threshold value m, it is determined that there is a baseline drift (S20 Yes), and the calibration of the calculation formula 33 is started. By this calibration, the functional formula ΔR obtained based on the change with time of the resistance detection value R in the past (period N) is introduced as a parameter, and the calculation formula 33 is updated (S21).
Then, when it is determined that there is a baseline drift, the updated calculation formula 33 is reacquired (S13), the subsequent flow is repeated, and the hydrogen concentration measurement continues until the continuation is interrupted (S19). Yes No END).

以上述べた少なくともひとつの実施形態の水素濃度計測システムによれば、水素吸蔵材の水素吸蔵量がゼロからさらに減少する方向へのベースライン信号のドリフト判定を実施することで、校正作業を簡易的に実施することができ、水素濃度計測を高精度に維持することが可能となる。 According to the hydrogen concentration measurement system of at least one embodiment described above, the calibration work is simplified by performing the drift determination of the baseline signal in the direction in which the hydrogen storage amount of the hydrogen storage material further decreases from zero. It is possible to maintain high accuracy in hydrogen concentration measurement.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
また、水素濃度計測システムの構成要素は、コンピュータのプロセッサで実現することも可能であり、水素濃度計測プログラムにより動作させることが可能である。
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
In addition, the components of the hydrogen concentration measurement system can be realized by a computer processor, and can be operated by a hydrogen concentration measurement program.

以上説明した水素濃度計測システムは、専用のチップ、FPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、又はCPU(Central Processing Unit)などのプロセッサを高集積化させた制御装置と、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶装置と、HDD(Hard Disk Drive)やSSD(Solid State Drive)などの外部記憶装置と、ディスプレイなどの表示装置と、マウスやキーボードなどの入力装置と、通信I/Fとを、備えており、通常のコンピュータを利用したハードウェア構成で実現できる。 The hydrogen concentration measurement system described above includes a control device in which processors such as a dedicated chip, FPGA (Field Programmable Gate Array), GPU (Graphics Processing Unit), or CPU (Central Processing Unit) are highly integrated, and a ROM ( Storage devices such as Read Only Memory) and RAM (Random Access Memory), external storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive), display devices such as displays, and input such as mouse and keyboard. It is equipped with a device and a communication I / F, and can be realized by a hardware configuration using a normal computer.

また水素濃度計測システムで実行されるプログラムは、ROM等に予め組み込んで提供される。もしくは、このプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、CD−R、メモリカード、DVD、フレキシブルディスク(FD)等のコンピュータで読み取り可能な記憶媒体に記憶されて提供するようにしてもよい。 Further, the program executed by the hydrogen concentration measurement system is provided by incorporating it into a ROM or the like in advance. Alternatively, the program is provided as a file in an installable or executable format stored on a computer-readable storage medium such as a CD-ROM, CD-R, memory card, DVD, or flexible disk (FD). You may try to do it.

また、本実施形態に係る水素濃度計測システムで実行されるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせて提供するようにしてもよい。
また、水素濃度計測システムは、構成要素の各機能を独立して発揮する別々のモジュールを、ネットワーク又は専用線で相互に接続し、組み合わせて構成することもできる。
Further, the program executed by the hydrogen concentration measurement system according to the present embodiment may be stored on a computer connected to a network such as the Internet, and may be downloaded and provided via the network.
In addition, the hydrogen concentration measurement system can also be configured by connecting separate modules that independently exert each function of the components to each other by a network or a dedicated line and combining them.

10…水素濃度計測システム、20…水素検出器、21…水素吸蔵材、22…温度センサ、23…巻芯、25…ヒータ線、26…測温計、27…巻芯、30…信号処理部、31…温度信号取得部、32…抵抗信号取得部、33…算出式、35…算出部、36…演算部、37…判定部、38…校正部、39…導出部、41…ヒータ制御部、42…ヒータ温度設定部、42…設定部、G…水素濃度、Q…抵抗変化率、R…抵抗検出値、△R…関数式、S…標準抵抗値、T…温度検出値。 10 ... Hydrogen concentration measurement system, 20 ... Hydrogen detector, 21 ... Hydrogen storage material, 22 ... Temperature sensor, 23 ... Wind core, 25 ... Heater wire, 26 ... Thermometer, 27 ... Wind core, 30 ... Signal processing unit , 31 ... Temperature signal acquisition unit, 32 ... Resistance signal acquisition unit, 33 ... Calculation formula, 35 ... Calculation unit, 36 ... Calculation unit, 37 ... Judgment unit, 38 ... Calibration unit, 39 ... Derivation unit, 41 ... Heater control unit , 42 ... heater temperature setting unit, 42 ... setting unit, G ... hydrogen concentration, Q ... resistance change rate, R ... resistance detection value, ΔR ... functional formula, S ... standard resistance value, T ... temperature detection value.

Claims (5)

雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得する温度信号取得部と、
前記温度検出値を算出式に入力し、前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出する算出部と、
前記水素吸蔵材の抵抗検出値の信号を取得する抵抗信号取得部と、
前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算する演算部と、
前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出する導出部と、
前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合、前記算出式の校正を実行する校正部と、を備え
前記算出式は、前記抵抗検出値の経時変化を時間変数で定義した関数式が、パラメータとして導入されることを特徴とする水素濃度計測システム。
A temperature signal acquisition unit that acquires a temperature detection value signal from a temperature sensor located near the hydrogen storage material that changes the hydrogen storage amount according to the hydrogen concentration in the atmosphere.
A calculation unit that inputs the temperature detection value into the calculation formula and calculates the standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero.
A resistance signal acquisition unit that acquires a signal of the resistance detection value of the hydrogen storage material, and
An arithmetic unit that calculates the resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value, and
A derivation unit that derives the hydrogen concentration of the atmosphere based on the resistance change rate,
If the hydrogen storage capacity is the baseline of the resistance detection value or the resistance change rate in a direction further decreases from zero drift, and a calibration unit that executes a calibration before hexane Deshiki,
Hydrogen concentration measuring system the calculation formula, the function expression that defines the temporal change of the resistance value detected by the time variable, and wherein the Rukoto introduced as a parameter.
請求項1に記載の水素濃度計測システムにおいて、
前記抵抗変化率の一定期間の平均値と設定閾値とを対比することで、前記ベースラインのドリフトを判定する判定部をさらに備えることを特徴とする水素濃度計測システム。
In the hydrogen concentration measuring system according to claim 1,
A hydrogen concentration measuring system further comprising a determination unit for determining a baseline drift by comparing an average value of the resistance change rate for a certain period with a set threshold value.
請求項1又は請求項2に記載の水素濃度計測システムにおいて、
前記水素吸蔵材の温度を可変させるヒータ制御部をさらに備え、
前記ベースラインのドリフトが観測される場合に、前記水素吸蔵材の温度を可変させることを特徴とする水素濃度計測システム。
In the hydrogen concentration measuring system according to claim 1 or 2 .
A heater control unit that changes the temperature of the hydrogen storage material is further provided.
A hydrogen concentration measuring system characterized in that the temperature of the hydrogen storage material is changed when a drift of the baseline is observed.
雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得するステップと、
前記温度検出値を算出式に入力し、前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出するステップと、
前記水素吸蔵材の抵抗検出値の信号を取得するステップと、
前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算するステップと、
前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出するステップと、
前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合、前記算出式の校正を実行するステップと、を含み、
前記算出式は、前記抵抗検出値の経時変化を時間変数で定義した関数式が、パラメータとして導入されことを特徴とする水素濃度計測方法。
The step of acquiring the signal of the temperature detection value from the temperature sensor placed near the hydrogen storage material that changes the hydrogen storage amount according to the hydrogen concentration of the atmosphere, and
A step of inputting the temperature detection value into the calculation formula and calculating the standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero, and
The step of acquiring the signal of the resistance detection value of the hydrogen storage material and
A step of calculating the resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value, and
The step of deriving the hydrogen concentration of the atmosphere based on the resistance change rate, and
If the hydrogen storage capacity is the baseline of the resistance detection value or the resistance change rate in a direction further decreases from zero drift, comprising performing a calibration of the pre-hexane Deshiki, a,
The calculation formula is a hydrogen concentration measuring method characterized in that a functional formula in which a change with time of the resistance detection value is defined by a time variable is introduced as a parameter .
コンピュータに
雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得するステップ、
前記温度検出値を算出式に入力し、前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出するステップ、
前記水素吸蔵材の抵抗検出値の信号を取得するステップ、
前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算するステップ、
前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出するステップ、
前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合、前記算出式の校正を実行するステップ、
を実行させ、
前記算出式は、前記抵抗検出値の経時変化を時間変数で定義した関数式が、パラメータとして導入されることを特徴とする水素濃度計測プログラム。
A step of acquiring a temperature detection value signal from a temperature sensor placed in the vicinity of a hydrogen storage material that changes the hydrogen storage amount according to the hydrogen concentration in the atmosphere on the computer.
A step of inputting the temperature detection value into the calculation formula and calculating the standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero.
Step of acquiring the signal of the resistance detection value of the hydrogen storage material,
A step of calculating the resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value,
Step of deriving the hydrogen concentration of the atmosphere based on the resistance change rate,
If the hydrogen storage capacity is the baseline of the resistance detection value or the resistance change rate in a direction further decreases from zero drift, performing a calibration of the pre-hexane Deshiki,
To execute,
The calculation formula, the function formula that defines the temporal change of the resistance value detected by the time variable, the hydrogen concentration measurement program characterized Rukoto introduced as a parameter.
JP2017115270A 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program Active JP6786445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115270A JP6786445B2 (en) 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115270A JP6786445B2 (en) 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program

Publications (2)

Publication Number Publication Date
JP2019002707A JP2019002707A (en) 2019-01-10
JP6786445B2 true JP6786445B2 (en) 2020-11-18

Family

ID=65006852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115270A Active JP6786445B2 (en) 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program

Country Status (1)

Country Link
JP (1) JP6786445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236135B (en) * 2021-04-23 2023-08-22 中国石油化工股份有限公司 Baseline calibration method for gas sensor, control device and gas sensor

Also Published As

Publication number Publication date
JP2019002707A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US20140358317A1 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
JP2019053035A5 (en)
US20180284739A1 (en) Quality control apparatus, quality control method, and quality control program
US9494470B2 (en) Thermistor based measurement system
JP2010522319A5 (en)
US20160003692A1 (en) Method of Operating a Mobile Device, Computer Program Product and Mobile Device
JP7070339B2 (en) Temperature threshold determination device, temperature abnormality determination system, temperature threshold determination method, and program
EP2891883A1 (en) Gas concentration measurement apparatus and replacement notification method
JP6786445B2 (en) Hydrogen concentration measurement system, method and program
KR101066509B1 (en) Foreclosure transmitter
US10067105B2 (en) Method for operating a measuring site
KR101433724B1 (en) Method measuring of healthy indicia of plant reflected status of sub-component and storage media thereof
KR20220116464A (en) Multi-Gas Mass Flow Controllers and Methods
WO2020110201A1 (en) Information processing device
JP5948998B2 (en) Abnormality diagnosis device
JP6568486B2 (en) Temperature change prediction analysis apparatus and temperature change prediction analysis method
JP2014181955A (en) Electronic device and measurement data process method
JP5235963B2 (en) Temperature measuring device and air conditioner using this temperature measuring device
US10316690B2 (en) Method for validation of an investigated sensor and corresponding machine
JP6791265B2 (en) Signal processing equipment, signal processing methods and programs
JP5281983B2 (en) Creep error compensation device and creep error compensation method
KR102025893B1 (en) Apparatus and method for measuring body temperature in consideration of thermal conductivity
JP6555429B2 (en) Temperature measuring device, temperature indicator and temperature controller
JP6854618B2 (en) Temperature measuring device
KR101142247B1 (en) Thermistor compensation method for improving accuracy of thermo-couple input

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150