JP2019002707A - Hydrogen concentration measurement system, method, and program - Google Patents

Hydrogen concentration measurement system, method, and program Download PDF

Info

Publication number
JP2019002707A
JP2019002707A JP2017115270A JP2017115270A JP2019002707A JP 2019002707 A JP2019002707 A JP 2019002707A JP 2017115270 A JP2017115270 A JP 2017115270A JP 2017115270 A JP2017115270 A JP 2017115270A JP 2019002707 A JP2019002707 A JP 2019002707A
Authority
JP
Japan
Prior art keywords
resistance
hydrogen storage
detection value
hydrogen
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017115270A
Other languages
Japanese (ja)
Other versions
JP6786445B2 (en
Inventor
青山 肇
Hajime Aoyama
肇 青山
清貴 脇田
Seiki Wakita
清貴 脇田
加藤 康裕
Yasuhiro Kato
康裕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017115270A priority Critical patent/JP6786445B2/en
Publication of JP2019002707A publication Critical patent/JP2019002707A/en
Application granted granted Critical
Publication of JP6786445B2 publication Critical patent/JP6786445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

To provide a hydrogen concentration measurement technique capable of performing calibration which does not accompany interruption of hydrogen concentration measurement and attachment and detachment of a device in a plant.SOLUTION: A hydrogen concentration measurement system comprises: a temperature signal acquisition unit 31 which acquires a temperature detection value T signal from a temperature sensor 22 arranged near a hydrogen storage material 21; a calculation unit 35 which inputs the temperature detection value T and calculates a standard resistance value S; a resistance signal acquisition unit 32 which acquires a resistance detection value R signal of the hydrogen storage material 21; an arithmetic logical unit 36 which calculates a resistance change rate Q on the basis of the resistance detection value R and the standard resistance value S; a derivation unit 39 which derives atmospheric hydrogen concentration G on the basis of the resistance change rate Q; and a calibration unit 38 which calibrates a calculation formula 33 of the standard resistance value S when a baseline of the resistance detection value R or the resistance change rate Q drifts.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、水素吸蔵材を用いた水素濃度計測技術に関する。   Embodiments described herein relate generally to a hydrogen concentration measurement technique using a hydrogen storage material.

水素吸蔵材を用いた水素濃度計測システムは、この水素吸蔵材における水素吸蔵量の増加に伴い電気抵抗値が増加する性質を利用して、周囲環境の水素濃度を計測する。
そのため、周囲環境の変化が無く水素吸蔵材に吸蔵される水素の出入りが無い状態においては、その電気抵抗値は一定であることが理想である。
The hydrogen concentration measurement system using the hydrogen storage material measures the hydrogen concentration in the surrounding environment by utilizing the property that the electrical resistance value increases as the hydrogen storage amount in the hydrogen storage material increases.
Therefore, it is ideal that the electrical resistance value is constant in a state where there is no change in the surrounding environment and there is no entry / exit of hydrogen stored in the hydrogen storage material.

しかし水素吸蔵材の内部歪み等の経年変化により、周囲環境の水素濃度が不変にもかかわらず電気抵抗値が変化し、水素濃度の計測精度が低下する場合がある。
このため水素濃度計測システムは、校正を定期的に実施することにより、水素濃度の計測精度の維持が図られている。
However, due to secular changes such as internal strain of the hydrogen storage material, the electrical resistance value may change even though the hydrogen concentration in the surrounding environment remains unchanged, and the measurement accuracy of the hydrogen concentration may decrease.
For this reason, the hydrogen concentration measurement system maintains the measurement accuracy of the hydrogen concentration by periodically performing calibration.

特開2015−145859号公報Japanese Patent Laying-Open No. 2015-145859

しかし、従来の水素濃度計測システムの校正作業は、水素濃度の計測が一時的に中断することやプラント内で同時進行する他の作業と干渉する等の問題があるため、その実施頻度を低減させたいという要望がある。   However, the calibration work of the conventional hydrogen concentration measurement system has problems such as temporarily interrupting the hydrogen concentration measurement and interfering with other operations that proceed simultaneously in the plant. There is a desire to want.

本発明の実施形態はこのような事情を考慮してなされたもので、プラント内の水素濃度計測を中断したり機器の着脱を伴ったりすることの無い校正作業が実施できる水素濃度計測技術の提供を目的とする。   Embodiments of the present invention have been made in view of such circumstances, and provide a hydrogen concentration measurement technique capable of performing a calibration operation without interrupting the measurement of hydrogen concentration in the plant and without attaching or detaching equipment. With the goal.

実施形態に係る水素濃度計測システムは、雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得する温度信号取得部と、前記温度検出値を入力し前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出する算出部と、前記水素吸蔵材の抵抗検出値の信号を取得する抵抗信号取得部と、前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算する演算部と、前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出する導出部と、前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合に前記標準抵抗値の算出式の校正を実行する校正部と、を備える。   The hydrogen concentration measurement system according to the embodiment includes a temperature signal acquisition unit that acquires a signal of a temperature detection value from a temperature sensor arranged in the vicinity of a hydrogen storage material that changes a hydrogen storage amount according to the hydrogen concentration of the atmosphere, and A calculation unit that inputs a temperature detection value and calculates a standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero; a resistance signal acquisition unit that acquires a signal of a resistance detection value of the hydrogen storage material; A calculation unit that calculates a resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value, a derivation unit that derives a hydrogen concentration of the atmosphere based on the resistance change rate, and the hydrogen storage amount A calibration unit that calibrates the calculation formula of the standard resistance value when the resistance detection value or the baseline of the resistance change rate drifts in a direction in which the resistance value further decreases from zero.

本発明の実施形態により、プラント内の水素濃度計測を中断したり機器の着脱を伴ったりすることの無い校正作業が実施できる水素濃度計測技術が提供される。   According to the embodiment of the present invention, a hydrogen concentration measurement technique capable of performing a calibration operation without interrupting the measurement of hydrogen concentration in a plant or accompanying attachment / detachment of equipment is provided.

本発明の実施形態に係る水素濃度計測システムのブロック図。1 is a block diagram of a hydrogen concentration measurement system according to an embodiment of the present invention. 実施形態に係る水素濃度計測システムにおける校正の概念の説明図。Explanatory drawing of the concept of the calibration in the hydrogen concentration measurement system which concerns on embodiment. 実施形態に係る水素濃度計測方法及び水素濃度計測プログラムのフローチャート。The flowchart of the hydrogen concentration measuring method and hydrogen concentration measuring program which concern on embodiment.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように実施形態に係る水素濃度計測システム10は、水素検出器20と信号処理部30とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the hydrogen concentration measurement system 10 according to the embodiment includes a hydrogen detector 20 and a signal processing unit 30.

水素濃度計測システムの信号処理部30は、雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材21の近傍に配置された温度センサ22から温度検出値Tの信号を取得する温度信号取得部31と、この温度検出値Tを入力し水素吸蔵量がゼロであるときの水素吸蔵材21の標準抵抗値Sを算出する算出部35と、水素吸蔵材21の抵抗検出値Rの信号を取得する抵抗信号取得部32と、抵抗検出値Rと標準抵抗値Sに基づいて水素吸蔵材21の抵抗変化率Qを演算する演算部36と、抵抗変化率Qに基づいて雰囲気の水素濃度Gを導出する導出部39と、水素吸蔵量がゼロからさらに減少する方向に抵抗検出値R又は抵抗変化率Qのベースラインがドリフトする場合に標準抵抗値Sの算出式33の校正を実行する校正部38と、を備えている。   The signal processing unit 30 of the hydrogen concentration measurement system acquires a temperature signal value T from a temperature sensor 22 disposed in the vicinity of the hydrogen storage material 21 that changes the hydrogen storage amount according to the hydrogen concentration of the atmosphere. A calculation unit 35 for calculating the standard resistance value S of the hydrogen storage material 21 when the hydrogen storage amount is zero by inputting the temperature detection value T, and a signal of the resistance detection value R of the hydrogen storage material 21. A resistance signal acquisition unit 32 to acquire, a calculation unit 36 for calculating the resistance change rate Q of the hydrogen storage material 21 based on the resistance detection value R and the standard resistance value S, and the hydrogen concentration G of the atmosphere based on the resistance change rate Q A derivation unit 39 for deriving the value, and a calibration for performing calibration of the calculation formula 33 of the standard resistance value S when the baseline of the resistance detection value R or the resistance change rate Q drifts in a direction in which the hydrogen storage amount further decreases from zero Part 38; Eteiru.

さらに水素濃度計測システムの信号処理部30は、抵抗検出値R又は抵抗変化率Qのベースラインのドリフトを判定する判定部37と、オペレータが設定部42に温度情報を入力することにより水素吸蔵材21の温度を可変させるヒータ制御部41と、をさらに備えている。   Further, the signal processing unit 30 of the hydrogen concentration measurement system includes a determination unit 37 that determines a baseline drift of the resistance detection value R or the resistance change rate Q, and the operator inputs temperature information to the setting unit 42 so that the hydrogen storage material And a heater control unit 41 that varies the temperature of 21.

水素検出器20は、第1巻芯23に互いに絶縁を保ちながらソレノイド状に巻きつけられた水素吸蔵材21及び温度センサ22と、第1巻芯23の外側に同軸に配置された第2巻芯27にソレノイド状に巻きつけられたヒータ線25と、このヒータ線25の温度制御用の測温計26と、から構成される。   The hydrogen detector 20 includes a hydrogen storage material 21 and a temperature sensor 22 that are wound around the first winding core 23 in a solenoid shape while maintaining insulation from each other, and a second winding that is coaxially disposed outside the first winding core 23. The heater wire 25 is wound around the core 27 like a solenoid, and a thermometer 26 for controlling the temperature of the heater wire 25 is formed.

第1巻芯23及び第2巻芯27は、絶縁材料からなる中実または中空の円柱形状を有している。水素吸蔵材21は、冷却や加圧により水素を吸収し加熱や減圧により水素を放出する性質を有するものである。水素吸蔵材21は、材質として合金製のものが広く知られているが、特に限定はない。   The first core 23 and the second core 27 have a solid or hollow cylindrical shape made of an insulating material. The hydrogen storage material 21 has a property of absorbing hydrogen by cooling or pressurization and releasing hydrogen by heating or decompression. The hydrogen storage material 21 is widely known as an alloy material, but is not particularly limited.

この水素吸蔵材21への水素の吸蔵量は水素の圧力および温度によって変化し、一定温度における水素圧力と水素吸蔵量との間の関係を示したPCT曲線(図示略)が知られている。このPCT曲線によれば、水素吸蔵材21における水素の吸蔵量が少ない場合、水素吸蔵量は水素圧力の1/2乗に比例して増加する。さらに水素吸蔵量が増加すると、水素化物が形成されはじめ、水素の吸蔵量は増加するが水素圧力が増加しない領域(プラトー領域)が出現する。全てが水素化物になると水素圧力の上昇とともに再び水素吸蔵量は増加する。   The amount of hydrogen stored in the hydrogen storage material 21 changes depending on the pressure and temperature of hydrogen, and a PCT curve (not shown) showing the relationship between the hydrogen pressure and the hydrogen storage amount at a constant temperature is known. According to this PCT curve, when the amount of hydrogen stored in the hydrogen storage material 21 is small, the amount of stored hydrogen increases in proportion to the 1/2 power of the hydrogen pressure. When the hydrogen storage amount further increases, a hydride begins to be formed, and a region (plateau region) where the hydrogen storage amount increases but the hydrogen pressure does not increase appears. When everything becomes hydride, the hydrogen storage amount increases again as the hydrogen pressure increases.

また、水素吸蔵材21の温度が上昇すると、プラトー領域が出現する圧力も上昇していき、プラトー領域そのものも徐々に消滅していく。
水素吸蔵材21を水素濃度計測センサとして用いる場合、水素圧力と水素吸蔵量とが互いに一対一の関係になるように、プラトー領域が消滅する温度まで加熱する必要がある。
Further, when the temperature of the hydrogen storage material 21 rises, the pressure at which the plateau region appears increases, and the plateau region itself gradually disappears.
When the hydrogen storage material 21 is used as a hydrogen concentration measurement sensor, it is necessary to heat to a temperature at which the plateau region disappears so that the hydrogen pressure and the hydrogen storage amount have a one-to-one relationship.

ヒータ制御部41は、ヒータ線25の近傍に配置された測温計26が設定部42で設定した温度になるように、ヒータ線25への通電量をフィードバック制御する。この設定部42で設定する温度は、水素吸蔵材21のPCT曲線上のプラトー領域が、十分に消滅する温度に設定される。   The heater control unit 41 feedback-controls the energization amount to the heater wire 25 so that the thermometer 26 arranged in the vicinity of the heater wire 25 has the temperature set by the setting unit 42. The temperature set by the setting unit 42 is set to a temperature at which the plateau region on the PCT curve of the hydrogen storage material 21 disappears sufficiently.

温度信号取得部31は、水素吸蔵材21の近傍に配置された温度センサ22から出力される温度検出値Tの信号を取得する。この温度センサ22は、測温抵抗体で構成され、温度変化によって電気抵抗値が変化する特性を利用し、検出した電気抵抗を温度検出値Tに変換して出力する。この温度センサ22にはブリッジ回路(図示略)が接続されており、このブリッジ回路により抵抗を検出し、温度検出値Tに変換してから取得部31に信号出力される。   The temperature signal acquisition unit 31 acquires a signal of the temperature detection value T output from the temperature sensor 22 disposed in the vicinity of the hydrogen storage material 21. This temperature sensor 22 is constituted by a resistance temperature detector, and utilizes the characteristic that the electric resistance value changes with temperature change, and converts the detected electric resistance into a temperature detection value T and outputs it. A bridge circuit (not shown) is connected to the temperature sensor 22, the resistance is detected by this bridge circuit, converted into a temperature detection value T, and then output to the acquisition unit 31.

抵抗信号取得部32は、水素吸蔵材21の抵抗検出値Rの信号を取得する。この水素吸蔵材21にも、ブリッジ回路(図示略)が接続されており、このブリッジ回路により検出された抵抗検出値Rが、取得部32に信号出力される。
この水素吸蔵材21の抵抗検出値Rは、自身の温度上昇だけでなく水素吸蔵量の増加に応じても、大きくなる性質を有している。このために水素吸蔵材21の温度検出値Tと抵抗検出値Rとを取得することにより、最終的に雰囲気の水素濃度Gを導くことができる。
The resistance signal acquisition unit 32 acquires a signal of the resistance detection value R of the hydrogen storage material 21. A bridge circuit (not shown) is also connected to the hydrogen storage material 21, and a resistance detection value R detected by the bridge circuit is output as a signal to the acquisition unit 32.
The resistance detection value R of the hydrogen storage material 21 has a property of increasing not only with its own temperature rise but also with an increase in the amount of hydrogen storage. For this reason, by obtaining the temperature detection value T and the resistance detection value R of the hydrogen storage material 21, the hydrogen concentration G of the atmosphere can be finally derived.

算出部35は、取得した温度検出値Tを、次式で表される算出式33に代入し、水素吸蔵量がゼロであるときの水素吸蔵材21の標準抵抗値Sを算出する。
ここで算出式33におけるA,B,Cは、水素濃度がゼロの雰囲気において温度を可変しながら抵抗値を測定することにより、水素検出器20の個体毎に実験的に決定される定数である。
標準抵抗値S=A×T2+B×T+C (33)
The calculation unit 35 substitutes the acquired temperature detection value T into the calculation formula 33 represented by the following formula, and calculates the standard resistance value S of the hydrogen storage material 21 when the hydrogen storage amount is zero.
Here, A, B, and C in the calculation formula 33 are constants experimentally determined for each individual hydrogen detector 20 by measuring the resistance value while varying the temperature in an atmosphere where the hydrogen concentration is zero. .
Standard resistance value S = A × T 2 + B × T + C (33)

演算部36は、取得した抵抗検出値Rと算出した標準抵抗値Sを、次式に代入して水素吸蔵材21の抵抗変化率Qを演算する。
抵抗変化率Q(%)=(抵抗検出値R−標準抵抗値S)/標準抵抗値S×100
The calculation unit 36 calculates the resistance change rate Q of the hydrogen storage material 21 by substituting the acquired resistance detection value R and the calculated standard resistance value S into the following equation.
Resistance change rate Q (%) = (resistance detection value R−standard resistance value S) / standard resistance value S × 100

理想状態では、雰囲気の水素濃度がゼロである状態では、周囲温度に関わらず抵抗変化率Qは0%に近い値を取るはずである。しかし、抵抗検出値Rのベースラインが経時的に負の方向にドリフトする場合は、水素濃度Gの計測精度が低下するだけでなく、現実よりも水素濃度Gが低めに導出される、お手盛り評価となってしまう。   In an ideal state, in a state where the hydrogen concentration in the atmosphere is zero, the resistance change rate Q should take a value close to 0% regardless of the ambient temperature. However, when the baseline of the resistance detection value R drifts in the negative direction with time, not only the measurement accuracy of the hydrogen concentration G is lowered, but also the hydrogen concentration G is derived lower than the actual measurement. End up.

判定部37は、図2(A)に示すように、抵抗変化率Qの一定期間Mの平均値Aと設定閾値mとを対比する。判定部37では、抵抗検出値Rから抵抗変化率Qが新たに演算される毎に、その時点から一定期間Mの複数の抵抗変化率Qの平均値Aを算出する。
この平均値Aが、マイナス値に設定されている閾値mよりも大きい場合は、抵抗検出値Rのベースラインの減少方向ドリフトは無いと判定され、この抵抗変化率Qに基づいて水素濃度Gが導出される。
他方で、この平均値Aが、マイナス値に設定されている閾値mよりも小さい場合は、抵抗検出値Rのベースラインの減少方向ドリフトは有りと判定され、校正部38において算出式33の校正シーケンスが開始される。
As shown in FIG. 2A, the determination unit 37 compares the average value A of the resistance change rate Q over a certain period M with the set threshold value m. Each time the resistance change rate Q is newly calculated from the resistance detection value R, the determination unit 37 calculates an average value A of a plurality of resistance change rates Q over a certain period M from that point.
When the average value A is larger than the threshold value m set to a negative value, it is determined that there is no drift in the decrease direction of the baseline of the resistance detection value R, and the hydrogen concentration G is determined based on the resistance change rate Q. Derived.
On the other hand, if this average value A is smaller than the threshold value m set to a negative value, it is determined that there is a drift in the decrease direction of the baseline of the resistance detection value R, and the calibration unit 38 calibrates the calculation formula 33. The sequence is started.

校正部38では、ドリフト有りの判定が出た際に、図2(B)に示すように、抵抗検出値Rの経時変化に基づき次式で示される関数式△Rを算出式33のパラメータに導入する。ここで、関数式△Rにおけるtは時間変数であり、D,Eは近似により得られた一次式の係数である。
△R = D・t+E
When it is determined that there is a drift, the calibration unit 38 uses a function equation ΔR expressed by the following equation as a parameter of the calculation equation 33 based on the change over time of the resistance detection value R, as shown in FIG. Introduce. Here, t in the function expression ΔR is a time variable, and D and E are coefficients of a linear expression obtained by approximation.
ΔR = D · t + E

この校正シーケンスにより、標準抵抗値Sの算出式33は、次式のように更新される。
更新標準抵抗値S´=A×T2+B×T+C−△R
With this calibration sequence, the calculation formula 33 for the standard resistance value S is updated as shown in the following formula.
Update standard resistance value S ′ = A × T 2 + B × T + C−ΔR

なお、この関数式△Rを導くための期間N(図2(B))は、ドリフト有りの判定が出た時点を基点にした過去としてもよいし、水素検出器20をプラントに設置する以前の検査期間を採用してもよく、特に限定されない。
これにより、抵抗検出値Rのベースラインの減少方向ドリフトによる誤差が補正され、導出部39における水素濃度Gの計測精度を向上させることができる。
Note that the period N (FIG. 2 (B)) for deriving this functional equation ΔR may be the past based on the time when the determination that there is a drift occurs, or before the hydrogen detector 20 is installed in the plant. The inspection period may be adopted and is not particularly limited.
As a result, the error due to the drift in the decrease direction of the baseline of the resistance detection value R is corrected, and the measurement accuracy of the hydrogen concentration G in the derivation unit 39 can be improved.

導出部39は、さまざまな温度検出値Tにおいて抵抗変化率Qと水素濃度Gとの関係を表したテーブルを予め備えている。そして、このテーブルを参照しつつ、入力した抵抗変化率Qに基づいて雰囲気の水素濃度Gを導出する。   The deriving unit 39 is previously provided with a table representing the relationship between the resistance change rate Q and the hydrogen concentration G at various temperature detection values T. Then, referring to this table, the hydrogen concentration G of the atmosphere is derived based on the input resistance change rate Q.

なお、抵抗検出値Rのベースラインがドリフトする場合、ヒータ温度設定部42の入力を変更し、水素吸蔵材21の温度を可変して温度が安定してから上述の校正シーケンスを開始する場合もある。
これにより、算出部35において算出式33に代入される温度検出値Tが更新され、演算部36に入力される標準抵抗値Sと抵抗検出値Rも変化して、出力される抵抗変化率Qも変化する。その後の判定部37及び校正部38の動作は、上述した通りである。
その結果、より精度の高い補正を実行することができる場合がある。
When the baseline of the resistance detection value R drifts, the above-described calibration sequence may be started after changing the input of the heater temperature setting unit 42 and changing the temperature of the hydrogen storage material 21 to stabilize the temperature. is there.
Thereby, the temperature detection value T substituted into the calculation formula 33 is updated in the calculation unit 35, the standard resistance value S and the resistance detection value R input to the calculation unit 36 also change, and the resistance change rate Q output. Also changes. The subsequent operations of the determination unit 37 and the calibration unit 38 are as described above.
As a result, correction with higher accuracy may be performed.

図3のフローチャートに基づいて実施形態に係る水素濃度計測方法及び水素濃度計測プログラムについて説明する(適宜、図1参照)。
設定部42にヒータ温度の設定値を入力し(S11)、水素検出器20から取得される温度検出値Tが安定するのを待つ(S12 No,Yes)。そして、温度を入力変数とし、実験的に決定された定数A,B,Cを含み、水素吸蔵量がゼロであるときの水素吸蔵材21の標準抵抗値Sを算出する算出式33を取得する(S13)。水素検出器20から取得した水素吸蔵材21の温度検出値Tの信号を(S14)、この算出式33に代入し、温度検出値Tにおける水素吸蔵材21の標準抵抗値Sを算出する(S15)。
A hydrogen concentration measurement method and a hydrogen concentration measurement program according to the embodiment will be described based on the flowchart of FIG. 3 (see FIG. 1 as appropriate).
The setting value of the heater temperature is input to the setting unit 42 (S11), and the temperature detection value T acquired from the hydrogen detector 20 is waited for stabilization (S12 No, Yes). And the calculation formula 33 which calculates the standard resistance value S of the hydrogen occlusion material 21 when the hydrogen occlusion amount is zero, including constants A, B, and C determined experimentally with the temperature as an input variable. (S13). The signal of the temperature detection value T of the hydrogen storage material 21 acquired from the hydrogen detector 20 is substituted into this calculation formula 33 (S14), and the standard resistance value S of the hydrogen storage material 21 at the temperature detection value T is calculated (S15). ).

次に、水素検出器20から水素吸蔵材21の抵抗検出値Rの信号を取得し(S16)、この抵抗検出値Rと標準抵抗値Sに基づいて水素吸蔵材の抵抗変化率Qを演算する(S17)。そして、この抵抗変化率Qに基づいて雰囲気の水素濃度Gが出力される(S17)。さらに水素濃度の計測を継続する場合は(S19 Yes)、水素吸蔵量がゼロからさらに減少する方向に抵抗変化率Qのベースラインがドリフトしているか否かについて判定が行われる。   Next, a signal of the resistance detection value R of the hydrogen storage material 21 is obtained from the hydrogen detector 20 (S16), and the resistance change rate Q of the hydrogen storage material is calculated based on the resistance detection value R and the standard resistance value S. (S17). Then, the hydrogen concentration G of the atmosphere is output based on the resistance change rate Q (S17). Further, when the measurement of the hydrogen concentration is continued (S19 Yes), it is determined whether or not the baseline of the resistance change rate Q is drifting in a direction in which the hydrogen storage amount further decreases from zero.

このドリフト判定は、抵抗変化率Qの一定期間Mの平均値Aと設定閾値mとを対比し、この平均値Aが、マイナス設定された閾値mよりも大きければ、ベースラインのドリフトは無いと判定され(S20 No)、(S14)からのフローを繰り返す。   In this drift determination, the average value A of the resistance change rate Q for a certain period M is compared with the set threshold value m, and if this average value A is larger than the negative threshold value m, there is no baseline drift. It is determined (S20 No), and the flow from (S14) is repeated.

他方において、平均値Aが、マイナス設定された閾値m以下であれば、ベースラインのドリフト有り判定され(S20 Yes)、算出式33の校正に移る。この校正により、過去(期間N)の抵抗検出値Rの経時変化に基づき得られる関数式△Rが、パラメータとして導入され、算出式33が更新される(S21)。
そして、ベースラインのドリフト有り判定がなされた場合は、この更新された算出式33が再取得され(S13)、その後のフローが繰り返され、水素濃度の計測が継続が中断されるまで続く(S19 Yes No END)。
On the other hand, if the average value A is equal to or less than the minus threshold value m, it is determined that there is a baseline drift (S20 Yes), and the process proceeds to calibration of the calculation formula 33. As a result of this calibration, a function formula ΔR obtained based on the temporal change of the resistance detection value R in the past (period N) is introduced as a parameter, and the calculation formula 33 is updated (S21).
If the baseline drift determination is made, the updated calculation formula 33 is re-acquired (S13), the subsequent flow is repeated, and the measurement of the hydrogen concentration continues until the continuation is interrupted (S19). Yes No END).

以上述べた少なくともひとつの実施形態の水素濃度計測システムによれば、水素吸蔵材の水素吸蔵量がゼロからさらに減少する方向へのベースライン信号のドリフト判定を実施することで、校正作業を簡易的に実施することができ、水素濃度計測を高精度に維持することが可能となる。   According to the hydrogen concentration measurement system of at least one embodiment described above, the calibration operation can be simplified by performing the drift determination of the baseline signal in a direction in which the hydrogen storage amount of the hydrogen storage material further decreases from zero. The hydrogen concentration measurement can be maintained with high accuracy.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
また、水素濃度計測システムの構成要素は、コンピュータのプロセッサで実現することも可能であり、水素濃度計測プログラムにより動作させることが可能である。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
The components of the hydrogen concentration measurement system can also be realized by a computer processor, and can be operated by a hydrogen concentration measurement program.

以上説明した水素濃度計測システムは、専用のチップ、FPGA(Field Programmable Gate Array)、GPU(Graphics Processing Unit)、又はCPU(Central Processing Unit)などのプロセッサを高集積化させた制御装置と、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶装置と、HDD(Hard Disk Drive)やSSD(Solid State Drive)などの外部記憶装置と、ディスプレイなどの表示装置と、マウスやキーボードなどの入力装置と、通信I/Fとを、備えており、通常のコンピュータを利用したハードウェア構成で実現できる。   The hydrogen concentration measurement system described above includes a dedicated device, a control device in which a processor such as an FPGA (Field Programmable Gate Array), a GPU (Graphics Processing Unit), or a CPU (Central Processing Unit) is highly integrated, and a ROM ( Storage devices such as Read Only Memory (RAM) and Random Access Memory (RAM), external storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive), display devices such as a display, and inputs such as a mouse and a keyboard The apparatus and the communication I / F are provided, and can be realized by a hardware configuration using a normal computer.

また水素濃度計測システムで実行されるプログラムは、ROM等に予め組み込んで提供される。もしくは、このプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、CD−R、メモリカード、DVD、フレキシブルディスク(FD)等のコンピュータで読み取り可能な記憶媒体に記憶されて提供するようにしてもよい。   A program executed by the hydrogen concentration measurement system is provided by being incorporated in advance in a ROM or the like. Alternatively, this program is stored in a computer-readable storage medium such as a CD-ROM, CD-R, memory card, DVD, or flexible disk (FD) as an installable or executable file. You may make it do.

また、本実施形態に係る水素濃度計測システムで実行されるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせて提供するようにしてもよい。
また、水素濃度計測システムは、構成要素の各機能を独立して発揮する別々のモジュールを、ネットワーク又は専用線で相互に接続し、組み合わせて構成することもできる。
Further, the program executed in the hydrogen concentration measurement system according to the present embodiment may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network.
In addition, the hydrogen concentration measurement system can also be configured by connecting separate modules that perform each function of the components independently by a network or a dedicated line.

10…水素濃度計測システム、20…水素検出器、21…水素吸蔵材、22…温度センサ、23…巻芯、25…ヒータ線、26…測温計、27…巻芯、30…信号処理部、31…温度信号取得部、32…抵抗信号取得部、33…算出式、35…算出部、36…演算部、37…判定部、38…校正部、39…導出部、41…ヒータ制御部、42…ヒータ温度設定部、42…設定部、G…水素濃度、Q…抵抗変化率、R…抵抗検出値、△R…関数式、S…標準抵抗値、T…温度検出値。   DESCRIPTION OF SYMBOLS 10 ... Hydrogen concentration measuring system, 20 ... Hydrogen detector, 21 ... Hydrogen occlusion material, 22 ... Temperature sensor, 23 ... Core, 25 ... Heater wire, 26 ... Thermometer, 27 ... Core, 30 ... Signal processing part , 31 ... Temperature signal acquisition unit, 32 ... Resistance signal acquisition unit, 33 ... Calculation formula, 35 ... Calculation unit, 36 ... Calculation unit, 37 ... Determination unit, 38 ... Calibration unit, 39 ... Derivation unit, 41 ... Heater control unit , 42: heater temperature setting unit, 42: setting unit, G: hydrogen concentration, Q: resistance change rate, R: resistance detection value, ΔR: functional equation, S: standard resistance value, T: temperature detection value.

Claims (6)

雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得する温度信号取得部と、
前記温度検出値を入力し、前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出する算出部と、
前記水素吸蔵材の抵抗検出値の信号を取得する抵抗信号取得部と、
前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算する演算部と、
前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出する導出部と、
前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合、前記標準抵抗値の算出式の校正を実行する校正部と、を備えることを特徴とする水素濃度計測システム。
A temperature signal acquisition unit that acquires a signal of a temperature detection value from a temperature sensor arranged in the vicinity of the hydrogen storage material that changes the hydrogen storage amount according to the hydrogen concentration of the atmosphere;
A calculation unit that inputs the temperature detection value and calculates a standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero;
A resistance signal acquisition unit for acquiring a signal of a resistance detection value of the hydrogen storage material;
A calculation unit for calculating a resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value;
A deriving unit for deriving the hydrogen concentration of the atmosphere based on the resistance change rate;
A calibration unit that calibrates the calculation formula of the standard resistance value when the resistance detection value or the baseline of the rate of change in resistance drifts in a direction in which the hydrogen storage amount further decreases from zero. A hydrogen concentration measurement system.
請求項1に記載の水素濃度計測システムにおいて、
前記抵抗変化率の一定期間の平均値と設定閾値とを対比することで、前記ベースラインのドリフトを判定する判定部をさらに備えることを特徴とする水素濃度計測システム。
The hydrogen concentration measurement system according to claim 1,
The hydrogen concentration measurement system further comprising a determination unit that determines the drift of the baseline by comparing an average value of the resistance change rate over a certain period and a set threshold value.
請求項1又は請求項2に記載の水素濃度計測システムにおいて、
前記校正部は、前記抵抗検出値の経時変化に基づき得られる関数式を前記算出式のパラメータに導入することを特徴とする水素濃度計測システム。
In the hydrogen concentration measurement system according to claim 1 or 2,
The calibration unit introduces a function formula obtained based on a change with time in the resistance detection value into a parameter of the calculation formula.
請求項1から請求項3のいずれか1項に記載の水素濃度計測システムにおいて、
前記水素吸蔵材の温度を可変させるヒータ制御部をさらに備え、
前記ベースラインのドリフトが観測される場合に、前記水素吸蔵材の温度を可変させることを特徴とする水素濃度計測システム。
In the hydrogen concentration measuring system according to any one of claims 1 to 3,
A heater control unit that varies the temperature of the hydrogen storage material;
A hydrogen concentration measurement system that varies the temperature of the hydrogen storage material when drift of the baseline is observed.
雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得するステップと、
前記温度検出値を入力し、前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出するステップと、
前記水素吸蔵材の抵抗検出値の信号を取得するステップと、
前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算するステップと、
前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出するステップと、
前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合、前記標準抵抗値の算出式の校正を実行するステップと、を含むことを特徴とする水素濃度計測方法。
Obtaining a temperature detection value signal from a temperature sensor arranged in the vicinity of the hydrogen storage material that changes the hydrogen storage amount according to the hydrogen concentration of the atmosphere;
Inputting the temperature detection value and calculating a standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero;
Obtaining a signal of a resistance detection value of the hydrogen storage material;
Calculating a resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value;
Deriving a hydrogen concentration of the atmosphere based on the resistance change rate;
Performing calibration of the calculation formula for the standard resistance value when the resistance detection value or the baseline of the rate of change in resistance drifts in a direction in which the hydrogen storage amount further decreases from zero. To measure hydrogen concentration.
コンピュータに
雰囲気の水素濃度に応じで水素吸蔵量を変化させる水素吸蔵材の近傍に配置された温度センサから温度検出値の信号を取得するステップ、
前記温度検出値を入力し、前記水素吸蔵量がゼロであるときの前記水素吸蔵材の標準抵抗値を算出するステップ、
前記水素吸蔵材の抵抗検出値の信号を取得するステップ、
前記抵抗検出値と前記標準抵抗値に基づいて前記水素吸蔵材の抵抗変化率を演算するステップ、
前記抵抗変化率に基づいて前記雰囲気の水素濃度を導出するステップ、
前記水素吸蔵量がゼロからさらに減少する方向に前記抵抗検出値又は前記抵抗変化率のベースラインがドリフトする場合、前記標準抵抗値の算出式の校正を実行するステップ、を実行させることを特徴とする水素濃度計測プログラム。
Obtaining a temperature detection value signal from a temperature sensor arranged in the vicinity of a hydrogen storage material that changes a hydrogen storage amount according to the hydrogen concentration of the atmosphere in a computer;
Inputting the temperature detection value and calculating a standard resistance value of the hydrogen storage material when the hydrogen storage amount is zero;
Obtaining a resistance detection value signal of the hydrogen storage material;
Calculating a resistance change rate of the hydrogen storage material based on the resistance detection value and the standard resistance value;
Deriving a hydrogen concentration of the atmosphere based on the resistance change rate;
Performing calibration of the calculation formula of the standard resistance value when the resistance detection value or the baseline of the rate of change in resistance drifts in a direction in which the hydrogen storage amount further decreases from zero. To measure hydrogen concentration.
JP2017115270A 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program Active JP6786445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115270A JP6786445B2 (en) 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115270A JP6786445B2 (en) 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program

Publications (2)

Publication Number Publication Date
JP2019002707A true JP2019002707A (en) 2019-01-10
JP6786445B2 JP6786445B2 (en) 2020-11-18

Family

ID=65006852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115270A Active JP6786445B2 (en) 2017-06-12 2017-06-12 Hydrogen concentration measurement system, method and program

Country Status (1)

Country Link
JP (1) JP6786445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236135A (en) * 2021-04-23 2022-10-25 中国石油化工股份有限公司 Base line calibration method for gas sensor, control device and gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236135A (en) * 2021-04-23 2022-10-25 中国石油化工股份有限公司 Base line calibration method for gas sensor, control device and gas sensor
CN115236135B (en) * 2021-04-23 2023-08-22 中国石油化工股份有限公司 Baseline calibration method for gas sensor, control device and gas sensor

Also Published As

Publication number Publication date
JP6786445B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP4816794B2 (en) Time-of-flight mass spectrometer
JP6264152B2 (en) Mass flow meter and mass flow controller using the mass flow meter
EP3185024B1 (en) Current transformer with enhanced temperature measurement functions
US9494470B2 (en) Thermistor based measurement system
JP2007132936A (en) Device and method for automatic correction of gain
CN109580991B (en) Electronic component handling apparatus and electronic component testing apparatus
US20210215545A1 (en) Temperature threshold determining device, temperature abnormality determining system, temperature threshold determining method
EP2891883A1 (en) Gas concentration measurement apparatus and replacement notification method
TW202001198A (en) Mass flow controllers and method for controlling mass flow controllers
JP2019002707A (en) Hydrogen concentration measurement system, method, and program
JP5737210B2 (en) Temperature measuring method and temperature measuring system using radiation thermometer
KR20210158332A (en) Information processing apparatus and monitoring method
JPWO2016103909A1 (en) Diagnostic equipment for electric motors
US10067105B2 (en) Method for operating a measuring site
JP6748000B2 (en) Pressure sensor
JP5399009B2 (en) Fluorescence temperature sensor and method for calculating moving average value of fluorescence temperature sensor
JP2010085339A (en) Zero point adjustment method of gas sensor using contact combustion type gas detection element
KR101142247B1 (en) Thermistor compensation method for improving accuracy of thermo-couple input
JP6707214B1 (en) Temperature input unit, temperature measuring device, and program
JP2014181955A (en) Electronic device and measurement data process method
JP6555429B2 (en) Temperature measuring device, temperature indicator and temperature controller
JP5281983B2 (en) Creep error compensation device and creep error compensation method
JP2016090405A (en) Temperature conversion table creation device, temperature conversion table creation method and temperature measuring device
CN105239058B (en) The method for calibrating MOCVD device design temperature
JP7266169B2 (en) Control device and anomaly detection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150