JP6786093B2 - Hydrogen generation unit - Google Patents

Hydrogen generation unit Download PDF

Info

Publication number
JP6786093B2
JP6786093B2 JP2016126408A JP2016126408A JP6786093B2 JP 6786093 B2 JP6786093 B2 JP 6786093B2 JP 2016126408 A JP2016126408 A JP 2016126408A JP 2016126408 A JP2016126408 A JP 2016126408A JP 6786093 B2 JP6786093 B2 JP 6786093B2
Authority
JP
Japan
Prior art keywords
hydrogen
liquid
generation unit
container
hydrogen generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016126408A
Other languages
Japanese (ja)
Other versions
JP2018001040A (en
Inventor
和久 福岡
和久 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECOMO INTERNATIONAL CO., LTD.
Original Assignee
ECOMO INTERNATIONAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECOMO INTERNATIONAL CO., LTD. filed Critical ECOMO INTERNATIONAL CO., LTD.
Priority to JP2016126408A priority Critical patent/JP6786093B2/en
Publication of JP2018001040A publication Critical patent/JP2018001040A/en
Application granted granted Critical
Publication of JP6786093B2 publication Critical patent/JP6786093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、液体中に水素を含有させて水素含有液を生成する水素発生ユニットに関する。 The present invention relates to a hydrogen generation unit that produces a hydrogen-containing liquid by containing hydrogen in the liquid.

我々が日常的に摂取する水は、健康の基礎作りとして極めて重要な役割を果たしており、人々の間で健康志向が高まる中、飲用水への注目が更に高まっている。 The water we consume on a daily basis plays an extremely important role in laying the foundation for health, and as people become more health conscious, drinking water is receiving more attention.

従来より、このようなニーズに合致するような飲用水は種々提案されており、例えば、飲用水中に酸素を多量に溶存させた酸素水や、水素を溶存させた水素水が知られている。 Conventionally, various drinking waters that meet such needs have been proposed. For example, oxygen water in which a large amount of oxygen is dissolved in drinking water and hydrogen water in which hydrogen is dissolved are known. ..

特に、分子状水素を含有させた水素水は、生体内酸化ストレスの低下や、血中LDLの増加抑制など、健康に寄与する報告が種々なされている。 In particular, there have been various reports that hydrogen water containing molecular hydrogen contributes to health, such as reduction of oxidative stress in the living body and suppression of increase in blood LDL.

このような水素水は、水中に水素を溶存させることで生成されるのであるが、水素の入手や純粋な水素を水中に溶解させることは一般には困難である。 Such hydrogen water is produced by dissolving hydrogen in water, but it is generally difficult to obtain hydrogen or dissolve pure hydrogen in water.

また、水中に溶存させた水素は、水素透過性の極めて低い容器を用いない限り時間と共に徐々に抜けてしまうため、水素水の調製後できるだけ速やかに飲用に供するのが望ましい。 Further, hydrogen dissolved in water gradually escapes with time unless a container having extremely low hydrogen permeability is used. Therefore, it is desirable to drink hydrogen water as soon as possible after preparation.

更に、飲用水は体内に取り込まれるものであることから、水素の生成過程で生じる反応残渣や金属イオン等の溶出を可能な限り防止する必要がある。 Furthermore, since drinking water is taken into the body, it is necessary to prevent elution of reaction residues, metal ions, etc. generated in the process of hydrogen production as much as possible.

そこで、一般家庭などにおいても安全で手軽に水素水を調製できるよう、数cm程度の有底筒状容器の内部に水素発生剤を封入した水素添加器具が提案されている(例えば、特許文献1参照。)。 Therefore, a hydrogenation device in which a hydrogen generating agent is sealed inside a bottomed tubular container of about several cm has been proposed so that hydrogen water can be prepared safely and easily even in ordinary households (for example, Patent Document 1). reference.).

このような水素添加器具によれば、水を収容したペットボトル等の容器内に投入して密閉することで、水中に水素を含有させて水素水を生成できるとしている。 According to such a hydrogenation device, hydrogen water can be generated by containing hydrogen in water by putting it in a container such as a PET bottle containing water and sealing it.

ところが、特許文献1に係る従来の水素添加器具は、水素発生剤を防湿包装袋から取出し、この水素発生剤を別途密閉容器に挿入し、さらに水素発生剤と反応させるための水を所定量添加して閉蓋するという作業が必要となる。 However, in the conventional hydrogenation apparatus according to Patent Document 1, the hydrogen generator is taken out from the moisture-proof packaging bag, the hydrogen generator is separately inserted into a closed container, and a predetermined amount of water for reacting with the hydrogen generator is added. It is necessary to close the lid.

このような煩雑な作業は、特に高齢者など手先の細かな作業が不得手な者にとっては困難であり、より手軽に水素水を生成できる手段が望まれていたところ、特許文献2に係る選択的水素添加器具では、水素発生剤をガス透過膜からなる水素気泡形成体に収容することで選択的水素添加器具を水を収容したペットボトル等の容器内に投入して密閉するだけで、水中に水素を含有させて水素水を生成できるとしている。 Such complicated work is difficult especially for those who are not good at detailed work such as elderly people, and a means capable of generating hydrogen water more easily has been desired. Therefore, the selection according to Patent Document 2. In a target hydrogenation device, a hydrogen generator is housed in a hydrogen bubble forming body made of a gas permeable film, and the selective hydrogenation device is simply put into a container such as a PET bottle containing water and sealed in water. It is said that hydrogen water can be produced by containing hydrogen.

また、特許文献3,4に係る水素溶液の製造器具では、水素発生剤に金属イオン封鎖能とpH調整能を有する一剤を接触して含有させることで、飲用水への金属イオン等の流出を防止しながら水中に水素を含有させて水素水を生成できるとしている。 Further, in the hydrogen solution manufacturing apparatus according to Patent Documents 3 and 4, the outflow of metal ions or the like into drinking water is caused by contacting and containing one agent having a metal ion blocking ability and a pH adjusting ability in a hydrogen generating agent. It is said that hydrogen water can be generated by containing hydrogen in water while preventing the above.

特許第4652479号公報Japanese Patent No. 4652479 特許第4950352号公報Japanese Patent No. 4950352 特許第4769903号公報Japanese Patent No. 4769903 特許第5038546号公報Japanese Patent No. 50388546

上記特許文献2に係る選択的水素添加器具は、少なくとも高齢者など手先の細かな作業が不得手な者であっても水素含有液を手軽に得られる点で非常に優れている。 The selective hydrogenation device according to Patent Document 2 is extremely excellent in that a hydrogen-containing liquid can be easily obtained even by a person who is not good at detailed work such as an elderly person.

しかしながら、特許文献2に係る選択的水素添加器具では、飲用水中の液体としての水をガス透過膜の内部に流通させることはできず、水蒸気や湿気としての水のみ流通させて水素発生剤と反応させることができるため、水素水として飲用できるだけの充分な量の水素を発生させるには長時間を要し煩雑であった。 However, in the selective hydrogen addition device according to Patent Document 2, water as a liquid in drinking water cannot be circulated inside the gas permeable membrane, and only water as water vapor or moisture is circulated to form a hydrogen generating agent. Since it can be reacted, it takes a long time to generate a sufficient amount of hydrogen that can be drunk as hydrogen water, which is complicated.

また、上記特許文献3,4に係る水素溶液の製造器具は、飲用水への金属イオン等の流出を防止できる点で優れているが、水素発生剤に別途、金属イオン封鎖能とpH調整能を有する一剤を接触して含有させなければならず高価となり、しかも、加工が難しく製造時の煩雑さを伴うものであった。 Further, the hydrogen solution manufacturing apparatus according to Patent Documents 3 and 4 is excellent in that it can prevent the outflow of metal ions and the like into drinking water, but the metal ion blocking ability and the pH adjusting ability are separately added to the hydrogen generating agent. Since it is necessary to contact and contain one agent having the above, it is expensive, and it is difficult to process and complicated in manufacturing.

本発明は、斯かる事情に鑑みてなされたものであって、従来の水素添加器具等に比して、短時間で水素を生成でき、しかも、水素生成後の副生成物等の飲用水への流出防止を強化した水素発生ユニットを提供する。 The present invention has been made in view of such circumstances, and can generate hydrogen in a short time as compared with conventional hydrogenation equipment and the like, and can be used for drinking water such as by-products after hydrogen generation. Provide a hydrogen generation unit with enhanced outflow prevention.

上記従来の課題を解決するために、本発明に係る水素発生ユニットでは、
(1)液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、同水素発生ユニットは、含水して水素を発生する水素発生剤と、前記水素発生剤を内包するイオン交換体またはイオン吸着体を備えた収容体と、で構成し、前記収容体は、前記液体を前記収容体内に流通自在に形成し、前記イオン交換体または前記イオン吸着体は、前記水素発生剤が前記液体を含水して水素を発生する際に放出される陽イオンを交換または吸着もしくは遮断して前記陽イオンを前記収容体外に流出しないように構成した。
In order to solve the above-mentioned conventional problems, in the hydrogen generation unit according to the present invention,
(1) In a hydrogen generating unit that generates a hydrogen-containing liquid by containing hydrogen in the liquid by putting it into the liquid, the hydrogen generating unit includes a hydrogen generating agent that contains water to generate hydrogen and the hydrogen. It is composed of an ion exchanger or an accommodating body provided with an ion adsorbent containing a generator, and the accommodating body forms the liquid freely in the accommodating body and forms the ion exchanger or the ion adsorbent. Is configured to exchange, adsorb or block the cations released when the hydrogen generating agent contains the liquid to generate hydrogen so that the cations do not flow out of the container.

また、本発明に係る水素発生ユニットでは、以下の点にも特徴を有する。
(2)前記収容体の前記イオン交換体または前記イオン吸着体は、陽イオン交換繊維または陽イオン吸着繊維により構成したこと。
(3)前記収容体は、前記陽イオン交換繊維または前記陽イオン吸着繊維を袋状の不織布として形成し、内部に前記水素発生剤を内包して略密封したこと。
(4)前記収容体の基材を袋状の不織布で形成すると共に、前記イオン交換体または前記イオン吸着体は細粒状の陽イオン交換樹脂または陽イオン吸着樹脂で形成し、前記基材の内側、外側または両側に複数の前記陽イオン交換樹脂または前記陽イオン吸着樹脂を着設したこと。
(5)上記(1)乃至()に係る前記収容体の外周面の下半部に内外流通遮断部を設け、内部への前記液体の流入並びに外部への反応残渣の流出を遮断すると共に、前記水素発生剤が前記内外流通遮断部に囲繞され且つ前記収容体の前記下半部の端部側に略密封してなること。
)前記収容体の前記下半部の前記端部側を先端先鋭に形成すると共に前記内外流通遮断部も先端先鋭に形成したこと。
The hydrogen generation unit according to the present invention is also characterized by the following points.
(2) The ion exchanger or the ion adsorbent of the accommodating body is composed of cation exchange fibers or cation adsorbent fibers.
(3) In the container, the cation exchange fiber or the cation adsorption fiber is formed as a bag-shaped non-woven fabric, and the hydrogen generating agent is encapsulated therein and substantially sealed.
(4) The base material of the container is formed of a bag-shaped non-woven fabric, and the ion exchanger or the ion adsorbent is formed of fine granular cation exchange resin or cation adsorbent resin, and the inside of the base material. , The cation exchange resin or the cation adsorption resin is mounted on the outside or both sides.
(5) (1) above to the inner and outer flow blocking unit in the lower half of the outer peripheral surface of the container according to (4) is provided to cut off the inflow and outflow of the reaction residue to the outside of the liquid into the interior At the same time, the hydrogen generating agent is surrounded by the inside / outside flow blocking portion and is substantially sealed on the end side of the lower half portion of the housing.
( 6 ) The end side of the lower half of the container is formed with a sharp tip, and the inside / outside flow blocking portion is also formed with a sharp tip.

本発明に係る水素発生ユニットによれば、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、同水素発生ユニットは、含水して水素を発生する水素発生剤と、前記水素発生剤を内包するイオン交換体またはイオン吸着体を備えた収容体と、で構成し、前記収容体は、前記液体を前記収容体内に流通自在に形成し、前記イオン交換体または前記イオン吸着体は、前記水素発生剤が前記液体を含水して水素を発生する際に放出される陽イオンを交換または吸着もしくは遮断して前記陽イオンを前記収容体外に流出しないように構成したことより、液体中に投入された水素発生ユニット内の水素発生剤に液体が可及的に接触し含水するため、短時間で水素を発生させることができ、しかも、水素生成時に生じる金属イオンである陽イオンの液体中への流出を収容体でブロックすることができる。 According to the hydrogen generation unit according to the present invention, in the hydrogen generation unit that produces a hydrogen-containing liquid by containing hydrogen in the liquid by putting it into the liquid, the hydrogen generation unit contains water to generate hydrogen. It is composed of an accommodating body provided with an ion exchanger or an ion adsorbent containing the hydrogen generating agent, and the accommodating body forms the liquid in the accommodating body so as to be freely flowable. The ion exchanger or the ion adsorbent exchanges, adsorbs or blocks the cations released when the hydrogen generator contains the liquid to generate hydrogen, and the cations do not flow out of the container. Due to the above configuration, the liquid comes into contact with the hydrogen generating agent in the hydrogen generating unit charged into the liquid as much as possible and contains water, so that hydrogen can be generated in a short time, and at the time of hydrogen generation. The adsorbent can block the outflow of the resulting metal ions, the cations, into the liquid.

また、前記収容体の前記イオン交換体または前記イオン吸着体は、陽イオン交換繊維または陽イオン吸着繊維により構成したことより、液体中に投入された水素発生ユニット内に液体を侵入させるための構造をシンプルに構築することができる。 Further, since the ion exchanger or the ion adsorbent of the accommodating body is composed of the cation exchange fiber or the cation adsorbent fiber, the structure for allowing the liquid to penetrate into the hydrogen generation unit charged into the liquid. Can be constructed simply.

また、前記収容体は、前記陽イオン交換繊維または前記陽イオン吸着繊維を袋状の不織布として形成し、内部に前記水素発生剤を内包して略密封したことより、収容体の構造がシンプルとなり安価に製造できると共に、液体中に投入された水素発生ユニット内への液体の侵入を容易に促すことができる。 Further, in the container, the structure of the container is simplified by forming the cation exchange fiber or the cation adsorption fiber as a bag-shaped non-woven fabric and encapsulating the hydrogen generating agent inside and substantially sealing the container. It can be manufactured at low cost and can easily promote the invasion of the liquid into the hydrogen generation unit charged into the liquid.

また、前記収容体の基材を袋状の不織布で形成すると共に、前記イオン交換体または前記イオン吸着体は細粒状の陽イオン交換樹脂または陽イオン吸着樹脂で形成し、前記基材の内側、外側または両側に複数の前記陽イオン交換樹脂または前記陽イオン吸着樹脂を着設したことより、含水に適した不織布の選択が容易となり、しかも、製造時に陽イオン交換樹脂または陽イオン吸着樹脂の粒径や数の調整が容易となり、イオン交換またはイオン吸着させる陽イオンの量を任意に調整することが容易となる。 Further, the base material of the container is formed of a bag-shaped non-woven fabric, and the ion exchanger or the ion adsorbent is formed of a fine granular cation exchange resin or a cation adsorbent resin, and the inside of the base material, By implanting a plurality of the cation exchange resin or the cation adsorption resin on the outside or both sides, it becomes easy to select a non-woven fabric suitable for water content, and moreover, grains of the cation exchange resin or the cation adsorption resin are produced at the time of production. The diameter and number can be easily adjusted, and the amount of cations to be ion exchanged or adsorbed can be arbitrarily adjusted.

また、(1)乃至()に係る前記収容体の外周面の下半部に内外流通遮断部を設け、内部への前記液体の流入並びに外部への反応残渣の流出を遮断すると共に、前記水素発生剤が前記内外流通遮断部に囲繞され且つ前記収容体の前記下半部の端部側に略密封してなることより、水素発生ユニットの下半部が上半部に比して重くなり下半部が液体中で安定的に下方に位置するため下半部からの反応残渣の流出を可及的に防止でき、しかも、収容体内部への液体の侵入は上半部からなされ、発生した水素も上半部から放出されるため、収容体外部への反応残渣の流出を確実に防止することができる。 Further, an inside / outside flow blocking portion is provided in the lower half of the outer peripheral surface of the housing according to (1) to ( 4 ) to block the inflow of the liquid into the inside and the outflow of the reaction residue to the outside, and the above. Since the hydrogen generating agent is surrounded by the internal / external flow blocking portion and is substantially sealed on the end side of the lower half portion of the housing, the lower half portion of the hydrogen generating unit is heavier than the upper half portion. Since the lower half of the body is stably located below in the liquid, the outflow of the reaction residue from the lower half can be prevented as much as possible, and the liquid can enter the inside of the container from the upper half. Since the generated hydrogen is also released from the upper half, it is possible to reliably prevent the reaction residue from flowing out to the outside of the container.

更に、前記収容体の前記下半部の前記端部側を先端先鋭に形成すると共に前記内外流通遮断部も先端先鋭に形成したことより、ペットボトル等の調製容器中の液体に水素発生ユニットを投入する向きを直感的に把握することができる。 Further, since the end side of the lower half of the container is formed with a sharp tip and the inside / outside flow blocking portion is also formed with a sharp tip, the hydrogen generation unit is added to the liquid in the preparation container such as a PET bottle. You can intuitively grasp the direction of injection.

(a)は第1の実施形態に係る水素発生ユニットの正面図で、(b)は(a)の部分透視図で、(c)は(b)のa−a´線断面図である。(A) is a front view of the hydrogen generation unit according to the first embodiment, (b) is a partial perspective view of (a), and (c) is a sectional view taken along line aa'of (b). (a)は第2の実施形態に係る水素発生ユニットであり陽イオン交換樹脂等を基材の内側に着設した形態に係る部分透視図で、(b)は(a)のb−b´線断面図で、(c)は陽イオン交換樹脂等を基材の外側または両側に着設した形態に係る部分透視図で、(d)は基材の外側に着設した形態に係る(c)のc−c´線断面図で、(e)は基材の両側に着設した形態に係る(c)のd−d´線断面図である。(A) is a partial perspective view of the hydrogen generation unit according to the second embodiment and in which a cation exchange resin or the like is attached to the inside of the base material, and (b) is a partial perspective view of the second embodiment. In the cross-sectional view, (c) is a partial perspective view showing a form in which a cation exchange resin or the like is attached to the outside or both sides of the base material, and (d) is a form in which the cation exchange resin or the like is attached to the outside of the base material (c). ) C-c'line cross-sectional view, (e) is a d-d' line cross-sectional view of (c) relating to the form of being attached to both sides of the base material. (a)は第3の実施形態に係る水素発生ユニットであり陰イオン交換膜を基材の内側に重設した形態に係る部分透視図で、(b)は(a)のe−e´線断面図で、(c)は陰イオン交換膜を基材の外側に重設した形態に係る部分透視図で、(d)は(c)のf−f´線断面図で、(e)は陰イオン交換膜を基材の両側に重設した形態に係る部分透視図で、(f)は(e)のg−g´線断面図である。(A) is a partial perspective view of the hydrogen generation unit according to the third embodiment and the anion exchange membrane is overlaid on the inside of the base material, and (b) is the e-e'line of (a). In the cross-sectional view, (c) is a partial perspective view relating to a form in which an anion exchange membrane is superposed on the outside of the base material, (d) is a cross-sectional view taken along the line ff'of (c), and (e) is a sectional view. It is a partial perspective view which concerns on the form in which an anion exchange membrane is superposed on both sides of a base material, (f) is a cross-sectional view taken along line gg'of (e). (a)は第4の実施形態に係る水素発生ユニットの正面図で、(b)は(a)の部分透視図で、(c)は(b)のh−h´線断面図である。(A) is a front view of the hydrogen generating unit according to the fourth embodiment, (b) is a partial perspective view of (a), and (c) is a cross-sectional view taken along the line h-h'of (b). 第1〜第4のいずれかの実施形態に係る水素発生ユニットを調製容器に投入して水素含有液を調製する説明図である。It is explanatory drawing which puts the hydrogen generation unit which concerns on any 1st to 4th Embodiment into a preparation container, and prepares a hydrogen-containing liquid. 第4の実施形態に係る水素発生ユニットの変形例の正面図である。It is a front view of the modification of the hydrogen generation unit which concerns on 4th Embodiment. 第4の実施形態に係る水素発生ユニットの変形例を調製容器に投入して水素含有液を調製する説明図である。It is explanatory drawing which puts the modification of the hydrogen generation unit which concerns on 4th Embodiment into a preparation container, and prepares a hydrogen-containing liquid.

本発明は、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットに関するものである。 The present invention relates to a hydrogen generation unit that produces a hydrogen-containing liquid by containing hydrogen in the liquid by putting it into the liquid.

そして、本実施形態に係る水素発生ユニットに特徴的には、含水して水素を発生する水素発生剤と、前記水素発生剤を内包するイオン交換体またはイオン吸着体を備えた収容体と、で構成し、前記収容体は、前記液体を前記収容体内に流通自在に形成し、前記イオン交換体または前記イオン吸着体は、前記水素発生剤が前記液体を含水して水素を発生する際に放出される陽イオンを交換または吸着もしくは遮断して前記陽イオンを前記収容体外に流出しないように構成している。 The hydrogen generating unit according to the present embodiment is characterized by a hydrogen generating agent that contains water to generate hydrogen and an accommodating body including an ion exchanger or an ion adsorbent containing the hydrogen generating agent. The accommodating body forms the liquid freely in the accommodating body, and the ion exchanger or the ion adsorbent is released when the hydrogen generating agent contains the liquid to generate hydrogen. The cations are exchanged, adsorbed or blocked so that the cations do not flow out of the container.

ここで、水素を溶解させるための液体は特に限定されるものではないが、水やジュース、お茶等をはじめとする飲料や、注射・点滴等に使用する薬液など、ヒトに拘わらず生体に対して使用する液体物とすることができる。 Here, the liquid for dissolving hydrogen is not particularly limited, but for living organisms regardless of human beings, such as beverages such as water, juice, and tea, and chemical solutions used for injection and infusion. It can be a liquid material to be used.

また、水素発生剤は水分と接触することにより水素を発生するものであれば特に限定されるものではなく、また、混合物であっても良い。 Further, the hydrogen generating agent is not particularly limited as long as it generates hydrogen by contact with water, and may be a mixture.

水分と接触することにより水素を発生する混合物としては、例えば、水素よりイオン化傾向の高い金属又は金属化合物と、酸やアルカリなどの反応促進剤との混合物を挙げることができる。 Examples of the mixture that generates hydrogen by contact with water include a mixture of a metal or metal compound having a higher ionization tendency than hydrogen and a reaction accelerator such as an acid or an alkali.

また、好適に用いることのできる金属としては、例えば、鉄、アルミニウム、ニッケル、コバルト、亜鉛等を挙げることができ、好適な反応促進剤としては、例えば、各種酸のほか、水酸化カルシウム、酸化カルシウム、陰イオン交換樹脂、焼成カルシウム、酸化マグネシウム、水酸化マグネシウム等を用いることができる。 Further, examples of the metal that can be preferably used include iron, aluminum, nickel, cobalt, zinc and the like, and examples of suitable reaction accelerators include various acids, calcium hydroxide and oxidation. Calcium, anion exchange resin, calcined calcium, magnesium oxide, magnesium hydroxide and the like can be used.

更に、水素発生剤には、実用上必要な水素生成反応を阻害しない範囲において、必要に応じ適宜機能性を有する物質を添加しても良い。例えば、水との接触により吸熱反応を生じるような物質(例えば尿素や、これと同様の効果を生起する食品添加物に該当する物質。)を添加しておくことにより、水素生成反応に伴って発生する熱を抑制することもできる。 Further, a substance having functionality may be appropriately added to the hydrogen generating agent as long as it does not inhibit the hydrogen production reaction necessary for practical use. For example, by adding a substance that causes an endothermic reaction upon contact with water (for example, urea or a substance corresponding to a food additive that produces a similar effect), the hydrogen production reaction accompanies the reaction. It is also possible to suppress the heat generated.

また、水素発生剤には、粉末状の炭酸カルシウム(CaCO3)を含有させておいても良い。炭酸カルシウムは、水素発生剤の含水により水素と共に発生する熱を水素透過膜に伝搬させるための熱伝搬物質として機能するものである。この炭酸カルシウムの存在により、水素透過膜に熱が伝搬されて水素透過膜が柔軟となると共に、発生した水素により水素透過膜が膨満することで、水素分子や水蒸気がする微細な孔がより拡開し、水素の透過性や水蒸気の透過性を向上させて水素生成反応を更に助長することができ、水素含有液をより短時間で生成することが可能となる。 Further, the hydrogen generator may contain powdered calcium carbonate (CaCO 3 ). Calcium carbonate functions as a heat propagating substance for propagating the heat generated together with hydrogen due to the water content of the hydrogen generating agent to the hydrogen permeable membrane. Due to the presence of this calcium carbonate, heat is propagated to the hydrogen permeable membrane to make the hydrogen permeable membrane flexible, and the hydrogen permeable membrane is expanded by the generated hydrogen, so that fine pores formed by hydrogen molecules and water vapor are further expanded. It can be opened to improve the permeability of hydrogen and the permeability of water vapor to further promote the hydrogen production reaction, and it becomes possible to produce a hydrogen-containing liquid in a shorter time.

収容体には、水素生成時に生じた金属イオンである陽イオンを水素発生ユニット外へ流出させないためにイオン交換体またはイオン吸着体を備えている。なお、過去の例として水素発生剤中にイオン交換樹脂を混ぜ込む方法が提案されているが、水素生成反応上必要な金属イオンを捕捉してしまい、反応が緩慢となるため好ましくない。本実施形態に係る水素発生ユニットによれば、イオン交換体またはイオン吸着体を収容体に備えることとしているため、水素生成反応を阻害することなく、短時間で水素水を生成することが可能であり、また、水素水と成す液体がイオン交換体等の温度上昇を抑制して適正なイオン交換能を維持でき、液体への金属イオンの溶出を堅実に防止することができる。また、収容体に備えられたイオン交換体等に金属イオンが捕捉されることにより収容体に金属イオンが集積し、徐々に熱伝導率が高まることとなるため、発熱中の水素発生剤の液体への熱拡散を行う放熱体の役割をも担う。特に本実施形態に係る水素発生ユニットでは、液体を収容体内に流通自在に形成しており、この液体により水素発生剤に蓄積されがちな熱を効率良く収容体へ伝搬させる。しかも、熱が伝搬した収容体は、不織布を構成する繊維が伸長し易い状態となっており、収容体内部にて発生した水素により内圧が高まれば、繊維間隔が僅かに広がることとなり、水素の放散効率を高めながらも、収容体内部への水の供給を滞らせることがない。このこともまた、短時間で水素水を生成する上で重要な構成の一つと言える。 The accommodating body is provided with an ion exchanger or an ion adsorbent so that cations, which are metal ions generated during hydrogen generation, do not flow out of the hydrogen generation unit. As a past example, a method of mixing an ion exchange resin into a hydrogen generating agent has been proposed, but it is not preferable because it traps metal ions necessary for the hydrogen production reaction and the reaction becomes slow. According to the hydrogen generation unit according to the present embodiment, since the accommodating body is provided with an ion exchanger or an ion adsorbent, it is possible to generate hydrogen water in a short time without inhibiting the hydrogen production reaction. In addition, the liquid formed of hydrogen water can suppress the temperature rise of the ion exchanger and the like to maintain an appropriate ion exchange ability, and can steadily prevent the elution of metal ions into the liquid. Further, since the metal ions are trapped in the ion exchanger or the like provided in the housing, the metal ions are accumulated in the housing and the thermal conductivity is gradually increased, so that the liquid of the hydrogen generating agent during heat generation is generated. It also plays the role of a radiator that diffuses heat to. In particular, in the hydrogen generation unit according to the present embodiment, a liquid is formed so as to be freely flowable in the container, and the heat that tends to be accumulated in the hydrogen generator is efficiently propagated to the container by this liquid. Moreover, in the container in which heat is propagated, the fibers constituting the non-woven fabric are easily stretched, and if the internal pressure is increased by the hydrogen generated inside the container, the fiber spacing is slightly widened, and the hydrogen It does not interrupt the water supply to the inside of the containment while improving the emission efficiency. This is also one of the important configurations for producing hydrogen water in a short time.

イオン交換体は、陽イオン交換繊維や細粒状の陽イオン交換樹脂等、水素生成時に生じる金属イオンよりもイオン化傾向の低い陽イオンとイオン交換されるものであって、人体への影響が極めて低いものが選定される。特に、水素イオン型であれば金属イオンとの交換により生じた水素も水素含有液の生成に寄与するため望ましい。 Ion exchangers are those that exchange ions with cations that have a lower ionization tendency than metal ions generated during hydrogen production, such as cation exchange fibers and fine-grained cation exchange resins, and have extremely low effects on the human body. The one is selected. In particular, if it is a hydrogen ion type, hydrogen generated by exchanging with metal ions also contributes to the formation of a hydrogen-containing liquid, which is desirable.

また、陽イオン吸着体は、陽イオン吸着繊維や細粒状の陽イオン吸着樹脂等、水素生成時に生じた金属イオンをイオン吸着するものであればよい。 Further, the cation adsorbent may be any one that adsorbs metal ions generated during hydrogen generation, such as cation adsorbent fibers and fine-grained cation adsorbent resins.

このようなイオン交換体やイオン吸着体は、それ自体で収容体を形成してもよく、収容体の一部に形成してもよい。 Such an ion exchanger or an ion adsorbent may form an accommodating body by itself or may be formed as a part of the accommodating body.

また、収容体は、内部の水素発生剤に外部の液体が可及的に含水し短時間で水素が発生するように、液体の透水性が極めて高く加工性に優れた不織布等の繊維材料で形成することが望ましく、特に、陽イオン交換繊維や陽イオン吸着繊維を使用することで水素含有液の生成を極めて短時間でなすことができる。 In addition, the housing is made of a fiber material such as a non-woven fabric that has extremely high liquid permeability and excellent workability so that the internal hydrogen generating agent contains as much water as possible from the external liquid and hydrogen is generated in a short time. It is desirable to form the hydrogen-containing liquid, and in particular, the hydrogen-containing liquid can be produced in an extremely short time by using a cation exchange fiber or a cation adsorption fiber.

また、液体の透水性を考慮して不織布等の繊維材料をそのまま収容体の基材として使用することもできる。この場合、透水性を阻害しない範囲で繊維材料の内側、外側または両側に複数の陽イオン交換樹脂または陽イオン吸着樹脂を着設してもよい。 Further, in consideration of the permeability of the liquid, a fiber material such as a non-woven fabric can be used as it is as a base material of the container. In this case, a plurality of cation exchange resins or cation adsorption resins may be placed inside, outside, or both sides of the fiber material as long as the water permeability is not impaired.

繊維材料への陽イオン交換樹脂または陽イオン吸着樹脂の着設については、例えば、糊剤を繊維材料に塗布または噴霧等した後、陽イオン交換樹脂等を散布したり、糊剤を含む陽イオン交換樹脂等を塗布または噴霧等することで形成することができる。 Regarding the attachment of the cation exchange resin or the cation adsorption resin to the fiber material, for example, after applying or spraying the glue on the fiber material, the cation exchange resin or the like is sprayed, or the cation containing the glue is applied. It can be formed by applying or spraying a replacement resin or the like.

更に、イオン交換体は、陽イオンを遮断する陰イオン交換膜であってもよい。この場合、陰イオン交換膜はアニオン膜等の薄膜であり単体での強度が低いため、透水性に優れた不織布等の繊維材料を基材として重設させ袋状として使用する。 Further, the ion exchanger may be an anion exchange membrane that blocks cations. In this case, since the anion exchange membrane is a thin film such as an anion membrane and has low strength as a single substance, a fiber material such as a non-woven fabric having excellent water permeability is placed as a base material and used as a bag.

該膜は基材の内側、外側または基材を2層としてその間隙に重設することができる。これにより、陰イオン交換膜は薄膜でありながら水素発生ユニットとしての使用に耐えることができ、しかも、陰イオン交換膜が繊維材料と近接または当接することで、該膜単体時に比して収容体内部への液体の侵入が促され、短時間で水素を発生させることができる。 The film can be placed in the gap between the inside and outside of the base material or the base material as two layers. As a result, the anion exchange membrane can withstand use as a hydrogen generation unit even though it is a thin film, and the anion exchange membrane comes into close contact with or comes into contact with the fiber material, so that the anion exchange membrane is contained in comparison with the case of the membrane alone. The invasion of liquid into the inside is promoted, and hydrogen can be generated in a short time.

すなわち、水素発生ユニットを液体中に投入した際、繊維材料の内側に該膜が位置するときは、液体により湿潤状態の繊維材料が該膜表面において安定した液層を形成することで、該膜内への液体の侵入が促進される。 That is, when the hydrogen generating unit is put into a liquid, when the film is located inside the fiber material, the fiber material in a wet state by the liquid forms a stable liquid layer on the surface of the film, so that the film is formed. The ingress of liquid into the interior is promoted.

また、繊維材料の外側に該膜が位置するときは、該膜を侵入した初期の液体が繊維材料に含水し、その後、毛細管現象のごとく外部の液体を収容体内部へと導出し、該膜内への液体の侵入が促進される。 When the film is located outside the fiber material, the initial liquid that has penetrated the film contains water in the fiber material, and then the external liquid is led out to the inside of the container like a capillary phenomenon, and the film is used. The ingress of liquid into the interior is promoted.

更に、2層の繊維材料の間に該膜が位置するときは、上述した各々の相乗効果により該膜内への液体の侵入がより促進される。 Furthermore, when the film is located between the two layers of fiber material, the invasion of the liquid into the film is further promoted by the synergistic effects of each of the above.

また、収容体には上述した収容体の外周面の下半部に内外流通遮断部を設けることができる。内外流通遮断部は、収容体内部への液体の流入、及び外部への反応残渣の流出を遮断する可撓性を有するシート状の合成樹脂材料からなり、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、PET樹脂、ポリ塩化ビニリデン樹脂等で形成される。 Further, the accommodating body may be provided with an internal / external distribution blocking portion in the lower half of the outer peripheral surface of the accommodating body described above. The internal / external flow blocking section is made of a flexible sheet-like synthetic resin material that blocks the inflow of liquid into the container and the outflow of reaction residue to the outside, and is, for example, polyethylene, polypropylene, polyvinyl chloride, etc. It is made of polystyrene, PET resin, polyvinylidene chloride resin, or the like.

また、内外流通遮断部は、水素生成反応時の発熱や酸やアルカリへの耐性に優れている材料が望ましく、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデン樹脂等を挙げることができる。 Further, it is desirable that the internal / external distribution blocking portion is made of a material having excellent resistance to heat generation and acids and alkalis during a hydrogen generation reaction, and polyethylene, polypropylene, polyvinylidene chloride resin and the like can be mentioned.

また、内外流通遮断部は、不織布等で形成された収容体の下半部に重設される。この場合、内外流通遮断部を収容体の外周面に貼着したり近接させて被覆しても良いが、反応残渣等の流出の観点からは貼着することが望ましい。 Further, the internal / external distribution blocking portion is juxtaposed in the lower half portion of the housing body made of non-woven fabric or the like. In this case, the internal / external flow blocking portion may be attached to or close to the outer peripheral surface of the container, but it is desirable to attach the reaction residue from the viewpoint of outflow.

内外流通遮断部の内側においては、水素発生剤が内外流通遮断部に囲繞され且つ収容体の下半部の端部側に略密封して収容される。密封においては、例えば、不織布等の収容体を熱シール等で封止して形成されるが、封止箇所は、外部から収容体の上半部に流入する液体を下半部の水素発生剤に流通可能なように形成される。 Inside the internal / external flow cutoff portion, the hydrogen generating agent is surrounded by the internal / external flow cutoff portion and is substantially sealed and accommodated on the end side of the lower half of the accommodating body. In sealing, for example, an accommodating body such as a non-woven fabric is sealed with a heat seal or the like, and the sealing portion is formed by sealing a liquid flowing into the upper half of the accommodating body from the outside with a hydrogen generating agent in the lower half. It is formed so that it can be distributed to.

また、収容体は、内外流通遮断部を形成した下半部の端部側を内外流通遮断部と共に先端先鋭に形成することができる。このように形成することで、ペットボトル等の調製容器に水素発生ユニットを投入する向きが直感的に理解できる。 Further, the accommodating body can be formed with a sharp tip on the end side of the lower half portion forming the internal / external flow blocking portion together with the internal / external distribution blocking portion. By forming in this way, the direction in which the hydrogen generation unit is put into a preparation container such as a PET bottle can be intuitively understood.

このように、本実施形態に係る水素発生ユニットによれば、従来の水素添加器具等に比して、短時間で水素を生成でき、しかも、水素生成後の副生成物等の飲用水への流出防止を強化することができる。 As described above, according to the hydrogen generation unit according to the present embodiment, hydrogen can be generated in a short time as compared with a conventional hydrogenation device or the like, and moreover, by-products after hydrogen generation can be added to drinking water. Outflow prevention can be strengthened.

また、上述してきた水素発生ユニットは、同水素発生ユニットの液体中に投入した際に、収容体を介して液体を内部に浸入させて水素発生剤と反応させるための水分としたが、必ずしもこれに限定されるものではない。 Further, when the hydrogen generating unit described above is put into the liquid of the hydrogen generating unit, it is used as water for infiltrating the liquid into the inside through the housing and reacting with the hydrogen generating agent. It is not limited to.

例えば、本発明者が過去に提案した、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニット類の如く、水を水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と発生した水素を水素発生ユニット外へ放出させるための放出手段とを備えた収容体に収容し、この非流出状態保持手段は、収容体外から所定量のエネルギーを付与することにより非流出状態の水を水素発生剤と反応可能な流出状態に変化させるものであり、エネルギーの付与をトリガーとして、流出状態となった水を水素発生剤と反応させ、収容体内にて生成した水素を放出手段を介して液体中へ放出することにより、液体の水素発生ユニット内への浸潤によらず、又は液体の水素発生ユニット内への浸潤と共に、水素含有液を生成すべく構成しても良い。なお、放出手段は特に限定されるものではなく、例えば、本明細書にて説明する収容体の構成は勿論のこと、撥水性水素透過膜を防水透湿性素材や、半透膜、逆浸透膜で構成したり、逆止弁の如き機械的な弁機構によって実現したり、更には、細管状の狭隘通路により収容体内への液体の浸入は抑制しつつも水素ガスを放出可能に構成することも可能である。 For example, like the hydrogen generation units proposed in the past by the present inventor that generate a hydrogen-containing liquid by containing hydrogen in the liquid by putting it in the liquid, water does not react with the hydrogen generator and does not flow out. It is housed in a housing provided with a non-spill state holding means for holding the state and a discharging means for releasing the generated hydrogen to the outside of the hydrogen generation unit, and the non-spilling state holding means receives a predetermined amount of energy from outside the housing. The non-spilled water is changed to a spilled state that can react with the hydrogen generating agent, and the spilled water is reacted with the hydrogen generating agent triggered by the addition of energy to the inside of the containment chamber. By releasing the hydrogen generated in the above into the liquid via the release means, a hydrogen-containing liquid is generated regardless of the infiltration of the liquid into the hydrogen generation unit or with the infiltration of the liquid into the hydrogen generation unit. It may be configured as desired. The release means is not particularly limited. For example, the structure of the housing described in the present specification is of course, and the water-repellent hydrogen permeable membrane is made of a waterproof moisture permeable material, a semipermeable membrane, or a reverse osmosis membrane. It should be configured with a mechanical valve mechanism such as a check valve, or it should be configured to be able to release hydrogen gas while suppressing the ingress of liquid into the containment chamber by a narrow tubular passage. Is also possible.

例えば、非流出状態保持手段は、水を密閉収容して非流出状態とする可撓性の区画室であり、同区画室は、エネルギーとしての外力が所定量付与されることにより収容していた水を吐出して流出状態とする脆弱部を備えるよう構成しておけば、使用者が区画室、すなわち、反応用の水が収容された小袋を指先等で押圧して破水させることにより、水素発生反応を生起させることができる。 For example, the non-spill state holding means is a flexible compartment in which water is hermetically stored to bring it into a non-spill state, and the compartment is accommodated by applying a predetermined amount of external force as energy. If it is configured to have a fragile part that discharges water to cause an outflow state, the user presses a compartment, that is, a pouch containing water for reaction with a fingertip or the like to break the water, thereby causing hydrogen. A developmental reaction can occur.

そして、このような構成によっても、より先に言及した従来の水素添加器具等に比して短時間での水素の生成を行うことができる。 And, even with such a configuration, hydrogen can be generated in a short time as compared with the conventional hydrogenation apparatus and the like mentioned above.

以下、本実施形態に係る水素発生ユニットについて、図面を参照しながら説明する。 Hereinafter, the hydrogen generation unit according to this embodiment will be described with reference to the drawings.

[第1の実施形態]
第1の実施形態に係る水素発生ユニットAは、図1(a)〜(c)、図5に示すように、液体M中に投入することにより同液体M中に水素を含有させて水素含有液を生成する水素発生ユニットAにおいて、同水素発生ユニットAは、含水して水素を発生する水素発生剤3と、水素発生剤3を内包するイオン交換体4またはイオン吸着体8を備えた収容体1と、で構成し、収容体1は、液体Mを収容体1内に流通自在に形成し、イオン交換体4またはイオン吸着体8は、水素発生剤3が液体Mを含水して水素を発生する際に放出される陽イオンを交換または吸着して陽イオンを収容体1外に流出しないように構成している。
[First Embodiment]
As shown in FIGS. 1 (a) to 1 (c) and FIG. 5, the hydrogen generation unit A according to the first embodiment contains hydrogen in the liquid M by being charged into the liquid M. In the hydrogen generating unit A that generates a liquid, the hydrogen generating unit A includes a hydrogen generating agent 3 that contains water to generate hydrogen, and an ion exchanger 4 or an ion adsorbent 8 that contains the hydrogen generating agent 3. It is composed of the body 1 and the housing body 1 forms a liquid M freely in the housing body 1, and in the ion exchanger 4 or the ion adsorbent 8, the hydrogen generator 3 contains the liquid M and hydrogen. It is configured to exchange or adsorb the cations released when the cations are generated so that the cations do not flow out of the housing 1.

また、収容体1のイオン交換体4またはイオン吸着体8は、陽イオン交換繊維5または陽イオン吸着繊維9により構成している。 Further, the ion exchanger 4 or the ion adsorbent 8 of the accommodating body 1 is composed of the cation exchange fiber 5 or the cation adsorbent fiber 9.

更に、収容体1は、陽イオン交換繊維5または陽イオン吸着繊維9を袋状の不織布として形成し、内部に水素発生剤3を内包して略密封している。 Further, in the housing 1, the cation exchange fiber 5 or the cation adsorption fiber 9 is formed as a bag-shaped non-woven fabric, and the hydrogen generating agent 3 is encapsulated therein and substantially sealed.

具体的には、陽イオン交換繊維5または陽イオン吸着繊維9からなる収容体1は、長尺の袋状に形成され、内部に水素発生剤3が収容される。従って、使用時に外部から収容体1内に流通した液体Mは可及的に水素発生剤3と接触することで水素生成反応が開始される。なお、以下説明する全ての実施形態において水素発生剤3は、アルミニウムと水酸化カルシウムとを主成分として含有する混合粉末としている。 Specifically, the housing 1 made of the cation exchange fiber 5 or the cation adsorption fiber 9 is formed in a long bag shape, and the hydrogen generating agent 3 is housed therein. Therefore, the liquid M that has flowed into the housing 1 from the outside at the time of use comes into contact with the hydrogen generating agent 3 as much as possible to start the hydrogen production reaction. In all the embodiments described below, the hydrogen generator 3 is a mixed powder containing aluminum and calcium hydroxide as main components.

液体Mを含水した水素発生剤3は、水素生成反応時の反応残渣となるアルミナセメントを生成しながら水素ガスHを生成し、水素ガスHは収容体1を通過して外部へと放出される。 The hydrogen generating agent 3 containing the liquid M generates hydrogen gas H while producing alumina cement which is a reaction residue during the hydrogen generation reaction, and the hydrogen gas H passes through the housing 1 and is released to the outside. ..

また、水素発生剤3が液体Mを含水することで溶出した陽イオン(アルミニウムイオン)のうち、アルミナセメントの生成に寄与しなかった陽イオンは、収容体1をなす陽イオン交換繊維5または陽イオン吸着繊維9によりイオン交換またはイオン吸着され、収容体1に留まることで水素発生ユニットA外への流出を防止している。 Further, among the cations (aluminum ions) eluted by the hydrogen generator 3 containing the liquid M, the cations that did not contribute to the formation of alumina cement are the cation exchange fibers 5 forming the accommodating body 1 or the cations. Ion exchange or ion adsorption is carried out by the ion adsorption fiber 9 and stays in the housing 1 to prevent outflow to the outside of the hydrogen generation unit A.

以上、説明したように第1の実施形態に係る水素発生ユニットAは構成している。従って、水素ガスHの発生手順としては、図5に示すように、調製容器30内に収容した所定液体としての飲用水M中に水素発生ユニットAを投入することで、飲用水M中に水素を含有させて水素含有液を調製することができる。 As described above, the hydrogen generation unit A according to the first embodiment is configured. Therefore, as a procedure for generating hydrogen gas H, as shown in FIG. 5, hydrogen is charged into the drinking water M by charging the hydrogen generating unit A into the drinking water M as a predetermined liquid contained in the preparation container 30. Can be added to prepare a hydrogen-containing liquid.

調製容器30は、炭酸水等を市販する際に用いられるような耐圧性を有する500ml容量のペットボトル容器であり、中空状の容器本体30aと、同容器本体30aの上部開口に螺合して気密密閉するスクリューキャップ30bとで構成している。なお、本実施形態では容器としてペットボトル(ポリエチレンテレフタレート製容器)を用いているが、これに限定されるものではなく、ガラスやアルミ素材等にて形成された容器を用いても良い。 The preparation container 30 is a PET bottle container having a pressure resistance of 500 ml, which is used when marketing carbonated water or the like, and is screwed into a hollow container body 30a and an upper opening of the container body 30a. It is composed of a screw cap 30b that is airtightly sealed. In the present embodiment, a PET bottle (polyethylene terephthalate container) is used as the container, but the present invention is not limited to this, and a container made of glass, aluminum material, or the like may be used.

調製容器30内には飲用水Mをボトルネック部近傍(調製容器30の内容積の50分の48〜250分の249)まで収容して液相部とする一方、その上部を気溜まり部31として気相部を形成している。 Drinking water M is housed in the preparation container 30 up to the vicinity of the bottleneck portion (489/50 to 249/250 of the internal volume of the preparation container 30) to form a liquid phase portion, while the upper portion thereof is a pool portion 31. The gas phase part is formed as.

具体的には、水素発生ユニットAを飲用水Mが充填された調製容器30の開口部から飲用水M中に浸漬させ、図5に示すようにスクリューキャップ30bにより閉蓋すれば、収容体1から水素ガスHを放出する。 Specifically, if the hydrogen generation unit A is immersed in the drinking water M through the opening of the preparation container 30 filled with the drinking water M and closed with the screw cap 30b as shown in FIG. 5, the housing 1 Hydrogen gas H is released from.

放出された水素ガスHは、調製容器30の気溜まり部31を拡張しながら充満し、調製容器30の内圧の上昇と共に飲用水M中に溶存して水素含有液が調製される。 The released hydrogen gas H is filled while expanding the air reservoir 31 of the preparation container 30, and is dissolved in the drinking water M as the internal pressure of the preparation container 30 rises to prepare a hydrogen-containing liquid.

なお、本実施形態に係る水素発生ユニットAは、調製容器30への投入後は、5〜15分程度で水素の生成反応が終了するように構成しており、水素含有液の調製後すぐに飲用したい場合には、調製容器30の略中央部を把持して手首を中心に左右に略180°、略30秒間すばやく振って攪拌することで略5.0〜7.0ppmの水素含有液を生成することができる。 The hydrogen generation unit A according to the present embodiment is configured so that the hydrogen production reaction is completed in about 5 to 15 minutes after being put into the preparation container 30, and immediately after the preparation of the hydrogen-containing liquid. If you want to drink it, grasp the approximately central part of the preparation container 30 and shake it quickly to the left and right around the wrist for approximately 180 ° for approximately 30 seconds to stir it to obtain a hydrogen-containing solution of approximately 5.0 to 7.0 ppm. Can be generated.

また、水素の生成反応が終了した後、冷蔵庫で24時間程度静置させ、上述のように攪拌すれば安定して略7.0ppmの水素含有液を生成することができるように構成している。 Further, after the hydrogen production reaction is completed, the hydrogen-containing liquid can be stably produced at about 7.0 ppm by allowing it to stand in a refrigerator for about 24 hours and stirring as described above. ..

なお、一般的に飲用水Mが充填された調製容器30内には上述の通り気溜まり部31が存在する。この気溜まり部31は、水素の生成において水素の含有濃度を低下させる要因となるため、水素発生ユニットAを投入してスクリューキャップ30bで閉蓋した際にはできるだけ気溜まり部31が存在しないことが望ましい。 In general, the air pool portion 31 is present in the preparation container 30 filled with the drinking water M as described above. Since this pool portion 31 becomes a factor that lowers the hydrogen content concentration in the generation of hydrogen, the pool portion 31 should be present as little as possible when the hydrogen generation unit A is put in and the lid is closed with the screw cap 30b. Is desirable.

以上のように第1の実施形態に係る水素発生ユニットAは、液体M中に投入することにより同液体M中に水素を含有させて水素含有液を生成する水素発生ユニットAにおいて、同水素発生ユニットAは、含水して水素を発生する水素発生剤3と、水素発生剤3を内包するイオン交換体4またはイオン吸着体8を備えた収容体1と、で構成し、収容体1は、液体Mを収容体1内に流通自在に形成し、イオン交換体4またはイオン吸着体8は、水素発生剤3が液体Mを含水して水素を発生する際に放出される陽イオンを交換または吸着して陽イオンを収容体1外に流出しないように構成したため、液体M中に投入された水素発生ユニットA内の水素発生剤3に液体Mが可及的に接触し含水するため、短時間で水素を発生させることができ、しかも、水素生成時に生じる金属イオンである陽イオンの液体M中への流出を収容体1でブロックすることが可能な水素発生ユニットAを提供することができる。 As described above, the hydrogen generation unit A according to the first embodiment is the hydrogen generation unit A that generates a hydrogen-containing liquid by containing hydrogen in the liquid M by putting it into the liquid M. The unit A is composed of a hydrogen generating agent 3 that contains water to generate hydrogen, and an accommodating body 1 having an ion exchanger 4 or an ion adsorbent 8 containing the hydrogen generating agent 3. The liquid M is formed freely in the accommodating body 1, and the ion exchanger 4 or the ion adsorbent 8 exchanges or exchanges cations released when the hydrogen generator 3 contains the liquid M to generate hydrogen. Since it is configured so that the cations are not adsorbed and flow out to the outside of the housing 1, the liquid M comes into contact with the hydrogen generating agent 3 in the hydrogen generating unit A charged into the liquid M as much as possible and contains water. It is possible to provide a hydrogen generation unit A capable of generating hydrogen over time and blocking the outflow of cations, which are metal ions generated during hydrogen generation, into the liquid M by the adsorbent 1. ..

また、収容体1のイオン交換体4またはイオン吸着体8は、陽イオン交換繊維5または陽イオン吸着繊維9により構成したことより、液体M中に投入された水素発生ユニットA内に液体Mを侵入させるための構造をシンプルに構築することができる。 Further, since the ion exchanger 4 or the ion adsorbent 8 of the accommodating body 1 is composed of the cation exchange fiber 5 or the cation adsorbent fiber 9, the liquid M is placed in the hydrogen generation unit A charged into the liquid M. The structure for intrusion can be simply constructed.

また、収容体1は、陽イオン交換繊維5または陽イオン吸着繊維9を袋状の不織布として形成し、内部に水素発生剤3を内包して略密封したことより、収容体1の構造がシンプルとなり安価に製造できると共に、液体M中に投入された水素発生ユニットA内への液体Mの侵入を容易に促すことができる。 In addition, the structure of the container 1 is simple because the cation exchange fiber 5 or the cation adsorption fiber 9 is formed as a bag-shaped non-woven fabric, and the hydrogen generator 3 is encapsulated therein and substantially sealed. Therefore, it can be manufactured at low cost, and the invasion of the liquid M into the hydrogen generating unit A charged into the liquid M can be easily promoted.

次に、第2の実施形態に係る水素発生ユニットB1,B2,B3について説明する。なお、上述した第1の実施形態に係る水素発生ユニットAと共通する部分については同一の符号を付して説明を適宜省略する。 Next, the hydrogen generation units B1, B2, and B3 according to the second embodiment will be described. The parts common to the hydrogen generation unit A according to the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted as appropriate.

[第2の実施形態]
第2の実施形態に係る水素発生ユニットB1,B2,B3は、図2(a)〜(e)、図5に示すように、収容体1の基材2を袋状の不織布で形成すると共に、イオン交換体4またはイオン吸着体8は細粒状の陽イオン交換樹脂6または陽イオン吸着樹脂10で形成し、基材2の内側、外側または両側に複数の陽イオン交換樹脂6または陽イオン吸着樹脂10を着設している。
[Second Embodiment]
In the hydrogen generation units B1, B2, and B3 according to the second embodiment, as shown in FIGS. 2A to 2E and FIG. 5, the base material 2 of the accommodating body 1 is formed of a bag-shaped non-woven fabric. , The ion exchanger 4 or the ion adsorbent 8 is formed of a fine granular cation exchange resin 6 or a cation adsorption resin 10, and a plurality of cation exchange resins 6 or cation adsorptions are formed on the inside, outside or both sides of the base material 2. The resin 10 is installed.

具体的には、基材2は長尺の袋状に形成され、内部に水素発生剤3が収容される。ここで、図2(a)は本実施形態に係る水素発生ユニットB1,B2,B3のうち陽イオン交換樹脂6等を基材2の内側に着設した形態に係る水素発生ユニットB1の部分透視図であり、図2(b)は図2(a)のb−b´線断面図である。 Specifically, the base material 2 is formed in the shape of a long bag, and the hydrogen generating agent 3 is housed therein. Here, FIG. 2A shows a partial perspective view of the hydrogen generation unit B1 according to the embodiment in which the cation exchange resin 6 or the like is attached to the inside of the base material 2 among the hydrogen generation units B1, B2, B3 according to the present embodiment. 2 (b) is a sectional view taken along line bb'of FIG. 2 (a).

また、図2(c)は陽イオン交換樹脂6等を基材2の外側または両側に着設した形態に係る水素発生ユニットB2,B3の部分透視図であり、図2(d)は基材2の外側に着設した形態に係る水素発生ユニットB2の図2(c)のc−c´線断面図で、図2(e)は基材2の両側に着設した形態に係る水素発生ユニットB3の図2(c)のd−d´線断面図である。 Further, FIG. 2C is a partial perspective view of hydrogen generation units B2 and B3 according to a form in which a cation exchange resin 6 or the like is attached to the outside or both sides of the base material 2, and FIG. 2D is a base material. FIG. 2 (e) is a cross-sectional view taken along the line cc'of FIG. 2 (c) of the hydrogen generation unit B2 attached to the outside of the base material 2, and FIG. 2 (e) shows the hydrogen generation according to the form attached to both sides of the base material 2. FIG. 2 is a cross-sectional view taken along the line dd'of FIG. 2 (c) of the unit B3.

基材2への陽イオン交換樹脂6または陽イオン吸着樹脂10の着設については、糊剤を含む陽イオン交換樹脂6等を噴霧することで形成している。 The cation exchange resin 6 or the cation adsorption resin 10 is attached to the base material 2 by spraying a cation exchange resin 6 or the like containing a glue.

以上、説明したように第2の実施形態に係る水素発生ユニットB1,B2,B3は構成している。なお、水素ガスHの発生手順は上述した第1の実施形態に係る水素発生ユニットAと同様である。 As described above, the hydrogen generation units B1, B2, and B3 according to the second embodiment are configured. The hydrogen gas H generation procedure is the same as that of the hydrogen generation unit A according to the first embodiment described above.

以上のように第2の実施形態に係る水素発生ユニットB1,B2,B3は、収容体1の基材2を袋状の不織布で形成すると共に、イオン交換体4またはイオン吸着体8は細粒状の陽イオン交換樹脂6または陽イオン吸着樹脂10で形成し、基材2の内側、外側または両側に複数の陽イオン交換樹脂6または陽イオン吸着樹脂10を着設したことより、含水に適した不織布の選択が容易となり、しかも、製造時に陽イオン交換樹脂6または陽イオン吸着樹脂10の粒径や数の調整が容易となり、イオン交換またはイオン吸着させる陽イオンの量を任意に調整することが容易となる。 As described above, in the hydrogen generation units B1, B2, and B3 according to the second embodiment, the base material 2 of the accommodating body 1 is formed of a bag-shaped non-woven fabric, and the ion exchange body 4 or the ion adsorbent 8 is finely granular. It is suitable for water content because it is formed of the cation exchange resin 6 or the cation adsorption resin 10 and a plurality of cation exchange resins 6 or cation adsorption resins 10 are attached to the inside, outside or both sides of the base material 2. It is easy to select the non-woven fabric, and it is easy to adjust the particle size and number of the cation exchange resin 6 or the cation adsorption resin 10 at the time of production, and the amount of cations to be ion exchanged or ion-adsorbed can be arbitrarily adjusted. It will be easy.

次に、第3の実施形態に係る水素発生ユニットC1,C2,C3について説明する。なお、上述した第1・第2の実施形態に係る水素発生ユニットA,B1,B2,B3と共通する部分については同一の符号を付して説明を適宜省略する。 Next, the hydrogen generation units C1, C2, and C3 according to the third embodiment will be described. The parts common to the hydrogen generation units A, B1, B2, and B3 according to the first and second embodiments described above are designated by the same reference numerals, and the description thereof will be omitted as appropriate.

[第3の実施形態]
第3の実施形態に係る水素発生ユニットC1,C2,C3は、図3(a)〜(f)、図5に示すように、収容体1の基材2を袋状の不織布で形成すると共に、イオン交換体4は陰イオン交換膜7で形成し、基材2の内側、外側または基材2を2層としてその間隙に陰イオン交換膜7を重設している。
[Third Embodiment]
In the hydrogen generation units C1, C2, and C3 according to the third embodiment, as shown in FIGS. 3A to 3F and FIG. 5, the base material 2 of the housing 1 is formed of a bag-shaped non-woven fabric. The ion exchange body 4 is formed of an anion exchange membrane 7, and the anion exchange membrane 7 is superposed in the gap between the inside and outside of the base material 2 or the base material 2 as two layers.

具体的には、基材2と陰イオン交換膜7は長尺の袋状に形成され、内部に水素発生剤3が収容される。ここで、図3(a)は本実施形態に係る水素発生ユニットC1,C2,C3のうち陰イオン交換膜7を基材2の内側に重設した形態に係る水素発生ユニットC1の部分透視図であり、図3(b)は図3(a)のe−e´線断面図である。 Specifically, the base material 2 and the anion exchange membrane 7 are formed in a long bag shape, and the hydrogen generating agent 3 is housed therein. Here, FIG. 3A is a partial perspective view of the hydrogen generation unit C1 according to the embodiment in which the anion exchange membrane 7 is overlaid on the inside of the base material 2 among the hydrogen generation units C1, C2, and C3 according to the present embodiment. 3 (b) is a cross-sectional view taken along the line e-e'of FIG. 3 (a).

また、図3(c)は陰イオン交換膜7を基材2の外側に重設した形態に係る水素発生ユニットC2の部分透視図であり、図3(d)は図3(c)のf−f´線断面図である。 Further, FIG. 3 (c) is a partial perspective view of the hydrogen generation unit C2 according to a form in which the anion exchange membrane 7 is superposed on the outside of the base material 2, and FIG. 3 (d) is f in FIG. 3 (c). -F'line sectional view.

また、図3(e)は陰イオン交換膜7を基材の両側に重設した形態に係る水素発生ユニットC3の部分透視図であり、図3(f)は図3(e)のg−g´線断面図である。 Further, FIG. 3 (e) is a partial perspective view of the hydrogen generation unit C3 according to a form in which the anion exchange membrane 7 is juxtaposed on both sides of the base material, and FIG. 3 (f) is a partial perspective view of the hydrogen generation unit C3. It is a cross-sectional view of g'line.

このように構成することで、陰イオン交換膜7は薄膜でありながら水素発生ユニットC1,C2,C3としての使用に耐えることができ、しかも、陰イオン交換膜7が基材2と近接または当接することで、該膜7単体時に比して収容体1内部への液体Mの侵入が促され、短時間で水素ガスHを発生させることができる。 With this configuration, the anion exchange membrane 7 can withstand use as hydrogen generation units C1, C2, and C3 even though it is a thin film, and the anion exchange membrane 7 is close to or equal to the base material 2. By contacting the membrane 7, the liquid M is promoted to enter the inside of the housing 1 as compared with the case of the membrane 7 alone, and the hydrogen gas H can be generated in a short time.

すなわち、基材2の内側に該膜7が位置する水素発生ユニットC1を液体M中に投入した際、液体Mにより湿潤状態の基材2が該膜7表面において安定した液層を形成することで、該膜7内への液体Mの侵入が促進され、収容体1内部の水素発生剤3に液体Mを含水させることができる。 That is, when the hydrogen generation unit C1 in which the film 7 is located inside the base material 2 is put into the liquid M, the base material 2 in a wet state by the liquid M forms a stable liquid layer on the surface of the film 7. Therefore, the invasion of the liquid M into the membrane 7 is promoted, and the hydrogen generating agent 3 inside the container 1 can be impregnated with the liquid M.

また、基材2の外側に該膜7が位置する水素発生ユニットC2を液体M中に投入した際は、該膜7を侵入した初期の液体Mが基材2に含水し、その後、毛細管現象のごとく外部の液体Mを収容体1内部へと導出し、該膜7内への液体Mの侵入が促進され、収容体1内部の水素発生剤3に液体Mを含水させることができる。 Further, when the hydrogen generation unit C2 in which the film 7 is located outside the base material 2 is put into the liquid M, the initial liquid M invading the film 7 contains water in the base material 2, and then the capillary phenomenon occurs. As described above, the external liquid M is led out to the inside of the housing 1, the invasion of the liquid M into the membrane 7 is promoted, and the hydrogen generating agent 3 inside the housing 1 can be impregnated with the liquid M.

更に、2層の基材2の間に該膜7が位置する水素発生ユニットC3を液体M中に投入した際は、上述した各々の相乗効果により該膜7内への液体Mの侵入がより促進され、収容体1内部の水素発生剤3に液体Mを可及的に含水させることができる。 Further, when the hydrogen generation unit C3 in which the film 7 is located between the two layers of the base material 2 is put into the liquid M, the liquid M penetrates into the film 7 due to the synergistic effects described above. It is promoted so that the hydrogen generating agent 3 inside the housing 1 can contain the liquid M as much as possible.

以上、説明したように第3の実施形態に係る水素発生ユニットC1,C2,C3は構成している。なお、水素ガスHの発生手順は上述した第1の実施形態に係る水素発生ユニットAと同様であるが、本実施形態に係る水素発生ユニットC1,C2,C3は、調製容器30への投入後は、5〜20時間程度で水素の生成反応が終了するように構成しており、水素含有液の調製後すぐに飲用したい場合には、調製容器30の略中央部を把持して手首を中心に左右に略180°、略30秒間すばやく振って攪拌することで略5.0ppmの水素含有液を生成することができる。 As described above, the hydrogen generation units C1, C2, and C3 according to the third embodiment are configured. The hydrogen gas H generation procedure is the same as that of the hydrogen generation unit A according to the first embodiment described above, but the hydrogen generation units C1, C2, and C3 according to the present embodiment are after being charged into the preparation container 30. Is configured so that the hydrogen production reaction is completed in about 5 to 20 hours, and if you want to drink immediately after preparing the hydrogen-containing liquid, grasp the substantially central part of the preparation container 30 and center the wrist. A hydrogen-containing liquid of about 5.0 ppm can be produced by shaking quickly from side to side at about 180 ° for about 30 seconds to stir.

また、水素の生成反応が終了した後、冷蔵庫で24時間程度静置させ、上述のように攪拌すれば略7.0ppmの水素含有液を生成することができるように構成している。 Further, after the hydrogen production reaction is completed, the mixture is allowed to stand in a refrigerator for about 24 hours and stirred as described above so that a hydrogen-containing liquid of approximately 7.0 ppm can be produced.

以上のように第3の実施形態に係る水素発生ユニットC1,C2,C3は、収容体1の基材2を袋状の不織布で形成すると共に、イオン交換体4は陰イオン交換膜7で形成し、基材2の内側、外側または基材2を2層としてその間隙に陰イオン交換膜7を重設したことより、破損しやすい陰イオン交換膜7の強度の向上が図れ、しかも、不織布の含水特性により収容体1内部への液体Mの侵入を促進させることができる。 As described above, in the hydrogen generation units C1, C2, and C3 according to the third embodiment, the base material 2 of the accommodating body 1 is formed of a bag-shaped non-woven fabric, and the ion exchange body 4 is formed of an anion exchange membrane 7. However, since the anion exchange membrane 7 is placed in the gap between the inner and outer sides of the base material 2 or the base material 2 as two layers, the strength of the fragile anion exchange membrane 7 can be improved, and the non-woven fabric is used. It is possible to promote the invasion of the liquid M into the inside of the housing 1 due to the water-containing property of.

次に、第4の実施形態に係る水素発生ユニットDについて説明する。なお、上述した第1・第2・第3の実施形態に係る水素発生ユニットA,B1,B2,B3,C1,C2,C3と共通する部分については同一の符号を付して説明を適宜省略する。 Next, the hydrogen generation unit D according to the fourth embodiment will be described. The parts common to the hydrogen generation units A, B1, B2, B3, C1, C2, and C3 according to the first, second, and third embodiments described above are designated by the same reference numerals and the description thereof will be omitted as appropriate. To do.

[第4の実施形態]
第4の実施形態に係る水素発生ユニットDは、図4(a)〜(c)、図5に示すように、上述した収容体1の外周面の下半部15に内外流通遮断部16を設け、内部への液体Mの流入並びに外部への反応残渣の流出を遮断すると共に、水素発生剤3が内外流通遮断部16に囲繞され且つ収容体1の下半部15の端部側17に略密封して構成している。
[Fourth Embodiment]
In the hydrogen generation unit D according to the fourth embodiment, as shown in FIGS. 4 (a) to 4 (c) and FIG. 5, the internal / external distribution blocking unit 16 is provided in the lower half portion 15 of the outer peripheral surface of the housing body 1 described above. In addition to blocking the inflow of the liquid M into the inside and the outflow of the reaction residue to the outside, the hydrogen generating agent 3 is surrounded by the internal / external flow blocking section 16 and is located on the end side 17 of the lower half portion 15 of the housing 1. It is constructed by being roughly sealed.

ここで、図4(a)は本実施形態に係る水素発生ユニットDの正面図であり、図4(b)は図4(a)の部分透視図で、図4(c)は図4(b)のh−h´線断面図である。 Here, FIG. 4A is a front view of the hydrogen generation unit D according to the present embodiment, FIG. 4B is a partial perspective view of FIG. 4A, and FIG. 4C is FIG. 4 (c). b) is a cross-sectional view taken along the line h−h'.

内外流通遮断部16は、収容体1内部への液体Mの流入、及び外部への反応残渣の流出を遮断する可撓性を有するシート状の合成樹脂材料であり、水素生成反応時の発熱や酸やアルカリへの耐性に優れたポリエチレンで形成している。 The internal / external flow blocking unit 16 is a flexible sheet-shaped synthetic resin material that blocks the inflow of the liquid M into the housing 1 and the outflow of the reaction residue to the outside, and generates heat during the hydrogen generation reaction. It is made of polyethylene, which has excellent resistance to acids and alkalis.

また、内外流通遮断部16は、上述した第1〜第3の実施形態に係る収容体1の下半部15を被覆して重設され、内外流通遮断部16を収容体1の外周面に貼着している。 Further, the internal / external distribution blocking portion 16 is provided so as to cover the lower half portion 15 of the housing body 1 according to the first to third embodiments described above, and the internal / external distribution blocking portion 16 is placed on the outer peripheral surface of the housing body 1. It is pasted.

内外流通遮断部16の内側においては、水素発生剤3が内外流通遮断部16に囲繞され且つ収容体1の下半部15の端部側17に略密封して収容している。密封においては、収容体1を熱シール等で封止して形成され、封止箇所20は外部から収容体1の上半部18に流入する液体Mが下半部15に浸透し水素発生剤3に流通可能なように形成している。 Inside the inside / outside flow blocking section 16, the hydrogen generating agent 3 is surrounded by the inside / outside flow blocking section 16 and is substantially sealed and housed in the end side 17 of the lower half portion 15 of the housing body 1. In the sealing, the housing body 1 is sealed with a heat seal or the like, and the sealing portion 20 is formed by the liquid M flowing into the upper half portion 18 of the housing body 1 from the outside permeating into the lower half portion 15 and a hydrogen generating agent. It is formed so that it can be distributed in 3.

このように形成することで、水素発生ユニットDは収容体1内部での水素発生剤3の偏在により下半部15が上半部18に比して重くなり、下半部15が液体M中で安定的に下方に位置する。 By forming the hydrogen generating unit D in this way, the lower half portion 15 becomes heavier than the upper half portion 18 due to the uneven distribution of the hydrogen generating agent 3 inside the housing 1, and the lower half portion 15 is in the liquid M. It is stably located below.

また、水素発生剤3を略密封する収容体1の封止箇所20は、端部側17から内外流通遮断部16の略3分の2程度の位置に形成し、万一、封止箇所20から上半部18に向かって反応残渣が流出しても、封止箇所20の直上であり内外流通遮断部16の上方の略3分の1の領域で反応残渣の流出を防止できるように形成している。 Further, the sealing portion 20 of the housing body 1 that substantially seals the hydrogen generating agent 3 is formed at a position of about two-thirds of the inside / outside flow blocking portion 16 from the end side 17, and by any chance, the sealing portion 20 Even if the reaction residue flows out from the upper half portion 18, it is formed so that the outflow of the reaction residue can be prevented in a region directly above the sealing portion 20 and approximately one-third above the internal / external flow blocking portion 16. doing.

なお、収容体1に形成される封止箇所20の位置は、本実施形態に限定されるものではない。 The position of the sealing portion 20 formed in the housing body 1 is not limited to this embodiment.

以上、説明したように第4の実施形態に係る水素発生ユニットDは構成している。なお、水素ガスHの発生手順は上述した第1の実施形態に係る水素発生ユニットAと同様であるが、調製容器30への投入においては、効率よく水素ガスHを収容体1の上半部18から放出させるために内外流通遮断部16を下側にして投入することが望ましい。 As described above, the hydrogen generation unit D according to the fourth embodiment is configured. The hydrogen gas H generation procedure is the same as that of the hydrogen generation unit A according to the first embodiment described above, but when the hydrogen gas H is charged into the preparation container 30, the hydrogen gas H is efficiently stored in the upper half of the housing 1. In order to release the gas from 18, it is desirable that the internal / external flow blocking unit 16 is turned down.

以上のように第4の実施形態に係る水素発生ユニットDは、上述した収容体1の外周面の下半部15に内外流通遮断部16を設け、内部への液体Mの流入並びに外部への反応残渣の流出を遮断すると共に、水素発生剤3が内外流通遮断部16に囲繞され且つ収容体1の下半部15の端部側17に略密封してなることより、水素発生ユニットDの下半部15が上半部18に比して重くなり下半部15が液体M中で安定的に下方に位置するため下半部15からの反応残渣の流出を可及的に防止でき、しかも、収容体1内部への液体Mの侵入は上半部18からなされ、発生した水素ガスHも上半部18から放出されるため、収容体1外部への反応残渣の流出を確実に防止することができる。 As described above, the hydrogen generation unit D according to the fourth embodiment is provided with the inside / outside flow blocking portion 16 in the lower half portion 15 of the outer peripheral surface of the housing body 1 described above, and the liquid M flows into the inside and goes out to the outside. Since the outflow of the reaction residue is blocked and the hydrogen generating agent 3 is surrounded by the internal / external flow blocking section 16 and substantially sealed at the end side 17 of the lower half portion 15 of the housing body 1, the hydrogen generating unit D is formed. Since the lower half portion 15 is heavier than the upper half portion 18 and the lower half portion 15 is stably located downward in the liquid M, the outflow of the reaction residue from the lower half portion 15 can be prevented as much as possible. Moreover, since the liquid M invades the inside of the housing 1 from the upper half 18 and the generated hydrogen gas H is also released from the upper half 18, the outflow of the reaction residue to the outside of the housing 1 is surely prevented. can do.

なお、第4の実施形態に係る水素発生ユニットDでは、イオン交換体4やイオン吸着体8を備えていない単なる不織布等で形成された収容体1で上述の通り構成してもよい。 The hydrogen generation unit D according to the fourth embodiment may be configured as described above by a housing body 1 formed of a simple non-woven fabric or the like that does not include the ion exchanger 4 or the ion adsorbent 8.

この場合、水素ガスHの発生手順は上述した本実施形態に係る水素発生ユニットDと同様であるが、特に、内外流通遮断部16を下側にして調製容器30に投入することが必要である。 In this case, the hydrogen gas H generation procedure is the same as that of the hydrogen generation unit D according to the present embodiment described above, but it is particularly necessary to put the hydrogen gas H into the preparation container 30 with the internal / external distribution blocking unit 16 facing down. ..

すなわち、調製容器30への投入においては、水素発生ユニットの上半部18を下側にして投入しても下半部15が上半部18に比して重いため経時的に下半部15が液体M中で安定的に下方に位置するものの、投入初期では上半部18に浸透し下半部15に流通した液体Mにより水素生成反応で生じた金属イオンが下方に位置する上半部18から放出される恐れがあるからである。 That is, when charging into the preparation container 30, even if the upper half 18 of the hydrogen generating unit is placed on the lower side, the lower half 15 is heavier than the upper half 18, so the lower half 15 is over time. Is stably located below in the liquid M, but at the initial stage of charging, the metal ions generated by the hydrogen generation reaction by the liquid M that permeated into the upper half 18 and circulated in the lower half 15 are located in the lower half. This is because there is a risk of being released from 18.

次に、第4の実施形態に係る水素発生ユニットDの変形例について説明する。なお、上述した第4の実施形態に係る水素発生ユニットDと共通する部分については同一の符号を付して説明を適宜省略する。 Next, a modification of the hydrogen generation unit D according to the fourth embodiment will be described. The parts common to the hydrogen generation unit D according to the fourth embodiment described above are designated by the same reference numerals, and the description thereof will be omitted as appropriate.

[第4の実施形態の変形例]
第4の実施形態に係る水素発生ユニットDの変形例となる水素発生ユニットD1は、図6、図7に示すように、収容体1の下半部15の端部側17を先端先鋭に形成すると共に内外流通遮断部16も先端先鋭に形成している。
[Modified example of the fourth embodiment]
As shown in FIGS. 6 and 7, the hydrogen generation unit D1, which is a modification of the hydrogen generation unit D according to the fourth embodiment, has a sharply formed end side 17 of the lower half portion 15 of the housing body 1. At the same time, the inside / outside distribution blocking portion 16 is also formed with a sharp tip.

具体的には、内外流通遮断部16は、端部側17を頂点とする正面視略二等辺三角形状の袋状に形成した収容体1の下半部15の外周面を被覆して重設される。 Specifically, the internal / external distribution blocking portion 16 is overlapped by covering the outer peripheral surface of the lower half portion 15 of the housing body 1 formed in a bag shape having a substantially isosceles right triangle shape with the end side 17 as the apex. Will be done.

このように形成することで、ペットボトル等の調製容器30中の液体M中に水素発生ユニットD1を投入する向きを直感的に把握することができる。 By forming in this way, it is possible to intuitively grasp the direction in which the hydrogen generation unit D1 is put into the liquid M in the preparation container 30 such as a PET bottle.

最後に、上述した実施形態の説明は本発明の一例であり、本発明は上述の実施形態に限定されることはない。このため、上述した実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of the embodiments described above is an example of the present invention, and the present invention is not limited to the above embodiments. Therefore, it goes without saying that various changes can be made according to the design and the like as long as the technical idea of the present invention is not deviated from the embodiment other than the above-described embodiment.

A 水素発生ユニット(第1の実施形態)
B1〜3 水素発生ユニット(第2の実施形態)
C1〜3 水素発生ユニット(第3の実施形態)
D 水素発生ユニット(第4の実施形態)
D1 水素発生ユニット(第4の実施形態の変形例)
H 水素ガス
M 液体(飲用水)
1 収容体
2 基材
3 水素発生剤
4 イオン交換体
5 陽イオン交換繊維
6 陽イオン交換樹脂
7 陰イオン交換膜
8 イオン吸着体
9 陽イオン吸着繊維
10 陽イオン吸着樹脂
15 下半部
16 内外流通遮断部
17 端部側
A Hydrogen generation unit (first embodiment)
B1 to 3 Hydrogen generation unit (second embodiment)
C1-Hydrogen generation unit (third embodiment)
D Hydrogen generation unit (fourth embodiment)
D1 hydrogen generation unit (modification example of the fourth embodiment)
H Hydrogen gas M Liquid (drinking water)
1 Container 2 Base material 3 Hydrogen generator 4 Ion exchanger 5 Ion exchange fiber 6 Ion exchange resin 7 Anion exchange membrane 8 Ion adsorbent 9 Ion adsorbent fiber 10 Ion adsorbent resin 15 Lower half 16 Internal and external distribution Block 17 end side

Claims (6)

液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、
同水素発生ユニットは、
含水して水素を発生する水素発生剤と、
前記水素発生剤を内包するイオン交換体またはイオン吸着体を備えた収容体と、で構成し、
前記収容体は、前記液体を前記収容体内に流通自在に形成し、
前記イオン交換体または前記イオン吸着体は、前記水素発生剤が前記液体を含水して水素を発生する際に放出される陽イオンを交換または吸着もしくは遮断して前記陽イオンを前記収容体外に流出しないように構成したことを特徴とする水素発生ユニット。
In a hydrogen generation unit that generates a hydrogen-containing liquid by containing hydrogen in the liquid by putting it in the liquid.
The hydrogen generation unit is
A hydrogen generator that contains water to generate hydrogen,
It is composed of an ion exchanger containing the hydrogen generating agent or an accommodating body provided with an ion adsorbent.
The container forms the liquid freely in the container and forms the liquid in the container.
The ion exchanger or the ion adsorbent exchanges, adsorbs, or blocks the cations released when the hydrogen generator contains the liquid to generate hydrogen, and the cations flow out of the container. A hydrogen generation unit characterized by being configured not to.
前記収容体の前記イオン交換体または前記イオン吸着体は、陽イオン交換繊維または陽イオン吸着繊維により構成したことを特徴とする請求項1に記載の水素発生ユニット。 The hydrogen generation unit according to claim 1, wherein the ion exchanger or the ion adsorbent of the accommodating body is composed of a cation exchange fiber or a cation adsorbent fiber. 前記収容体は、前記陽イオン交換繊維または前記陽イオン吸着繊維を袋状の不織布として形成し、内部に前記水素発生剤を内包して略密封したことを特徴とする請求項2に記載の水素発生ユニット。 The hydrogen according to claim 2, wherein the accommodating body is formed by forming the cation exchange fiber or the cation adsorption fiber as a bag-shaped non-woven fabric, and the hydrogen generating agent is encapsulated therein and substantially sealed. Generation unit. 前記収容体の基材を袋状の不織布で形成すると共に、前記イオン交換体または前記イオン吸着体は細粒状の陽イオン交換樹脂または陽イオン吸着樹脂で形成し、前記基材の内側、外側または両側に複数の前記陽イオン交換樹脂または前記陽イオン吸着樹脂を着設したことを特徴とする請求項1に記載の水素発生ユニット。 The base material of the container is formed of a bag-shaped non-woven fabric, and the ion exchanger or the ion adsorbent is formed of a fine granular cation exchange resin or a cation adsorbent resin, and the inside, outside or the base material of the base material is formed. The hydrogen generation unit according to claim 1, wherein a plurality of the cation exchange resins or the cation adsorption resins are implanted on both sides. 請求項1乃至に係る前記収容体の外周面の下半部に内外流通遮断部を設け、内部への前記液体の流入並びに外部への反応残渣の流出を遮断すると共に、
前記水素発生剤が前記内外流通遮断部に囲繞され且つ前記収容体の前記下半部の端部側に略密封してなることを特徴とする水素発生ユニット。
An inside / outside flow blocking section is provided in the lower half of the outer peripheral surface of the housing according to claims 1 to 4, and the inflow of the liquid into the inside and the outflow of the reaction residue to the outside are blocked.
A hydrogen generating unit characterized in that the hydrogen generating agent is surrounded by the inside / outside flow blocking portion and is substantially sealed on the end side of the lower half portion of the housing.
前記収容体の前記下半部の前記端部側を先端先鋭に形成すると共に前記内外流通遮断部も先端先鋭に形成したことを特徴とする請求項に記載の水素発生ユニット。 The hydrogen generation unit according to claim 5 , wherein the end side of the lower half of the accommodating body is formed with a sharp tip, and the inside / outside flow blocking portion is also formed with a sharp tip.
JP2016126408A 2016-06-27 2016-06-27 Hydrogen generation unit Active JP6786093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126408A JP6786093B2 (en) 2016-06-27 2016-06-27 Hydrogen generation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126408A JP6786093B2 (en) 2016-06-27 2016-06-27 Hydrogen generation unit

Publications (2)

Publication Number Publication Date
JP2018001040A JP2018001040A (en) 2018-01-11
JP6786093B2 true JP6786093B2 (en) 2020-11-18

Family

ID=60947163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126408A Active JP6786093B2 (en) 2016-06-27 2016-06-27 Hydrogen generation unit

Country Status (1)

Country Link
JP (1) JP6786093B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243151A (en) * 2003-02-10 2004-09-02 Yoshiro Tanaka Hydrogen-dissolved water making appliance
JP5038546B2 (en) * 2010-06-14 2012-10-03 ミズ株式会社 Non-destructive high concentration hydrogen solution manufacturing equipment
JP4744641B1 (en) * 2010-10-18 2011-08-10 ミズ株式会社 Device for adding hydrogen to biological fluids
JP5818186B1 (en) * 2014-04-11 2015-11-18 エコモ・インターナショナル株式会社 Hydrogen generation unit
JP2015205791A (en) * 2014-04-18 2015-11-19 ニッコ−化成株式会社 Hydrogen generation agent, hydrogen generator, and method of producing hydrogen containing liquid

Also Published As

Publication number Publication date
JP2018001040A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5871218B1 (en) Hydrogen generation unit
JP5818186B1 (en) Hydrogen generation unit
JP5474242B1 (en) Pouch container storing drinks and exterior sheet material thereof
JP4744641B1 (en) Device for adding hydrogen to biological fluids
TWI690310B (en) Heating element
US20200325045A1 (en) Hydrogen gas generating body
JP6648879B2 (en) Hydrogen generation unit
WO2015156415A1 (en) Hydrogen generation unit
WO2018047958A1 (en) Hydrogen generator for beverages
JP6786093B2 (en) Hydrogen generation unit
JP6786094B2 (en) Hydrogen generation unit
KR102409083B1 (en) Medical container
JP2018202378A (en) Hydrogen gas generating apparatus
JP2018177284A (en) Hydrogen generation unit
JP5921917B2 (en) Compact
KR20110007563U (en) portable heating apparatus
KR20110086681A (en) Portable heating apparatus
JP2006055615A (en) Extractor
KR20110007805U (en) portable heating apparatus
JP2014200573A (en) Antibacterial agent storage body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6786093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250