JP6785723B2 - Line-of-sight measuring device - Google Patents

Line-of-sight measuring device Download PDF

Info

Publication number
JP6785723B2
JP6785723B2 JP2017114762A JP2017114762A JP6785723B2 JP 6785723 B2 JP6785723 B2 JP 6785723B2 JP 2017114762 A JP2017114762 A JP 2017114762A JP 2017114762 A JP2017114762 A JP 2017114762A JP 6785723 B2 JP6785723 B2 JP 6785723B2
Authority
JP
Japan
Prior art keywords
image
center
line
corneal
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017114762A
Other languages
Japanese (ja)
Other versions
JP2019000135A (en
Inventor
小島 真一
真一 小島
加藤 隆志
隆志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2017114762A priority Critical patent/JP6785723B2/en
Publication of JP2019000135A publication Critical patent/JP2019000135A/en
Application granted granted Critical
Publication of JP6785723B2 publication Critical patent/JP6785723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、視線計測装置に係り、特に、顔を撮像した画像から、視線ベクトルを計測する視線計測装置に関する。 The present invention relates to a line-of-sight measuring device, and more particularly to a line-of-sight measuring device that measures a line-of-sight vector from an image of a face.

従来より、3次元眼球モデルを用いた角膜反射像方式の視線計測装置が知られている(非特許文献1、2)。この角膜反射像方式の視線計測装置では、カメラと光源の位置を離して設置している。 Conventionally, a corneal reflex image type eye-gaze measuring device using a three-dimensional eyeball model has been known (Non-Patent Documents 1 and 2). In this corneal reflection image type eye-gaze measuring device, the camera and the light source are installed at a distance from each other.

非特許文献1では、角膜曲率中心座標を求めるために、カメラと光源との間の距離、角膜曲率中心から角膜までの距離、及びカメラと目との間の距離に応じた近似計算を行っている。 In Non-Patent Document 1, in order to obtain the coordinates of the center of curvature of the cornea, approximate calculation is performed according to the distance between the camera and the light source, the distance from the center of curvature of the cornea to the cornea, and the distance between the camera and the eye. There is.

非特許文献2では、複数の光源を用いて角膜反射像を取得している。 In Non-Patent Document 2, a corneal reflex image is acquired by using a plurality of light sources.

大野健彦, “FreeGaze: A Gaze Tracking System for Everyday Gaze Interaction,” ETRA2002.Takehiko Ohno, “FreeGaze: A Gaze Tracking System for Everyday Gaze Interaction,” ETRA2002. C. Hennessey, et al., “A Single Camera Eye-Gaze Tracking System with Free Head Motion,” ETRA2006.C. Hennessey, et al., “A Single Camera Eye-Gaze Tracking System with Free Head Motion,” ETRA2006.

上記非特許文献1に記載の技術では、近似計算を行っているため、近似計算による誤差が生じ、視線計測の精度が低下してしまう。 In the technique described in Non-Patent Document 1, since the approximate calculation is performed, an error occurs due to the approximate calculation, and the accuracy of the line-of-sight measurement is lowered.

また、上記非特許文献2に記載の技術では、角膜反射像を得るために、複数の光源が必要となるため、装置コストがかかってしまう。 In addition, the technique described in Non-Patent Document 2 requires a plurality of light sources in order to obtain a corneal reflex image, which increases the cost of the device.

本発明は、上記の問題点を解決するためになされたもので、簡易な構成で、近似計算を行うことなく、精度よく視線計測を行うことができる視線計測装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a line-of-sight measurement device capable of performing line-of-sight measurement with high accuracy without performing approximate calculation with a simple configuration. ..

上記の目的を達成するために本発明に係る視線計測装置は、被観察者の顔を撮像する撮像手段と、前記被観察者の目に対して光を照射する光照射手段と、前記撮像手段によって撮像された前記顔を表す顔画像から、前記顔画像上の前記顔の目の角膜反射像と、前記顔画像上の前記顔の目の瞳孔中心位置と、予め定められた3次元眼球モデルとに基づいて、カメラ座標系における3次元の視線ベクトルを計算する視線ベクトル計算手段と、を含み、前記撮像手段と前記光照射手段との位置関係、前記撮像手段と前記目との位置関係、及び前記撮像手段に関するパラメータが、前記撮像手段の撮像方向と前記光照射手段の光照射方向とが同軸であるとみなすための予め定められた制約条件を満たす。 In order to achieve the above object, the line-of-sight measuring device according to the present invention includes an imaging means for photographing the face of the observed person, a light irradiating means for irradiating the eyes of the observed person with light, and the imaging means. From the face image representing the face imaged by, the corneal reflex image of the eye of the face on the face image, the pupil center position of the eye of the face on the face image, and a predetermined three-dimensional eyeball model. A line-of-sight vector calculating means for calculating a three-dimensional line-of-sight vector in a camera coordinate system based on the above, a positional relationship between the imaging means and the light irradiation means, a positional relationship between the imaging means and the eyes, and the like. And the parameters relating to the imaging means satisfy a predetermined constraint condition for considering that the imaging direction of the imaging means and the light irradiation direction of the light irradiation means are coaxial.

本発明によれば、前記撮像手段と前記光照射手段との位置関係、前記撮像手段と前記目との位置関係、及び前記撮像手段に関するパラメータが、前記撮像手段の撮像方向と前記光照射手段の光照射方向とが同軸であるとみなすための予め定められた制約条件を満たす。 According to the present invention, the positional relationship between the imaging means and the light irradiation means, the positional relationship between the imaging means and the eyes, and the parameters related to the imaging means are the imaging direction of the imaging means and the light irradiation means. It satisfies a predetermined constraint condition for considering that the light irradiation direction is coaxial.

また、前記被観察者の目に対して光照射手段から光を照射しているときに、撮像手段によって、前記顔を表す顔画像を撮像する。視線ベクトル計算手段によって、顔画像から、顔画像上の前記顔の目の角膜反射像と、前記顔画像上の前記顔の目の瞳孔中心位置と、予め定められた3次元眼球モデルとに基づいて、カメラ座標系における3次元の視線ベクトルを計算する。 Further, when the eyes of the observed person are irradiated with light from the light irradiating means, the imaging means captures a face image representing the face. Based on the face image, the corneal reflection image of the face eye on the face image, the pupil center position of the face eye on the face image, and a predetermined three-dimensional eyeball model by the line-of-sight vector calculation means. Then, the three-dimensional line-of-sight vector in the camera coordinate system is calculated.

以上説明したように、本発明の視線計測装置によれば、前記撮像手段の撮像方向と前記光照射手段の光照射方向とが同軸であるとみなすための予め定められた制約条件を満たすことにより、簡易な構成で、近似計算を行うことなく、精度よく視線計測を行うことができる、という効果が得られる。 As described above, according to the line-of-sight measuring device of the present invention, by satisfying a predetermined constraint condition for considering that the imaging direction of the imaging means and the light irradiation direction of the light irradiation means are coaxial. With a simple configuration, it is possible to obtain an effect that the line-of-sight measurement can be performed accurately without performing approximate calculation.

本発明の実施の形態に係る視線計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the line-of-sight measurement apparatus which concerns on embodiment of this invention. 照射部と画像撮像部と目の位置関係を示す図である。It is a figure which shows the positional relationship of an irradiation part, an image imaging part, and an eye. 瞳孔中心と角膜反射像とを用いた視線計測方法を説明するための図である。It is a figure for demonstrating the line-of-sight measurement method using a pupil center and a corneal reflex image. 角膜反射法を用いた視線検出方法を説明するための図である。It is a figure for demonstrating the line-of-sight detection method using a corneal reflex method. 見かけの瞳孔中心の3次元位置を計算する方法を説明するための図である。It is a figure for demonstrating the method of calculating the 3D position of an apparent pupil center. 本発明の実施の形態に係る視線計測装置における視線計測処理ルーチンの内容を示すフローチャートである。It is a flowchart which shows the content of the line-of-sight measurement processing routine in the line-of-sight measurement apparatus which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本実施の形態では、撮像された顔画像から、視線ベクトルを推定する視線計測装置に本発明を適用した場合を例に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a case where the present invention is applied to a line-of-sight measuring device that estimates a line-of-sight vector from an captured face image will be described as an example.

<本発明の実施の形態の概要>
カメラと光源が同軸であれば、角膜曲率中心座標を求めるのに近似計算が不要で精度が向上する。
<Outline of Embodiment of the present invention>
If the camera and the light source are coaxial, approximate calculation is not required to obtain the coordinates of the center of curvature of the cornea, and the accuracy is improved.

一方、カメラと光源が同軸でない場合、近似計算を行わずに、厳密計算を行うことができるが、その場合の従来技術では、複数の光源を必要としている。本発明の実施の形態では、光源は1箇所とする。 On the other hand, when the camera and the light source are not coaxial, the exact calculation can be performed without performing the approximate calculation, but the prior art in that case requires a plurality of light sources. In the embodiment of the present invention, there is only one light source.

カメラと光源が同軸でない場合でも、カメラと光源と撮像対象の位置関係、およびカメラのピクセル単位で表わされる焦点距離fがある制約条件を満たせば、実用的には同軸として扱える。 Even if the camera and the light source are not coaxial, they can be practically treated as coaxial if the positional relationship between the camera, the light source, and the image pickup target and the focal length f expressed in pixel units of the camera satisfy certain constraints.

そこで、本発明の実施の形態では、光源と撮像部と撮像対象の位置関係が、同軸とみたすための制約条件を満たす光学系を用いる。 Therefore, in the embodiment of the present invention, an optical system is used in which the positional relationship between the light source, the imaging unit, and the imaging target satisfies the constraint condition that the positional relationship is considered to be coaxial.

<視線計測装置の構成>
図1に示すように、本発明の実施の形態に係る視線計測装置10は、対象とする被験者の顔を含む画像を撮像するCCDカメラ等からなる画像撮像部12と、被験者の目に対して光を照射する照射部13と、画像処理を行うコンピュータ14と、CRT等で構成された出力部16とを備えている。
<Configuration of line-of-sight measuring device>
As shown in FIG. 1, the line-of-sight measuring device 10 according to the embodiment of the present invention refers to an image imaging unit 12 including a CCD camera or the like that captures an image including the face of the subject, and the eyes of the subject. It includes an irradiation unit 13 that irradiates light, a computer 14 that performs image processing, and an output unit 16 composed of a CRT or the like.

画像撮像部12は、1つのカメラであり、照射部13は、例えば、1つの近赤外LEDである。本実施の形態では、画像撮像部12の撮像方向と照射部13の照射方向とが同軸ではないが、同軸とみなされるように、以下の(1)式に示す制約条件を満たす配置となっている(図2)。 The image capturing unit 12 is one camera, and the irradiation unit 13 is, for example, one near infrared LED. In the present embodiment, the imaging direction of the image capturing unit 12 and the irradiation direction of the irradiation unit 13 are not coaxial, but are arranged so as to satisfy the constraint condition shown in the following equation (1) so as to be regarded as coaxial. (Fig. 2).


・・・(1)

... (1)

ただし、Lは、画像撮像部12から角膜曲率中心へ向かう直線と角膜との交点と、画像撮像部12との間の距離であり、rは、角膜曲率半径であり、fは、画像撮像部12のピクセル単位の焦点距離である。 However, L is the distance between the intersection of the straight line from the image imaging unit 12 toward the center of curvature of the cornea and the cornea and the image imaging unit 12, r is the radius of curvature of the cornea, and f is the image imaging unit. The focal length is in units of 12 pixels.

上記(1)式の導出は、以下の通りである。 The derivation of the above equation (1) is as follows.

図2において、画像撮像部12の両側に配置した照明S1とS2による2つの角膜反射像中心点P1とP2の距離がカメラ画像で1pixel以下であれば、角膜反射像中心点P1と角膜反射像中心点P2は同じ画素上もしくは隣り合う画素上で観測されることになる。これは、角膜表面に映る2つの照明を区別できないということであり、画像撮像部12からは2つの照明が同じ場所にあるとみなせるということである。従って2つの照明の間にある画像撮像部12も照明と同じ場所にあるとみなせることになる。まとめると、画像撮像部12と照明と角膜曲率中心が同軸上にあるとみなせる条件は、角膜反射像中心点P1とP2の画像座標での距離が1pixel以下になることである。 In FIG. 2, if the distance between the two corneal reflex image center points P 1 and P 2 by the illuminations S 1 and S 2 arranged on both sides of the image capturing unit 12 is 1 pixel or less in the camera image, the corneal reflex image center point P 1 and the corneal reflex image center point P 2 are observed on the same pixel or adjacent pixels. This means that the two illuminations reflected on the surface of the cornea cannot be distinguished, and the image capturing unit 12 can consider that the two illuminations are in the same place. Therefore, the image capturing unit 12 between the two lights can be regarded as being in the same place as the lights. In summary, the condition that the image imaging unit 12, the illumination, and the center of curvature of the cornea can be regarded as coaxial is that the distance between the corneal reflex image center points P 1 and P 2 in the image coordinates is 1 pixel or less.

CはS12の中間にあるものとし、距離CS1とCS2をそれぞれxとする。角膜表面を球と仮定したので、P1における垂線は角膜曲率中心を通るとともに、角CP11の2等分線になる。従って、以下の式(2)が成立する。 It is assumed that C is in the middle of S 1 and S 2 , and the distances CS 1 and CS 2 are x, respectively. Since the surface of the cornea is assumed to be a sphere, the perpendicular at P 1 passes through the center of curvature of the cornea and becomes a bisector of the angle CP 1 S 1 . Therefore, the following equation (2) holds.


・・・(2)

・ ・ ・ (2)

角CP22においても同様のことが言えるため、以下の式(3)を得る。 Since the same can be said for the angle CP 2 S 2 , the following equation (3) is obtained.


・・・(3)

・ ・ ・ (3)

三角形M1AM2と三角形P1AP2の相似条件から、以下の式(5)が得られる。 From the similarity condition of the triangle M 1 AM 2 and the triangle P 1 AP 2 , the following equation (5) is obtained.

・・・(4)

・・・(5)
・ ・ ・ (4)

・ ・ ・ (5)

角膜反射像P1の三次元ベクトルを

、画像座標を

とする。角膜反射像P2についても同様に定義する。ピクセル単位で表される焦点距離をfとすると、透視投影における

の関係式、および

の関係式(6)が得られる。
The three-dimensional vector of the corneal reflex image P 1

, Image coordinates

And. The same applies to the corneal reflex image P 2 . Let f be the focal length expressed in pixels, and in perspective projection

Relational expression, and

The relational expression (6) of is obtained.


・・・(6)

・ ・ ・ (6)


なので、角膜反射像中心点P1とP2の画像座標での距離は以下の式(7)で表される。

Therefore, the distance between the center points P 1 and P 2 of the corneal reflex image in the image coordinates is expressed by the following equation (7).


・・・(7)

... (7)

式(5)を式(7)に代入し、以下の式(8)を得る。 Substituting equation (5) into equation (7), the following equation (8) is obtained.


・・・(8)

・ ・ ・ (8)

最後に、角膜反射像中心点P1とP2の画像座標での距離が1pixel以下なので以下の式(10)を得る。 Finally, since the distance between the corneal reflex image center points P 1 and P 2 at the image coordinates is 1 pixel or less, the following equation (10) is obtained.


・・・(9)

・・・(10)

... (9)

... (10)

コンピュータ14は、CPU、後述する視線計測処理ルーチンのプログラムを記憶したROM、データ等を記憶するRAM、及びこれらを接続するバスを含んで構成されている。このコンピュータ14をハードウエアとソフトウエアとに基づいて定まる機能実現手段毎に分割した機能ブロックで説明すると、図1に示すように、コンピュータ14は、画像撮像部12から出力される濃淡画像である顔画像を入力する画像入力部20と、画像入力部20の出力である顔画像の時系列から、角膜反射法(図3参照)を用いて、カメラ座標系における視線ベクトルを計算する角膜反射法視線検出部28とを備えている。なお、角膜反射法視線検出部28が、視線ベクトル計算手段の一例である。 The computer 14 includes a CPU, a ROM that stores a program of a line-of-sight measurement processing routine described later, a RAM that stores data, and a bus that connects them. Explaining the computer 14 with functional blocks divided for each function realization means determined based on hardware and software, as shown in FIG. 1, the computer 14 is a shade image output from the image capturing unit 12. Corneal reflex method that calculates the line-of-sight vector in the camera coordinate system using the corneal reflex method (see FIG. 3) from the time series of the face image that is the output of the image input unit 20 and the image input unit 20 that inputs the face image. It includes a line-of-sight detection unit 28. The corneal reflex line-of-sight detection unit 28 is an example of the line-of-sight vector calculation means.

画像入力部20は、例えば、A/Dコンバータや1画面の画像データを記憶する画像メモリ等で構成される。 The image input unit 20 includes, for example, an A / D converter, an image memory for storing image data of one screen, and the like.

角膜反射法視線検出部28は、図1に示すように、眼球モデル記憶部40と、角膜反射像位置推定部42と、角膜曲率中心計算部44と、視線ベクトル計算部46とを備えている。 As shown in FIG. 1, the corneal reflex line-of-sight detection unit 28 includes an eyeball model storage unit 40, a corneal reflex image position estimation unit 42, a corneal curvature center calculation unit 44, and a line-of-sight vector calculation unit 46. ..

眼球モデル記憶部40には、顔形状モデル座標系における眼球中心座標Eと、角膜曲率に応じた球体及び眼球を表す球体の位置関係及びサイズと、瞳孔中心座標と角膜曲率中心座標との距離s、角膜曲率中心座標と眼球中心座標との距離t、角膜反射像中心座標と角膜曲率中心座標との距離rとが記憶されている(図4参照)。 In the eyeball model storage unit 40, the eyeball center coordinates E in the face shape model coordinate system, the positional relationship and size of the sphere and the sphere representing the eyeball according to the corneal curvature, and the distance s between the pupil center coordinates and the corneal curvature center coordinates. , The distance t between the center coordinates of the curvature of the corneum and the center coordinates of the eyeball, and the distance r between the center coordinates of the reflection image of the corneum and the center coordinates of the curvature of the corneum are stored (see FIG. 4).

角膜反射像位置推定部42は、顔画像から、顔画像上の角膜反射像中心の2次元座標を計算し、顔画像上の角膜反射像中心の2次元座標と、顔形状モデル座標系における眼球中心座標Eとから、カメラ位置Cから角膜反射像中心Pへ向かう3次元ベクトルpを推定する。 The corneal reflex image position estimation unit 42 calculates the two-dimensional coordinates of the center of the corneal reflex image on the face image from the face image, and the two-dimensional coordinates of the center of the corneal reflex image on the face image and the eyeball in the face shape model coordinate system. From the center coordinates E, the three-dimensional vector p from the camera position C toward the center P of the corneal reflex image is estimated.

角膜曲率中心計算部44は、3次元ベクトルpと、角膜反射像中心Pと角膜曲率中心Aとの距離rとを用いて、以下の式に従って、カメラ位置Cから角膜曲率中心Aへ向かう3次元ベクトルaを推定する。 The corneal curvature center calculation unit 44 uses the three-dimensional vector p and the distance r between the corneal reflection image center P and the corneal curvature center A, and according to the following equation, the three-dimensional direction from the camera position C to the corneal curvature center A. Estimate the vector a.

視線ベクトル計算部46は、顔画像から、顔画像上の瞳孔中心(見かけの瞳孔中心)Bの2次元座標を計算し、顔画像上の瞳孔中心(見かけの瞳孔中心)Bの2次元座標と、3次元ベクトルaと、角膜反射像中心Pと角膜曲率中心Aとの距離rと用いて、カメラ位置Cから見かけの瞳孔中心Bへ向かう3次元ベクトルbを求める。ここで、図5に示すように、見かけの瞳孔中心Bの候補は2か所存在するため、Zがカメラ側になる方(=小さい方)を、見かけの瞳孔中心Bとして選べばよい。 The line-of-sight vector calculation unit 46 calculates the two-dimensional coordinates of the pupil center (apparent pupil center) B on the face image from the face image, and sets the two-dimensional coordinates of the pupil center (apparent pupil center) B on the face image. Using the three-dimensional vector a and the distance r between the corneal reflection image center P and the corneal curvature center A, the three-dimensional vector b from the camera position C toward the apparent pupil center B is obtained. Here, as shown in FIG. 5, since there are two candidates for the apparent pupil center B, the side with Z on the camera side (= smaller one) may be selected as the apparent pupil center B.

そして、視線ベクトル計算部46は、3次元ベクトルbと、3次元ベクトルpとを用いて、角膜反射像中心Pと見かけの瞳孔中心Bとの距離uを計算する。視線ベクトル計算部46は、3次元ベクトルpと、3次元ベクトルbとを用いて、以下の式に従って、3次元ベクトルpと、3次元ベクトルbとの角度εを計算する。 Then, the line-of-sight vector calculation unit 46 calculates the distance u between the corneal reflex image center P and the apparent pupil center B by using the three-dimensional vector b and the three-dimensional vector p. The line-of-sight vector calculation unit 46 calculates the angle ε between the three-dimensional vector p and the three-dimensional vector b according to the following equation using the three-dimensional vector p and the three-dimensional vector b.

視線ベクトル計算部46は、角膜反射像中心Pと角膜曲率中心Aとの距離rと、角膜反射像中心Pと見かけの瞳孔中心Bとの距離u(=||b−p||)とを用いて、以下の式に従って、3次元ベクトルpと、見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルとの角度θを計算する。 The line-of-sight vector calculation unit 46 determines the distance r between the corneal reflex image center P and the corneal curvature center A and the distance u (= || bp ||) between the corneal reflex image center P and the apparent pupil center B. Using the following equation, the angle θ between the three-dimensional vector p and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A is calculated.

視線ベクトル計算部46は、3次元ベクトルpと3次元ベクトルbとの角度εの計算結果と、3次元ベクトルpと見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルとの角度θの計算結果とを用いて、以下の式に従って、見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルと、真の瞳孔中心B´から眼球中心Eへ向かう3次元ベクトルとの角度ψを計算する。以下の式で、rは角膜曲率半径、sはAB’間の距離、n1は、空気の屈折率、n2は角膜の内側にある水晶体の屈折率である。 The line-of-sight vector calculation unit 46 determines the angle θ between the calculation result of the angle ε between the three-dimensional vector p and the three-dimensional vector b and the three-dimensional vector p and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A. Using the calculation results, calculate the angle ψ between the 3D vector from the apparent pupil center B to the corneal curvature center A and the 3D vector from the true pupil center B'to the eyeball center E according to the following equation. To do. In the following equation, r is the radius of curvature of the cornea, s is the distance between AB', n 1 is the refractive index of air, and n 2 is the refractive index of the crystalline lens inside the cornea.

視線ベクトル計算部46は、3次元ベクトルpと見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルとの角度θと、見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルと真の瞳孔中心B´から眼球中心Eへ向かう3次元ベクトルとの角度ψとの和により、視線ベクトルの角度(=θ+ψ)を計算する。 The line-of-sight vector calculation unit 46 includes the angle θ between the three-dimensional vector p and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A, and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A. The angle of the line-of-sight vector (= θ + ψ) is calculated by summing the angle ψ with the three-dimensional vector from the pupil center B'to the eyeball center E.

視線ベクトル計算部46は、視線ベクトルの角度(=θ+ψ)と、カメラ位置Cから角膜反射像中心Pへ向かう3次元ベクトルpと、カメラ位置Cから見かけの瞳孔中心Bへ向かう3次元ベクトルbとに基づいて、視線ベクトルdを求めて、出力部16により出力する。ただし、-(θ+ψ)でも式が成立するため、視線ベクトルdのy成分が3次元ベクトルpのy成分よりも大きくなる方を選ぶか、rdがBに近い方を選べばよい。 The line-of-sight vector calculation unit 46 includes the angle of the line-of-sight vector (= θ + ψ), the three-dimensional vector p from the camera position C toward the corneal reflection image center P, and the three-dimensional vector b from the camera position C toward the apparent pupil center B. The line-of-sight vector d is obtained based on the above, and is output by the output unit 16. However, since the equation holds even with-(θ + ψ), it is sufficient to select the one in which the y component of the line-of-sight vector d is larger than the y component of the three-dimensional vector p, or the one in which rd is close to B.

<視線計測装置の動作>
次に、視線計測装置10の動作について説明する。まず、照射部13により近赤外の光を被験者の目に照射しているときに、画像撮像部12で被験者の顔画像を連続的に撮像する。
<Operation of line-of-sight measuring device>
Next, the operation of the line-of-sight measuring device 10 will be described. First, while the irradiation unit 13 is irradiating the subject's eyes with near-infrared light, the image imaging unit 12 continuously images the subject's face image.

そして、コンピュータ14において、撮像された顔画像毎に、図6に示す視線計測処理ルーチンを実行する。まず、ステップS118において、画像撮像部12で撮像された顔画像を取得する。 Then, the computer 14 executes the line-of-sight measurement processing routine shown in FIG. 6 for each captured face image. First, in step S118, the face image captured by the image capturing unit 12 is acquired.

そして、ステップS120において、顔画像から、顔画像上の角膜反射像中心の2次元座標を計算し、顔画像上の角膜反射像中心の2次元座標と、顔形状モデル座標系における仮の眼球中心座標Eとから、カメラ位置Cから角膜反射像中心Pへ向かう3次元ベクトルpを推定する。 Then, in step S120, the two-dimensional coordinates of the center of the corneal reflex image on the face image are calculated from the face image, and the two-dimensional coordinates of the center of the corneal reflex image on the face image and the temporary eyeball center in the face shape model coordinate system are calculated. From the coordinates E, the three-dimensional vector p from the camera position C toward the center P of the corneal reflex image is estimated.

ステップS122では、上記ステップS120で推定された3次元ベクトルpと、角膜反射像中心Pと角膜曲率中心Aとの距離rとを用いて、カメラ位置Cから角膜曲率中心Aへ向かう3次元ベクトルaを推定する。 In step S122, the three-dimensional vector a from the camera position C toward the corneal curvature center A is used by using the three-dimensional vector p estimated in step S120 and the distance r between the corneal reflection image center P and the corneal curvature center A. To estimate.

ステップS124では、顔画像から、顔画像上の瞳孔中心(見かけの瞳孔中心)Bの2次元座標を計算する。そして、ステップS126では、顔画像上の瞳孔中心(見かけの瞳孔中心)Bの2次元座標と、上記ステップS122で推定された3次元ベクトルaと、角膜反射像中心Pと眼球中心Eとの距離rと用いて、カメラ位置Cから見かけの瞳孔中心Bへ向かう3次元ベクトルbを求める。 In step S124, the two-dimensional coordinates of the pupil center (apparent pupil center) B on the face image are calculated from the face image. Then, in step S126, the two-dimensional coordinates of the pupil center (apparent pupil center) B on the face image, the three-dimensional vector a estimated in step S122, and the distance between the corneal reflection image center P and the eyeball center E. Using r, the three-dimensional vector b from the camera position C toward the apparent pupil center B is obtained.

そして、ステップS128では、上記ステップS124で求めた3次元ベクトルbと、上記ステップS120で推定された3次元ベクトルpとを用いて、角膜反射像中心Pと見かけの瞳孔中心Bとの距離uを計算する。また、3次元ベクトルpと、3次元ベクトルbとを用いて、3次元ベクトルpと、3次元ベクトルbとの角度εを計算する。また、角膜反射像中心Pと角膜曲率中心Aとの距離rと、角膜反射像中心Pと見かけの瞳孔中心Bとの距離u(=||b−p||)とを用いて、3次元ベクトルpと、見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルとの角度θを計算する。また、3次元ベクトルpと3次元ベクトルbとの角度εの計算結果と、3次元ベクトルpと見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルとの角度θの計算結果とを用いて、見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルと、真の瞳孔中心B´から眼球中心Eへ向かう3次元ベクトルとの角度ψを計算する。 Then, in step S128, the distance u between the corneal reflex image center P and the apparent pupil center B is determined by using the three-dimensional vector b obtained in step S124 and the three-dimensional vector p estimated in step S120. calculate. Further, the angle ε between the three-dimensional vector p and the three-dimensional vector b is calculated using the three-dimensional vector p and the three-dimensional vector b. Further, using the distance r between the corneal reflex image center P and the corneal curvature center A and the distance u (= || bp ||) between the corneal reflex image center P and the apparent pupil center B, three dimensions are used. The angle θ between the vector p and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A is calculated. Further, the calculation result of the angle ε between the three-dimensional vector p and the three-dimensional vector b and the calculation result of the angle θ between the three-dimensional vector p and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A are used. Then, the angle ψ between the three-dimensional vector from the apparent pupil center B to the corneal curvature center A and the three-dimensional vector from the true pupil center B'to the eyeball center E is calculated.

そして、上記で計算された、3次元ベクトルpと見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルとの角度θと、見かけの瞳孔中心Bから角膜曲率中心Aへ向かう3次元ベクトルと真の瞳孔中心B´から眼球中心Eへ向かう3次元ベクトルとの角度ψとの和により、視線ベクトルの角度を計算する。 Then, the angle θ between the three-dimensional vector p calculated above and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A, and the three-dimensional vector from the apparent pupil center B toward the corneal curvature center A. The angle of the line-of-sight vector is calculated by summing the angle ψ with the three-dimensional vector from the true pupil center B'to the eyeball center E.

そして、ステップS130では、上記ステップS128で計算された、視線ベクトルの角度と、カメラ位置Cから角膜反射像中心Pへ向かう3次元ベクトルpと、カメラ位置Cから見かけの瞳孔中心Bへ向かう3次元ベクトルbとに基づいて、視線ベクトルdを求め、出力部16により出力して、視線計測処理ルーチンを終了する。 Then, in step S130, the angle of the line-of-sight vector calculated in step S128, the three-dimensional vector p from the camera position C toward the corneal reflex image center P, and the three-dimensional from the camera position C toward the apparent pupil center B. The line-of-sight vector d is obtained based on the vector b and is output by the output unit 16, and the line-of-sight measurement processing routine is terminated.

以上説明したように、本発明の実施の形態に係る視線計測装置によれば、画像撮像部の撮像方向と照射部の光照射方向とが同軸であるとみなすための予め定められた制約条件を満たすように配置し、角膜反射像を用いて、視線ベクトルを計算することにより、画像撮像部の撮像方向と照射部の光照射方向とが同軸でない場合であっても、簡易な構成で、近似計算を行うことなく、精度よく視線計測を行うことができる。 As described above, according to the line-of-sight measuring device according to the embodiment of the present invention, a predetermined constraint condition for considering that the imaging direction of the image capturing unit and the light irradiation direction of the irradiation unit are coaxial is set. By arranging so as to satisfy and calculating the line-of-sight vector using the corneal reflex image, even if the imaging direction of the image imaging unit and the light irradiation direction of the irradiation unit are not coaxial, it can be approximated with a simple configuration. The line-of-sight measurement can be performed accurately without performing a calculation.

また、画像撮像部と照射部とが同軸として扱えるため、角膜曲率中心推定計算に近似計算が含まれず、角膜曲率中心の推定精度が向上すると共に、角膜曲率中心推定の計算量を削減することができる。また、1つの光源で視線計算が可能になり装置コストが下げられる。 In addition, since the image imaging unit and the irradiation unit can be treated as coaxial, the calculation for estimating the center of curvature of the cornea does not include approximate calculation, which improves the estimation accuracy of the center of curvature of the cornea and reduces the amount of calculation for estimating the center of curvature of the cornea. it can. In addition, the line-of-sight calculation can be performed with one light source, and the equipment cost can be reduced.

10 視線計測装置
12 画像撮像部
13 照射部
14 コンピュータ
16 出力部
20 画像入力部
28 角膜反射法視線検出部
40 眼球モデル記憶部
42 角膜反射像位置推定部
44 角膜曲率中心計算部
46 視線ベクトル計算部
10 Eye-gaze measurement device 12 Image imaging unit 13 Irradiation unit 14 Computer 16 Output unit 20 Image input unit 28 Corneal reflex line-of-sight detection unit 40 Eyeball model storage unit 42 Corneal reflex image position estimation unit 44 Corneal curvature center calculation unit 46 Line-of-sight vector calculation unit

Claims (2)

被観察者の顔を撮像する撮像手段と、
前記被観察者の目に対して光を照射する光照射手段と、
前記撮像手段によって撮像された前記顔を表す顔画像から、前記顔画像上の前記顔の目の角膜反射像と、前記顔画像上の前記顔の目の瞳孔中心位置と、予め定められた3次元眼球モデルとに基づいて、カメラ座標系における3次元の視線ベクトルを計算する視線ベクトル計算手段と、
を含み、
前記撮像手段と前記光照射手段との位置関係、前記撮像手段と前記目との位置関係、及び前記撮像手段に関するパラメータが、前記撮像手段の撮像方向と前記光照射手段の光照射方向とが同軸であるとみなすための予め定められた制約条件を満たし、
前記制約条件は、以下の式で表わされる視線計測装置。


ただし、xは、前記撮像手段と前記光照射手段との間の距離、Lは、前記撮像手段から角膜曲率中心へ向かう直線と角膜との交点と、前記撮像手段との間の距離、rは、角膜曲率半径、fは、前記撮像手段のピクセル単位の焦点距離である。
An imaging means that captures the face of the observer,
A light irradiation means for irradiating the eyes of the observed person with light,
From the face image representing the face captured by the imaging means, the corneal reflection image of the eye of the face on the face image and the pupil center position of the eye of the face on the face image are predetermined 3D. A line-of-sight vector calculation means for calculating a three-dimensional line-of-sight vector in the camera coordinate system based on a three-dimensional eyeball model,
Including
The positional relationship between the image pickup means and the light irradiation means, the positional relationship between the image pickup means and the eye, and the parameters related to the image pickup means are coaxial with the image pickup direction of the image pickup means and the light irradiation direction of the light irradiation means. It meets a predetermined constraint condition for regarding that is,
The constraint condition is a line-of-sight measuring device represented by the following equation .


However, x is the distance between the imaging means and the light irradiation means, L is the distance between the intersection of the straight line and the cornea from the imaging means toward the center of curvature of the cornea, and r is the distance between the imaging means. , Corneal radius of curvature, f is the focal length in pixels of the imaging means.
前記視線ベクトル計算手段は、
前記顔の目の角膜反射像と、前記3次元眼球モデルとに基づいて、前記角膜反射像の3次元位置を推定する角膜反射像位置推定手段と、
前記角膜反射像の3次元位置に基づいて、角膜曲率中心の3次元位置を計算する角膜曲率中心計算手段と、を含み、
前記角膜反射像の3次元位置と、前記角膜曲率中心の3次元位置とに基づいて、前記カメラ座標系における3次元の視線ベクトルを計算する請求項記載の視線計測装置。
The line-of-sight vector calculation means
A corneal reflex image position estimating means for estimating a three-dimensional position of the corneal reflex image based on the corneal reflex image of the facial eye and the three-dimensional eyeball model.
Includes a corneal curvature center calculation means for calculating the three-dimensional position of the corneal curvature center based on the three-dimensional position of the corneal reflection image.
A three-dimensional position of the corneal reflection image, the based on the three-dimensional position of the center of corneal curvature, gaze measuring device according to claim 1 for calculating the three-dimensional line-of-sight vector in the camera coordinate system.
JP2017114762A 2017-06-09 2017-06-09 Line-of-sight measuring device Active JP6785723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017114762A JP6785723B2 (en) 2017-06-09 2017-06-09 Line-of-sight measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017114762A JP6785723B2 (en) 2017-06-09 2017-06-09 Line-of-sight measuring device

Publications (2)

Publication Number Publication Date
JP2019000135A JP2019000135A (en) 2019-01-10
JP6785723B2 true JP6785723B2 (en) 2020-11-18

Family

ID=65005490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017114762A Active JP6785723B2 (en) 2017-06-09 2017-06-09 Line-of-sight measuring device

Country Status (1)

Country Link
JP (1) JP6785723B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283841B2 (en) 2019-03-28 2023-05-30 株式会社豊田中央研究所 Gaze measurement device
JP7255436B2 (en) * 2019-09-25 2023-04-11 株式会社豊田中央研究所 Eyeball structure estimation device
CN113662506B (en) * 2021-09-26 2023-08-04 温州医科大学 Cornea surface morphology measurement method and device, medium and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485502A (en) * 1994-07-26 1996-01-16 Lunar Corporation Radiographic gantry with software collision avoidance
JP4059266B2 (en) * 2005-10-31 2008-03-12 株式会社日立メディコ X-ray fluoroscopic equipment
US7682026B2 (en) * 2006-08-22 2010-03-23 Southwest Research Institute Eye location and gaze detection system and method
JP2010259605A (en) * 2009-05-01 2010-11-18 Nippon Hoso Kyokai <Nhk> Visual line measuring device and visual line measuring program
JP5404508B2 (en) * 2010-04-08 2014-02-05 株式会社東芝 X-ray diagnostic equipment
JP6360752B2 (en) * 2014-08-29 2018-07-18 アルプス電気株式会社 Illumination imaging device

Also Published As

Publication number Publication date
JP2019000135A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6800091B2 (en) Line-of-sight measuring device and program
US10878237B2 (en) Systems and methods for performing eye gaze tracking
JP5158842B2 (en) Eye movement measuring method and eye movement measuring apparatus
US10140726B2 (en) Apparatus and method for estimating gazed position of person
WO2018030515A1 (en) Line-of-sight detection device
JP2016173313A (en) Visual line direction estimation system, visual line direction estimation method and visual line direction estimation program
US20150029322A1 (en) Method and computations for calculating an optical axis vector of an imaged eye
JP7030317B2 (en) Pupil detection device and pupil detection method
JP6785723B2 (en) Line-of-sight measuring device
JP6452235B2 (en) Face detection method, face detection device, and face detection program
JP7283841B2 (en) Gaze measurement device
JP2021531601A (en) Neural network training, line-of-sight detection methods and devices, and electronic devices
JP7255436B2 (en) Eyeball structure estimation device
JP2016532217A (en) Method and apparatus for detecting eyes with glint
JP6288770B2 (en) Face detection method, face detection system, and face detection program
US11054659B2 (en) Head mounted display apparatus and distance measurement device thereof
WO2016159255A1 (en) Mouth region detection device and mouth region detection method
CN112528714B (en) Single-light-source-based gaze point estimation method, system, processor and equipment
JP2011118767A (en) Facial expression monitoring method and facial expression monitoring apparatus
KR102074977B1 (en) Electronic devices and methods thereof
JP2013019721A (en) Position detector, position detection method, and computer program
KR101348903B1 (en) Cornea radius estimation apparatus using cornea radius estimation algorithm based on geometrical optics for eye tracking and method
Fujiyoshi et al. Inside-out camera for acquiring 3D gaze points
JP2016045707A (en) Feature point detection system, feature point detection method, and feature point detection program
JP2015206764A (en) Object person existence range estimation device and object person existence range estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250