JP6784248B2 - Evaluation method of point defects - Google Patents
Evaluation method of point defects Download PDFInfo
- Publication number
- JP6784248B2 JP6784248B2 JP2017171610A JP2017171610A JP6784248B2 JP 6784248 B2 JP6784248 B2 JP 6784248B2 JP 2017171610 A JP2017171610 A JP 2017171610A JP 2017171610 A JP2017171610 A JP 2017171610A JP 6784248 B2 JP6784248 B2 JP 6784248B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- defect
- heat treatment
- crystal
- oxygen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims description 155
- 238000011156 evaluation Methods 0.000 title claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 81
- 229910052760 oxygen Inorganic materials 0.000 claims description 81
- 239000001301 oxygen Substances 0.000 claims description 81
- 239000013078 crystal Substances 0.000 claims description 72
- 238000010438 heat treatment Methods 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 50
- 239000011800 void material Substances 0.000 claims description 47
- 238000009792 diffusion process Methods 0.000 claims description 27
- 230000004913 activation Effects 0.000 claims description 25
- 239000002244 precipitate Substances 0.000 claims description 25
- 230000000704 physical effect Effects 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 11
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000008034 disappearance Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 102100031920 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial Human genes 0.000 description 2
- 101000992065 Homo sapiens Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial Proteins 0.000 description 2
- 241001272720 Medialuna californiensis Species 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000001773 deep-level transient spectroscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
本発明は、シリコン単結晶中の点欠陥(Interstitial−Si及びVacancy)の物性値を簡便に評価する方法に関する。 The present invention relates to a method for simply evaluating the physical property values of point defects (Interstitial-Si and Evaluation) in a silicon single crystal.
近年、デバイスに用いられるウェーハは無欠陥結晶をはじめとするGrown−in欠陥が制御された高品質結晶から切り出されたり、また切り出された後に熱処理等の処理を施しGrown−in欠陥を消滅させたり、といった高品位ウェーハが主流である。結晶育成時に形成されるGrown−in欠陥を理解する上でも、また熱処理等で結晶欠陥を制御する上でも、これらの形成・消滅に大きく関与している点欠陥(Interstitial−Si及びVacancy)の挙動を知ることは重要である。 In recent years, wafers used in devices have been cut out from high-quality crystals in which Green-in defects such as defect-free crystals have been controlled, or after being cut out, heat treatment or the like is applied to eliminate the Green-in defects. High-quality wafers such as, are the mainstream. Behavior of point defects (Interstitial-Si and Vacuumy) that are greatly involved in the formation and disappearance of Green-in defects formed during crystal growth and in controlling crystal defects by heat treatment or the like. It is important to know.
ここで先ずGrown−in欠陥及びそれを消滅させるアニール技術に関して簡単に説明をしておく。
Grown−in欠陥には格子点のSi原子が欠落したVacancy(空孔)タイプのVoid欠陥と、格子間にSi原子が入り込んだInterstitial−Si(格子間Si、以下I−Siと表記することがある)タイプの転位クラスタ欠陥の2種類存在することが知られている。このGrown−in欠陥の形成状態は、単結晶の成長速度やシリコン融液から引上げられた単結晶の冷却条件により違いが生じる。例えば成長速度を比較的大きく設定して単結晶を育成した場合には、Vacancyが優勢になることが知られている。このVacancyが凝集して集まった空洞状の欠陥はVoid欠陥と呼ばれ、検出のされ方によって呼称は異なるが、FPD(Flow Pattern Defect)、COP(Crystal Originated Particle)あるいはLSTD(Laser Scattering Tomography Defects)などとして検出される。これらの欠陥が例えばシリコン基板上に形成される酸化膜に取り込まれると、酸化膜の耐圧不良の原因となるなど、電気的な特性を劣化させると考えられている。
Here, first, a Grown-in defect and an annealing technique for eliminating the defect will be briefly described.
The Green-in defect may be referred to as a Clustery (vacancy) type Void defect in which Si atoms at the lattice points are missing, and Interstitial-Si (interstitial Si, hereinafter I-Si) in which Si atoms are inserted between the lattices. It is known that there are two types of dislocation cluster defects of the) type. The state of formation of the Green-in defect differs depending on the growth rate of the single crystal and the cooling conditions of the single crystal pulled up from the silicon melt. For example, it is known that Vacuumy becomes predominant when a single crystal is grown by setting a relatively high growth rate. This hollow defect in which Vacuum is aggregated is called a Void defect, and although the name differs depending on how it is detected, FPD (Flow Pattern Detect), COP (Crystal Organized Particle) or LSTD (Laser Scattering Tomography) And so on. It is considered that if these defects are incorporated into an oxide film formed on a silicon substrate, for example, the electrical characteristics are deteriorated, such as causing a poor pressure resistance of the oxide film.
このようなVoid欠陥はVacancyが凝集して形成された空洞であるが、この空洞の内壁には酸化膜が形成されていることが知られている。CZ法又はMCZ法では用いている石英ルツボから酸素原子が溶解し、結晶成長界面から結晶中へ取り込まれる。(酸素原子は結晶格子間に取り込まれるので、正確には格子間酸素又は格子間酸素濃度という表現が正しいが、以下酸素又は酸素濃度と省略することがある。)結晶の温度は結晶成長に伴い低下するので、結晶中の酸素の平衡濃度は低下する。取り込まれた酸素の濃度がその温度での平衡濃度より高くなると、過飽和状態が発生する。この過飽和となった酸素が、Vacancyが凝集して形成された空洞の内壁に析出して内壁酸化膜を形成すると考えられる。 Such a Void defect is a cavity formed by agglomeration of vacancy, and it is known that an oxide film is formed on the inner wall of this cavity. Oxygen atoms are dissolved from the quartz crucible used in the CZ method or MCZ method and incorporated into the crystal from the crystal growth interface. (Since oxygen atoms are taken in between crystal lattices, the expression interstitial oxygen or interstitial oxygen concentration is correct, but it may be abbreviated as oxygen or oxygen concentration below.) The temperature of the crystal accompanies crystal growth. As it decreases, the equilibrium concentration of oxygen in the crystal decreases. When the concentration of oxygen taken in is higher than the equilibrium concentration at that temperature, a supersaturated state occurs. It is considered that this supersaturated oxygen is deposited on the inner wall of the cavity formed by the aggregation of Vacuumy to form an inner wall oxide film.
アニール技術などを用いて表層のVoid欠陥を消滅させる際には、先ず内壁酸化膜を溶解させる必要がある。例えば特許文献1,2では非酸化性熱処理+酸化処理でVoid欠陥が消滅することが開示されている。この技術では先ず非酸化性熱処理を施すことにより、ウェーハ表層近傍の酸素を外方拡散させ、空洞状のVoid欠陥の内壁に存在している内壁酸化膜を溶解させる。その後酸化処理を行い、表面に形成された酸化膜からI−Siをウェーハ内部に注入してVoid欠陥を埋めるという方法が開示されている。
When eliminating Void defects on the surface layer using annealing technology or the like, it is first necessary to dissolve the inner wall oxide film. For example,
一方で成長速度を比較的低速に設定して単結晶を育成した場合には、I−Siが優勢になることが知られている。このI−Siが凝集して集まると、転位ループなどがクラスタリングしたと考えられるLEP(Large Etch Pit=転位クラスタ欠陥)が検出される。この転位クラスタ欠陥が生じる領域にデバイスを形成すると、電流リークなど重大な不良を起こすと言われている。 On the other hand, it is known that I-Si becomes predominant when a single crystal is grown by setting the growth rate to a relatively low speed. When the I-Si aggregates and gathers, LEP (Large Etch Pit = dislocation cluster defect), which is considered to be clustered by dislocation loops and the like, is detected. It is said that forming a device in the region where this dislocation cluster defect occurs causes serious defects such as current leakage.
そこでVacancyが優勢となる条件とI−Siが優勢となる条件との中間的な条件で結晶を育成すると、VacancyやI−Siが無い、もしくはVoid欠陥や転位クラスタ欠陥を形成しない程度の少量しか存在しない、無欠陥領域が得られる。このような無欠陥結晶は例えば特許文献3に示されるような方法で、炉内温度や成長速度の制御によって得ることができる。具体的には結晶成長界面での温度勾配Gと結晶成長速度Vとの比(V/G)を制御することで無欠陥結晶が得られる。V/Gが大きければVacancy濃度が優勢となり、V/Gが小さいとI−Siが優勢になるので、Vacancy過剰量とI−Si過剰量が拮抗するV/Gに制御することで、点欠陥の過剰量を低減でき、Grown−in欠陥を成長させないようにしている。
Therefore, when crystals are grown under an intermediate condition between the condition in which Vacancy is dominant and the condition in which I-Si is dominant, there is no Vacancy or I-Si, or only a small amount that does not form Void defects or dislocation cluster defects. A non-existent, defect-free region is obtained. Such defect-free crystals can be obtained by controlling the temperature in the furnace and the growth rate by, for example, the method shown in
この制御法では、Vacancy過剰量とI−Si過剰量とが完全に拮抗すれば、優勢な点欠陥がないので当然Grown−in欠陥は形成されない。しかしわずかにVacancyが優勢であってもそれがGrown−in欠陥を形成するのに十分な量でなければ、Grown−in欠陥は形成されない。このような領域をNv領域と呼んでいる。Nv領域ではGrown−in欠陥は形成されないが、Vacancyが残存している。この残存しているVacancyがGrown−in欠陥を形成する温度より低温の温度帯で、酸素析出核を形成する。酸素析出反応は2Si+2O→SiO2+I−Siである。この反応ではI−Siが生成されるので、反応が無制限に進むことはない。しかしながら、Vacancy(=V)があると2Si+2O+V→SiO2と析出反応で生成するI−SiをVacancyが吸収するので反応が進みやすくなる。このためNv領域では酸素析出核が多く、デバイス等の熱処理が加えられた場合に酸素析出が起こりやすい。このためNv領域内又は Nv領域近傍の領域では、Grown−in欠陥は形成されないものの、微小酸素析出が形成されている場合がある。 In this control method, if the excess amount of Vacuumy and the excess amount of I-Si completely antagonize, the Green-in defect is not naturally formed because there is no predominant point defect. However, even if the vacancy is slightly predominant, the Green-in defect is not formed unless it is in an amount sufficient to form the Green-in defect. Such a region is called an Nv region. A Green-in defect is not formed in the Nv region, but a vacancy remains. Oxygen precipitation nuclei are formed in a temperature range lower than the temperature at which the remaining Vacuumy forms a Green-in defect. The oxygen precipitation reaction is 2Si + 2O → SiO 2 + I-Si. Since I-Si is produced in this reaction, the reaction does not proceed indefinitely. However, if there is Vacancy (= V), Vacancy absorbs 2Si + 2O + V → SiO 2 and I-Si generated by the precipitation reaction, so that the reaction facilitates. Therefore, there are many oxygen precipitation nuclei in the Nv region, and oxygen precipitation is likely to occur when heat treatment of the device or the like is applied. Therefore, in the region within the Nv region or in the vicinity of the Nv region, although the Green-in defect is not formed, microoxygen precipitation may be formed.
一方でわずかにI−Siが優勢であってもそれがGrown−in欠陥を形成するのに十分な量でなければ、やはりGrown−in欠陥は形成されない。このような領域をNi領域と呼んでいる。Ni領域はNv領域とは異なりI−Siが残存しているので、上述のような酸素析出反応は起こりにくく、デバイス等の熱処理をした際にも、酸素析出が起こりにくい領域である。 On the other hand, even if I-Si is slightly predominant, if it is not an amount sufficient to form a Green-in defect, the Green-in defect will not be formed either. Such a region is called a Ni region. Unlike the Nv region, I-Si remains in the Ni region, so that the oxygen precipitation reaction as described above is unlikely to occur, and oxygen precipitation is unlikely to occur even when the device or the like is heat-treated.
以上がGrown−in欠陥や及びそれを消滅させるアニール技術に関する説明であるが、一般的にこれらの点欠陥の挙動をVacancyとI−Siとに区別して評価することは容易ではない。なぜならシリコンにおいてはVacancyとI−Siのどちらかが圧倒的に優勢ということはなく、上述したように条件次第でどちらかが優勢であったり、共存したりするので、検出されている現象が空孔に起因しているのか、格子間Siに起因して起こっているのかが分類できないためである。更に点欠陥を介して起こる現象は、その点欠陥の濃度とその点欠陥の拡散係数の積として影響を及ぼすので、その点欠陥の形成に関わる頻度因子と活性化エネルギー、その点欠陥の拡散に関わる頻度因子と活性化エネルギー、という4つの因子が関わっており、それらを分離して求めることは難しい。ここで頻度因子と活性化エネルギーとはA × exp(−E/kT)で書き表されるアレニウス型の反応における、A:頻度因子、とE:活性化エネルギーのことである(k:ボルツマン定数、T:温度)。 The above is a description of the Green-in defect and the annealing technique for eliminating it, but in general, it is not easy to evaluate the behavior of these point defects by distinguishing between Vacuumy and I-Si. This is because in silicon, either Classification or I-Si is not overwhelmingly dominant, and as described above, either is dominant or coexists depending on the conditions, so the detected phenomenon is empty. This is because it cannot be classified whether it is caused by holes or interstitial Si. Furthermore, the phenomenon that occurs through the point defect affects as the product of the concentration of the point defect and the diffusion coefficient of the point defect, so that the frequency factor involved in the formation of the point defect, the activation energy, and the diffusion of the point defect are affected. Four factors, the pre-exponential factor and the activation energy, are involved, and it is difficult to separate them. Here, the frequency factor and activation energy are A: frequency factor and E: activation energy in the Arrhenius-type reaction expressed by A × exp (-E / kT) (k: Boltzmann constant). , T: temperature).
例えば特許文献4など結晶欠陥領域を判別する手法は数多く開示されているが、これは点欠陥の活動により形成されてしまった欠陥領域の評価であり、点欠陥の挙動を直接検出する技術ではない。特許文献5ではRTAで導入したVacancyを白金拡散してDLTSで評価したり、特許文献6、7などでは極低温における超音波の吸収からVacancy濃度を求める技術が開示されている。しかしこれらの手法はDLTSや超音波、更には極低温という簡便とはいえない方法であり、またVacancyの挙動しか捉えることが出来ないというものであった。
For example, many methods for discriminating crystal defect regions such as
本発明は前述のような問題に鑑みてなされたもので、Si結晶を取り扱うところであれば比較的一般的な手法のみを組み合わせることで、点欠陥の挙動を捉えることができ、更にVacancy(空孔)とI−Siそれぞれの挙動を分けて捉えることもできる点欠陥の挙動に関する物性値を評価する方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and if it deals with Si crystals, the behavior of point defects can be captured by combining only relatively general methods, and further, Vacancy (vacancy). ) And I-Si can be grasped separately. It is an object of the present invention to provide a method for evaluating physical property values related to the behavior of point defects.
本発明は、上記課題を解決するためになされたもので、
チョクラルスキー(CZ)法又は磁場印加CZ(MCZ)法で育成されたVoid欠陥のある結晶から切り出された試料に、結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜が溶解する温度以上の温度で熱処理を、温度及び時間の少なくともどちらか一方を変化させて行い、該熱処理条件の変化に伴って観察される、Void欠陥のサイズ、密度、無欠陥層深さのそれぞれの変化のうちいずれか一つ以上から点欠陥の挙動に関する物性値を評価することを特徴とする点欠陥の評価方法を提供する。
The present invention has been made to solve the above problems.
A sample cut out from a crystal with a Void defect grown by the Czochralski (CZ) method or the magnetic field application CZ (MCZ) method has an oxide film on the inner wall of the Void defect, which is determined depending on the interstitial oxygen concentration in the crystal. The heat treatment is performed at a temperature equal to or higher than the melting temperature by changing at least one of the temperature and the time, and the size, density, and defect-free layer depth of the Void defects observed as the heat treatment conditions change. Provided is a method for evaluating a point defect, which comprises evaluating a physical property value related to the behavior of the point defect from any one or more of the changes in the above.
さらに、本発明は、チョクラルスキー(CZ)法又は磁場印加CZ(MCZ)法で育成された微小酸素析出物のある結晶から切り出された試料に、結晶中の格子間酸素濃度に依存して決まる微小酸素析出物が溶解する温度以上の温度で熱処理を、温度及び時間の少なくともどちらか一方を変化させて行い、該熱処理条件の変化に伴って観察される、微小酸素析出物のサイズ、密度、無欠陥層深さのそれぞれの変化のうちいずれか一つ以上から点欠陥の挙動に関する物性値を評価することを特徴とする点欠陥の評価方法を提供する。 Further, the present invention depends on the interstitial oxygen concentration in the crystal of a sample cut out from a crystal having micro oxygen precipitates grown by the Chokralsky (CZ) method or the magnetic field application CZ (MCZ) method. The heat treatment is performed at a temperature equal to or higher than the temperature at which the determined micro oxygen precipitates are dissolved by changing at least one of the temperature and the time, and the size and density of the micro oxygen precipitates observed with the change of the heat treatment conditions. , Provided is a method for evaluating a point defect, which comprises evaluating a physical property value relating to the behavior of the point defect from any one or more of the changes in the depth of the defect-free layer.
このように、本発明では、熱処理条件の変更に伴う、Void欠陥や微小酸素析出物のサイズ、密度、無欠陥層深さといった、一般的な処理及び測定だけで点欠陥の挙動を評価することができる。 As described above, in the present invention, the behavior of point defects is evaluated only by general treatment and measurement such as the size, density, and defect-free layer depth of Void defects and micro oxygen precipitates due to changes in heat treatment conditions. Can be done.
このとき、前記熱処理の熱処理雰囲気を酸化性にすることで前記点欠陥がInterstitial−Siの場合の該点欠陥の挙動に関する物性値を評価することを特徴とする点欠陥の評価方法であることが好ましい。 At this time, the method for evaluating point defects is characterized in that the physical property values relating to the behavior of the point defects are evaluated when the point defects are Interstitial-Si by making the heat treatment atmosphere of the heat treatment oxidative. preferable.
このとき、前記熱処理の熱処理雰囲気を窒化性にすることで前記点欠陥がVacancyの場合の該点欠陥の挙動に関する物性値を評価することを特徴とする点欠陥の評価方法であることが好ましい。 At this time, it is preferable that the method for evaluating point defects is characterized in that the physical property value relating to the behavior of the point defects is evaluated when the point defects are evaluation by making the heat treatment atmosphere of the heat treatment nitridable.
このように、本発明では熱処理の雰囲気をそれぞれ酸化性にするか、あるいは窒化性にするかによって、I−SiとVacancyをそれぞれ分けて評価することができる。 As described above, in the present invention, I-Si and Evaluation can be evaluated separately depending on whether the heat treatment atmosphere is oxidizable or nitrided.
前記点欠陥の挙動に関する物性値とは、前記点欠陥であるInterstitial−Si及びVacancyの少なくともどちらか一方の拡散及び形成の少なくともどちらか一方に関連するアレニウスの式における活性化エネルギー及び頻度因子のうち少なくともどちらか一方であることが好ましい。 The physical property value relating to the behavior of the point defect is among the activation energy and frequency factors in the Arrhenius equation related to at least one of the diffusion and formation of at least one of the point defects Interstitial-Si and Vacuumy. It is preferably at least one of them.
本発明で評価する物性値としては、上記のようなものが挙げられる。 Examples of the physical property values evaluated in the present invention include the above.
前記結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜が溶解する温度、又は前記結晶中の格子間酸素濃度に依存して決まる微小酸素析出物が溶解する温度以上の温度とは、下記の式
[Oi]=4.0×1021×exp(−1.0/kT) 、
ここで[Oi]:結晶中の格子間酸素濃度(atoms/cm3 ASTM’79)、k:ボルツマン定数=8.62×10−5(eV/K)、T:温度(K)
を満たす温度以上の温度であることが好ましい。
The temperature at which the inner wall oxide film of the Void defect, which is determined depending on the interstitial oxygen concentration in the crystal, dissolves, or the temperature at which the microoxygen precipitate, which is determined depending on the interstitial oxygen concentration in the crystal, dissolves. Is the following formula [Oi] = 4.0 × 10 21 × exp (-1.0 / kT),
Here, [Oi]: interstitial oxygen concentration in the crystal (atoms / cm 3 ASTM'79), k: Boltzmann constant = 8.62 × 10-5 (eV / K), T: temperature (K).
It is preferable that the temperature is equal to or higher than the above.
このように、本発明における前記結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜が溶解する温度、又は前記結晶中の格子間酸素濃度に依存して決まる微小酸素析出物が溶解する温度は、上記式によって、格子間酸素濃度から簡単に求めることができる。 As described above, the temperature at which the inner wall oxide film of the Void defect determined depending on the interstitial oxygen concentration in the crystal in the present invention dissolves, or the micro oxygen precipitate determined depending on the interstitial oxygen concentration in the crystal. The melting temperature can be easily obtained from the interstitial oxygen concentration by the above formula.
前記熱処理温度が900℃以上であることが好ましい。 The heat treatment temperature is preferably 900 ° C. or higher.
前記格子間酸素濃度が8×1017(atoms/cm3 ASTM’79)以下であることが好ましい。 The interstitial oxygen concentration is preferably 8 × 10 17 (athoms / cm 3 ASTM '79) or less.
本発明の点欠陥の評価方法であれば、比較的一般的な手法のみを組み合わせることで、簡便に点欠陥の挙動を評価することができ、特にVacancy(空孔)とI−Siのそれぞれの挙動に関する物性値を区別して評価することもできる。 With the method for evaluating point defects of the present invention, the behavior of point defects can be easily evaluated by combining only relatively general methods, and in particular, each of Evaluation (vacancy) and I-Si. It is also possible to distinguish and evaluate physical property values related to behavior.
以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
上記のように、結晶育成時に形成されるGrown−in欠陥を理解する上でも、また熱処理等で結晶欠陥を制御する上でも、これらの形成・消滅に大きく関与している点欠陥(Interstitial−Si及びVacancy)の挙動に関する物性値を知ることは重要であるが、これらの点欠陥の挙動に関する物性値をVacancyとI−Siとに区別して直接検出して評価することは困難であるという問題があった。 As described above, in order to understand the Green-in defects formed during crystal growth and to control the crystal defects by heat treatment or the like, point defects (Interstitial-Si) that are greatly involved in the formation and disappearance of these defects. And, it is important to know the physical property values related to the behavior of Vacancy), but there is a problem that it is difficult to directly detect and evaluate the physical property values related to the behavior of these point defects separately for Vacancy and I-Si. there were.
そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、チョクラルスキー(CZ)法又は磁場印加CZ(MCZ)法で育成されたVoid欠陥または微小酸素析出物のある結晶から切り出された試料に、結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜または微小酸素析出物が溶解する温度以上の温度で熱処理を、温度及び時間の少なくともどちらか一方を変化させて行い、該熱処理条件の変化に伴って観察される、Void欠陥または微小酸素析出物のサイズ、密度、無欠陥層深さのそれぞれの変化のうちいずれか一つ以上から点欠陥の挙動に関する物性値を評価することに想到し、本発明を完成させた。 Therefore, the present inventor has made extensive studies to solve such a problem. As a result, a sample cut out from a crystal having Void defects or microoxygen precipitates grown by the Czochralski (CZ) method or the magnetic field application CZ (MCZ) method depends on the interstitial oxygen concentration in the crystal. The heat treatment is performed at a temperature equal to or higher than the temperature at which the inner wall oxide film or the micro oxygen precipitate of the determined Void defect is dissolved by changing at least one of the temperature and the time, and the Void is observed as the heat treatment conditions are changed. The present invention was completed with the idea of evaluating the physical property values related to the behavior of point defects from any one or more of the changes in the size, density, and depth of the defect-free layer of defects or microoxygen precipitates.
上述したように、Void欠陥の内壁には酸化膜が形成されている。そのため何らかの処理を行なったとしても、内壁酸化膜が溶解するまでは、Void欠陥に変化は現れない。
しかしVoid欠陥の内壁酸化膜が溶解する温度以上の熱処理を行なえば、内壁酸化膜が溶解して点欠陥との反応が容易に起こり、点欠陥の挙動を観察しやすくなる。ただ一般的には上述したアニール技術のように酸素の外方拡散をさせるような特殊な熱処理でなければ、内壁酸化膜は溶解しない。
As described above, an oxide film is formed on the inner wall of the Void defect. Therefore, even if some treatment is performed, the Void defect does not change until the inner wall oxide film is dissolved.
However, if the heat treatment is performed at a temperature higher than the temperature at which the inner wall oxide film of the Void defect is dissolved, the inner wall oxide film is dissolved and the reaction with the point defect easily occurs, and the behavior of the point defect can be easily observed. However, in general, the inner wall oxide film does not dissolve unless it is a special heat treatment that diffuses oxygen outward as in the annealing technique described above.
しかし例えば低酸素濃度結晶を用いれば、その結晶中に含まれている格子間酸素濃度が平衡濃度となる温度に近い温度(すなわち、結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜が溶解する温度)以上の熱処理を行うと、内壁酸化膜外側の結晶中の酸素平衡濃度が高くなり、酸素濃度の過飽和が解消される、または過飽和度が低くなるので、内壁酸化膜を容易に溶解させることが可能である。 However, for example, when a low oxygen concentration crystal is used, the inner wall of the Void defect is determined by a temperature close to the temperature at which the interstitial oxygen concentration contained in the crystal becomes the equilibrium concentration (that is, it depends on the interstitial oxygen concentration in the crystal). When heat treatment is performed above the temperature at which the oxide film melts), the oxygen equilibrium concentration in the crystals outside the inner wall oxide film increases, the supersaturation of the oxygen concentration is eliminated, or the degree of supersaturation decreases. It can be easily dissolved.
ここで、格子間酸素濃度が平衡濃度となる温度に近い温度、としたのは、内壁酸化膜外側の結晶中の酸素濃度が平衡濃度になれば過飽和が解消され内壁酸化膜が溶解するのはもちろんであるが、内壁酸化膜中の酸素濃度は相対的に高いので、内壁酸化膜外側の結晶中の酸素濃度が平衡濃度に近づき過飽和濃度が低下すれば濃度勾配が生じ内壁酸化膜が溶解すると考えられるからである。 Here, the temperature close to the temperature at which the interstitial oxygen concentration becomes the equilibrium concentration is defined as the supersaturation is eliminated and the inner wall oxide film dissolves when the oxygen concentration in the crystals outside the inner wall oxide film reaches the equilibrium concentration. Of course, since the oxygen concentration in the inner wall oxide film is relatively high, if the oxygen concentration in the crystals outside the inner wall oxide film approaches the equilibrium concentration and the supersaturation concentration decreases, a concentration gradient will occur and the inner wall oxide film will dissolve. Because it can be considered.
このように内壁酸化膜が溶解したVoid欠陥は、ただの空洞になっており、点欠陥の影響を直接受ける状態になっているので、そのサイズの変化や密度の変化、更には消滅しないで残っているVoid欠陥の表面からの距離などを観察することにより、点欠陥の挙動を直接見ることが可能である。 The Void defect in which the inner wall oxide film is dissolved in this way is just a cavity and is in a state of being directly affected by the point defect, so that the size change, the density change, and even the remaining without disappearing. It is possible to directly see the behavior of the point defect by observing the distance from the surface of the Void defect.
さらにここで、Void欠陥の観察は、同一のサンプルを用いて熱処理の前後に測定してもよいし、複数のサンプルを用意してそれぞれに熱処理を行なって測定してもよい。また熱処理に用いるサンプルは結晶ブロックでもよいが、内部まで温度が伝わるのに時間がかかるので、一般的にはウェーハ状のものを用いるのが好ましい。 Further, here, the observation of the Void defect may be measured before and after the heat treatment using the same sample, or a plurality of samples may be prepared and each may be heat-treated for measurement. The sample used for the heat treatment may be a crystal block, but it takes time for the temperature to be transmitted to the inside, so it is generally preferable to use a wafer-shaped sample.
上述ではVoid欠陥に関して説明したが、微小酸素析出物も、Voidの内壁酸化膜と同じSiO2であるので、結晶中の格子間酸素濃度に依存して決まる微小酸素析出物が溶解する温度以上の温度で結晶中の酸素の過飽和度の低下に伴い溶解すると考えられる。酸素析出の溶解した後の微小酸素析出物は、内壁酸化膜が溶解したVoidと同じようにただの空洞になると考えられ、点欠陥の影響を直接受けることになり、点欠陥の挙動を観察する指標として用いることが可能である。
特にNv領域又はNv領域近傍に形成される微小酸素析出物は、内壁酸化膜で空洞が埋められたVoid欠陥と区別が付かない。従ってVoid欠陥同様に本手法の点欠陥評価に用いることが可能である。
Although the Void defect has been described above, since the micro oxygen precipitate is also SiO 2 which is the same as the inner wall oxide film of Void, the temperature is higher than the temperature at which the micro oxygen precipitate is dissolved, which is determined depending on the interstitial oxygen concentration in the crystal. It is considered that it dissolves as the degree of supersaturation of oxygen in the crystal decreases at temperature. The micro oxygen precipitate after the dissolution of the oxygen precipitate is considered to be just a cavity like the Void in which the inner wall oxide film is dissolved, and is directly affected by the point defect, and the behavior of the point defect is observed. It can be used as an index.
In particular, the micro oxygen precipitate formed in the Nv region or the vicinity of the Nv region is indistinguishable from the Void defect in which the cavity is filled with the inner wall oxide film. Therefore, it can be used for the point defect evaluation of this method as well as the Void defect.
上述したように、結晶中に含まれている格子間酸素濃度が平衡濃度となる温度(結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜又は微小酸素析出物が溶解する温度)に近い温度以上の熱処理を行なった時点で、Void欠陥又は微小酸素析出物は、ただの空洞となっており点欠陥の影響を直接受ける状態になっている。このとき熱処理雰囲気を酸化雰囲気にすると、サンプルの表面に酸化膜が形成され、ここからI−Siがサンプル内部に注入される。このように注入されたI−Siが、ただの空洞となったVoid欠陥又は微小酸素析出物に到達すると空洞を埋め、欠陥を消滅させることとなる。 As described above, the temperature at which the interstitial oxygen concentration contained in the crystal becomes the equilibrium concentration (the temperature at which the inner wall oxide film or microoxygen precipitate of Void defect determined depending on the interstitial oxygen concentration in the crystal dissolves. ), The Void defect or the micro oxygen precipitate is just a cavity and is directly affected by the point defect. At this time, when the heat treatment atmosphere is changed to an oxidizing atmosphere, an oxide film is formed on the surface of the sample, and I-Si is injected into the sample from here. When the I-Si injected in this way reaches a Void defect or a micro oxygen precipitate that has become a mere cavity, the cavity is filled and the defect disappears.
この欠陥の消滅現象に起因する、サイズの変化や密度の変化、更には消滅しないで残っている欠陥の表面からの距離(すなわち、無欠陥層深さ)などを観察することにより、I−Siの挙動を直接見ることが可能である。この現象においては、酸化膜の形成により強制的にI−Siを発生させることができるので、I−Siの濃度[Ci = Cio × exp(−Eif/kT)、ここでCio:I−Si形成に関わる頻度因子、Eif:I−Si形成に関わる活性化エネルギー]は考慮する必要が無く、I−Siの拡散係数[Di = Dio × exp(−Eim/kT)、ここでDio:I−Si拡散に関わる頻度因子、Eim:I−Si拡散に関わる活性化エネルギー]の影響のみを評価することが可能である。 By observing changes in size and density due to this defect disappearance phenomenon, as well as the distance from the surface of the defects that remain without disappearing (that is, the depth of the defect-free layer), I-Si It is possible to directly see the behavior of. In this phenomenon, I-Si can be forcibly generated by forming an oxide film, so that the concentration of I-Si [Ci = Cio x exp (-Eif / kT), where Cio: I-Si is formed. It is not necessary to consider the pre-exponential factor, Eif: activation energy related to I-Si formation], and the diffusion coefficient of I-Si [Di = Dio x exp (-Eim / kT), where Dio: I-Si It is possible to evaluate only the influence of the frequency factor involved in diffusion, Eim: activation energy involved in I-Si diffusion].
この方法によりI−Siの拡散に関する情報を得ることができるので、一般的なI−Siの濃度と拡散との積によって起こる現象で求められる頻度因子や活性化エネルギーと合わせることで、I−Siの形成に関わる頻度因子Cioや活性化エネルギーEifまでも求めることが可能である。 Since information on the diffusion of I-Si can be obtained by this method, it can be combined with the frequency factor and activation energy required for the phenomenon caused by the product of the general concentration of I-Si and the diffusion of I-Si. It is also possible to obtain the pre-exponential factor Cio and the activation energy Eif involved in the formation of.
熱処理雰囲気を酸化雰囲気ではなく窒化雰囲気にすると、サンプルの表面に窒化膜が形成され、ここからVacancyがサンプル内部に注入される。このように注入されたVacancyが、ただの空洞となったVoid欠陥又は微小酸素析出物に到達すると空洞を広げ、欠陥を拡大させることとなる。この欠陥の拡大現象に起因する、サイズの変化や密度の変化、更には欠陥の表面からの距離などを観察することにより、Vacancyの挙動を直接見ることが可能である。ここでサイズの変化だけでなく、密度や表面からの距離も記載してあるのは、検出下限以下で見えていなかった欠陥がサイズ拡大により検出されるようになることがあるからである。 When the heat treatment atmosphere is changed to a nitrided atmosphere instead of an oxidized atmosphere, a nitride film is formed on the surface of the sample, and Vacuumy is injected into the sample from here. When the Vacancy thus injected reaches a Void defect or a micro oxygen precipitate that has become a mere cavity, the cavity is expanded and the defect is expanded. It is possible to directly see the behavior of Vacuumy by observing changes in size and density due to this defect enlargement phenomenon, as well as the distance from the surface of the defects. Here, not only the change in size but also the density and the distance from the surface are described because defects that were not visible below the lower limit of detection may be detected by increasing the size.
この現象においては、窒化膜の形成により強制的にVacancyを発生させることができるので、Vacancyの濃度[Cv = Cvo × exp(−Evf/kT)、ここでCvo:Vacancy形成に関わる頻度因子、Evf:Vacancy形成に関わる活性化エネルギー]は考慮する必要が無く、Vacancyの拡散[Dv = Dvo × exp(−Evm/kT)、ここでDvo:Vacancy拡散に関わる頻度因子、Evm :Vacancy拡散に関わる活性化エネルギー]の影響のみを評価することが可能である。 In this phenomenon, since vacancy can be forcibly generated by the formation of a nitride film, the concentration of vacancy [Cv = Cvo × exp (-Evf / kT), where Cvo: a frequency factor involved in vacancy formation, Evf. : Activation energy involved in vacancy formation] does not need to be considered, and diffusion of vacancy [Dv = Dvo x exp (-Evm / kT), where Dvo: frequency factor involved in vacancy diffusion, Evm: activity related to vacancy diffusion It is possible to evaluate only the effect of [energy conversion].
この方法によりVacancyの拡散に関する情報を得ることができるので、一般的なVacancyの濃度と拡散との積によって起こる現象で求められる頻度因子や活性化エネルギーと合わせることで、Vacancyの形成に関わる頻度因子Cvoや活性化エネルギーEvfまでも求めることが可能である。 Since information on the diffusion of vacancy can be obtained by this method, the frequency factor involved in the formation of vacancy can be obtained by combining it with the frequency factor and activation energy obtained by the phenomenon caused by the product of the concentration and diffusion of vacancy. It is also possible to obtain Cvo and activation energy Evf.
上述のように、熱処理雰囲気を酸化性にすればI−Siの拡散[拡散係数:Di = Dio × exp(−Eim/kT)]に関する現象を、窒化性にすればVacancyの拡散[拡散係数:Dv = Dvo × exp(−Evm/kT)]に関する現象を評価することが可能である。欠陥のサイズ、密度、無欠陥深さなど拡散と関わる現象を、複数の熱処理温度で観察し、その熱処理温度依存性を温度の逆数に対してプロットすれば、活性化エネルギーを求めることが可能である。活性化エネルギーを求めることができれば、その頻度因子も求めることが可能である。 As described above, if the heat treatment atmosphere is made oxidizing, the phenomenon related to the diffusion of I-Si [diffusion coefficient: Di = Dio × exp (-Eim / kT)] is changed, and if it is made nitrided, the diffusion of Vacancy [diffusion coefficient: It is possible to evaluate the phenomenon related to Dv = Dvo × exp (-Evm / kT)]. The activation energy can be obtained by observing phenomena related to diffusion such as defect size, density, and defect-free depth at multiple heat treatment temperatures and plotting the heat treatment temperature dependence against the reciprocal of the temperature. is there. If the activation energy can be obtained, the frequency factor can also be obtained.
そのようにして求めた拡散係数と一般的な点欠陥の濃度と拡散との積によって起こる現象で求められる頻度因子や活性化エネルギーと合わせることで、形成に関わる頻度因子や活性化エネルギーまでも求めることが可能である。 By combining the diffusion coefficient obtained in this way with the frequency factor and activation energy obtained in the phenomenon caused by the product of the concentration and diffusion of general point defects, the frequency factor and activation energy involved in formation can also be obtained. It is possible.
上述してきたように、結晶中の格子間酸素濃度に依存して決まるVoid欠陥の内壁酸化膜又は微小酸素析出物が溶解する温度以上の温度は、結晶中に含まれている格子間酸素濃度が平衡濃度となる温度に近い温度以上の熱処理温度が好ましい。しかし酸素の平衡濃度に関しては、いくつか報告がある。例えば非特許文献:「Semiconductor Silicon Crystal Technology」, Fumio Shimura 著,ISBN 0−12−640045−8 のP165には[Oi]=9×1022 × exp(−1.52/kT) と記載されている。また非特許文献:「シリコンの科学」,大見忠弘 他 著,ISDN4:947655−88−7のP1018 の図からはおおよそ[Oi]=1.9×1021 × exp(−1.0/kT) と読み取れる。このように報告値には幅がある。 As described above, the interstitial oxygen concentration contained in the crystal is higher than the temperature at which the inner wall oxide film or micro oxygen precipitate of the Void defect, which is determined depending on the interstitial oxygen concentration in the crystal, is dissolved. A heat treatment temperature equal to or higher than a temperature close to the equilibrium concentration is preferable. However, there are some reports on the equilibrium concentration of oxygen. For example, in the non-patent document: "Semiconductor Silicon Crystal Technology", by Fumio Shimura, P165 of ISBN 0-12-6400-8, [Oi] = 9 × 10 22 × exp (-1.52 / kT). There is. Also, from the figure of P1018 of non-patent literature: "Science of Silicon", Tadahiro Ohmi et al., ISDN4: 947655-88-7, approximately [Oi] = 1.9 × 10 21 × exp (-1.0 / kT). ) Can be read. As you can see, there is a range of reported values.
しかも本手法では内壁酸化膜が溶解する程度に過飽和度が下がればよいので上記の温度より低めの温度でも観察できる可能性がある。後述するように実験的には酸素濃度4.4×1017(atoms/cm3)のサンプルを用いて1000℃でも若干無欠陥層が広がったように見えることから、[Oi]=4.0×1021 × exp(−1.0/kT)を満たす温度以上であれば、内壁酸化膜が消滅している可能性が示唆された。従ってサンプルの酸素濃度を[Oi]として、この式を満たす温度以上の温度で熱処理を行うことが好ましい。 Moreover, in this method, since the degree of supersaturation only needs to be lowered to the extent that the inner wall oxide film is dissolved, there is a possibility that observation can be performed even at a temperature lower than the above temperature. As will be described later, experimentally, using a sample having an oxygen concentration of 4.4 × 10 17 (atoms / cm 3 ), it seems that the defect-free layer slightly expanded even at 1000 ° C. Therefore, [Oi] = 4.0. It was suggested that the inner wall oxide film may have disappeared if the temperature was higher than the temperature satisfying × 10 21 × exp (−1.0 / kT). Therefore, it is preferable to perform the heat treatment at a temperature equal to or higher than the temperature satisfying this equation, where the oxygen concentration of the sample is [Oi].
熱処理は温度が低いほど容易であるが、温度が低いと拡散などの点欠陥に起因する現象の速度が低下する。また本手法では熱処理温度が低い場合は、サンプルとして用いる結晶の酸素濃度を下げる必要があるが、CZ法で育成できる酸素濃度下限も1×1017(atoms/cm3 ASTM’79)程度までであり、温度依存性を調査するために温度を変化させることも考慮すると、最低熱処理温度は900℃程度が妥当である。 The lower the temperature, the easier the heat treatment, but the lower the temperature, the slower the rate of phenomena caused by point defects such as diffusion. In addition, in this method, when the heat treatment temperature is low, it is necessary to lower the oxygen concentration of the crystal used as a sample, but the lower limit of the oxygen concentration that can be grown by the CZ method is up to about 1 × 10 17 (athoms / cm 3 ASTM '79). Therefore, considering that the temperature is changed in order to investigate the temperature dependence, the minimum heat treatment temperature of about 900 ° C. is appropriate.
一方で熱処理温度を高温にできればサンプルの酸素濃度を高くすることができるので、シリコンの融点以下であれば高温ほど好ましい。ただし高温での熱処理は装置的な限度があるのと、あまりに高温の場合点欠陥に起因する拡散などの現象が速く進んでしまうので、過渡現象を見誤る可能性がある。更には汚染やサンプル割れなどの問題も生ずる可能性がある。従って一般的な炉で実施可能な1200−1300℃程度が上限と思われるが、観察する現象の速度などに依存するものであり、これに限定されるものではない。 On the other hand, if the heat treatment temperature can be raised to a high temperature, the oxygen concentration of the sample can be raised. Therefore, a higher temperature is preferable as long as it is below the melting point of silicon. However, heat treatment at a high temperature has a limited device, and if the temperature is too high, phenomena such as diffusion due to point defects proceed quickly, so that a transient phenomenon may be misunderstood. Furthermore, problems such as contamination and sample cracking may occur. Therefore, it seems that the upper limit is about 1200-1300 ° C., which can be carried out in a general furnace, but it depends on the speed of the observed phenomenon and is not limited to this.
酸素濃度は低いほど、熱処理温度を下げることができるので、低ければ低いほど好ましい。一方で酸素濃度が高ければ、熱処理温度を高くすれば本手法を実施することができる。
しかし、本手法では点欠陥に起因する現象の温度依存性を観察することでより正確な解析ができる。従って、一般的な炉で温度依存性が観察できる程度の酸素濃度として、8×1017(atoms/cm3 ASTM’79)以下であれば、現象を観察するための熱処理温度の自由度が確保できる。
The lower the oxygen concentration, the lower the heat treatment temperature, so the lower the oxygen concentration, the more preferable. On the other hand, if the oxygen concentration is high, this method can be carried out by raising the heat treatment temperature.
However, in this method, more accurate analysis can be performed by observing the temperature dependence of the phenomenon caused by the point defect. Therefore, if the oxygen concentration is 8 × 10 17 (athoms / cm 3 ASTM '79) or less so that the temperature dependence can be observed in a general furnace, the degree of freedom of the heat treatment temperature for observing the phenomenon is secured. it can.
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.
(実験)
概略図1の装置1(磁石は省略してある)を用い、ルツボ2中の原料3に中心磁場強度4000Gを印加して、直径が200mm強で酸素濃度が(1)2.8×1017と(2)3.5×1017(atoms/cm3−ASTM’79)の2水準の結晶4を育成した。これらの結晶から厚さ約1mmのウェーハ状サンプルを用意した。これを劈開して半月状に半分に割り、一方は熱処理をせずそのまま、他方は1100℃30分の酸化熱処理を行なった後に半月状の直線部側から短冊状に劈開して、赤外散乱トモグラフにて90度散乱で観察した。ここで[Oi]=4.0×1021 × exp(−1.0/kT)をみたす温度は(1)が940℃、(2)が969℃であり1100℃は内壁酸化膜が溶解する温度以上を十分に満たしている。
その結果、熱処理をしなかったサンプルでは(1)(2)の結晶ともにGrown−in欠陥のVoid欠陥が観察された。一方で1100℃30分の酸化熱処理を行なったサンプルでは、(1)ではVoid欠陥が観察されず、(2)では熱処理無しのサンプルよりも散乱強度の弱いVoid欠陥が観察された。
(Experiment)
Using the device 1 (magnet omitted) in FIG. 1, a central magnetic field strength of 4000 G is applied to the
As a result, in the sample not subjected to the heat treatment, Void defects of Green-in defects were observed in both the crystals of (1) and (2). On the other hand, in the sample subjected to the oxidative heat treatment at 1100 ° C. for 30 minutes, the Void defect was not observed in (1), and the Void defect having a weaker scattering intensity than the sample without the heat treatment was observed in (2).
以上の結果から上述してきたような、酸素濃度に依存して決まる熱処理温度で比較的短時間の処理をすることでVoid欠陥の内壁酸化膜が溶解し、酸化雰囲気で熱処理を行なうことで、表面に形成された酸化膜からI−Siがサンプル内部に注入されVoid欠陥が縮小、消滅する現象が確認された。 From the above results, the inner wall oxide film of the Void defect is dissolved by performing the treatment for a relatively short time at the heat treatment temperature determined by the oxygen concentration as described above, and the surface is heat-treated in an oxidizing atmosphere. It was confirmed that I-Si was injected into the sample from the oxide film formed in the sample, and the Void defect was reduced and disappeared.
(実施例)
次に上記の実験でVoid欠陥の消滅現象が確認できたので、この消滅していく現象の過程を、温度を変化させて見ることでI−Siの拡散に関わる活性化エネルギーの導出を行った。
消滅過程を見るためには、実験で用いたサンプルでは欠陥の縮小消滅が速かったので、Void欠陥サイズの大きい結晶が好ましい。
そこで実験で用いた装置と比較して育成中の結晶の温度が低下しにくいように、結晶周辺の断熱を強化した炉内部品を投入して結晶を育成した。
得られた結晶の酸素濃度は4.4×1017(atoms/cm3−ASTM’79)であった。
ここで[Oi]=4.0×1021 × exp(−1.0/kT)をみたす温度は1000℃であった。
(Example)
Next, since the disappearance phenomenon of the Void defect was confirmed in the above experiment, the activation energy related to the diffusion of I-Si was derived by observing the process of this disappearing phenomenon by changing the temperature. ..
In order to see the disappearance process, the sample used in the experiment showed a rapid reduction and disappearance of defects, so a crystal having a large Void defect size is preferable.
Therefore, in order to prevent the temperature of the crystal being grown from dropping as compared with the equipment used in the experiment, the in-core parts with enhanced heat insulation around the crystal were put in to grow the crystal.
The oxygen concentration of the obtained crystals was 4.4 × 10 17 (athoms / cm 3- ASTM'79).
Here, the temperature at which [Oi] = 4.0 × 10 21 × exp (−1.0 / kT) was 1000 ° C.
この結晶から隣り合う厚さ約1mmの2枚のウェーハ状サンプルを用意した。
このうちの1枚のウェーハを劈開し、赤外散乱トモグラフにて90度散乱で観察したところ、Grown−in欠陥のVoid欠陥が観察された。
この時の散乱強度は実験で用いた結晶の散乱強度よりも強く、Void欠陥が大きいことが確認できた。
次に残りのウェーハを劈開し、1/4形状のサンプルとした。
これらに、1000℃30分、1050℃30分、1100℃30分及び60分、1150℃60分の酸化熱処理を行った。
その後に1/4形状サンプルを劈開し、短冊状サンプルを作製し、再度赤外散乱トモグラフにて90度散乱で観察した。
その結果1150℃60分のサンプルではGrown−in欠陥が消滅して検出されなかったが、それ以外のサンプルで消えていないGrown−inが観察された。
縦横500μmの視野において観察された欠陥の表面に最も近い欠陥の表面からの距離と2番目の欠陥の表面からの距離の平均をDZ幅(Denuded Zone幅:無欠陥層幅)として測定した。
ここで仮定としてDZ幅WがI−Siの拡散係数Di=Dio × exp(−Eim/kT)を用いてW = α × √(Di × t)(ここでαは定数、tは熱処理時間(sec))と表されるとすると、W2 = α2 × Dio × exp(−Eim/kT) × tとなり、ln(W2/t)の1/kTに対する傾きから活性化エネルギーEimを求めることが可能である。
Two wafer-shaped samples having a thickness of about 1 mm adjacent to each other were prepared from this crystal.
When one of the wafers was cleaved and observed with an infrared scattering tomograph at 90 degree scattering, a Void defect of a Green-in defect was observed.
It was confirmed that the scattering intensity at this time was stronger than the scattering intensity of the crystals used in the experiment, and the Void defect was large.
Next, the remaining wafer was cleaved to obtain a 1/4 shape sample.
These were subjected to oxidative heat treatment at 1000 ° C. for 30 minutes, 1050 ° C. for 30 minutes, 1100 ° C. for 30 minutes and 60 minutes, and 1150 ° C. for 60 minutes.
After that, a 1/4 shape sample was cleaved to prepare a strip-shaped sample, and the sample was again observed with an infrared scattering tomograph at 90 degree scattering.
As a result, the Green-in defect disappeared and was not detected in the sample at 1150 ° C. for 60 minutes, but the Green-in that did not disappear was observed in the other samples.
The average of the distance from the surface of the defect closest to the surface of the defect and the distance from the surface of the second defect observed in the field of view of 500 μm in length and width was measured as the DZ width (Depended Zone width: defect-free layer width).
Here, assuming that the DZ width W is I-Si, the diffusion coefficient Di = Dio × exp (-Eim / kT) is used, and W = α × √ (Di × t) (where α is a constant and t is the heat treatment time (where). If it is expressed as sec)), then W 2 = α 2 × Dio × exp (-Eim / kT) × t, and the activation energy Eim is obtained from the slope of ln (W 2 / t) with respect to 1 / kT. Is possible.
そこで図2に示すようにW2/t を拡散能として1/Tに対し対数プロットしたところ、温度依存性が見られた。この傾きからI−Siの移動に関する活性化エネルギーは1.7eVと求めることができた。 Therefore, as shown in FIG. 2, when W 2 / t was used as the diffusivity and logarithmically plotted against 1 / T, temperature dependence was observed. From this inclination, the activation energy related to the movement of I-Si could be determined to be 1.7 eV.
このテストは活性化エネルギーを求めるためのやり方を示すため、簡易的な方法で行なった。また熱処理温度も[Oi]=4.0×1021 × exp(−1.0/kT)をみたす温度以上といっても、ギリギリの温度であった。より正確な活性化エネルギーを求めるためには、より低い酸素濃度、又はより高い熱処理温度で行なうことが好ましい。またここではDZ幅の変化を評価したが、欠陥サイズの変化や欠陥密度の変化を評価することでも類似の評価が可能である。以上のように、このような非常に簡単なテストで点欠陥の挙動に関する物性値の情報を得ることができた。 This test was performed by a simple method to show the method for determining the activation energy. In addition, the heat treatment temperature was just above the temperature at which [Oi] = 4.0 × 10 21 × exp (−1.0 / kT) was satisfied. In order to obtain more accurate activation energy, it is preferable to carry out at a lower oxygen concentration or a higher heat treatment temperature. Further, although the change in the DZ width is evaluated here, a similar evaluation can be made by evaluating the change in the defect size and the change in the defect density. As described above, it was possible to obtain information on the physical property values related to the behavior of point defects by such a very simple test.
(比較例)
用意した結晶の酸素濃度が9.8×1017(atoms/cm3 ASTM’79)であること以外、実施例で行った内容と同じ条件でI−Siの拡散に関わる活性化エネルギーの導出を行なった。その結果、1000℃、1050℃、1100℃熱処理後のサンプルにおいて、DZ層の広がりは見られなかった。このため、活性化エネルギーを求めることはできなかった。
(Comparison example)
Derivation of activation energy related to diffusion of I-Si was performed under the same conditions as those performed in the examples, except that the oxygen concentration of the prepared crystal was 9.8 × 10 17 (athoms / cm 3 ASTM '79). I did. As a result, no spread of the DZ layer was observed in the sample after the heat treatment at 1000 ° C., 1050 ° C. and 1100 ° C. Therefore, the activation energy could not be obtained.
酸素濃度が9.8×1017 のとき[Oi]=4.0×1021 × exp(−1.0/kT)をみたす温度は1123℃である。
このように内壁酸化膜や酸素析出物が消滅するほど十分低い酸素濃度のサンプルではない、つまり内壁酸化膜や酸素析出物が消滅する温度より低い温度で熱処理した場合には、点欠陥の挙動を検出できないことが確認された。
When the oxygen concentration is 9.8 × 10 17, the temperature at which [Oi] = 4.0 × 10 21 × exp (−1.0 / kT) is 1123 ° C.
In this way, when the sample is not sufficiently low in oxygen concentration so that the inner wall oxide film and oxygen precipitates disappear, that is, when the heat treatment is performed at a temperature lower than the temperature at which the inner wall oxide film and oxygen precipitates disappear, the behavior of point defects is observed. It was confirmed that it could not be detected.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.
1…CZ単結晶製造装置、 2…ルツボ、 3…原料、
4…育成結晶。
1 ... CZ single crystal manufacturing equipment, 2 ... crucible, 3 ... raw material,
4 ... Growing crystals.
Claims (7)
[Oi]=4.0×1021×exp(−1.0/kT) 、
ここで[Oi]:結晶中の格子間酸素濃度(atoms/cm3 ASTM’79)、k:ボルツマン定数=8.62×10−5(eV/K)、T:温度(K)
を満たす温度以上の温度であることを特徴とする請求項1から請求項4のいずれか1項に記載の点欠陥の評価方法。 The temperature at which the inner wall oxide film of the Void defect, which is determined depending on the interstitial oxygen concentration in the crystal, dissolves, or the temperature at which the microoxygen precipitate, which is determined depending on the interstitial oxygen concentration in the crystal, dissolves. Is the following formula [Oi] = 4.0 × 10 21 × exp (-1.0 / kT),
Here, [Oi]: interstitial oxygen concentration in the crystal (atoms / cm 3 ASTM'79), k: Boltzmann constant = 8.62 × 10-5 (eV / K), T: temperature (K).
The method for evaluating a point defect according to any one of claims 1 to 4 , wherein the temperature is equal to or higher than the temperature satisfying the condition.
The method for evaluating a point defect according to any one of claims 1 to 6 , wherein the interstitial oxygen concentration is 8 × 10 17 (athoms / cm 3 ASTM '79) or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017171610A JP6784248B2 (en) | 2017-09-06 | 2017-09-06 | Evaluation method of point defects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017171610A JP6784248B2 (en) | 2017-09-06 | 2017-09-06 | Evaluation method of point defects |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019047068A JP2019047068A (en) | 2019-03-22 |
JP6784248B2 true JP6784248B2 (en) | 2020-11-11 |
Family
ID=65814585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017171610A Active JP6784248B2 (en) | 2017-09-06 | 2017-09-06 | Evaluation method of point defects |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6784248B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220189833A1 (en) * | 2019-05-07 | 2022-06-16 | Sony Semiconductor Solutions Corporation | Defect density calculation method, defect-density calculation program, defect-density calculation apparatus, heat treatment control system and machining control system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3955441B2 (en) * | 2001-02-15 | 2007-08-08 | 信越半導体株式会社 | Evaluation method of silicon wafer and nitrogen-doped annealing wafer |
JP4284886B2 (en) * | 2001-05-11 | 2009-06-24 | 株式会社Sumco | Method for evaluating oxygen precipitate density in silicon wafers |
JP3915606B2 (en) * | 2002-06-14 | 2007-05-16 | 株式会社Sumco | Method for measuring point defect distribution of silicon single crystal ingot |
JP5440564B2 (en) * | 2011-07-14 | 2014-03-12 | 信越半導体株式会社 | Method for detecting crystal defects |
JP6052188B2 (en) * | 2014-01-16 | 2016-12-27 | 信越半導体株式会社 | Heat treatment method for silicon single crystal wafer |
-
2017
- 2017-09-06 JP JP2017171610A patent/JP6784248B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019047068A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4942606B2 (en) | Silicon wafer and manufacturing method thereof | |
KR101715645B1 (en) | Silicon single crystal wafer | |
US10066322B2 (en) | Method for heat treatment of silicon single crystal wafer | |
WO2014129123A1 (en) | Method for manufacturing silicon monocrystal rod | |
JP6044277B2 (en) | Manufacturing method of silicon single crystal wafer | |
JP4092946B2 (en) | Silicon single crystal wafer, epitaxial wafer, and method for producing silicon single crystal | |
JP4862857B2 (en) | Standard sample for silicon single crystal wafer evaluation, its manufacturing method and evaluation method using standard sample | |
TWI580826B (en) | Silicon wafer manufacturing method | |
JP6569613B2 (en) | Silicon wafer evaluation method and manufacturing method | |
JP5151628B2 (en) | Silicon single crystal wafer, silicon single crystal manufacturing method, and semiconductor device | |
JP6784248B2 (en) | Evaluation method of point defects | |
JP2001151597A (en) | Method of producing silicon water free from agglomerate of point defects | |
JP4284886B2 (en) | Method for evaluating oxygen precipitate density in silicon wafers | |
JP6052188B2 (en) | Heat treatment method for silicon single crystal wafer | |
KR101721211B1 (en) | Method for analyzing silicon monocrystalline wafer, the wafer manufactured by the method | |
JP4524983B2 (en) | Method for manufacturing silicon wafer | |
JP2007142063A (en) | Silicon single-crystal wafer, method of manufacturing device using the same, and method of manufacturing the silicon single-crystal wafer and evaluation method of the wafer | |
JP7247879B2 (en) | Evaluation Method of Oxide Film Breakdown Voltage of Single Crystal Silicon Wafer | |
JP2001185708A (en) | Method of manufacturing soi substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200923 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6784248 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |