JP6782036B1 - PAHs-Heavy Metals Composite Pollution Degradation / Adsorbed Bacteria and Its Applications in Environmental Pollution Restoration - Google Patents

PAHs-Heavy Metals Composite Pollution Degradation / Adsorbed Bacteria and Its Applications in Environmental Pollution Restoration Download PDF

Info

Publication number
JP6782036B1
JP6782036B1 JP2019223490A JP2019223490A JP6782036B1 JP 6782036 B1 JP6782036 B1 JP 6782036B1 JP 2019223490 A JP2019223490 A JP 2019223490A JP 2019223490 A JP2019223490 A JP 2019223490A JP 6782036 B1 JP6782036 B1 JP 6782036B1
Authority
JP
Japan
Prior art keywords
pahs
heavy metals
pm1b
sphingobium
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019223490A
Other languages
Japanese (ja)
Other versions
JP2021016385A (en
Inventor
▲劉▼沙沙
付建平
袁国▲棟▼
▲呉▼▲賢▼格
▲呉▼国▲トン▼
李▲暁▼峰
Original Assignee
肇▲慶▼学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肇▲慶▼学院 filed Critical 肇▲慶▼学院
Application granted granted Critical
Publication of JP6782036B1 publication Critical patent/JP6782036B1/en
Publication of JP2021016385A publication Critical patent/JP2021016385A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Soil Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】PAHs-重金属複合汚染分解/吸着細菌及び環境汚染修復におけるその応用の提供。【解決手段】当該菌株はスフィンゴビウム属細菌(Sphingobium sp.)PM1Bであり、2019年3月28日に中国典型培養物寄託センターに寄託され、寄託番号がCCTCC NO: M 2019212である。当該菌株は多環芳香族炭化水素に対して良い分解効果があり、一方、重金属に対して吸着作用がある。電子廃棄物解体エリア、下水灌漑地域、産業及び鉱業地域、汚染地域等の水体と土壌環境を含むPAHs-重金属複合汚染環境のカバナンスと修復に応用できる。幅広い応用見通しがある。【選択図】なしPROBLEM TO BE SOLVED: To provide PAHs-heavy metal composite pollution decomposition / adsorbed bacteria and its application in environmental pollution repair. The strain is Sphingobium sp. PM1B, which was deposited at the China Typical Culture Depositary Center on March 28, 2019, and the deposit number is CCTCC NO: M 2019212. The strain has a good decomposing effect on polycyclic aromatic hydrocarbons, while it has an adsorptive effect on heavy metals. It can be applied to the coverage and restoration of PAHs-heavy metal complex contaminated environment including water and soil environment such as electronic waste dismantling area, sewage irrigation area, industrial and mining area, contaminated area. There is a wide range of application prospects. [Selection diagram] None

Description

本発明は、生物による環境汚染物質の処理の分野に関し、更に詳細には、PAHs-重金属複合汚染分解/吸着細菌及び環境汚染修復におけるその応用に関する。 The present invention relates to the field of treatment of environmental pollutants by living organisms, and more particularly to its application in PAHs-heavy metal composite pollutant decomposition / adsorbed bacteria and environmental pollution repair.

多環芳香族炭化水素(PAHs)は残留性有機汚染物質であり、主に石油流出事故、石炭、石油、木材、有機高分子化合物または化学燃料の不完全燃焼から発生するものである。経済の発展及び工業化のプロセスの加速に伴い、より多くのPAHsが環境中に入り、深刻な汚染を引き起こす。なお、マイニング、排気ガス、固形廃棄物の蓄積、下水灌漑、農薬の不当な使用などの原因で、大量の重金属が環境中に入り、蓄積し続ける。環境中の汚染物質は単一の形で存在しなく、調査と研究により、中国の多くの地域の大気、水及び土壌はさまざまな程度のPAHs重金属汚染の影響を受けていることが示されている。例えば、練江、大燕川及び珠江出海口の水、堆積物、水生生物体内及び電子廃棄物解体エリアの土壌と大気で同時に検出されている。 Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants, primarily resulting from oil spills, incomplete combustion of coal, petroleum, wood, organic macromolecular compounds or chemical fuels. As the economic development and the process of industrialization accelerate, more PAHs enter the environment and cause serious pollution. Due to mining, exhaust gas, accumulation of solid waste, sewage irrigation, improper use of pesticides, etc., a large amount of heavy metals enter the environment and continue to accumulate. Pollutants in the environment do not exist in a single form, and research and research have shown that air, water and soil in many parts of China are affected by varying degrees of PAHs heavy metal pollution. There is. For example, it has been detected simultaneously in the soil and air of the water, sediments, aquatic organisms and e-waste dismantling areas of the Neri River, the Oyan River and the Pearl River Haikou.

重金属は、分解されにくい毒性汚染物質であり、生体内で蓄積し、毒性が高い特性を持っている。PAHsには発がん性、催奇性及び変異原性などの影響がある。重金属とPAHsは、生態環境を損なうだけでなく、直接接触または食物連鎖を通じて人体に入り、人間の健康に深刻な脅威をもたらす。当該二種類の汚染物は環境で長続きに存在し、結果として生じた複合汚染は、環境と人間にとってより有害である。従って、PAHs‐重金属複合汚染環境のカバナンスと修復を実施することが急務である。環境での重金属とPAHsは長期的に共存し、両者の間に物理化学的特性の差異が大きく、複雑な相互作用が発生するために、複合汚染の修復が困難になる。 Heavy metals are toxic pollutants that are difficult to decompose, accumulate in vivo, and have highly toxic properties. PAHs have effects such as carcinogenicity, teratogenicity and mutagenicity. Heavy metals and PAHs not only damage the ecological environment, but also enter the human body through direct contact or the food chain and pose a serious threat to human health. The two types of pollutants are long-lasting in the environment, and the resulting complex pollution is more harmful to the environment and humans. Therefore, there is an urgent need to carry out coverage and restoration of PAHs-heavy metal complex contaminated environments. Heavy metals and PAHs in the environment coexist for a long period of time, and the difference in physicochemical properties between them is large, and complex interactions occur, which makes it difficult to repair complex contamination.

現在、PAHs‐重金属複合汚染の修復技術として主に物理化学的手法及び生物的手法がある。物理化学的な修復技術は、吸着法、酸化還元、ゲスト土壌法、土壌洗浄法及び改良法などを含む。操作が簡単で、修復速度が速いが、コストが高い、PAHsと重金属との両方を含む廃水または土壌に対する処理効果が明らかではない、生態環境を損傷し、二次汚染などの問題を招致しやすい。微生物による修復は環境から汚染物質を除去する有効な方法の1つであり、経済的で、便利で、新しい汚染を引き起こしにくい利点を有する。微生物は、自分自身の代謝活動を通じて、毒性が高く構造が複雑な汚染物質を低毒性または無毒の化合物に分解することができ、環境からPAHsを除去する主な方法である。近年、国内外の学者は、PAHsを分解する微生物に関して鋭意研究を行い、細菌、真菌、放線菌及び藻類等を含むPAHsを分解できる、70個を超える属、200個を超える種類の微生物を分離された。一方、微生物の細胞表面に多数の官能基(例えば、カルボキシル基、ヒドロキシル基、アミノ基及びアミド基)とアクティブサイトとが存在するので、重金属に対して良好な吸着作用がある。環境メディア(environmental media)における重金属を除去するために有効な吸着材料として微生物を使用するのは広く注目された。 Currently, there are mainly physicochemical and biological methods for repairing PAHs-heavy metal complex contamination. Physicochemical restoration techniques include adsorption methods, redox methods, guest soil methods, soil cleaning methods and improvement methods. Easy to operate, fast to repair, but expensive, treatment effect on wastewater or soil containing both PAHs and heavy metals is unclear, damage to ecological environment, prone to problems such as secondary pollution .. Microbial repair is one of the effective ways to remove pollutants from the environment and has the advantages of being economical, convenient and less prone to new pollution. Microorganisms can break down highly toxic and structurally complex pollutants into low-toxic or non-toxic compounds through their own metabolic activity and are the main method of removing PAHs from the environment. In recent years, domestic and foreign scholars have conducted intensive research on microorganisms that decompose PAHs, and isolated more than 70 genera and 200 types of microorganisms that can decompose PAHs including bacteria, fungi, actinomycetes and algae. Was done. On the other hand, since a large number of functional groups (for example, carboxyl group, hydroxyl group, amino group and amide group) and active sites are present on the cell surface of the microorganism, it has a good adsorption action on heavy metals. The use of microorganisms as an effective adsorbent for removing heavy metals in environmental media has received widespread attention.

中国特許出願公開第105013815号明細書Chinese Patent Application Publication No. 10513815

前記の課題に対して、本発明は、PAHs-重金属複合汚染分解/吸着細菌及びその応用を提供する。 To the above-mentioned problems, the present invention provides PAHs-heavy metal composite polluting / adsorbing bacteria and their applications.

本発明の上記目的は開示された以下の技術案によって達成される。 The above object of the present invention is achieved by the following technical proposals disclosed.

本発明に係るスフィンゴビウム属細菌(Sphingobium sp.)PM1Bは、2019年3月28日に中国典型培養物寄託センターにブタペスト条約に基づく国際寄託がなされ、寄託番号がCCTCC NO: M 2019212であり、場所が中国.武漢.武漢大学であり、住所が湖北省武漢市武昌珞珈山である。 (. Sphingobium sp) sphingolipid bi Umm bacteria belonging to the genus according to the present invention PM1B is gunna international deposit based on the Budapest Treaty on China typical culture Depositary Center on March 28, 2019, deposit number CCTCC NO: in M 2019212 Yes, the place is China. Wuhan. It is Wuhan University and its address is Wuchang Coffee Mountain, Wuhan City, Hubei Province.

前記スフィンゴビウム属細菌(Sphingobium sp.)PM1Bは、広東省清遠龍塘鎮電子廃棄物解体エリアの焼却現場で家畜化し、スクリーニングし、分離してから獲得されたものである。前記スフィンゴビウム属細菌PM1Bの平板での形態として、コロニーは明るい黄色で、球形、縁が規則、表面が隆起、表面が滑らかで湿り、不透明であり、電子顕微鏡で観察された当該細菌の形状は棒状である。 The Sphingobium sp. PM1B was obtained after domestication, screening, and isolation at an incineration site in the electronic waste dismantling area of Longtang Town, Qingyuan Province, Guangdong Province. The morphology of the Sphingobium bacterium PM1B on a flat plate is bright yellow, spherical, regular edges, raised surface, smooth, moist, opaque surface, and the shape of the bacterium observed with an electron microscope. Is rod-shaped.

16SrDNA配列解析によって菌株の分類鑑定を行い、生工生物工程(上海)有限会社に委託して完成し、長さが1428bpの配列を得る。菌株に対して配列の相同性の比較を行うことによって、PM1Bの16SrDNA配列とスフィンゴビウム属細菌(Sphingobium sp.)との相同性が99%に達したので、当該菌種をスフィンゴビウム属細菌に帰属する。 16SrDNA sequence analysis is used to classify and appraise the strain, and the strain is outsourced to Biotechnology (Shanghai) Co., Ltd. to complete the sequence to obtain a sequence with a length of 1428 bp. By comparing the sequence homology with respect to the strain, the homology between the 16S rDNA sequence of PM1B and the Sphingobium bacterium (Sphingobium sp.) Reached 99%. It belongs to bacteria.

前記スフィンゴビウム属細菌(Sphingobium sp.)PM1Bの16SrDNAのヌクレオチド配列はSeq ID No:1に示す。 The nucleotide sequence of 16S rDNA of the Sphingobium sp. PM1B is shown in Seq ID No: 1.

本発明の二番目の目的として、前記スフィンゴビウム属細菌(Sphingobium sp.)はPAHsの分解及び/又は重金属の吸着転化における応用を提供する。 As a second object of the present invention, the Sphingobium sp. Provides an application in the decomposition of PAHs and / or the adsorption conversion of heavy metals.

前記PAHsがピレン及び/又はフェナントレンであることは好ましい。 It is preferred that the PAHs are pyrene and / or phenanthrene.

前記重金属が銅及び/又はカドミウムであることは好ましい。 It is preferable that the heavy metal is copper and / or cadmium.

本発明の三番目の目的として、前記スフィンゴビウム属細菌(Sphingobium sp.)PM1Bの菌株を含む、PAHsの分解及び/又は重金属の吸着転化できる分解菌を提供する。 A third object of the present invention is to provide a degrading bacterium capable of degrading PAHs and / or adsorbing and converting heavy metals, including a strain of the Sphingobium sp. PM1B.

ほとんどの菌株はPAHsを分解するのみ、重金属に耐性と吸着機能がなく、または重金属を吸着するのみ、PAHsを分解できないため、目下の研究は、微生物による単一の重金属またはPAHsの除去に注目している。本発明はスクリーニングによってスフィンゴビウム属細菌を獲得し、色んなPAHsを分解でき、且つ重金属も吸着でき、PAHs-重金属複合汚染の水土環境のカバナンスと修復に応用できる。応用対象として、電子廃棄物解体エリア、下水灌漑地域、産業及び鉱業地域、汚染地域等、及びその周辺環境を挙げられる、生態環境及び人間の健康に対する重金属及びPAHsの損傷を有効に減らすことができる。 Current research focuses on the removal of single heavy metals or PAHs by microorganisms, as most strains only degrade PAHs, have no resistance and adsorption to heavy metals, or only adsorb heavy metals and cannot degrade PAHs. ing. The present invention can acquire Sphingobium bacteria by screening, decompose various PAHs, adsorb heavy metals, and can be applied to the coverage and restoration of the aquatic environment of PAHs-heavy metal complex contamination. It can effectively reduce the damage of heavy metals and PAHs to the ecological environment and human health, including electronic waste dismantling areas, sewage irrigation areas, industrial and mining areas, contaminated areas, etc. and their surrounding environments. ..

本発明に提供されたスフィンゴビウム属細菌を利用してPAHsと重金属汚染を処理することは、物理吸着、化学改良及び酸化還元法に比べて、効果が良く、コストが低く、環境保護等の利点を持っている。 Treating PAHs and heavy metal contamination using the Sphingobium bacteria provided in the present invention is more effective, less costly, environmentally friendly, etc. than physical adsorption, chemical improvement and redox methods. Has an advantage.

図面に基づいて、本発明を更に説明する。ただし、図面の実施例は本発明を限定するものではなく、当業者が創造的な労力を付与することなく、これらの図面によって他の図面を得ることも可能である。
スフィンゴビウム属細菌PM1Bの平板での形態。 スフィンゴビウム属細菌PM1Bの電子顕微鏡での形態。 ピレン、フェナントレン、銅及びカドミウムの複合システムの中で、細菌PM1Bがフェナントレン及びピレンに対する分解効果と時間との関係を示す図である。 ピレン、フェナントレン、銅及びカドミウムの複合システムの中で、細菌PM1Bが銅及びカドミウムに対する吸着効果と時間との関係を示す図である。 菌液が土壌サンプルのおけるピレン、フェナントレン、銅及びカドミウムを除去する効果である。
The present invention will be further described with reference to the drawings. However, the embodiments of the drawings do not limit the present invention, and it is possible for those skilled in the art to obtain other drawings from these drawings without any creative effort.
Flat plate morphology of Sphingobium bacterium PM1B. Electron microscopic morphology of the Sphingobium bacterium PM1B. It is a figure which shows the relationship between the decomposition effect of bacterium PM1B on phenanthrene and pyrene, and time in the complex system of pyrene, phenanthrene, copper and cadmium. It is a figure which shows the relationship between the adsorption effect of bacteria PM1B on copper and cadmium, and time in the complex system of pyrene, phenanthrene, copper and cadmium. The bacterial solution is the effect of removing pyrene, phenanthrene, copper and cadmium in soil samples.

具体的な実施例に合わせて本発明をさらに説明する。 The present invention will be further described with reference to specific examples.

実施例1:
スフィンゴビウム属細菌PM1Bの菌株の分離鑑定。
Example 1:
Isolation and analysis of strains of Sphingobium bacterium PM1B.

1、土壌サンプル
試験用土壌サンプルは広東省清遠龍塘鎮電子廃棄物解体エリアの焼却現場から採取され、表土を除去された後、5-20cmの深さの範囲の土壌を取って密封袋に入れ、実験室に持ち帰り、-20℃の冷蔵庫に保管される。
1. Soil sample The test soil sample is taken from the incineration site in the electronic waste dismantling area of Longtang Town, Guangdong Province, and after the topsoil is removed, the soil in the depth range of 5-20 cm is taken and put into a sealed bag. Put it in, take it back to the laboratory, and store it in a refrigerator at -20 ° C.

2、培地と溶液の調製
無機塩培地(MSM)の組成:5mlリン酸緩衝食塩液(KH2PO4 8.5 g/L、K2HPO4・3H2O
21.75 g/L、Na2HPO4・12H2O 33.4g/L、NH4Cl 5.0 g/L); 3mL MgSO4の溶液(22.5 g/L); 1mL FeCl3水溶液(0.25 g/L);1mL CaCl2溶液(36.4 g/L);1mL微量元素溶液(MnSO4・H2O 39.9 mg/L、ZnSO4・H2O 42.8 mg/L、(NH4)6Mo7O24・4H2O 34.7 mg/L),1Lまで定容し、pH値が7.2~7.4である。
PAHsストック溶液:アセトンを溶媒として、ピレン(1 g/L)とフェナントレン(1 g/L)との母液をそれぞれ調整し、バックアップのために冷蔵庫で4℃に保管する。
重金属ストック溶液:一定量のCd(NO3)2、Cu(NO3)2を量ってそれぞれに脱イオン水に溶解し、濃度が1g/であるCd2+、Cu2+ストック溶液に調製する。
2, composition of the medium and the solution prepared mineral salts medium (MSM): 5 ml phosphate buffered saline (KH 2 PO 4 8.5 g / L, K 2 HPO 4 · 3H 2 O
21.75 g / L, Na 2 HPO 4 /12H 2 O 33.4 g / L, NH 4 Cl 5.0 g / L); 3 mL DDL 4 solution (22.5 g / L); 1 mL FeCl 3 aqueous solution (0.25 g / L); 1 mL CaCl 2 solution (36.4 g / L); 1 mL trace element solution (MnSO 4 · H 2 O 39.9 mg / L, ZnSO 4 · H 2 O 42.8 mg / L, (NH 4 ) 6 Mo 7 O 24 · 4H 2 O 34.7 mg / L), the volume is up to 1 L, and the pH value is 7.2 to 7.4.
PAHs stock solution: Prepare the mother liquor of pyrene (1 g / L) and phenanthrene (1 g / L) using acetone as a solvent, and store at 4 ° C in the refrigerator for backup.
Heavy metal stock solution: Weigh a certain amount of Cd (NO 3 ) 2 and Cu (NO 3 ) 2 and dissolve them in deionized water to prepare a Cd 2+ and Cu 2+ stock solution with a concentration of 1 g /. To do.

3、PAHs-重金属を分解吸着する菌の家畜化、スクリーニング及び分離
10g土壌を量って250 mLの三角フラスコに入れ、100 mL滅菌された酸性ピロリン酸ナトリウム(Na2P2O7・7H2O,2. 8 g/L)を入れ、超音波で均一に振動する(3 min)、シェーカーで一晩振ってスタンバイバクテリア溶液を得て、ストックする。
3. Domestication, screening and isolation of bacteria that decompose and adsorb PAHs-heavy metals
Weigh 10g soil placed in 250 mL Erlenmeyer flask, 100 mL sterile sodium acid pyrophosphate (Na 2 P 2 O 7 · 7H 2 O, 2. 8 g / L) were charged, uniformly ultrasonic Shake overnight (3 min) and shake overnight in a shaker to obtain a standby bacterial solution and stock.

先ず、10mL前記スタンバイバクテリア溶液をピレンとフェナントレンを有するMSM培地に接種し、150rpm、30℃で7dに培養した後、その中から10mL上澄み液を取って、フェナントレン(50mg/L)、ピレン(10mg/L)、Cd2+(5mg/L)、Cu2+(20 mg/L)を含むMSM培地に移動する。培養システムの総容量は100mLであり、上記ステップを繰り返し、家畜化を5回行う。 First, 10 mL of the standby bacterial solution was inoculated into MSM medium containing pyrene and phenanthrene, cultured at 150 rpm and 30 ° C. at 7d, and then 10 mL of the supernatant was taken from the medium, and phenanthrene (50 mg / L) and pyrene (10 mg) were taken. Transfer to MSM medium containing / L), Cd 2+ (5 mg / L), Cu 2+ (20 mg / L). The total volume of the culture system is 100 mL, and the above steps are repeated to domesticate 5 times.

最後のサイクルの家畜化された培養菌液5mLを取って、10倍希釈方法で、細菌溶液を10-1~10-7勾配の懸濁液に希釈した後、0.1mLを取って肉汁固体培地に塗りて、平板を反転して30℃の生化学インキュベーターに置き、3-4日を経て、コロニーがよく成長した後、コロニーの形態を観察する。 Take 5 mL of the domesticated cultured bacterial solution of the last cycle, dilute the bacterial solution into a suspension with a gradient of 10 -1 to 10 -7 by a 10-fold dilution method, and then take 0.1 mL and take 0.1 mL of meat juice solid medium. Invert the plate and place it in a biochemical incubator at 30 ° C. After 3-4 days, after the colonies have grown well, observe the morphology of the colonies.

平板での異なる形態特徴なコロニーを選択し、改めて100 mLの50mg/Lフェナントレン、10mg/Lピレン及び5mg/L Cd2+、20 mg/L Cu2+を含むMSM培地に移動し、振動培養でPAHsを分解する能力と重金属を吸着する能力があるかどうかを検証する。培地の色が濁りであるフラスコを選択し、上記のステップを繰り返し、精製を3回に行って、菌株の純度及び分解/吸着性能の安定性を確保する。最後、ピレン/フェナントレン‐銅/びカドミウム複合汚染の分解吸着能力が最高、成長性能が穏やかな菌株を標的菌株として、PM1Bという番号を付く。 Select colonies with different morphological characteristics on a flat plate, transfer to MSM medium containing 100 mL of 50 mg / L phenanthrene, 10 mg / L pyrene and 5 mg / L Cd 2+ , 20 mg / L Cu 2+, and culture by vibration. To verify the ability to decompose PAHs and adsorb heavy metals. Select a flask whose medium color is turbid, repeat the above steps, and perform purification three times to ensure the purity of the strain and the stability of the decomposition / adsorption performance. Finally, the strain with the highest decomposition and adsorption capacity of pyrene / phenanthrene-copper / cadmium complex contamination and moderate growth performance is numbered PM1B as the target strain.

実施例2
スフィンゴビウム属細菌(Sphingobium sp.)PM1Bの菌株の分解吸着性能。
Example 2
Degradation and adsorption performance of Sphingobium sp. PM1B strains.

MSM溶液で菌株を菌懸濁液に作成し、OD600を0.6に調整し、10%の比例で50 mg/Lフェナントレン、10 mg/Lピレン、5 mg/L Cd2+と20 mg/L Cu2+を含む18mL MSMの培養システムに加入し、いずれの処理に三つの重複を設置し、30℃,150 rpmの条件で振動培養を行い、定期的にPM1Bの成長量及び溶液に残るピレン、フェナントレン、銅、びカドミウムの濃度を測定する。実験中の汚染物質の非生物学的な損失を分析するために、菌がないブランクコントロールを設定する。 Strains were prepared in bacterial suspension with MSM solution, OD 600 was adjusted to 0.6, 50 mg / L phenanthrene, 10 mg / L pyrene, 5 mg / L Cd 2+ and 20 mg / L in 10% proportions. subscribing to 18 mL MSM culture system containing Cu 2 +, established three overlapping any treatment, 30 ° C., subjected to vibration of culture under the condition of 0.99 rpm, regularly pyrene remain in growth volume and solution of PM1B , Phenanthrene, copper, and cadmium concentrations are measured. Set up a fungus-free blank control to analyze the non-biological loss of contaminants during the experiment.

フェナントレンとピレンの濃度は高速液体クロマトグラフィー(HPLC)で測定する。フラスコに適量なクロマトグラフィーグレードのメタノールクロマトグラフィーを入れ、フェナントレンとピレンを完全に溶解させるために一定期間の超音波処理を行い、50 mLのメスフラスコに移動してメタノールで定容する。0.22 μmの有機相フィルターを使ってHPLCに入ってフェナントレンの濃度を測定する。フェナントレンとピレンとの測定波長はそれぞれ234と250 nmであり、移動相はメタノール/超純水(v/v,90/10)であり、各反応系溶液に対して遠心分離を行い、定量な上澄み液を取って、0.22 μmのフィルターで濾過し、原子吸光分析装置でカドミウム及び銅の濃度を測定する。 The concentrations of phenanthrene and pyrene are measured by high performance liquid chromatography (HPLC). Place an appropriate amount of chromatography-grade methanol chromatography in the flask, sonicate for a period of time to completely dissolve phenanthrene and pyrene, transfer to a 50 mL volumetric flask and volume with methanol. Enter HPLC using a 0.22 μm organic phase filter to measure the concentration of phenanthrene. The measurement wavelengths of phenanthrene and pyrene are 234 and 250 nm, respectively, and the mobile phase is methanol / ultrapure water (v / v, 90/10), and each reaction system solution is centrifuged to quantify. The supernatant is taken, filtered through a 0.22 μm filter, and the concentrations of cadmium and copper are measured with an atomic absorption spectrometer.

実験の結果は図3に示すように、ピレン、フェナントレン、銅及びカドミウムの複合システムの中で、時間の経つにつれて、菌PM1Bがピレン、フェナントレンに対する分解効果が徐々に増加した。120hの時、フェナントレンとピレンとの除去率は89.58%と38.81%に達した。なお、PM1Bは銅及びカドミウムに対して、ある程度の吸着作用(図4を参照)があり、吸着率も、時間の経つにつれて増加し、36hの時、銅及びカドミウムに対する吸着率が一番高い、それぞれ63.03%と48.04%であった。その後、菌PM1Bは銅に対して僅かな脱着効果があるが、ほとんど40%くらいに維持していた。 As shown in Fig. 3, the experimental results showed that the decomposition effect of the fungus PM1B on pyrene and phenanthrene gradually increased over time in the complex system of pyrene, phenanthrene, copper and cadmium. At 120h, the removal rates of phenanthrene and pyrene reached 89.58% and 38.81%. In addition, PM1B has a certain adsorption effect on copper and cadmium (see Fig. 4), and the adsorption rate also increases with the passage of time, and at 36h, the adsorption rate on copper and cadmium is the highest. They were 63.03% and 48.04%, respectively. After that, the fungus PM1B had a slight desorption effect on copper, but it was maintained at about 40%.

本発明に係るスフィンゴビウム属細菌は、多種のPAHsを有効に分解できるし、重金属も吸着できる。PAHs-重金属複合汚染の水土環境のカバナンスと修復に応用できる。 The bacterium belonging to the genus Sphingobium according to the present invention can effectively decompose various PAHs and can also adsorb heavy metals. PAHs-Can be applied to the coverage and restoration of aquatic environment of heavy metal complex contamination.

実施例3
スフィンゴビウム属細菌PM1Bは電子廃棄物解体エリアの土壌に対する修復。
Example 3
Sphingobium bacterium PM1B repairs soil in the electronic waste demolition area.

土壌サンプルは広東省清遠龍塘鎮電子廃棄物解体エリアの周辺の農地から取られたのである。中に様々な重金属とPAHs汚染物を含んでいる。一定量の汚染土壌を量ってガラス培養装置に入れ、菌液を土壌に接種し、土壌の湿度をフィールドの最大保水力の60%に維持され、バクテリアがないコントロールグループを設置する。30℃の条件で、自然光で60dに培養した後、土壌でのピレン、フェナントレン、銅及びカドミウムの残留濃度を測定する。実験の結果は図5に示すように、 2ヶ月の微生物の分解/吸着を通して、土壌でのピレン、フェナントレン、銅及びカドミウムの除去率はそれぞれ79.47%、34.92%、59.12%及び37.98%であり、スフィンゴビウム属細菌PM1Bは実際にPAHs-重金属複合汚染土壌に対して良い修復効果がある。 Soil samples were taken from farmland around the e-waste dismantling area in Longtang Town, Qingyuan Province, Guangdong Province. It contains various heavy metals and PAHs contaminants. A certain amount of contaminated soil is weighed and placed in a glass incubator, the soil is inoculated with bacterial solution, the soil humidity is maintained at 60% of the maximum water retention capacity of the field, and a bacteria-free control group is set up. After culturing to 60d in natural light under the condition of 30 ° C., the residual concentrations of pyrene, phenanthrene, copper and cadmium in the soil are measured. As shown in Fig. 5, the results of the experiment showed that the removal rates of pyrene, phenanthrene, copper and cadmium in the soil were 79.47%, 34.92%, 59.12% and 37.98%, respectively, through the decomposition / adsorption of microorganisms for 2 months. Sphingobium bacterium PM1B actually has a good repair effect on PAHs-heavy metal complex contaminated soil.

最後に説明するはずのは、以上の実施例が本発明の技術構想を容易に理解するための技術案であり、本発明の保護範囲を限定するものではない。実施例によって本発明に対して詳しく説明しましたが、本発明の趣旨を逸脱しない範囲で、創造的労働を付与しない前提下で得られる別のすべての実施例は本発明の範囲内に含まれると当業者が理解すべきである。 Lastly, the above-described embodiment is a technical proposal for easily understanding the technical concept of the present invention, and does not limit the scope of protection of the present invention. Although the present invention has been described in detail by examples, all other examples obtained under the premise that creative labor is not imparted are included within the scope of the present invention without departing from the spirit of the present invention. Should be understood by those skilled in the art.

Claims (3)

スフィンゴビウム属細菌(Sphingobium sp.)PM1Bであって、
寄託番号がCCTCC NO: M 2019212であることを特徴とする。
Sphingobium sp. PM1B,
The deposit number is CCTCC NO: M 2019212.
前記スフィンゴビウム属細菌(Sphingobium sp.)PM1Bの16S rDNAのヌクレオチド配列はSeq ID No:1に示す
ことを特徴とする請求項1に記載のスフィンゴビウム属細菌(Sphingobium sp.)PM1B。
The Sphingobium sp. PM1B according to claim 1, wherein the nucleotide sequence of 16S rDNA of the Sphingobium sp. PM1B is shown in Seq ID No: 1.
分解細菌剤であって、
請求項1又は2に記載のスフィンゴビウム属細菌(Sphingobium sp.)PM1B菌株を含む
ことを特徴とする。

It is a degrading bacterial agent
It is characterized by containing the Sphingobium sp. PM1B strain according to claim 1 or 2.

JP2019223490A 2019-07-22 2019-12-11 PAHs-Heavy Metals Composite Pollution Degradation / Adsorbed Bacteria and Its Applications in Environmental Pollution Restoration Active JP6782036B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910658863.0A CN110317760B (en) 2019-07-22 2019-07-22 PAHs-heavy metal combined pollution degrading/adsorbing bacterium and application thereof in environmental pollution remediation
CN201910658863.0 2019-07-22

Publications (2)

Publication Number Publication Date
JP6782036B1 true JP6782036B1 (en) 2020-11-11
JP2021016385A JP2021016385A (en) 2021-02-15

Family

ID=68124136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223490A Active JP6782036B1 (en) 2019-07-22 2019-12-11 PAHs-Heavy Metals Composite Pollution Degradation / Adsorbed Bacteria and Its Applications in Environmental Pollution Restoration

Country Status (2)

Country Link
JP (1) JP6782036B1 (en)
CN (1) CN110317760B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789278A (en) * 2021-09-17 2021-12-14 天津科技大学 Actinomycete strain QX-1
CN114107276A (en) * 2021-11-29 2022-03-01 青岛大学 Mushroom-stick biochar immobilized phenanthrene degradation microbial inoculum and preparation method and application thereof
CN114540226A (en) * 2022-02-18 2022-05-27 中国科学院广州地球化学研究所 Polycyclic aromatic hydrocarbon degrading strain LJB-25 in petroleum-polluted soil, and microbial inoculum and application thereof
CN116836897A (en) * 2023-09-04 2023-10-03 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) Sphingomonas strain, repairing microbial agent, and preparation method and application thereof
CN118599738A (en) * 2024-08-06 2024-09-06 南京农业大学 Preparation method of organic contaminated soil carbon fixation and decontamination functional flora

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713946B (en) * 2019-10-28 2021-07-20 中国农业科学院研究生院 Sphingosine bacteria capable of degrading bisphenol A and triphenyl phosphate
CN110734882B (en) * 2019-11-25 2022-07-05 上海交通大学 Phenanthrene efficient degradation strain and application thereof in environmental remediation
CN112852660A (en) * 2021-01-05 2021-05-28 西南科技大学 Microbial agent for repairing coking soil and application thereof
CN113583899B (en) * 2021-07-19 2022-08-23 河南师范大学 Sphingosine strain JT-M9-H as polycyclic aromatic hydrocarbon degrading strain
CN116042484B (en) * 2023-02-20 2023-06-16 中国环境科学研究院 Alkali-resistant microbial strain PDC-1 and application thereof in-situ remediation of organic contaminated soil in mining area
CN118360220B (en) * 2024-06-11 2024-09-24 东莞理工学院 Sphingolipid (Sphingobium sp.) QY1-1, microbial inoculum and method and application for co-degrading phenanthrene and pyrene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511769B1 (en) * 2003-07-25 2005-09-02 한국생명공학연구원 Sphingobium sp. microorganism degrading polychlorinated biphenyls and method for environmental cleanup using the same
JP4633496B2 (en) * 2005-02-23 2011-02-16 独立行政法人産業技術総合研究所 New microorganism
CN105255753A (en) * 2015-09-02 2016-01-20 中山大学 Effective degradation strain for phenanthrene Sphingobium sp. Phe-1 and application thereof
CN105802883A (en) * 2016-04-12 2016-07-27 中国科学院南京土壤研究所 Method for improving screening efficiency of high-ring PAHs (polycyclic aromatic hydrocarbons) degrading bacteria
CN105861366B (en) * 2016-04-19 2019-06-14 南京大学 Application of the polycyclic aromatic hydrocarbon-degrading bacteria FA1 in absorption heavy metal Pb ion
CN106190922B (en) * 2016-08-11 2020-01-21 中山大学 New sphingolipid bacterium (Novosphingobium sp.)1MP25 strain capable of degrading polycyclic aromatic hydrocarbon
JP7067706B2 (en) * 2017-04-25 2022-05-16 国立大学法人長岡技術科学大学 Transformed microorganisms and their utilization
CN107306532B (en) * 2017-06-13 2021-09-07 南京农业大学 Method for simultaneously removing USEPA PAHs in plant body by using composite PAHs degrading bacteria
CN107497850B (en) * 2017-09-05 2018-10-16 成都德菲环境工程有限公司 A kind of complex biological preparation for repairing polluted soil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789278A (en) * 2021-09-17 2021-12-14 天津科技大学 Actinomycete strain QX-1
CN114107276A (en) * 2021-11-29 2022-03-01 青岛大学 Mushroom-stick biochar immobilized phenanthrene degradation microbial inoculum and preparation method and application thereof
CN114107276B (en) * 2021-11-29 2024-03-26 青岛大学 Bacteria stick biochar immobilized phenanthrene degradation microbial agent, and preparation method and application thereof
CN114540226A (en) * 2022-02-18 2022-05-27 中国科学院广州地球化学研究所 Polycyclic aromatic hydrocarbon degrading strain LJB-25 in petroleum-polluted soil, and microbial inoculum and application thereof
CN114540226B (en) * 2022-02-18 2023-04-25 中国科学院广州地球化学研究所 Polycyclic aromatic hydrocarbon degrading strain LJB-25 in petroleum polluted soil, and microbial inoculum and application thereof
CN116836897A (en) * 2023-09-04 2023-10-03 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) Sphingomonas strain, repairing microbial agent, and preparation method and application thereof
CN116836897B (en) * 2023-09-04 2023-11-28 山东省科学院生态研究所(山东省科学院中日友好生物技术研究中心) Sphingomonas strain, repairing microbial agent, and preparation method and application thereof
CN118599738A (en) * 2024-08-06 2024-09-06 南京农业大学 Preparation method of organic contaminated soil carbon fixation and decontamination functional flora

Also Published As

Publication number Publication date
CN110317760A (en) 2019-10-11
JP2021016385A (en) 2021-02-15
CN110317760B (en) 2020-09-29

Similar Documents

Publication Publication Date Title
JP6782036B1 (en) PAHs-Heavy Metals Composite Pollution Degradation / Adsorbed Bacteria and Its Applications in Environmental Pollution Restoration
Wang et al. Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX
CN106834269A (en) A kind of immobilized microspheres of PAEs degradation bacterias and its preparation method and application
CN105950501B (en) The general bacterium of one plant of degrading polycyclic aromatic hydrocarbons class organic pollutant
CN113930365B (en) Pseudomonas aeruginosa for degrading polycyclic aromatic hydrocarbon and application thereof
Mathivanan et al. Tolerance and biosorption of cadmium (II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment
CN111733098B (en) Application of bacillus in low-temperature degradation of petroleum hydrocarbon
CN110078220B (en) Method and strain for in-situ remediation of arsenic-polluted high-saline water by using blue-green algae
CN106635909B (en) Crude oil degradation mixed bacteria, microbial inoculum and application thereof
CN103013850A (en) Salt-resistant alkali-resistant Cr(VI) reduction microbe and screening method thereof
CN110643534A (en) Phellinus deltoidea capable of degrading triphenyl phosphate
CN111117909B (en) Strain capable of resisting multiple heavy metals and promoting plant growth and application thereof
CN101063097A (en) Xylose oxidation achromatous bacillus SY8 for purifying arsenic contamination and usage thereof
CN104388328A (en) Novel strain for degrading 5-ring and 6-ring polycyclic aromatic hydrocarbons, and acquisition method and application thereof
CN101972774A (en) Microbial repair method of oil-polluted wetland
CN113897314B (en) Method for degrading tri (2-chloropropyl) phosphate by adopting amycolatopsis and application of method
CN113957014A (en) Functional strain with polyhalogenated hydrocarbon degradation and chromium (VI) reduction activities and application thereof
CN116254188B (en) Strain SRB-6 and application thereof in degrading herbicide acetochlor under anaerobic condition
CN104845890B (en) Applications of earth mould (Agromyces sp.) the MT E in a variety of phthalic acid esters of degrading
CN114874916B (en) Fuscoporia fungus (Sarocladium kiliense) ZJ-1 and application thereof
Tariq et al. Bioremediation of Mercury Compounds by using Immobilized Nitrogen-fixing Bacteria.
CN103320350B (en) Tistrella mobilis bacterial strain, polycyclic aromatic hydrocarbon degradation reagent, soil remediation reagent, and the application of Tistrella mobilis bacterial strain
CN109207400B (en) Composite microbial inoculum for efficiently degrading phthalic acid ester in black soil and degradation method
CN108102977B (en) Degradation strain JN2 for petroleum hydrocarbons in oily sludge and application thereof
CN111187728A (en) Clostridium bifidum ST12 and application thereof in azo dye degradation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191211

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200824

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6782036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250