JP6781074B2 - Rechargeable battery - Google Patents

Rechargeable battery Download PDF

Info

Publication number
JP6781074B2
JP6781074B2 JP2017036784A JP2017036784A JP6781074B2 JP 6781074 B2 JP6781074 B2 JP 6781074B2 JP 2017036784 A JP2017036784 A JP 2017036784A JP 2017036784 A JP2017036784 A JP 2017036784A JP 6781074 B2 JP6781074 B2 JP 6781074B2
Authority
JP
Japan
Prior art keywords
folded
electrode
positive electrode
secondary battery
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036784A
Other languages
Japanese (ja)
Other versions
JP2018142483A (en
Inventor
愛佳 木村
愛佳 木村
水田 政智
政智 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Japan Ltd
Original Assignee
Envision AESC Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envision AESC Japan Ltd filed Critical Envision AESC Japan Ltd
Priority to JP2017036784A priority Critical patent/JP6781074B2/en
Publication of JP2018142483A publication Critical patent/JP2018142483A/en
Application granted granted Critical
Publication of JP6781074B2 publication Critical patent/JP6781074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、二次電池に関するものである。 The present invention relates to a secondary battery.

従来の二次電池としては、特許文献1に記載されている構成が知られている。この二次電池は、1枚のシートに予め凹部を1個形成し凹部内に電極体を格納しシートを折り返して外装体とするとともに、電極体に接続した正極端子及び負極端子を外装体から突出させている。 As a conventional secondary battery, the configuration described in Patent Document 1 is known. In this secondary battery, one recess is formed in advance on one sheet, the electrode body is stored in the recess, the sheet is folded back to form an exterior body, and the positive electrode terminal and the negative electrode terminal connected to the electrode body are formed from the exterior body. It is protruding.

特開2007−141714号公報Japanese Unexamined Patent Publication No. 2007-141714

しかしながら、特許文献1の二次電池の場合、凹部の頂部から折り返しているため、電極体が外装体の外縁に沿って配置されているため、内部で発生したガスは、シート同士を重ねて熱封止した辺の近傍に移動し溜まることになる。たまったガスは、熱封止部を剥離させようとする。その結果、封止性が低下する。
本発明は、封止性を向上させる二次電池を提供することを目的とする。
However, in the case of the secondary battery of Patent Document 1, since the electrode body is arranged along the outer edge of the exterior body because it is folded back from the top of the recess, the gas generated inside is heated by overlapping the sheets. It will move to the vicinity of the sealed side and accumulate. The accumulated gas tries to peel off the heat-sealed portion. As a result, the sealing property is lowered.
An object of the present invention is to provide a secondary battery having improved sealing performance.

本発明の二次電池は、正極層、負極層、および正極層と負極層との間に配置されたセパレータを含む電極体と、電解質と、電極体と電解質とを内部に格納する空間を有する外装体と、電極体に電気的に接続され、かつ外装体の外部に少なくとも一部が突出する電極端子とを有する二次電池であって、外装体は、電極体を挟んで一枚のシート折り返して重ねた折り返し辺と、折り返辺以外の辺においてシート同士を熱融着した熱封止辺とを形成することにより、折り返し辺及び熱封止辺が電極体の厚さ方向の略中央に位置するように空間を形成し折り返し辺を挟んで折り返から電極体の厚さ方向に拡がる外装体の2つの面のそれぞれには、空間側に凹む方向に形成された凹部が、シートの折り返し面を基準にして面対称に配置され、折り返し辺の中央付近から電極体の厚さ方向への凹部の曲率半径は、折り返し辺の端部近傍から電極体の厚さ方向への凹部の曲率半径より大きいことを特徴としている。 Secondary battery of the present invention includes a positive electrode layer, negative electrode layer, and an electrode comprising an arranged separators between the positive electrode layer and negative electrode layer, an electrolyte, a space for storing the electrode body and an electrolyte inside A secondary battery having an exterior body and an electrode terminal electrically connected to the electrode body and having at least a part protruding to the outside of the exterior body. The exterior body is a single piece sandwiching the electrode body. the folded sides overlaid by return folded sheets, by forming a heat seal sides were heat-sealed sheets between the return Shi other than the side edges folding, thickness folded edges and heat sealed sides of the electrode assembly is to form a space so as to be located substantially in the center direction, each of the two faces of the outer body extending from the folding return Shi sides across the folded edges in the thickness direction of the electrode bodies in a direction recessed space side The formed recesses are arranged symmetrically with respect to the folded surface of the sheet, and the radius of curvature of the recesses in the thickness direction of the electrode body from the vicinity of the center of the folded side is from the vicinity of the end of the folded side to the electrode body. It is characterized in that it is larger than the radius of curvature of the recess in the thickness direction .

本発明は、折り返し辺の外装体の外周面に凹部を設けたことにより、凹部が外装体外側に広がることでガスの蓄積を許容でき、熱封止部にかかる剥離方向の力を低減することができ、封止性を向上させることができる。 According to the present invention, by providing a recess on the outer peripheral surface of the exterior body on the folded side, the recess can be allowed to accumulate by expanding to the outside of the exterior body, and the force in the peeling direction applied to the heat sealing portion can be reduced. And the sealing performance can be improved.

本発明の実施形態に係る二次電池の平面図である。It is a top view of the secondary battery which concerns on embodiment of this invention. 図1のA−A断面である。It is a cross section AA of FIG. 図1のB−B断面図である。It is a cross-sectional view of BB of FIG. 図1のC−C断面図である。FIG. 5 is a sectional view taken along the line CC of FIG. 図1のD−D断面図である。FIG. 1 is a sectional view taken along line DD of FIG. 図1の二次電池の外装体を取り除いた平面図である。It is a top view which removed the exterior body of the secondary battery of FIG. 図1の二次電池を端子側から見た図である。It is the figure which looked at the secondary battery of FIG. 1 from the terminal side. 図1の二次電池の製造工程を説明する図である。It is a figure explaining the manufacturing process of the secondary battery of FIG. 図7(c)の端子が突出した辺の熱封止を説明する図である。It is a figure explaining the heat sealing of the side where the terminal of FIG. 7C protrudes.

図を使用して、本発明の実施形態に係る二次電池を説明する。まず、図1から図7を使
用して二次電池の構成を説明し、図8及び図9を使用して製造方法を説明する。本実施形態の二次電池としてのリチウムイオン二次電池1は、外装体2、電極端子3,4、電極体5、電解質を含んで構成される。リチウムイオン二次電池1の外観形状を図1に、各断面構造を図2から図5に、部分的に詳細な構造を図6及び図7に示す。なお、各図において、同一の要素同士、或いは相当する要素同士には、互いに同一の符号を付し、重複する説明を省略する。また、各図の寸法比率は、実際のものとは異なる場合がある。
The secondary battery according to the embodiment of the present invention will be described with reference to the drawings. First, the configuration of the secondary battery will be described with reference to FIGS. 1 to 7, and the manufacturing method will be described with reference to FIGS. 8 and 9. The lithium ion secondary battery 1 as the secondary battery of the present embodiment is configured to include an exterior body 2, electrode terminals 3 and 4, an electrode body 5, and an electrolyte. The external shape of the lithium ion secondary battery 1 is shown in FIG. 1, each cross-sectional structure is shown in FIGS. 2 to 5, and partially detailed structures are shown in FIGS. 6 and 7. In each figure, the same elements or the corresponding elements are designated by the same reference numerals, and duplicate description will be omitted. In addition, the dimensional ratio of each figure may differ from the actual one.

まず、外装体について説明する。図に示す2はリチウムイオン二次電池1の外装体であり、扁平でかつ主面は略矩形形状をしている。外装体2は一枚のシートを折り返して使用される。各図の20は折返し辺を示している。図2の拡大図は一枚のシートの構造を示している。例えば、熱融着性樹脂層21と金属層22と保護層23との三層構造を有するラミネートフィルム構造である。以下、外装体2として完成する前のシートをラミネートフィルム2と称することがある。熱融着性樹脂層21は、熱融着が可能な合成樹脂、例えば、ポリプロピレン(PP)等のポリオレフィン系樹脂を使用できる。金属層22は、例えばアルミ箔を使用することで水分の侵入を防止できる。保護層23は、耐久性あるいは耐熱性に優れた合成樹脂、例えば、ポリエチレンテレフタレート(PET)やナイロンを使用できる。なお、保護層23は必須のものではなく、金属層22の内側に熱融着性樹脂21を備えた構成であってもよい。熱融着性樹脂層21は、30μmから100μmが好ましい。バリア層22は12μm〜50μmが好ましい。保護層23は6μmから50μmが好ましい。 First, the exterior body will be described. Reference numeral 2 shown in the figure is an exterior body of the lithium ion secondary battery 1, which is flat and has a substantially rectangular main surface. The exterior body 2 is used by folding back one sheet. 20 in each figure shows in fold return sides. The enlarged view of FIG. 2 shows the structure of one sheet. For example, it is a laminated film structure having a three-layer structure of a thermosetting resin layer 21, a metal layer 22, and a protective layer 23. Hereinafter, the sheet before being completed as the exterior body 2 may be referred to as a laminated film 2. As the thermosetting resin layer 21, a synthetic resin capable of thermosetting, for example, a polyolefin resin such as polypropylene (PP) can be used. The metal layer 22 can be prevented from invading moisture by using, for example, an aluminum foil. For the protective layer 23, a synthetic resin having excellent durability or heat resistance, for example, polyethylene terephthalate (PET) or nylon can be used. The protective layer 23 is not essential, and may have a configuration in which the thermosetting resin 21 is provided inside the metal layer 22. The thermosetting resin layer 21 is preferably 30 μm to 100 μm. The barrier layer 22 is preferably 12 μm to 50 μm. The protective layer 23 is preferably 6 μm to 50 μm.

26及び27はラミネートフィルム2の熱融着性樹脂層21同士を熱融着した熱封止部である。28は後述する正負極端子3,4とラミネートフィルム2の熱融着性樹脂層21とを熱融着した熱封止部である。折り返し辺20の両端は熱封止部27,28と重複しており折り返し辺20の熱封止部の間は熱封止していない未熱封止部である。外装体2は、折り返し辺20と熱封止部26,27,28を結ぶ面を折り返し面としこれを基準にして略面対称となるように形成されている。ここで、図2の11と図3の12は折り返し辺20の外装体外周面に形成された凹部であり、折り返し辺20の中央付近の凹部11の曲率半径は折り返し辺20の端部側(熱封止部近傍)の凹部12の曲率半径より大きくなっている。また、図2の13と図4及び図5の14は熱封止部における外装体外周面に形成された凹部であり、折り返し辺20の凹部11,12の曲率半径は、折り返し辺20と対向する外装体の辺の外装体外周面の凹部13より曲率半径が大きくなっている。凹部の形状は、主に後述する余剰電解質の量と後述する製造工程における減圧前後の外装体内の空間体積の変化量によって調整することができる。 Reference numerals 26 and 27 are heat-sealing portions in which the thermosetting resin layers 21 of the laminate film 2 are heat-sealed together. Reference numeral 28 denotes a heat-sealing portion in which the positive and negative terminals 3 and 4 described later and the heat-sealing resin layer 21 of the laminate film 2 are heat-sealed. Both ends of the folded side 20 overlap with the heat-sealed portions 27 and 28, and the heat-sealed portion of the folded side 20 is an unheat-sealed portion that is not heat-sealed. The exterior body 2 is formed so that the surface connecting the folded side 20 and the heat-sealed portions 26, 27, 28 is the folded surface and is substantially symmetrical with respect to this. Here, 11 of FIG. 2 and 12 of FIG. 3 are recesses formed on the outer peripheral surface of the outer body of the folded side 20, and the radius of curvature of the recess 11 near the center of the folded side 20 is the end side of the folded side 20 ( It is larger than the radius of curvature of the recess 12 (near the heat-sealed portion). 13 of FIG. 2 and 14 of FIGS. 4 and 5 are recesses formed on the outer peripheral surface of the exterior body in the heat-sealed portion, and the radius of curvature of the recesses 11 and 12 of the folded side 20 faces the folded side 20. The radius of curvature is larger than the recess 13 on the outer peripheral surface of the exterior body on the side of the exterior body. The shape of the recess can be adjusted mainly by the amount of excess electrolyte described later and the amount of change in the space volume inside the exterior body before and after depressurization in the manufacturing process described later.

次に、電極端子について説明する。3は正極端子であり、正極端子3は正極端子本体31、正極端子本体31の長手方向(突出方向)の一部分においてその周囲に形成された正極端子樹脂層32により構成されている。正極端子本体31は、例えばアルミニウム板である。形状は例えば直方体であり外装体2からの突出方向を基準にして、幅(端子が突出する外装体の辺に平行な部分の長さ)、厚さ(端子が突出する外装体の辺に垂直方向の長さ)、長さ(突出方向の長さ)の順に40mmから100mm、0.1mmから0.5mm、30mmから60mmが好ましい。正極端子樹脂層32は、例えばポリプロピレンなどのポリオレフィン系樹脂を使用でき、ラミネートフィルム2の熱融着性樹脂層21と熱融着させるため、熱融着性樹脂層21と同種のものが好ましい。正負極端子樹脂層32の厚さとしては0.1mmから0.2mmが好ましい。 Next, the electrode terminals will be described. Reference numeral 3 denotes a positive electrode terminal, and the positive electrode terminal 3 is composed of a positive electrode terminal main body 31 and a positive electrode terminal resin layer 32 formed around a part of the positive electrode terminal main body 31 in the longitudinal direction (protruding direction). The positive electrode terminal body 31 is, for example, an aluminum plate. The shape is, for example, a rectangular parallelepiped, and the width (the length of the portion parallel to the side of the exterior body from which the terminal protrudes) and the thickness (vertical to the side of the exterior body where the terminal protrudes) are based on the direction of protrusion from the exterior body 2. It is preferably 40 mm to 100 mm, 0.1 mm to 0.5 mm, and 30 mm to 60 mm in this order of length) and length (length in the protruding direction). As the positive electrode terminal resin layer 32, for example, a polyolefin resin such as polypropylene can be used, and since it is heat-sealed with the heat-sealing resin layer 21 of the laminate film 2, the same type as the heat-sealing resin layer 21 is preferable. The thickness of the positive / negative terminal resin layer 32 is preferably 0.1 mm to 0.2 mm.

4は負極端子であり、負極端子4は、負極端子本体41、負極端子本体41の長手方向(突出方向)の一部分においてその周囲に形成された負極端子樹脂層42により構成されている。負極端子本体41は例えば銅板である。これに限定されず、銅板にニッケルメッキを施したり、さらに耐腐食層を表面に形成することもできる。形状は例えば直方体であ
り、外装体2からの突出方向を基準にして、幅(端子が突出する外装体の辺に平行な部分の長さ)、厚さ(端子が突出する外装体の辺に垂直方向の長さ)、長さ(突出方向の長さ)の順に40mmから100mm、0.05mmから0.3mm、30mmから60mmが好ましい。負極端子樹脂層42は例えばポリプロピレン等のポリオレフィン系樹脂を使用でき、ラミネートフィルム2の熱融着性樹脂21と熱融着させるため、ラミネートフィルム2の熱融着性樹脂21と同種のものが好ましい。負極端子樹脂層42の厚さとしては0.05mmから0.15mmが好ましい。
Reference numeral 4 denotes a negative electrode terminal, and the negative electrode terminal 4 is composed of a negative electrode terminal main body 41 and a negative electrode terminal resin layer 42 formed around a part of the negative electrode terminal main body 41 in the longitudinal direction (protruding direction). The negative electrode terminal body 41 is, for example, a copper plate. Not limited to this, the copper plate can be nickel-plated, and a corrosion-resistant layer can be formed on the surface. The shape is, for example, a rectangular parallelepiped, and the width (the length of the portion parallel to the side of the exterior body on which the terminal protrudes) and the thickness (on the side of the exterior body on which the terminal protrudes) are based on the direction of protrusion from the exterior body 2. The length in the vertical direction) and the length (length in the protruding direction) are preferably 40 mm to 100 mm, 0.05 mm to 0.3 mm, and 30 mm to 60 mm in this order. For the negative electrode terminal resin layer 42, for example, a polyolefin resin such as polypropylene can be used, and since it is heat-sealed with the heat-sealing resin 21 of the laminate film 2, the same type as the heat-sealing resin 21 of the laminate film 2 is preferable. .. The thickness of the negative electrode terminal resin layer 42 is preferably 0.05 mm to 0.15 mm.

次に、電極体5について説明する。電極体5は、本実施形態では、負極層7、セパレータ8、正極層6、セパレータ8の順で繰り返し積層され、積層方向の最外層には負極層7が配置された積層構造体となっている。なお、1層の正極層と、1層の負極層と、正極層と負極層の間および正極層と負極層の一方側に配置された2層のセパレータによるいわゆる巻回構造体も使用可能である。 Next, the electrode body 5 will be described. In the present embodiment, the electrode body 5 is a laminated structure in which the negative electrode layer 7, the separator 8, the positive electrode layer 6, and the separator 8 are repeatedly laminated in this order, and the negative electrode layer 7 is arranged on the outermost layer in the stacking direction. There is. A so-called wound structure consisting of one positive electrode layer, one negative electrode layer, and two layers of separators arranged between the positive electrode layer and the negative electrode layer and on one side of the positive electrode layer and the negative electrode layer can also be used. is there.

正極層6は、図2、図4、図5では3層で構成されている。61は正極集電箔である。62は正極集電箔61の両側に形成された正極活物質層である。63は正極集電箔61から延出され、正極活物質層62が形成されていない部分であり、正極集電箔リード部と称する。図6で示すように、正極活物質層62は主面が矩形の形状となっている。正極活物質層62の周縁は負極活物質層72の周縁より内側となるサイズとなっている。正極集電箔リード部63は正極集電箔61から延出する方向を基準にして幅が狭く形成されている。正極集電箔61はアルミ箔、アルミニウム合金箔、銅箔、ニッケル箔等の電気化学的に安定した金属箔が使用できる。 The positive electrode layer 6 is composed of three layers in FIGS. 2, 4, and 5. Reference numeral 61 denotes a positive electrode current collector foil. Reference numeral 62 denotes a positive electrode active material layer formed on both sides of the positive electrode current collecting foil 61. Reference numeral 63 denotes a portion extending from the positive electrode current collecting foil 61 and not forming the positive electrode active material layer 62, and is referred to as a positive electrode current collecting foil lead portion. As shown in FIG. 6, the positive electrode active material layer 62 has a rectangular main surface. The peripheral edge of the positive electrode active material layer 62 has a size inside the peripheral edge of the negative electrode active material layer 72. The positive electrode current collecting foil lead portion 63 is formed to have a narrow width with reference to the direction extending from the positive electrode current collecting foil 61. As the positive electrode current collecting foil 61, an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil can be used.

正極活物質層62は、例えば、ニッケル酸リチウム(例:LiNiO)、マンガン酸リチウム(例:LiMnO)、スピネル型マンガン酸リチウム(例:LiMn)、またはコバルト酸リチウム(例:LiCoO)等のリチウム複合酸化物からなる正極活物質と、バインダと、バインダを溶解可能な溶剤とを混合したものを、正極集電箔61の主面に塗布し、乾燥させて溶剤を除去することにより形成される。ここで、リチウム複合酸化物の遷移金属(Ni、Mn、Co)の一部は、Li、Mg、B、Al、V、Cr、Fe、Co、Ni、Mn、W、またはTi等で置換されていてもよい。なお、正極活物質層62に用いられるリチウム複合酸化物の少なくとも一部は、スピネル型であることが好ましい。なぜならこの種の材料は、他の種の材料に比べて、充放電によるリチウムの吸蔵放出に伴う結晶構造変化が、比較的安定的であるため、粒子の変形によって粒子間の空孔が狭くなることが減少し、後に述べる面内方向のLiイオン移動性の低下が、より少なくなるからである。 The positive electrode active material layer 62 is, for example, lithium nickel oxide (eg LiNiO 2 ), lithium manganate (eg LiMnO 2 ), spinel-type lithium manganate (eg LiMn 2O 4 ), or lithium cobalt oxide (eg LiMn 2 O 4 ). A mixture of a positive electrode active material made of a lithium composite oxide such as LiCoO 2 ), a binder, and a solvent capable of dissolving the binder is applied to the main surface of the positive electrode current collector foil 61 and dried to remove the solvent. It is formed by doing. Here, a part of the transition metal (Ni, Mn, Co) of the lithium composite oxide is replaced with Li, Mg, B, Al, V, Cr, Fe, Co, Ni, Mn, W, Ti or the like. May be. It is preferable that at least a part of the lithium composite oxide used in the positive electrode active material layer 62 is a spinel type. This is because this type of material has a relatively stable crystal structure change due to the occlusion and release of lithium due to charging and discharging, and therefore the pores between the particles become narrower due to the deformation of the particles, compared to other types of materials. This is because the decrease in Li ion mobility in the in-plane direction, which will be described later, is lessened.

また、正極活物質層62には、アセチレンブラック、カーボンブラック、黒鉛、繊維状炭素等の炭素材料からなる導電助剤を添加しても良い。バインダは、例えば、ポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等が単独若しくは組み合わせて用いられる。3本の正極集電箔リード部63はその一端側で正極端子本体31上に重ねられ、正極端子本体31と電気的に接続されている。接続方法としては超音波溶接が使用でき、図6に示す64が溶接部である。 Further, a conductive auxiliary agent made of a carbon material such as acetylene black, carbon black, graphite or fibrous carbon may be added to the positive electrode active material layer 62. The binder includes, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, carboxymethyl cellulose, polytetrafluoroethylene, polypropylene. , Polyethylene, polyimide, polyamideimide and the like are used alone or in combination. The three positive electrode current collecting foil lead portions 63 are superposed on the positive electrode terminal main body 31 on one end side thereof and are electrically connected to the positive electrode terminal main body 31. Ultrasonic welding can be used as the connection method, and 64 shown in FIG. 6 is a welded portion.

負極層7は、図2、図4、図5では正極層6より1層多い4層で構成されている。71は負極集電箔である。72は負極集電箔71の両側に形成された負極活物質層である。73は負極集電箔71から延出され負極活物質層72が形成されていない部分であり、負極集電箔リード部と称する。図6に示すように負極活物質層72は主面が矩形の形状となっ
ている。負極集電箔71は銅箔、ステンレス箔、または、鉄箔等の電気化学的に安定した金属箔から構成されている。負極活物質層72の活物質材としては非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、黒鉛、あるいは非晶質炭素で被覆された黒鉛等のような、リチウムイオンを吸蔵および放出する負極活物質に結着剤を混合したものを使用できる。なお、正極活物質層62に用いられるバインダや導電助剤は、負極活物質層62にも共通して用いることができる。4本の負極集電箔リード部73はその一端側で負極端子本体41上に重ねられ、負極端子本体41と電気的に接続されている。接続方法としては超音波溶接が使用でき、図6に示す74が溶接部である。
The negative electrode layer 7 is composed of four layers, one layer more than the positive electrode layer 6 in FIGS. 2, 4, and 5. Reference numeral 71 denotes a negative electrode current collecting foil. Reference numeral 72 denotes negative electrode active material layers formed on both sides of the negative electrode current collecting foil 71. Reference numeral 73 denotes a portion extending from the negative electrode current collecting foil 71 and not forming the negative electrode active material layer 72, and is referred to as a negative electrode current collecting foil lead portion. As shown in FIG. 6, the negative electrode active material layer 72 has a rectangular main surface. The negative electrode current collecting foil 71 is made of an electrochemically stable metal foil such as a copper foil, a stainless foil, or an iron foil. The active material of the negative electrode active material layer 72 occludes and releases lithium ions such as amorphous carbon, non-graphitized carbon, easily graphitized carbon, graphite, or graphite coated with amorphous carbon. A mixture of a negative electrode active material and a binder can be used. The binder and the conductive auxiliary agent used in the positive electrode active material layer 62 can also be used in common with the negative electrode active material layer 62. The four negative electrode current collecting foil lead portions 73 are superposed on the negative electrode terminal main body 41 on one end side thereof, and are electrically connected to the negative electrode terminal main body 41. Ultrasonic welding can be used as the connection method, and 74 shown in FIG. 6 is a welded portion.

次に、セパレータ8について説明する。図2、図4、図5では6層で構成されている。正極層6と負極層7の間に配置されたセパレータ8は、図6に示すように主面が矩形の形状であり、セパレータ8の周縁は、負極活物質層72の周縁及び正極活物質層62の周縁より外側となるサイズとしている。セパレータ8はリチウムイオンを通過できかつ正極活物質層62と負極活物質層72の間の電気的絶縁をとると共に後述する電解質を保持する機能を有するものであって、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性単層膜や、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造のものや、ポリオレフィン微多孔性膜と有機不織布等を積層したものも用いることができる。また、シリカ、アルミナ、マグネシア、ジルコニア、チタニアなどの無機粒子をポリオレフィン微多孔膜の片面あるいは両面に付着させたものや、これらの無機粒子をポリオレフィン膜に分散させたものも用いることができる。セパレータの厚さは、10μmから40μmが好ましい。薄すぎると機械的強度に懸念があり、厚すぎると、後に述べるセパレータの表裏面間のLiイオン移動性が悪くなる。 Next, the separator 8 will be described. In FIGS. 2, 4 and 5, it is composed of 6 layers. As shown in FIG. 6, the separator 8 arranged between the positive electrode layer 6 and the negative electrode layer 7 has a rectangular main surface, and the peripheral edge of the separator 8 is the peripheral edge of the negative electrode active material layer 72 and the positive electrode active material layer. The size is outside the peripheral edge of 62. The separator 8 has a function of allowing lithium ions to pass through, providing electrical insulation between the positive electrode active material layer 62 and the negative electrode active material layer 72, and holding an electrolyte, which will be described later. For example, polyethylene (PE) or A microporous single-layer film composed of polypropylene or the like such as polypropylene (PP), a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic non-woven fabric is also used. be able to. Further, those in which inorganic particles such as silica, alumina, magnesia, zirconia, and titania are adhered to one side or both sides of the polyolefin microporous membrane, and those in which these inorganic particles are dispersed in the polyolefin membrane can also be used. The thickness of the separator is preferably 10 μm to 40 μm. If it is too thin, there is a concern about mechanical strength, and if it is too thick, the Li ion mobility between the front and back surfaces of the separator, which will be described later, deteriorates.

次に、電解質(不図示)について説明する。電解質はリチウムイオン二次電池1に一般的に利用される電解質、例えば、溶媒にリチウム塩が溶解した非水電解質を用いることができる。溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の溶媒を一種または二種以上組み合わせた有機溶媒を用いることができる。また、リチウム塩としては、例えば、LiPF、LiBF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO等を用いることができる。 Next, the electrolyte (not shown) will be described. As the electrolyte, an electrolyte generally used for the lithium ion secondary battery 1, for example, a non-aqueous electrolyte in which a lithium salt is dissolved in a solvent can be used. As the solvent, for example, an organic solvent in which one or more kinds of solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate can be used can be used. Further, as the lithium salt, for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3, and the like can be used. ..

電解質の量は、余剰電解質分が含まれた量とする。ここで余剰電解質量とは、外装体2内に存在する全電解質の体積から、正極層6の空孔体積、負極層7の空孔体積、およびセパレータ8の空孔体積の合計(以下、電極体5の空孔体積)を差し引いた電解質量である。この値が正のとき、電解質量の倍率(外装体2内に存在する全電解質の体積/電極体5の空孔体積)としては、電極体5の空孔体積の1倍を超えることになる。電解質量の倍率は、電極体5の空孔体積に対して1倍超であればよいが、1.1倍〜1.7倍の電解質量となるように設定することが好ましく、倍率が1.2倍〜1.6倍であることがさらに好ましい。外装体2内に、電極体5の空孔体積を満たす電解質量と余剰電解質分とを含む量の電解質が収容された状態で、例えば、複数のリチウムイオン二次電池1を扁平面を対向させリチウムイオン二次電池1の厚さ方向に積層しケースの一部または別の弾性部材により外装体2の外側から電極体5の扁平面を加圧すると、電極体5の主面側と外装体2の間の余剰電解質が外装体2内における電極体5の周辺部、すなわち電極体5の電極の積層方向に対し垂直方向に移動して貯留される。 The amount of electrolyte shall be the amount including excess electrolyte. Here, the surplus electrolyte mass is the total of the pore volume of the positive electrode layer 6, the pore volume of the negative electrode layer 7, and the pore volume of the separator 8 from the volume of the total electrolyte existing in the exterior body 2 (hereinafter, the electrode). It is the electrolytic mass obtained by subtracting the pore volume of the body 5. When this value is positive, the magnification of the electrolytic mass (volume of all electrolytes existing in the exterior body 2 / volume of pores in the electrode body 5) exceeds 1 times the volume of pores in the electrode body 5. .. The magnification of the electrolytic mass may be more than 1 times with respect to the pore volume of the electrode body 5, but it is preferable to set the electrolytic mass to be 1.1 times to 1.7 times, and the magnification is 1. It is more preferably 2 times to 1.6 times. In a state where the outer body 2 contains an amount of electrolyte containing an electrolytic mass that fills the pore volume of the electrode body 5 and a surplus electrolyte component, for example, a plurality of lithium ion secondary batteries 1 are opposed to each other on a flat surface. When the flat surface of the electrode body 5 is pressed from the outside of the exterior body 2 by a part of the case or another elastic member stacked in the thickness direction of the lithium ion secondary battery 1, the main surface side of the electrode body 5 and the exterior body are pressed. The excess electrolyte between 2 moves and is stored in the peripheral portion of the electrode body 5 in the exterior body 2, that is, in the direction perpendicular to the stacking direction of the electrodes of the electrode body 5.

この貯留分を収納するために、電極体5の外縁と外装体2の内側とは1mmから5mm程度離間させておくことが好ましい。この貯留分を収納するための離間部分は、外装体2と電極体5の4辺すべてとの間に設けることが好ましい。余剰電解質は、後に述べるように、電極体5に対するLiイオンの供給源になるため、4方向から供給可能としたほうが好ましいからである。また、Liイオン供給源としての観点から、前記離間部分の距離が
小さすぎて余剰電解質が少なすぎると、サイクル特性が低下し、前記離間部分の離間が大きすぎると主面の面内方向に電池外形サイズを大きくすることにつながるのでスペース効率の悪化が著しくなる。
In order to store this stored portion, it is preferable that the outer edge of the electrode body 5 and the inner side of the exterior body 2 are separated by about 1 mm to 5 mm. It is preferable that the separated portion for accommodating the stored portion is provided between the exterior body 2 and all four sides of the electrode body 5. This is because the surplus electrolyte serves as a supply source of Li ions for the electrode body 5, as will be described later, and therefore it is preferable that the surplus electrolyte can be supplied from four directions. Further, from the viewpoint as a Li ion supply source, if the distance between the separated portions is too small and the excess electrolyte is too small, the cycle characteristics deteriorate, and if the distance between the separated portions is too large, the battery is in the in-plane direction of the main surface. Since it leads to an increase in the external size, the space efficiency is significantly deteriorated.

外装体2の内部でガスが発生した場合、ガスは電極体5外装体2の間であってかつ電極体5の積層方向に対して直角方向の領域に移動する。折り返し辺20には外装体2の外周面に凹部11,12があるため、凹部の変形によりガスの蓄積を容易にしている。ヒーターヘッド100,120,130によって形成された熱融着部は、ラミネートフィルムの内面同士または電極端子樹脂の表面とラミネートフィルムの内面とが熱融着されているため、ラミネートフィルムが外側に広がる力は折り返し辺20と比べて相対的に弱い。そのため、熱封止部の剥離方向にかかる力により生じる封止性の低下を抑制することができる。 When gas is generated inside the exterior body 2, the gas moves to a region between the electrode body 5 exterior body 2 and in a direction perpendicular to the stacking direction of the electrode body 5. Since the folded side 20 has recesses 11 and 12 on the outer peripheral surface of the exterior body 2, the deformation of the recess facilitates the accumulation of gas. In the heat-sealed portions formed by the heater heads 100, 120, and 130, the inner surfaces of the laminated films or the surface of the electrode terminal resin and the inner surface of the laminated film are heat-sealed, so that the force of the laminated film to spread outward. Is relatively weak compared to the folded side 20. Therefore, it is possible to suppress a decrease in sealing property caused by a force applied in the peeling direction of the heat-sealing portion.

なお、図7は図1の正負極端子3,4側から見た側面図であり、後述する図9の封止工程により形成される。折り返し辺20から近い位置には、ニッケルメッキした銅を主材とした厚さ0.2μm、幅60mmの負極端子本体41の周囲に厚さ0.1mmの負極端子樹脂層42を形成した負極端子4を配置し、折り返し辺20に遠い位置には、アルミニウムを主材とした厚さ0.4μm、幅60mmの正極端子本体31の周囲に厚さ0.15mmの正極端子樹脂層32を形成した正極端子3を配置している。つまり、折返し辺に近い側に配置した負極端子4の厚さ(0.4mm)が、折返し辺から遠い側に配置した正極端子3の厚さ(0.7mm)より薄くなっている。折り返し辺に近い側に配置した負極端子の厚さは、遠い位置に配置した正極端子3の厚さの0.57倍となっている。正負極端子本体31,41の厚さを変え、正負極樹脂層32,42の厚さを同じにすることも可能であるが、0.6倍より小さいことが好ましい。 Note that FIG. 7 is a side view seen from the positive / negative terminal terminals 3 and 4 of FIG. 1, and is formed by the sealing step of FIG. 9 described later. A negative electrode terminal having a thickness of 0.2 μm and a width of 60 mm and a negative electrode terminal resin layer 42 having a thickness of 0.1 mm formed around a negative electrode terminal body 41 made of nickel-plated copper at a position close to the folded side 20. 4 is arranged, and a positive electrode terminal resin layer 32 having a thickness of 0.15 mm is formed around a positive electrode terminal body 31 having a thickness of 0.4 μm and a width of 60 mm using aluminum as a main material at a position far from the folded side 20. The positive electrode terminal 3 is arranged. In other words, the thickness of the negative electrode terminal 4 which is disposed closer to the in fold return side (0.4 mm) is thinner than the thickness of the positive electrode terminal 3 arranged from in fold return side farther (0.7 mm) There is. The thickness of the negative electrode terminal arranged on the side near the folded side is 0.57 times the thickness of the positive electrode terminal 3 arranged at a distant position. It is possible to change the thickness of the positive and negative electrode terminal bodies 31 and 41 to make the thickness of the positive and negative electrode resin layers 32 and 42 the same, but it is preferably smaller than 0.6 times.

図8及び図9を使用して、リチウムイオン二次電池1の製造工程を説明する。図8(a)は外装体の準備工程である。この工程では、折り返す前の1枚のシート(ラミネートフィルム2)を用意する。図8(b)は格納工程を示す。この工程では、あらかじめ正負極端子3,4と電極体5とを接続した状態のものを用意し、電極体5の負極層7の主面をラミネートフィルム2の面に対向させつつラミネートフィルム2の所定位置に配置し、かつ正負極端子3,4の正負極端子樹脂層32,42を外装体2の封止部28となる領域に配置した。このとき、電極体5の負極活物質層72と対向する正極活物質層62の主面は110mm×200mmのサイズのものを用い、負極活物質層72の主面は120mm×210mmのサイズのものを用いた。正極層6と負極層7は以下のように作成した。 The manufacturing process of the lithium ion secondary battery 1 will be described with reference to FIGS. 8 and 9. FIG. 8A is a preparation step of the exterior body. In this step, one sheet (laminated film 2) before folding is prepared. FIG. 8B shows a storage process. In this step, a state in which the positive and negative electrode terminals 3 and 4 and the electrode body 5 are connected in advance is prepared, and the main surface of the negative electrode layer 7 of the electrode body 5 faces the surface of the laminate film 2 while the laminate film 2 is formed. It was arranged at a predetermined position, and the positive and negative electrode terminal resin layers 32 and 42 of the positive and negative electrode terminals 3 and 4 were arranged in a region to be a sealing portion 28 of the exterior body 2. At this time, the main surface of the positive electrode active material layer 62 facing the negative electrode active material layer 72 of the electrode body 5 is 110 mm × 200 mm in size, and the main surface of the negative electrode active material layer 72 is 120 mm × 210 mm in size. Was used. The positive electrode layer 6 and the negative electrode layer 7 were created as follows.

第一の正極活物質としてスピネル構造を有するLi1.1Mn1.9粉末と、第二の正極活物質としてリチウム・ニッケル・コバルト・マンガン酸リチウム(Ni/Liモル比0.7)と、バインダーとしてポリフッ化ビニリデンと、導電助剤としてカーボンブラック粉末とを、固形分質量比で71:23:2:4の割合で、溶媒であるN−メチル−2−ピロリドン(NMP)中に添加することで正極スラリーを調製した。この正極スラリーを正極集電箔61上に塗布・乾燥して正極集電箔61に正極活物質層62を形成した。正極活物質層の片面あたりの厚さは79μmであった。 First and Li 1.1 Mn 1.9 O 4 powder having a spinel structure as a positive electrode active material, the second cathode active material as a lithium-nickel-cobalt-lithium manganate (Ni / Li molar ratio 0.7) And, polyvinylidene fluoride as a binder and carbon black powder as a conductive auxiliary agent in a solid content mass ratio of 71: 23: 2: 4 in N-methyl-2-pyrrolidone (NMP) as a solvent. A positive electrode slurry was prepared by addition. This positive electrode slurry was applied and dried on the positive electrode current collector foil 61 to form the positive electrode active material layer 62 on the positive electrode current collector foil 61. The thickness of the positive electrode active material layer per one side was 79 μm.

負極活物質として非晶質性炭素で被覆された球状天然黒鉛粉末と、フッ素樹脂系バインダーとしてポリフッ化ビニリデンと、カーボンブラック系導電助剤とを、固形分質量比で96.5:3:0.5の割合でN−メチル−2−ピロリドン(NMP)中に添加し、攪拌させることで、これらの材料をNMP中に均一に分散させて負極スラリーを作製した。この負極スラリーを負極集電箔71上に塗布・乾燥して負極集電箔71に負極活物質層72を形成した。負極活物質層72の片面あたりの厚さは60μmであった。 Spherical natural graphite powder coated with amorphous carbon as a negative electrode active material, polyvinylidene fluoride as a fluororesin-based binder, and a carbon black-based conductive auxiliary agent in a solid content mass ratio of 96.5: 3: 0. By adding to N-methyl-2-pyrrolidone (NMP) at a ratio of .5 and stirring, these materials were uniformly dispersed in NMP to prepare a negative electrode slurry. This negative electrode slurry was applied and dried on the negative electrode current collector foil 71 to form the negative electrode active material layer 72 on the negative electrode current collector foil 71. The thickness of the negative electrode active material layer 72 per one side was 60 μm.

図8(c)は、折り返し工程、仮封止工程、注液工程及び最終封止工程を示している。
折り返し辺20となる位置を基準としてラミネートフィルム2を折り返し(折り返し工程)、ヒーターヘッド100、ヒータヘッド120により熱封止した(仮封止工程)。次いで、熱封止していない残りの辺を上向きとした状態で真空チャンバー内に配置し、熱封止していない辺から電解液を注入した。この注入工程では、エチレンカーボネートおよびジエチルカーボネートの3:7混合溶媒に1MのLiPF6を溶解した電解質を注入し、外装体2内部を減圧した。その後、最終封止工程として、ヒーターヘッド130によって熱融着して外装体2を密閉し、真空チャンバー内を大気圧に戻した後、真空チャンバーから取出し、種々の検査を行い出荷可能なリチウムイオン二次電池1を作製した。
FIG. 8C shows a folding step, a temporary sealing step, a liquid injection step, and a final sealing step.
The laminate film 2 was folded back (folding step) with reference to the position of the folded side 20, and heat-sealed by the heater head 100 and the heater head 120 (temporary sealing step). Next, it was placed in the vacuum chamber with the remaining unheat-sealed side facing upward, and the electrolytic solution was injected from the unheat-sealed side. In this injection step, an electrolyte in which 1 M of LiPF6 was dissolved in a 3: 7 mixed solvent of ethylene carbonate and diethyl carbonate was injected to reduce the pressure inside the exterior body 2. After that, as a final sealing step, the exterior body 2 is sealed by heat fusion with the heater head 130, the inside of the vacuum chamber is returned to atmospheric pressure, then taken out from the vacuum chamber, various inspections are performed, and the lithium ion can be shipped. The secondary battery 1 was manufactured.

電極体5の側面から外装体2の内部境界すなわち熱融着した部分の内側境界までの離間距離(最も近い距離)は、電極端子を設けた辺は7mm、折り返し辺は3mm、それ以外の辺は2mmとした。注入した電解質量は、電極体5の空孔体積の1.4倍の量とし、電極体5の周囲に余剰電解質が存在していた。 The separation distance (closest distance) from the side surface of the electrode body 5 to the inner boundary of the exterior body 2, that is, the inner boundary of the heat-sealed portion, is 7 mm on the side where the electrode terminal is provided, 3 mm on the folded side, and other sides. Was 2 mm. The injected electrolytic mass was 1.4 times the volume of the pores of the electrode body 5, and excess electrolyte was present around the electrode body 5.

ここで図9を使用して図8(c)の正負極端子3,4が突出している辺の熱封止について説明する。図9(a)は、各部品の配置の状態を、図9(b)は、ラミネートフィルム2に接触するヒーターヘッド100面を、図9(c)はヒーターヘッド100の側面を示した図であり棒状のヒーター104が挿入されている。図9(a)の図の上からヒーターヘッド100、折り返されたラミネートフィルム2の一方の面、折り返されたラミネートフィルム2に挟まれた正負極端子3、4(端子本体31,41及び樹脂層32、42)、折り返されたラミネートフィルム2の対向する他方の面、反対側のヒーターヘッド100が配置され、ヒーターヘッド100が正負極端子3,4方向に移動してラミネートフィルム2と正負極端子3,4とを加圧しつつ加熱される。 Here, using FIG. 9, the thermal sealing of the side where the positive and negative terminals 3 and 4 of FIG. 8 (c) protrude will be described. 9 (a) shows the arrangement state of each component, FIG. 9 (b) shows the 100 surfaces of the heater head in contact with the laminate film 2, and FIG. 9 (c) shows the side surface of the heater head 100. A rod-shaped heater 104 is inserted. From the top of the figure of FIG. 9A, the heater head 100, one surface of the folded laminated film 2, and the positive and negative terminals 3 and 4 (terminal bodies 31, 41 and the resin layer) sandwiched between the folded laminated films 2. 32, 42), the other side of the folded laminated film 2 facing each other, the heater head 100 on the opposite side is arranged, and the heater head 100 moves in the positive and negative terminals 3 and 4 directions to form the laminated film 2 and the positive and negative terminals. It is heated while pressurizing 3 and 4.

図9(b)のヒーターヘッド100の面101は、正極端子3側に接する面であり、図の横幅方向の長さは正極端子樹脂層32及び正極端子樹脂層32に近接するラミネートフィルム2の一部を含む長さとなっており、ヒーター104からヒーターヘッド100を伝達した熱によりラミネートフィルム2の一部と正極端子樹脂層32の間、及び正極端子樹脂層32に近接する一部のラミネートフィルム2同士が重なる部分とが熱融着される。面101の位置は面102よりも早くラミネートフィルム面に接する位置となっている。面101の奥行き方向の長さ(図の上下方向の長さ)は面102及び103と同じである。 The surface 101 of the heater head 100 in FIG. 9B is a surface in contact with the positive electrode terminal 3 side, and the length in the width direction of the figure is the length of the laminated film 2 close to the positive electrode terminal resin layer 32 and the positive electrode terminal resin layer 32. The length includes a part of the laminated film, which is between a part of the laminated film 2 and the positive electrode terminal resin layer 32 due to heat transferred from the heater 104 to the heater head 100, and a part of the laminated film near the positive electrode terminal resin layer 32. The portion where the two overlap each other is heat-sealed. The position of the surface 101 is a position in contact with the laminated film surface earlier than the surface 102. The length of the surface 101 in the depth direction (the length in the vertical direction in the figure) is the same as that of the surfaces 102 and 103.

面102は負極端子4側に接する面であり、図の横幅方向の長さは、負極端子樹脂層42及び負極端子樹脂層42に近接するラミネートフィルムの一部を含む長さとなっており、ヒーター104からヒーターヘッド100を伝達した熱によりラミネートフィルムの一部と負極端子樹脂層42の間、及び負極端子樹脂層42に近接する一部のラミネートフィルム同士が重なる部分とが熱融着される。面102の位置は面101より遅く、103よりも早くラミネートフィルム面に接する位置となっている。そのため、熱が加わっている時間は面101よりも短く、面103よりも長く接している。 The surface 102 is a surface in contact with the negative electrode terminal 4 side, and the length in the width direction in the figure is a length including a part of the laminated film close to the negative electrode terminal resin layer 42 and the negative electrode terminal resin layer 42, and the heater. Due to the heat transferred from 104 to the heater head 100, a part of the laminate film and the portion where the negative electrode terminal resin layer 42 and a part of the laminated films close to the negative electrode terminal resin layer 42 overlap are heat-sealed. The position of the surface 102 is later than that of the surface 101 and earlier than that of 103 in contact with the surface of the laminated film. Therefore, the time during which heat is applied is shorter than that of the surface 101 and longer than that of the surface 103.

面103は面101,102から垂直に伸びた側面端部の間をつないでおり、ラミネートフィルム2を折り返して重ねた部分を熱封止されるように形成されている。
そして、ヒーター104の温度が180℃となるまで待機し、その後、ヒーターヘッド100を正負極端子3,4方向に移動させる。まずラミネートフィルム2の一部はヒーターヘッド100の面101に接して加圧と共に加熱する。その後、面102、面103の順に加圧と共に加熱する。面103が接してから10秒後にヒーターヘッド100を元の位置に戻し、熱封止が完了する。図8(c)のヒーターヘッド120、130は平坦なヒーターヘッドでラミネートフィルム2の両側から加熱し加圧することで熱封止できる。
The surface 103 is connected between the side end portions extending vertically from the surfaces 101 and 102, and is formed so that the overlapped portion of the laminated film 2 is heat-sealed by folding back.
Then, the heater 104 waits until the temperature reaches 180 ° C., and then the heater head 100 is moved in the positive and negative terminals 3 and 4 directions. First, a part of the laminate film 2 comes into contact with the surface 101 of the heater head 100 and is heated with pressure. After that, the surface 102 and the surface 103 are heated in this order with pressurization. Ten seconds after the surfaces 103 come into contact, the heater head 100 is returned to its original position, and heat sealing is completed. The heater heads 120 and 130 of FIG. 8C can be heat-sealed by heating and pressurizing from both sides of the laminate film 2 with a flat heater head.

以上のように、本実施形態では、正極層6と、負極層7と、正極層6と負極層7との間
に配置されたセパレータ8とを含む電極体5と、電解質と、電極体5及び電解質を内部に格納する外装体2と、電極体5に電気的に接続され、かつ外装体2の外部に少なくとも一部が突出する電極端子3,4とを有する二次電池1であって、外装体2は、電極体5を挟んで一枚のシートが折り返された構造を有し、かつ折り返された辺20以外の辺は重ねたシートが熱融着された熱封止部26,27,28を有し、折り返された辺20の外装体外周面には凹部11を有するため、凹部11が外装体外側に広がることでガスの蓄積を許容でき、熱封止部にかかる剥離方向の力を低減することができる。その結果、封止性を向上させることができるという効果が得られる。
As described above, in the present embodiment, the electrode body 5 including the positive electrode layer 6, the negative electrode layer 7, and the separator 8 arranged between the positive electrode layer 6 and the negative electrode layer 7, the electrolyte, and the electrode body 5 A secondary battery 1 having an exterior body 2 for storing the electrolyte inside, and electrode terminals 3 and 4 electrically connected to the electrode body 5 and at least partially projecting to the outside of the exterior body 2. The exterior body 2 has a structure in which one sheet is folded across the electrode body 5, and the sides other than the folded side 20 are heat-sealed portions 26 in which the stacked sheets are heat-sealed. Since it has 27 and 28 and has a recess 11 on the outer peripheral surface of the exterior body of the folded side 20, the recess 11 can be allowed to accumulate by expanding to the outside of the exterior body, and the peeling direction applied to the heat sealing portion. The force of the electrode can be reduced. As a result, the effect that the sealing property can be improved can be obtained.

また、折り返し辺及び熱封止部は、電極体5の厚さ方向の略中央に位置し、折り返された辺の外装体外周面には2つの凹部を面対称に有しているため、電極体5に加わる圧力が略均一となり、内部抵抗の低減が図れると共にパッキング密度が高まってラミネートフィルムで封止後の強度も向上するという効果がさらに得られる。外装体2は、電極体5を配置する位置にカップ状の成形部を有していないため、ガスによる凹部の変形が容易となり、ガスの蓄積を効率的に行うことができる。また、特許文献1のように外装体が折り返したシートの片側のみに発電要素を格納する凹部を形成し電極端子が二次電池の厚さ方向の縁部分、すなわち凹部の頂部に配置した構造ではないので発電要素と電極端子とを電気的につなぐ集電箔リードが特許文献1と比べて短くなる。その結果、集電箔リードは集電箔に間欠的に活物質を塗布し活物質を塗布していない集電箔部分を集電箔リードとすることから、単位ピック長あたりの活物質量が多くなり短い集電箔リードを使用することで製造コストが低減できるということがある。 Further, the folded side and the heat-sealed portion are located substantially in the center of the electrode body 5 in the thickness direction, and the outer peripheral surface of the exterior body of the folded side has two recesses symmetrically. The pressure applied to the body 5 becomes substantially uniform, the internal resistance can be reduced, the packing density is increased, and the strength after sealing with the laminated film is further improved. Since the exterior body 2 does not have a cup-shaped molded portion at the position where the electrode body 5 is arranged, the recesses can be easily deformed by the gas, and the gas can be efficiently accumulated. Further, in the structure as in Patent Document 1, a recess for storing the power generation element is formed only on one side of the sheet in which the exterior body is folded back, and the electrode terminal is arranged at the edge portion in the thickness direction of the secondary battery, that is, the top of the recess. Since there is no such material, the current collecting foil lead that electrically connects the power generation element and the electrode terminal is shorter than that of Patent Document 1. As a result, in the current collecting foil lead, the active material is intermittently applied to the current collecting foil, and the current collecting foil portion to which the active material is not applied is used as the current collecting foil lead, so that the amount of active material per unit pick length is increased. Manufacturing costs can be reduced by using more and shorter current collector foil leads.

また、折返し辺には、折返し辺の両端部に形成された熱封止部と、折り返し辺の熱封止部の間に未熱封止部とを有するため、ガスによる凹部の変形をよりコントロールしやすくなり、ガスの蓄積を効率的に行うことができる。また、電極端子は、正極層に接続された正極端子と、負極層に接続された負極端子とを有し、正極端子と負極端子は折返し辺に隣接する一方の辺から突出し、折返し辺に近い側に配置した電極端子の一方の端子の厚さが、折返し辺から遠い側に配置した電極端子の他方の端子の厚さより薄いこととしたため、さらに、以下のような効果がある。例えば、図7や図9(a)と比べて、正極端子3と負極端子4の配置を逆にした場合、すなわち、折り返し辺20から遠い位置には、ニッケルメッキした銅を主材とした厚さ0.2μm、幅60mmの負極端子本体41の周囲に厚さ0.1mmの負極端子樹脂層42を形成した負極端子4を配置し、折り返し辺20に近い位置には、アルミニウムを主材とした厚さ0.4μm、幅60mmの正極端子本体31の周囲に厚さ0.15mmの正極端子樹脂層32を形成した正極端子3を配置し、ヒーターヘッドの面101,102の面位置も逆にして熱封止すると、折り返し辺20の端部の熱封止部において熱融着樹脂層21が外装体2の内側と外側にはみ出した。 In addition, the in fold return sides, because it has a heat sealed portions formed at both end portions of the in fold return sides, and a Minetsufutome portion between the heat sealed portions of the folded edges, the recesses by the gas Deformation can be controlled more easily, and gas can be accumulated efficiently. The electrode terminal includes a positive terminal connected to the positive electrode layer, and a negative terminal connected to the negative electrode layer, the positive and negative terminals protrude from one side adjacent to the side return Ri folding, Ri folding since one of the thickness of the terminal side to the electrode terminals disposed close to the return sides, was thinner than the thickness of the other terminal of electrode terminals arranged from in fold return side farther, further, the following effects There is. For example, when the arrangement of the positive electrode terminal 3 and the negative electrode terminal 4 is reversed as compared with FIGS. 7 and 9A, that is, at a position far from the folded side 20, the thickness of the nickel-plated copper as the main material is used. A negative electrode terminal 4 having a 0.1 mm thick negative electrode terminal resin layer 42 formed around a 0.2 μm wide negative electrode terminal body 41 is arranged, and aluminum is used as a main material at a position close to the folded side 20. The positive electrode terminal 3 having the positive electrode terminal resin layer 32 having a thickness of 0.15 mm is arranged around the positive electrode terminal body 31 having a thickness of 0.4 μm and a width of 60 mm, and the surface positions of the heater head surfaces 101 and 102 are also reversed. When heat-sealed, the heat-sealing resin layer 21 protruded inside and outside the exterior body 2 at the heat-sealed portion at the end of the folded side 20.

これは面103からの熱に加えて面101からの熱も折り返し辺20の端部に加わり、折り返えされたラミネートフィルム2の熱融着樹脂層23が加圧と加熱によって電極端子を有する辺からはみ出したものと推測される。外装体2の熱封止部より内部側へ樹脂がはみ出し、ラミネートフィルム2で挟んだ電極体5のうち正極層6又は負極層7に接触する位置まで近づいた場合、ラミネートフィルム2の金属層22と正極層6又は負極層7との間の電気的絶縁性が低下するおそれがある。また、外装体2の熱封止部の外側へ樹脂がはみ出した場合で、複数個のリチウムイオン二次電池1をリチウムイオン二次電池1の厚さ方向に積層し電極端子を有する辺の側にて電極端子同士をバスバーによって電気的に接続する場合、バスバーを固定するためのバスバーモジュールやスペーサが必要となるが、外装体2から外側に突起物が出ていると、突起を避けてレイアウトしなければならず、レイアウト自由度が損なわれ、装置の大型化につながるおそれがある。 This is because, in addition to the heat from the surface 103, the heat from the surface 101 is also applied to the end of the folded side 20, and the heat-sealed resin layer 23 of the folded laminated film 2 has electrode terminals by pressurization and heating. It is presumed that it protruded from the side. When the resin protrudes from the heat-sealed portion of the exterior body 2 to the inside and approaches the position where the electrode body 5 sandwiched between the laminate films 2 comes into contact with the positive electrode layer 6 or the negative electrode layer 7, the metal layer 22 of the laminate film 2 There is a risk that the electrical insulation between the positive electrode layer 6 and the negative electrode layer 7 will decrease. Further, when the resin protrudes to the outside of the heat-sealed portion of the exterior body 2, a plurality of lithium ion secondary batteries 1 are laminated in the thickness direction of the lithium ion secondary battery 1 and are on the side having the electrode terminals. When the electrode terminals are electrically connected to each other by a bus bar, a bus bar module or spacer for fixing the bus bar is required, but if there are protrusions on the outside from the exterior body 2, the layout avoids the protrusions. This may impair the degree of layout freedom and lead to an increase in the size of the device.

本実施形態では、正極端子3および負極端子4は、外装体2による熱封止部分で異なる厚さを有し、折返し辺20に近い位置には正極端子3より薄い負極端子4を配置した。これによって、外側へのはみ出し部が発生しなかったので、装置の大型化を抑制できるという効果がある。また、内部側へのはみ出しが発生しなかったので、ラミネートフィルム2の金属層22と正極層6又は負極層7との間の電気的絶縁性の低下を抑制することができる。
In the present embodiment, the positive electrode terminal 3 and negative electrode terminal 4 has at different thicknesses thermosealing part by the outer body 2, is in a position close to the in fold return sides 20 disposed as a negative electrode terminal 4 is thinner than the positive electrode terminal 3 did. As a result, since the protruding portion to the outside is not generated, there is an effect that the size of the device can be suppressed. Further, since the protrusion to the inner side did not occur, it is possible to suppress a decrease in the electrical insulating property between the metal layer 22 of the laminated film 2 and the positive electrode layer 6 or the negative electrode layer 7.

以上、リチウムイオン二次電池1を例に本実施形態を説明したがこれに限るものではない。また、正極層や負極層の積層数は任意に変更でき、電極体の最外層を正極層にすることもできる。セパレータは複数の矩形形状ではなく単数の長方形形状のものとし、セパレータの間に正極層又は負極層を配置するように九十九折や巻回構造とすることもできる。正極活物質はマンガン酸リチウムに限らず、負極活物質は黒鉛にかぎらず非晶質炭素等を使用することもできる。また、電極端子樹脂はある電極端子本体とラミネートフィルムとの間の封止性を向上させることができるが無い場合にも適用できる。また正負極端子を外装体2の一辺から突出する方式としたが、正極端子と負極端子を異なる熱封止部の辺から突出させてもよい。 Although the present embodiment has been described above by taking the lithium ion secondary battery 1 as an example, the present embodiment is not limited thereto. Further, the number of laminated positive electrode layers and negative electrode layers can be arbitrarily changed, and the outermost layer of the electrode body can be a positive electrode layer. The separator may have a single rectangular shape instead of a plurality of rectangular shapes, and may have a zigzag or winding structure so that a positive electrode layer or a negative electrode layer is arranged between the separators. The positive electrode active material is not limited to lithium manganate, and the negative electrode active material is not limited to graphite, and amorphous carbon or the like can also be used. Further, the electrode terminal resin can be applied even when the sealing property between a certain electrode terminal body and the laminate film can be improved but not. Further, although the positive / negative electrode terminals are projected from one side of the exterior body 2, the positive electrode terminals and the negative electrode terminals may be projected from the sides of different heat sealing portions.

1・・・リチウムイオン二次電池
2・・・外装体
3・・・正極端子
4・・・負極端子
5・・・電極体
6・・・正極層
7・・・負極層
8・・・セパレータ
11,12,13,14・・・凹部
26,27,28・・・熱封止部
1 ... Lithium ion secondary battery 2 ... Exterior body 3 ... Positive electrode terminal 4 ... Negative electrode terminal 5 ... Electrode body 6 ... Positive electrode layer 7 ... Negative electrode layer 8 ... Separator 11, 12, 13, 14 ... Recesses 26, 27, 28 ... Heat sealing part

Claims (5)

正極層、負極層、および該正極層と該負極層との間に配置されたセパレータを含む電極体と、
解質と、
記電極体と前記電解質とを内部に格納する空間を有する外装体と、
記電極体に電気的に接続されかつ外装体の外部に少なくとも一部が突出する電極端子と、を有する二次電池であって、
記外装体は、前記電極体を挟んで一枚のシート折り返して重ねた折り返し辺と、前記折り返辺以外の辺において前記シート同士を熱融着した熱封止辺とを形成することにより、前記折り返し辺及び前記熱封止辺が前記電極体の厚さ方向の略中央に位置するように前記空間を形成し
前記折り返し辺を挟んで前記折り返し辺から前記電極体の厚さ方向に拡がる前記外装体の2つの面のそれぞれには、前記空間側に凹む方向に形成された凹部が、前記シートの折り返し面を基準として面対称に配置され、
前記折り返し辺の中央付近から前記電極体の厚さ方向への前記凹部の曲率半径は、前記折り返し辺の端部近傍から前記電極体の厚さ方向への前記凹部の曲率半径より大きいことを特徴とする二次電池。
An electrode comprising an arranged separators between the positive electrode layer, negative electrode layer, and the positive electrode layer and negative electrode layer,
And electrolytic quality,
An exterior body having a space for storing the previous SL electrode body and the electrolyte therein,
A secondary battery having an electrode terminal at least partially protrude, the outside of the front SL is electrically connected to the electrode body and outer body,
Prior Kigaiso bodies were thermally fused Oite the sheet between the folded sides overlaid by return folded one sheet across the electrode body, before Symbol folding return Shi other than the side edges thermosealing By forming the sides, the space is formed so that the folded side and the heat-sealed side are located substantially at the center in the thickness direction of the electrode body .
On each of the two surfaces of the exterior body extending from the folded side in the thickness direction of the electrode body across the folded side, recesses formed in the direction of recessing toward the space side form the folded surface of the sheet. Arranged plane-symmetrically as a reference,
The radius of curvature of the recess in the thickness direction of the electrode body from the vicinity of the center of the folded side is larger than the radius of curvature of the recess in the thickness direction of the electrode body from the vicinity of the end of the folded side. Secondary battery.
前記熱封止辺を挟んで前記熱封止辺から前記電極体の厚さ方向に拡がる前記外装体の2つの面のそれぞれには、前記空間側に凹む方向に形成された凹部が前記シートの前記折り返し面を基準として面対称に配置され、 On each of the two surfaces of the exterior body extending from the heat-sealed side in the thickness direction of the electrode body across the heat-sealed side, recesses formed in the direction of recessing toward the space side of the sheet. Arranged symmetrically with respect to the folded surface,
前記折り返し辺の中央付近から前記電極体の厚さ方向への前記凹部の曲率半径は、前記折り返し辺と対向する前記熱封止辺から前記電極体の厚さ方向への前記凹部の曲率半径より大きいことを特徴とする請求項1に記載の二次電池。 The radius of curvature of the recess in the thickness direction of the electrode body from the vicinity of the center of the folded side is greater than the radius of curvature of the recess in the thickness direction of the electrode body from the heat-sealed side facing the folded side. The secondary battery according to claim 1, wherein the secondary battery is large.
前記折返し辺の両端部の近傍以外は未熱封止部を有することを特徴とする請求項1または請求項2に記載の二次電池。 The secondary battery according to claim 1 or claim 2 other than the vicinity of both end portions of the in fold return side is characterized by having a Minetsufutome portion. 前記電極端子は、前記正極層に接続された正極端子と、前記負極層に接続された負極端子とを有し、前記正極端子と前記負極端子は折返し辺に隣接する一方の辺から突出し、折返し辺に近い側に配置した電極端子の一方の端子の厚さが、折返し辺から遠い側に配置した電極端子の他方の端子の厚さより薄いことを特徴とことを特徴とする請求項1からのいずれか1項に記載の二次電池。 The electrode terminal, the positive terminal connected to the positive electrode layer, the and a negative terminal connected to the negative electrode layer, wherein the negative terminal and the positive electrode terminal protrudes from one side adjacent to the side return Ri folding the thickness of the one terminal of electrode terminals arranged closer to the in fold return sides, and characterized in that said the thinner than the thickness of the other terminal of electrode terminals arranged from in fold return side farther The secondary battery according to any one of claims 1 to 3 . 前記外装体は、該外装体の内部で発生したガスにより前記凹部が変形することを特徴とする請求項1から4のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 4, wherein the exterior body is deformed by a gas generated inside the exterior body.
JP2017036784A 2017-02-28 2017-02-28 Rechargeable battery Active JP6781074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036784A JP6781074B2 (en) 2017-02-28 2017-02-28 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036784A JP6781074B2 (en) 2017-02-28 2017-02-28 Rechargeable battery

Publications (2)

Publication Number Publication Date
JP2018142483A JP2018142483A (en) 2018-09-13
JP6781074B2 true JP6781074B2 (en) 2020-11-04

Family

ID=63528154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036784A Active JP6781074B2 (en) 2017-02-28 2017-02-28 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP6781074B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805863A (en) * 2018-10-02 2021-05-14 株式会社村田制作所 Solid-state battery
CN115066790B (en) * 2020-02-20 2023-10-27 日本碍子株式会社 Lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579618B2 (en) * 1999-08-18 2004-10-20 松下電器産業株式会社 Battery pack
JP2003077426A (en) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp Battery
JP2016081567A (en) * 2014-10-09 2016-05-16 株式会社デンソー Power storage device
JP2018078067A (en) * 2016-11-11 2018-05-17 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element, power storage device and method for sensing internal pressure of power storage element

Also Published As

Publication number Publication date
JP2018142483A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6521323B2 (en) Secondary battery and method of manufacturing the same
JP6283487B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6750619B2 (en) Film exterior battery
JP6250921B2 (en) battery
JP6292678B2 (en) Secondary battery and electrode manufacturing method
US20160181650A1 (en) Secondary battery
JPH11162443A (en) Assembled battery
WO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and method for producing same
JP5953549B2 (en) Lithium ion battery
JP6270613B2 (en) Prismatic secondary battery
US20110076544A1 (en) Stack type battery
JP2013206699A (en) Electrochemical device
JP6781074B2 (en) Rechargeable battery
KR101709391B1 (en) Nonaqueous electrolyte secondary battery
JP7108319B2 (en) SEALED BATTERY, BATTERY ASSEMBLY, AND METHOD FOR MANUFACTURING SEALED BATTERY
JP2009110812A (en) Battery and method of manufacturing the same
JP6753802B2 (en) Rechargeable battery
JP6718985B2 (en) Prismatic secondary battery
JP2019160659A (en) Electrochemical element
JP7024540B2 (en) Electrochemical element
JP6681017B2 (en) Secondary battery having electrode body
JP7240612B2 (en) Method for manufacturing secondary battery
KR102612783B1 (en) Secondary battery
US9786886B2 (en) Nonaqueous battery
JP2018045952A (en) Method of manufacturing electrode and electrochemical device, and electrode roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6781074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250