JP6779449B2 - Polymer electrolyte membrane and its use - Google Patents

Polymer electrolyte membrane and its use Download PDF

Info

Publication number
JP6779449B2
JP6779449B2 JP2016086979A JP2016086979A JP6779449B2 JP 6779449 B2 JP6779449 B2 JP 6779449B2 JP 2016086979 A JP2016086979 A JP 2016086979A JP 2016086979 A JP2016086979 A JP 2016086979A JP 6779449 B2 JP6779449 B2 JP 6779449B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
membrane according
fiber
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016086979A
Other languages
Japanese (ja)
Other versions
JP2017199464A (en
Inventor
宮武 健治
健治 宮武
内田 誠
誠 内田
正人 日下部
正人 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
University of Yamanashi NUC
Original Assignee
Kaneka Corp
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, University of Yamanashi NUC filed Critical Kaneka Corp
Priority to JP2016086979A priority Critical patent/JP6779449B2/en
Publication of JP2017199464A publication Critical patent/JP2017199464A/en
Application granted granted Critical
Publication of JP6779449B2 publication Critical patent/JP6779449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子形燃料電池に好適な高分子電解質膜、それを用いた膜、電極接合体及びこれらを含む燃料電池に関するものである。 The present invention relates to a polymer electrolyte membrane suitable for a polymer electrolyte fuel cell, a membrane using the same, an electrode assembly, and a fuel cell containing these.

近年、地球温暖化等の環境問題等の観点から、高効率でクリーンなエネルギー源の開発が求められており、そのようなエネルギー源の1つとして、燃料電池が注目される。その中でも、プロトン伝導性官能基を含有する高分子化合物を電解質膜に用いる固体高分子形燃料電池の開発が進められている。特に、スルホン酸基が多く導入された炭化水素系電解質膜は、プロトン伝導性が高く、固体高分子形燃料電池の材料として注目されている。この炭化水素系電解質膜は、化学構造の多様性を持たせやすく、スルホン酸基などのプロトン伝導基の導入の範囲が広く調整できる、という特徴を有する。 In recent years, from the viewpoint of environmental problems such as global warming, the development of highly efficient and clean energy sources has been required, and fuel cells are attracting attention as one of such energy sources. Among them, the development of a polymer electrolyte fuel cell using a polymer compound containing a proton conductive functional group for an electrolyte membrane is underway. In particular, a hydrocarbon-based electrolyte membrane in which a large number of sulfonic acid groups are introduced has high proton conductivity and is attracting attention as a material for polymer electrolyte fuel cells. This hydrocarbon-based electrolyte membrane is characterized in that it is easy to have a variety of chemical structures and the range of introduction of a proton conductive group such as a sulfonic acid group can be widely adjusted.

しかし、スルホン酸基を多く含む炭化水素系電解質膜は、膨潤率が大きいため、燃料電池の運転条件下における含水状態と乾燥状態の繰り返しによって電解質膜が断裂しやすい点に問題がある。特許文献1には、ガラス不織布で補強された高分子電解質膜が開示されている。高分子電解質とガラス不織布を複合することにより、電解質膜の耐膨潤性が改良されることが提案されている。 However, since the hydrocarbon-based electrolyte membrane containing a large amount of sulfonic acid groups has a large swelling rate, there is a problem that the electrolyte membrane is easily torn due to repeated water-containing and dry states under the operating conditions of the fuel cell. Patent Document 1 discloses a polymer electrolyte membrane reinforced with a glass non-woven fabric. It has been proposed that the swelling resistance of the electrolyte membrane is improved by combining the polymer electrolyte and the glass non-woven fabric.

WO2005/086265A1公報WO2005 / 086265A1 Gazette

しかし、前記従来の技術は、膜の耐膨潤性は改良される反面、伸びが低下するために脆くなる傾向がある。このため、含水−乾燥の繰り返しストレスの下では、膜に亀裂が生じ、十分な耐久性を発現できない可能性がある。 However, while the swelling resistance of the film is improved, the conventional technique tends to be brittle due to a decrease in elongation. Therefore, under the repeated stress of water content-drying, the film may be cracked and sufficient durability may not be exhibited.

本発明は、高いプロトン伝導度を発現し、膨潤耐性が高く、従って、含水−乾燥の繰り返し条件下においても機械的耐久性が高く、燃料電池用の電解質膜としての使用に好適な炭化水素系高分子電解質膜を提供する。 The present invention exhibits high proton conductivity and high swelling resistance, and therefore has high mechanical durability even under repeated water-containing-drying conditions, and is a hydrocarbon system suitable for use as an electrolyte membrane for fuel cells. Provided is a polymer electrolyte membrane.

本発明の高分子電解質膜は、スルホン酸基を有し、主鎖が主に芳香環を含む炭化水素系電解質と補強材が複合されている高分子電解質膜であって、前記補強材はガラス繊維と有機繊維の混合物を含む不織布であり、前記ガラス繊維は、平均繊維径が1μm以下のものと、平均繊維径が1μmを超え10μm未満のものとの混合物であり、平均繊維径が1μmを超え10μm未満のガラス繊維の含有率は、平均繊維径が1μm以下のガラス繊維と平均繊維径が1μmを超え10μm未満のガラス繊維の合計100重量%に対し、10〜70重量%であることを特徴とする。 The polymer electrolyte membrane of the present invention is a polymer electrolyte membrane having a sulfonic acid group and a composite of a hydrocarbon-based electrolyte having a main chain mainly containing an aromatic ring and a reinforcing material, and the reinforcing material is glass. Ri nonwoven der comprising a mixture of fibers and organic fibers, the glass fibers, and an average fiber diameter of 1 [mu] m or less, an average fiber diameter of a mixture of of less than 10μm exceed 1 [mu] m, an average fiber diameter of 1 [mu] m The content of glass fibers exceeding and less than 10 μm is 10 to 70% by weight based on 100% by weight of the total of glass fibers having an average fiber diameter of 1 μm or less and glass fibers having an average fiber diameter of more than 1 μm and less than 10 μm. It is characterized by.

また本発明は前記高分子電解質膜を用いた燃料電池用膜/電極接合体に関する。また本発明は前記高分子電解質膜を用いた燃料電池に関する。 The present invention also relates to a fuel cell membrane / electrode assembly using the polymer electrolyte membrane. The present invention also relates to a fuel cell using the polymer electrolyte membrane.

本発明によれば、ガラス繊維と有機繊維の混合物を含む補強材を、炭化水素系高分子電解質と複合化することにより、含水時の寸法変化を抑えられ、乾湿サイクル耐性が高く、かつ、低加湿下においても高いプロトン伝導性を有する高分子電解質膜を提供することができる。また、この高分子電解質膜を用いることによって、燃料ガスの湿度によらず高い性能を持ち、乾湿サイクル耐性に優れることから、長時間使用における信頼性の高い燃料電池を提供することができる。 According to the present invention, by compounding a reinforcing material containing a mixture of glass fibers and organic fibers with a hydrocarbon-based polymer electrolyte, dimensional changes during water content can be suppressed, and dry / wet cycle resistance is high and low. It is possible to provide a polymer electrolyte membrane having high proton conductivity even under humidification. Further, by using this polymer electrolyte membrane, it is possible to provide a highly reliable fuel cell for long-term use because it has high performance regardless of the humidity of the fuel gas and is excellent in dry-wet cycle resistance.

図1は本発明の実施例1と比較例2の高分子電解質膜のプロトン電導度を示すグラフである。FIG. 1 is a graph showing the proton conductivity of the polymer electrolyte membranes of Example 1 and Comparative Example 2 of the present invention.

本発明者らは、鋭意検討を行った結果、特定の補強材、すなわち、ガラス繊維と有機繊維の混合物からなる不織布を電解質樹脂とともに製膜した複合膜が、電解質樹脂単独の膜に比較して耐膨潤特性に優れ、含水−乾燥の繰り返し試験(乾湿サイクル試験)等の機械的安定性を評価する試験においても、より高い耐久性を発現することを見出し、本発明を完成させるに至った。 As a result of diligent studies, the present inventors have made a composite film obtained by forming a specific reinforcing material, that is, a non-woven fabric made of a mixture of glass fibers and organic fibers together with an electrolyte resin, as compared with a film of an electrolyte resin alone. It has been found that it has excellent swelling resistance and exhibits higher durability even in a test for evaluating mechanical stability such as a repeated water-containing-drying test (dry-wet cycle test), and has completed the present invention.

本発明に用いる高分子電解質、すなわち補強材と複合する高分子電解質は、スルホン酸基を有し、主鎖が主に芳香環からなる炭化水素系電解質であり、その構造に特に限定はない。ここで、「主鎖が主に芳香環からなる」とは、芳香環を連結する基を除いた部分の分子量のうち、芳香環に由来する部分の割合が、70%以上であることを意味する。このような炭化水素系高分子を例示すると、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルスルホン、ポリケトン、ポリイミド、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリフェニレンエーテル等である。 The polymer electrolyte used in the present invention, that is, the polymer electrolyte composited with the reinforcing material is a hydrocarbon-based electrolyte having a sulfonic acid group and having a main chain mainly composed of an aromatic ring, and its structure is not particularly limited. Here, "the main chain mainly consists of an aromatic ring" means that the proportion of the portion derived from the aromatic ring in the molecular weight of the portion excluding the group connecting the aromatic rings is 70% or more. To do. Examples of such hydrocarbon-based polymers include polyethersulfone, polysulfone, polyetheretherketone, polyetherketoneketone, polyetherethersulfone, polyketone, polyimide, polybenzimidazole, polybenzoxazole, polyphenylene ether and the like. ..

本発明において特に好適に用いられる高分子電解質は、実質的にスルホン酸基を有さない疎水部セグメントと、スルホン酸基を有し主鎖が主に芳香環からなる親水部セグメントとを、主鎖として有してなるものである。高分子電解質を親水部セグメントと疎水部セグメントからなる共重合体型とすることにより、高分子電解質の低加湿下でのプロトン伝導性が向上する。 The polymer electrolyte particularly preferably used in the present invention mainly comprises a hydrophobic portion segment having substantially no sulfonic acid group and a hydrophilic portion segment having a sulfonic acid group and having a main chain mainly composed of an aromatic ring. It has as a chain. By making the polymer electrolyte a copolymer type consisting of a hydrophilic part segment and a hydrophobic part segment, the proton conductivity of the polymer electrolyte under low humidification is improved.

本発明における親水部セグメントは、スルホン酸基を有し主鎖が主に芳香環からなるものである。すなわち、前記親水部セグメントは、スルホン酸基が導入されているセグメントである。このように、親水部セグメントがスルホン酸基を有するので、高分子電解質のプロトン伝導性が発現し、親水部セグメントの主鎖が主に芳香環からなるので、高分子電解質は耐熱性、化学的耐久性に優れるものになる。 The hydrophilic portion segment in the present invention has a sulfonic acid group and the main chain mainly consists of an aromatic ring. That is, the hydrophilic segment is a segment into which a sulfonic acid group is introduced. As described above, since the hydrophilic part segment has a sulfonic acid group, the proton conductivity of the polymer electrolyte is exhibited, and the main chain of the hydrophilic part segment is mainly composed of an aromatic ring, so that the polymer electrolyte is heat resistant and chemically. It will be excellent in durability.

本発明におけるスルホン酸基としては、例えば、スルホン酸基、スルホン酸塩の基、スルホン酸エステル基等が挙げられる。すなわち、スルホン酸基は、例えば、ナトリウム、カリウム等の塩になっていてもよいし、ネオペンチルエステル、メチルエステル、プロピルエステル等のエステル基で保護されていてもよい。特に親水部セグメントとなるオリゴマーの合成中や合成後は、塩やエステル等の保護基を有する状態になっているのが好ましいことが多いが、前記高分子電解質が、例えば燃料電池の電解質膜として用いられる場合は、無機酸の水溶液等に浸漬することにより、スルホン酸基に変換して使用されることが多い。よって、本発明においては、スルホン酸基としては、容易にスルホン酸基になる状態の基であれば、塩やエステル等の保護基を有する状態の基も含まれる。 Examples of the sulfonic acid group in the present invention include a sulfonic acid group, a sulfonate group, a sulfonic acid ester group, and the like. That is, the sulfonic acid group may be, for example, a salt such as sodium or potassium, or may be protected by an ester group such as neopentyl ester, methyl ester or propyl ester. In particular, during or after the synthesis of the oligomer to be the hydrophilic segment, it is often preferable that the oligomer has a protective group such as a salt or an ester, but the polymer electrolyte can be used as an electrolyte membrane of a fuel cell, for example. When it is used, it is often converted into a sulfonic acid group by immersing it in an aqueous solution of an inorganic acid or the like. Therefore, in the present invention, the sulfonic acid group includes a group having a protecting group such as a salt or an ester as long as it is a group that easily becomes a sulfonic acid group.

スルホン酸基の量は、親水部セグメントを形成する繰り返し単位当たり、1〜6個が好ましく、1〜4個がより好ましい。6個よりスルホン酸基の量が多くなると、親水部セグメントの水溶性が高くなり、合成中の取り扱いが難しくなる傾向がある。1個より少ないと十分なプロトン伝導性が発現しにくくなる傾向がある。 The amount of the sulfonic acid group is preferably 1 to 6 and more preferably 1 to 4 per repeating unit forming the hydrophilic segment. If the amount of the sulfonic acid group is larger than 6, the water solubility of the hydrophilic segment becomes high, and the handling during synthesis tends to be difficult. If the number is less than one, it tends to be difficult to develop sufficient proton conductivity.

本発明における親水部セグメントは、主鎖が主に芳香環からなるものである。
ここで「主鎖が主に芳香環からなる」とは、親水部セグメントにおける主鎖の連結基(エーテル基、チオエーテル基、スルホン基、ケトン基、スルフィド基等)以外の部分の分子量を100%とした場合、その70%以上が芳香環からなるということを意味する。
In the hydrophilic portion segment in the present invention, the main chain is mainly composed of an aromatic ring.
Here, "the main chain is mainly composed of an aromatic ring" means that the molecular weight of the portion other than the linking group (ether group, thioether group, sulfone group, ketone group, sulfide group, etc.) of the main chain in the hydrophilic portion segment is 100%. If, it means that 70% or more of them are composed of aromatic rings.

芳香環としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、硫黄や窒素等を含む芳香族複素環等が挙げられる。 Examples of the aromatic ring include aromatic heterocycles containing benzene, naphthalene, anthracene, biphenyl, sulfur, nitrogen and the like.

前記親水部セグメントの具体的な例としては、下記一般式群(1)に記載の構造の少なくとも1つを、繰り返し単位として含むもの等が挙げられる。 Specific examples of the hydrophilic segment include those containing at least one of the structures described in the following general formula group (1) as a repeating unit.

Figure 0006779449
(式中、Ar1は、下記式群(2)に記載の構造を有する2価の基を表し、前記2価の基は置換基を有していてもよく、複数あるAr1は互いに同じであっても異なっていてもよい。Ar2は、スルホン酸基を少なくとも1つ有する2価の芳香族基、nは1〜4の整数、Xは−O−又はS−、Yは直接結合、−SO2−又はCO−を表す。)
なお、上記一般式群(1)の繰り返し単位が複数回繰り返された場合、複数あるAr1は互いに同じであっても異なっていてもよい。
Figure 0006779449
(Wherein, Ar 1 represents a divalent group having a structure according to the following formula group (2), the divalent groups may have a substituent, a plurality of Ar 1 are the same as each other Ar 2 is a divalent aromatic group having at least one sulfonic acid group, n is an integer of 1 to 4, X is -O- or S-, and Y is a direct bond. , -SO 2- or CO-)
In the case where the repeating units of the general formula group (1) was repeated several times, a plurality of Ar 1 may be different be the same as each other.

Figure 0006779449
Figure 0006779449

また上記Ar2は、下記式群(3)に記載の構造を有し、かつ、スルホン酸基を少なくとも1つ有する2価の芳香族基であると、すなわち、下記式群(3)に記載の構造を有する2価の芳香族基にスルホン酸基が少なくとも1つ導入された構造であると、合成が容易で好ましい。 Further, Ar 2 is a divalent aromatic group having the structure described in the following formula group (3) and having at least one sulfonic acid group, that is, described in the following formula group (3). A structure in which at least one sulfonic acid group is introduced into a divalent aromatic group having the above structure is preferable because synthesis is easy.

Figure 0006779449
Figure 0006779449

親水部セグメントの具体例としての、一般式群(1)に記載の構造において、ベンゼン環上に置換基を有していてもよい。また、Ar1において、式群(2)に記載の構造を有する2価の基は、置換基を有していてもよい。さらに、Ar2において、式群(3)に記載の構造を有する2価の芳香族基は、スルホン酸基以外に、置換基を有していてもよい。これら置換基としては、例えば、炭素数1〜6のアルキル基(メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等)、炭素数1〜6のアルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等)、フェニル基等が挙げられる。また、前記置換基を1個以上有することができる。 As a specific example of the hydrophilic segment, the structure described in the general formula group (1) may have a substituent on the benzene ring. Further, in Ar 1 , the divalent group having the structure described in the formula group (2) may have a substituent. Further, in Ar 2 , the divalent aromatic group having the structure described in the formula group (3) may have a substituent in addition to the sulfonic acid group. Examples of these substituents include an alkyl group having 1 to 6 carbon atoms (methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc.) and an alkoxy group having 1 to 6 carbon atoms (methoxy group, ethoxy group). Groups, propoxy groups, butoxy groups, pentyloxy groups, hexyloxy groups, etc.), phenyl groups and the like can be mentioned. In addition, it can have one or more of the substituents.

親水部セグメントは、スルホン酸基を有するものであるが、その主鎖、側鎖、両者(主鎖及び側鎖)のいずれに、スルホン酸基を有していてもよい。 The hydrophilic portion segment has a sulfonic acid group, but the main chain, the side chain, or both (main chain and side chain) may have a sulfonic acid group.

親水部セグメントを構成するモノマーとしては、例えば、上記一般式群(1)の構造を構成しうるモノマー等が挙げられ、具体的には、下式で表されるモノマー等が好ましく挙げられる。また、上記一般式群(1)においてXが−S−である親水部セグメントを作製する場合等には、下式で表されるモノマーにおいて、−OH基の代わりに−SH基としたモノマー等も挙げられる。さらに、後述のように、スルホン酸基を有するモノマーの重合により親水部セグメントを作製する場合等には、下式で表されるモノマーにおいて、そのベンゼン環上にスルホン酸基を有しているモノマー等も挙げられる。 Examples of the monomer constituting the hydrophilic segment include a monomer that can form the structure of the general formula group (1), and specifically, a monomer represented by the following formula is preferable. Further, in the case of producing a hydrophilic segment in which X is −S− in the above general formula group (1), in the monomer represented by the following formula, a monomer having a −SH group instead of the −OH group, or the like. Can also be mentioned. Further, as described later, when a hydrophilic part segment is produced by polymerizing a monomer having a sulfonic acid group, the monomer represented by the following formula has a sulfonic acid group on the benzene ring. And so on.

Figure 0006779449
Figure 0006779449

親水部セグメントのみのイオン交換容量(以下、イオン交換容量をIECと示すこともある)は、高分子電解質膜としてのIECが高く設定でき、また低加湿下で高いプロトン伝導性を発現することができる点から、4.0meq./g以上であることが好ましい。親水部セグメントのIECは、NMRの分析による計算や、電解質のIEC(従来公知の方法、例えば滴定等により容易に求められる)を、親水部セグメントの重量割合で除すること等により求めることができるが、本発明においては後者の方法により求めるものである。つまり、親水部セグメントのIECは、実施例に記載の高分子電解質膜のIECの測定方法と同様にして求めた高分子電解質のIECを、親水部セグメントの重量割合で除することにより求める。また、meq./gは、ミリ当量/gを意味する。 The ion exchange capacity of only the hydrophilic segment (hereinafter, the ion exchange capacity may be referred to as IEC) can be set high as the polymer electrolyte membrane, and can exhibit high proton conductivity under low humidification. From the point of view, 4.0 meq. It is preferably / g or more. The IEC of the hydrophilic part segment can be obtained by calculation by NMR analysis or by dividing the IEC of the electrolyte (which can be easily obtained by a conventionally known method such as titration) by the weight ratio of the hydrophilic part segment. However, in the present invention, it is obtained by the latter method. That is, the IEC of the hydrophilic portion segment is obtained by dividing the IEC of the polymer electrolyte obtained in the same manner as the method for measuring the IEC of the polymer electrolyte membrane described in the examples by the weight ratio of the hydrophilic portion segment. In addition, meq. / G means milliequivalent / g.

その他親水部セグメントを構成するモノマーとしては、特開2002−293889号公報で示されるもの等(電子吸引性基及び電子供与性基を有するモノマー等)も例示できる。 Examples of the monomer constituting the hydrophilic segment include those shown in JP-A-2002-293889 (monomers having an electron-withdrawing group and an electron-donating group, etc.).

本発明における疎水部セグメントは、実質的にスルホン酸基を有さないものである。これにより、親水部との相分離を明確にして、高分子電解質の低加湿下でのプロトン伝導性を向上させ、また、高分子電解質の強度を向上させる。前記疎水部セグメントは、スルホン酸基が全く導入されていないことが好ましいが、親水部セグメントに対して相対的に疎水性であればよく、繰り返し単位あたりのスルホン酸基の数が親水部セグメントの1/10以下であれば良い。すなわち、「実質的にスルホン酸基を有さない」とは、疎水部セグメントがスルホン酸基を全く有さないか、疎水部セグメントにおける繰り返し単位あたりのスルホン酸基の数が、親水部セグメントにおける繰り返し単位あたりのスルホン酸基の数の1/10以下であることを意味する。 The hydrophobic portion segment in the present invention has substantially no sulfonic acid group. As a result, the phase separation from the hydrophilic portion is clarified, the proton conductivity of the polymer electrolyte under low humidification is improved, and the strength of the polymer electrolyte is improved. It is preferable that no sulfonic acid group is introduced into the hydrophobic portion segment, but the hydrophobic portion segment may be relatively hydrophobic with respect to the hydrophilic portion segment, and the number of sulfonic acid groups per repeating unit is the hydrophilic portion segment. It may be 1/10 or less. That is, "substantially free of sulfonic acid groups" means that the hydrophobic portion segment has no sulfonic acid groups, or the number of sulfonic acid groups per repeating unit in the hydrophobic portion segment is the hydrophilic portion segment. It means that it is 1/10 or less of the number of sulfonic acid groups per repeating unit.

前記疎水部セグメントは、耐熱性を有する点から、ポリイミド系、ポリベンズイミダゾール系、ポリエーテル系等で、主鎖が主に芳香環からなる構造が好ましく、また、ポリエーテル系が、合成の容易さの観点からより好ましい。ここで「主鎖が主に芳香環からなる」とは、疎水部セグメントにおける主鎖の連結基(エーテル基、スルホン基、ケトン基、スルフィド基等)以外の部分の分子量を100%とした場合、その70%以上が芳香環からなるということを意味する。このような疎水部セグメントとしては、下記一般式群(4)に記載の構造の少なくとも1つを繰り返し単位として含むことが好ましい。 The hydrophobic portion segment is preferably a polyimide-based, polybenzimidazole-based, or polyether-based structure from the viewpoint of having heat resistance, and has a structure in which the main chain is mainly composed of an aromatic ring, and the polyether-based segment is easy to synthesize. More preferable from the viewpoint of Here, "the main chain mainly consists of an aromatic ring" means that the molecular weight of the portion other than the connecting group (ether group, sulfone group, ketone group, sulfide group, etc.) of the main chain in the hydrophobic portion segment is 100%. , 70% or more of which is composed of aromatic rings. As such a hydrophobic portion segment, it is preferable to include at least one of the structures described in the following general formula group (4) as a repeating unit.

Figure 0006779449
(式中、Arは、2価の芳香族基を表す。)
Figure 0006779449
(In the formula, Ar represents a divalent aromatic group.)

なお、上記一般式群(4)の繰り返し単位が複数回繰り返された場合、複数あるArは互いに同じであっても異なっても良い。Arの2価の芳香族基としては、例えば、下式(5)で表される基等が好ましく挙げられる。 When the repeating unit of the general formula group (4) is repeated a plurality of times, the plurality of Ars may be the same or different from each other. As the divalent aromatic group of Ar, for example, a group represented by the following formula (5) is preferably mentioned.

Figure 0006779449
Figure 0006779449

また、Arの2価の芳香族基は、置換基を有していてもよい。前記置換基としては、例えば、炭素数1〜6のアルキル基(メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等)、炭素数1〜6のアルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等)、フェニル基、シアノ基等が挙げられる。また、前記置換基を1個以上有することができる。 Further, the divalent aromatic group of Ar may have a substituent. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms (methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc.) and an alkoxy group having 1 to 6 carbon atoms (methoxy group, ethoxy group). Groups, propoxy groups, butoxy groups, pentyloxy groups, hexyloxy groups, etc.), phenyl groups, cyano groups and the like can be mentioned. In addition, it can have one or more of the substituents.

疎水部セグメントを構成するモノマーとしては、例えば、上記一般式(4)の構造を構成しうるモノマー等が挙げられ、具体的には、下式で表されるモノマー等が好ましく挙げられる。 Examples of the monomer constituting the hydrophobic portion segment include a monomer that can form the structure of the above general formula (4), and specifically, a monomer represented by the following formula is preferably mentioned.

Figure 0006779449
Figure 0006779449

親水部セグメント、疎水部セグメントの分子量は、その化学構造や合成のしやすさ等により異なるが、数平均分子量でそれぞれ700〜30,000g/molが好ましく、2000〜10,000g/molがより好ましい。700g/molより小さいと、共重合体型高分子電解質としての特性が現れにくくなる傾向があり、30,000g/molより大きいと、溶解性等の問題で合成が困難になりやすい傾向がある。 The molecular weights of the hydrophilic portion segment and the hydrophobic portion segment differ depending on the chemical structure, ease of synthesis, etc., but the number average molecular weight is preferably 700 to 30,000 g / mol, more preferably 2000 to 10,000 g / mol, respectively. .. If it is less than 700 g / mol, the characteristics as a copolymer-type polymer electrolyte tend to be difficult to appear, and if it is larger than 30,000 g / mol, synthesis tends to be difficult due to problems such as solubility.

高分子電解質の分子量は、数平均分子量で10,000〜300,000g/molが好ましく、合成の容易さと溶媒への溶解度のバランスから、30,000〜150,000g/molがより好ましい。上記各セグメント及び高分子電解質の分子量は、実施例に記載の測定方法により求めることができる。 The molecular weight of the polymer electrolyte is preferably 10,000 to 300,000 g / mol in terms of number average molecular weight, and more preferably 30,000 to 150,000 g / mol from the viewpoint of the balance between ease of synthesis and solubility in a solvent. The molecular weight of each of the above segments and the polymer electrolyte can be determined by the measuring method described in Examples.

また、高分子電解質のイオン交換当量(IEC)は、1.5〜3.5meq./gであると、電解質としての性能を発現し易いために好ましく、1.6〜3.0meq./gであると、低加湿下におけるプロトン伝導性と機械強度のバランスに優れるため、より好ましい。前記高分子電解質のイオン交換容量は、実施例に記載の高分子電解質膜のイオン交換容量の測定方法と同様にして求めることができる。 The ion exchange equivalent (IEC) of the polymer electrolyte is 1.5 to 3.5 meq. When it is / g, it is preferable because the performance as an electrolyte is easily exhibited, and 1.6 to 3.0 meq. / G is more preferable because it has an excellent balance between proton conductivity and mechanical strength under low humidification. The ion exchange capacity of the polymer electrolyte can be determined in the same manner as the method for measuring the ion exchange capacity of the polymer electrolyte membrane described in Examples.

また、機械強度をより向上させたり、水分に対する膨潤を抑制するために、高分子電解質に架橋の導入等の化学的変性を行うことも、本発明の範疇である。 Further, it is also within the scope of the present invention to carry out chemical modification such as introduction of crosslinks into the polymer electrolyte in order to further improve the mechanical strength and suppress swelling with respect to water.

本発明の高分子電解質は、従来公知の方法により製造することができる。例えば、親水部セグメントとなるオリゴマーを作製後、これと疎水部セグメントとなるオリゴマーを共重合体化し、共重合体の親水部となるオリゴマー部分のみをスルホン酸化して、親水部−疎水部共重合体とする方法;親水部セグメントとなるオリゴマーを作製後、スルホン酸基を導入してスルホン酸基含有オリゴマーを作製し、これと疎水部セグメントとなるオリゴマーを共重合体化する方法;スルホン酸基を有するモノマーの重合により親水部セグメントとなるオリゴマーを作製し、これと疎水部セグメントとなるオリゴマーを共重合体化する方法;疎水部セグメントとなるオリゴマーとスルホン酸基を有する多量のモノマーを重合することにより、結果的に親水部セグメントと疎水部セグメントの共重合体とする方法;等が例示できる。 The polymer electrolyte of the present invention can be produced by a conventionally known method. For example, after preparing an oligomer that becomes a hydrophilic part segment, the oligomer that becomes a hydrophobic part segment is copolymerized, and only the oligomer part that becomes a hydrophilic part of the copolymer is sulfonated, and the hydrophilic part-hydrophobic part co-weight. Method of coalescence; After preparing an oligomer that becomes a hydrophilic part segment, a sulfonic acid group is introduced to prepare a sulfonic acid group-containing oligomer, and this and an oligomer that becomes a hydrophobic part segment are copolymerized; a sulfonic acid group. A method in which an oligomer that becomes a hydrophilic part segment is produced by polymerization of a monomer having a hydrophobic part, and the oligomer that becomes a hydrophobic part segment is copolymerized; the oligomer that becomes a hydrophobic part segment and a large amount of monomer having a sulfonic acid group are polymerized. As a result, a method of forming a copolymer of a hydrophilic part segment and a hydrophobic part segment; and the like can be exemplified.

以下に、本発明の高分子電解質の製造方法について、一例を挙げて説明する。なお、本発明の高分子電解質の製造方法は、以下に限定されるものではない。 The method for producing a polymer electrolyte of the present invention will be described below with an example. The method for producing a polymer electrolyte of the present invention is not limited to the following.

まず、前述のモノマーを用いて、親水部セグメントとなるオリゴマー(スルホン酸化可能な部位を含むオリゴマー)と、疎水部セグメントとなるオリゴマーを調製する。これらを得るには、末端に水酸基等の求核性の置換基を有するモノマーと、末端にハロゲン化合物等の脱離基を有するモノマーを縮合する方法や、脱離基を有するモノマー中に触媒を加えて縮合させる方法等が挙げられる。 First, using the above-mentioned monomer, an oligomer that becomes a hydrophilic part segment (oligomer containing a sulfone-oxidizable site) and an oligomer that becomes a hydrophobic part segment are prepared. To obtain these, a method of condensing a monomer having a nucleophilic substituent such as a hydroxyl group at the terminal and a monomer having a leaving group such as a halogen compound at the terminal, or a catalyst in the monomer having a leaving group is used. In addition, a method of condensation and the like can be mentioned.

重合反応(縮合反応)は、溶媒を用いない溶融状態でも行うことは可能であるが、適当な溶媒中で行うことが好ましい。溶媒としては、芳香族炭化水素系溶媒、ハロゲン系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、スルホン系溶媒、スルホキシド系溶媒等が挙げられる。芳香族炭化水素系溶媒としては、例えばベンゼン、トルエン、キシレン、1,3,5−トリメチルベンゼン等が挙げられる。ハロゲン系溶媒としては、例えばジクロロベンゼン、トリクロロベンゼン等が挙げられる。エーテル系溶媒としては、例えばテトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル等が挙げられる。ケトン系溶媒としては、例えばメチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等が挙げられる。アミド系溶媒としては、例えばN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン、N−メチル−2−ピロリドン等が挙げられる。スルホン系溶媒としては、例えばスルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等が挙げられる。スルホキシド系溶媒としては、例えばジメチルスルホキシド、ジエチルスルホキシド等が挙げられる。これらは単独で用いても2種以上を併用してもよい。 The polymerization reaction (condensation reaction) can be carried out in a molten state without using a solvent, but it is preferably carried out in an appropriate solvent. Examples of the solvent include aromatic hydrocarbon solvents, halogen solvents, ether solvents, ketone solvents, amide solvents, sulfone solvents, sulfoxide solvents and the like. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, 1,3,5-trimethylbenzene and the like. Examples of the halogen-based solvent include dichlorobenzene and trichlorobenzene. Examples of the ether solvent include tetrahydrofuran, dioxane, cyclopentyl methyl ether and the like. Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone and the like. Examples of the amide solvent include N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like. Examples of the sulfone solvent include sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane and the like. Examples of the sulfoxide solvent include dimethyl sulfoxide, diethyl sulfoxide and the like. These may be used alone or in combination of two or more.

反応を促進するために、通常は触媒として塩基性化合物が用いられる。塩基性化合物としては、アルカリ金属塩、アルカリ土類金属塩等が好適に用いられ、例示するならば、LiOH、NaOH、KOH、Li2CO3、Na2CO3、K2CO3、LiHCO3、NaHCO3、KHCO3等である。 A basic compound is usually used as a catalyst to accelerate the reaction. As the basic compound, alkali metal salts, alkaline earth metal salts and the like are preferably used, and for example, LiOH, NaOH, KOH, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , LiHCO 3 , NaHCO 3 , KHCO 3, etc.

重合反応工程の反応温度は、重合反応に応じて適宜設定すればよい。具体的には、最適使用範囲の20℃〜250℃に設定すればよく、より好ましくは40℃〜200℃である。20℃よりも低温であれば反応が遅くなる傾向があり、250℃よりも高温であれば主鎖が切れやすくなる傾向がある。重合反応工程の反応時間は、特に限定されないが、好ましくは0.1〜500時間、より好ましくは0.5〜300時間である。 The reaction temperature of the polymerization reaction step may be appropriately set according to the polymerization reaction. Specifically, it may be set to 20 ° C. to 250 ° C., which is the optimum range of use, and more preferably 40 ° C. to 200 ° C. If the temperature is lower than 20 ° C, the reaction tends to be slow, and if the temperature is higher than 250 ° C, the main chain tends to break easily. The reaction time of the polymerization reaction step is not particularly limited, but is preferably 0.1 to 500 hours, more preferably 0.5 to 300 hours.

上記のようにして、親水部セグメントとなるオリゴマーと、疎水部セグメントとなるオリゴマーを得た後、これらを化学結合させてブロック共重合体化させることにより、共重合体(親水部セグメントとなるオリゴマーと、疎水部セグメントとなるオリゴマーからなる)を得る。これらオリゴマーを化学結合させて共重合体化させる方法としては、特に制限は無く、重合するオリゴマーの反応性によって適宜定める事ができる。重合法の詳細は、一般的な方法(「高分子の合成と反応(2)」p.249−255、(1991)共立出版株式会社)を適用することができる。具体的には、例えば、末端に水酸基等の求核性の置換基を有するオリゴマーを調製し、別途調製した末端にハロゲン化合物等の脱離基を有するオリゴマーを塩基存在下に縮合させることにより、共重合体化させる。 As described above, after obtaining an oligomer that becomes a hydrophilic part segment and an oligomer that becomes a hydrophobic part segment, they are chemically bonded to form a block copolymer, thereby forming a copolymer (oligomer that becomes a hydrophilic part segment). And an oligomer that becomes a hydrophobic segment). The method of chemically bonding these oligomers to form a copolymer is not particularly limited, and can be appropriately determined depending on the reactivity of the oligomer to be polymerized. For the details of the polymerization method, a general method (“Polymer Synthesis and Reaction (2)” p.249-255, (1991) Kyoritsu Shuppan Co., Ltd.) can be applied. Specifically, for example, an oligomer having a nucleophilic substituent such as a hydroxyl group at the terminal is prepared, and an oligomer having a leaving group such as a halogen compound at the terminal prepared separately is condensed in the presence of a base. Make it a copolymer.

あるいは、末端にハロゲン化合物を有する各オリゴマーどうしを遷移金属存在下に縮合させることにより、共重合体化させることもできる。 Alternatively, copolymerization can also be achieved by condensing each oligomer having a halogen compound at the terminal in the presence of a transition metal.

次いで、上記のようにして得られた共重合体において、親水部となるオリゴマーのみをスルホン酸化する。この場合、ベンゼン環の電子密度が比較的高い部分がスルホン酸化される。すなわち、前記共重合体(親水部セグメントとなるオリゴマーと、疎水部セグメントとなるオリゴマーからなる)と、スルホン酸化剤を反応させることにより、親水部セグメントと疎水部セグメントからなる共重合体(高分子電解質)を合成することができる。 Next, in the copolymer obtained as described above, only the oligomer that becomes the hydrophilic portion is sulfonated. In this case, the portion of the benzene ring having a relatively high electron density is sulfonated. That is, a copolymer (polymer) composed of a hydrophilic part segment and a hydrophobic part segment by reacting the copolymer (consisting of an oligomer which becomes a hydrophilic part segment and an oligomer which becomes a hydrophobic part segment) with a sulfooxidant. (Polymer) can be synthesized.

スルホン酸化剤としては、例えばクロロスルホン酸、無水硫酸、発煙硫酸、硫酸、アセチル硫酸等が挙げられ、クロロスルホン酸、発煙硫酸が適度な反応性を有しているために好ましい。 Examples of the sulfonic acid oxidizing agent include chlorosulfonic acid, anhydrous sulfuric acid, fuming sulfuric acid, sulfuric acid, acetylsulfuric acid and the like, and chlorosulfonic acid and fuming sulfuric acid are preferable because they have appropriate reactivity.

スルホン酸化反応において、溶媒は用いても用いなくてもよい。溶媒を用いる場合、溶媒としては、スルホン酸化剤に対して不活性なものであればよく、例えば、炭化水素系溶媒、ハロゲン化炭化水素等が挙げられる。炭化水素系溶媒としては、飽和脂肪族炭化水素が挙げられ、特に炭素数5〜15の直鎖状又は分岐状の炭化水素が好ましく、溶解度の点から、ペンタン、ヘキサン、ヘプタン、オクタン、デカンがより好ましい。ハロゲン化炭化水素としては、ハロゲン化飽和脂肪族炭化水素、ハロゲン化芳香族炭化水素等が挙げられる。ハロゲン化飽和脂肪族炭化水素としては、例えば、モノクロロメタン、ジクロロメタン、トリクロロメタン、テトラクロロメタン、モノクロロエタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン等が挙げられ、取り扱いの容易さからジクロロメタンが好ましい。ハロゲン化芳香族炭化水素としては、例えば、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられ、取り扱いの容易さからクロロベンゼンが好ましい。 The solvent may or may not be used in the sulfonic oxidation reaction. When a solvent is used, the solvent may be any one that is inert to the sulfonic oxidizing agent, and examples thereof include hydrocarbon solvents and halogenated hydrocarbons. Examples of the hydrocarbon solvent include saturated aliphatic hydrocarbons, and linear or branched hydrocarbons having 5 to 15 carbon atoms are particularly preferable, and pentane, hexane, heptane, octane, and decane are preferable from the viewpoint of solubility. More preferred. Examples of halogenated hydrocarbons include halogenated saturated aliphatic hydrocarbons and halogenated aromatic hydrocarbons. Examples of the halogenated saturated aliphatic hydrocarbon include monochloromethane, dichloromethane, trichloromethane, tetrachloromethane, monochloroethane, dichloroethane, trichloroethane, tetrachloroethane and the like, and dichloromethane is preferable from the viewpoint of ease of handling. Examples of the halogenated aromatic hydrocarbon include chlorobenzene, dichlorobenzene, trichlorobenzene and the like, and chlorobenzene is preferable from the viewpoint of ease of handling.

スルホン酸化工程の反応温度は、反応に応じて適宜設定すればよく、具体的にはスルホン酸化剤の最適使用範囲である−80℃〜200℃に設定すればよく、より好ましくは−50℃〜150℃であり、さらに好ましくは−20℃から130℃である。−80℃よりも低温であれば反応が遅くなり、目的とするスルホン酸化が100%まで進行しない傾向があり、200℃よりも高温であれば副反応が起こる傾向がある。 The reaction temperature of the sulfonic oxidation step may be appropriately set according to the reaction, and specifically, it may be set to -80 ° C to 200 ° C, which is the optimum range of use of the sulfonate, more preferably -50 ° C to -50 ° C. It is 150 ° C., more preferably −20 ° C. to 130 ° C. If the temperature is lower than -80 ° C, the reaction is slowed down, and the desired sulfonate oxidation tends not to proceed to 100%, and if the temperature is higher than 200 ° C, a side reaction tends to occur.

スルホン酸化工程の反応時間は、親水部セグメントとなるオリゴマーの構造により適宜選択され得るが、通常1分間〜50時間程度の範囲内であればよい。1分間より短いと均一なスルホン酸化が進行しない傾向があり、50時間より長いと副反応が起こる傾向がある。 The reaction time of the sulfonic oxidation step can be appropriately selected depending on the structure of the oligomer that becomes the hydrophilic segment, but is usually in the range of about 1 minute to 50 hours. If it is shorter than 1 minute, uniform sulfonic oxidation tends not to proceed, and if it is longer than 50 hours, a side reaction tends to occur.

スルホン酸化工程におけるスルホン酸化剤の添加量は、親水部セグメントとなるオリゴマーに含まれるスルホン酸化される部位の全量を1当量とした場合、1当量〜50当量であることが好ましい。1当量より少ないと、スルホン酸化される部位が不均一になる傾向があり、一方、50当量より多いと親水部セグメントとなるオリゴマーの主鎖が切断されやすい傾向がある。 The amount of the sulfooxidant added in the sulfonate step is preferably 1 equivalent to 50 equivalents, where 1 equivalent is the total amount of the sulfonated sites contained in the oligomer that becomes the hydrophilic segment. If it is less than 1 equivalent, the site to be sulfonated tends to be non-uniform, while if it is more than 50 equivalents, the main chain of the oligomer that becomes the hydrophilic segment tends to be easily cleaved.

スルホン酸化工程における親水部セグメントとなるオリゴマーの濃度は、スルホン酸化剤と接触させた場合に均一に反応が進行すれば特に限定されないが、親水部セグメントとなるオリゴマーが低分子量化等の副反応を起こさないことと、溶媒量抑制によるコスト優位性の観点から、スルホン酸化反応に用いた化合物全体の重量に対して1〜30重量%であることが好ましい。 The concentration of the oligomer that becomes the hydrophilic part segment in the sulfonic oxidation step is not particularly limited as long as the reaction proceeds uniformly when it is brought into contact with the sulfooxidant, but the oligomer that becomes the hydrophilic part segment causes a side reaction such as lowering the molecular weight. From the viewpoint of not causing this and cost advantage due to the suppression of the amount of solvent, it is preferably 1 to 30% by weight based on the total weight of the compound used in the sulfonate oxidation reaction.

別の方法として、疎水部セグメントとなるオリゴマーと親水部セグメントとなるオリゴマー又はスルホン酸基を有する親水モノマーの末端を、いずれもハロゲンとしておき、特開2012−229418に記載されている方法に従い、遷移金属化合物を用いて重縮合する方法を用いることもできる。このような遷移金属化合物としては、ニッケル系化合物、パラジウム系化合物、銅化合物が好ましく用いられ、好ましくは、ビス(1,5−シクロオクタジエン)ニッケル、テトラキストリフェニルホスフィンニッケル等の0価ニッケル錯体が用いられる。また、ジクロロビストリフェニルホスフィンニッケル等の2価のニッケル錯体を、亜鉛等の還元剤の存在下に使用してもよい。 As another method, the oligomer that becomes the hydrophobic part segment and the oligomer that becomes the hydrophilic part segment or the end of the hydrophilic monomer having a sulfonic acid group are both set as halogen, and the transition is performed according to the method described in JP-A-2012-229418. A method of polycondensation using a metal compound can also be used. Nickel-based compounds, palladium-based compounds, and copper compounds are preferably used as such transition metal compounds, and zero-valent nickel complexes such as bis (1,5-cyclooctadiene) nickel and tetraxtriphenylphosphine nickel are preferably used. Is used. Further, a divalent nickel complex such as dichlorobistriphenylphosphine nickel may be used in the presence of a reducing agent such as zinc.

本発明における補強材は、ガラス繊維と有機繊維の混合物を含む不織布である。ガラス繊維と有機繊維を適度な割合で混合したものを不規則に織り込み、シート状に加工することにより、補強材としての不織布が得られる。このような補強材を電解質と複合することにより、含水時の寸法変化を抑え、機械強度、乾湿サイクル耐性に優れた高分子電解質膜を得ることができる。 The reinforcing material in the present invention is a non-woven fabric containing a mixture of glass fibers and organic fibers. A non-woven fabric as a reinforcing material can be obtained by irregularly weaving a mixture of glass fibers and organic fibers in an appropriate ratio and processing them into a sheet shape. By combining such a reinforcing material with an electrolyte, it is possible to obtain a polymer electrolyte membrane that suppresses dimensional changes during water content and has excellent mechanical strength and wet / dry cycle resistance.

ガラス繊維は剛直で弾性率が高く、これを用いた電解質複合膜は強度に優れるが、反面、脆いという問題がある。ガラス繊維に柔軟性のある有機繊維を混合することにより不織布にも柔軟性が付与され、これを補強材として用いた電解質膜も柔軟性を有するものとなり、膨潤−収縮の繰り返しストレスを受ける条件においても、歪に追従することができ、高い耐久性を示す。 Glass fiber is rigid and has a high elastic modulus, and an electrolyte composite film using the glass fiber has excellent strength, but on the other hand, it has a problem of being brittle. By mixing flexible organic fiber with glass fiber, flexibility is given to the non-woven fabric, and the electrolyte membrane using this as a reinforcing material also becomes flexible, and under the condition of receiving repeated stress of swelling and contraction. However, it can follow the distortion and shows high durability.

本発明の補強材を構成するガラス繊維としては、特に限定はないが、耐酸性ガラス、いわゆるCガラスやアルカリガラスといわれる耐酸性を持ったガラスからなることがより好ましい。複合対象の高分子電解質がスルホン酸基を有することから、このような態様であれば高温の酸性条件下でも十分な強度を保つことができる。 The glass fiber constituting the reinforcing material of the present invention is not particularly limited, but is more preferably made of acid-resistant glass, so-called C glass or alkaline glass, which has acid resistance. Since the polymer electrolyte to be composited has a sulfonic acid group, sufficient strength can be maintained even under high temperature acidic conditions in such an embodiment.

ここで、Cガラスやアルカリガラスと言われるガラスは、一般にNa2OやK2O等のアルカリ含有量が0.8〜20質量%である組成を有するガラスであり、耐酸性に優れる。 Here, the glass called C glass or alkaline glass is generally a glass having a composition such as Na 2 O or K 2 O having an alkali content of 0.8 to 20% by mass, and is excellent in acid resistance.

ガラス繊維の平均繊維径は0.1μm〜20μmの範囲であることが好ましい。このような範囲であれば、不織布の製造コストと均一性とのバランスが良好となる。 The average fiber diameter of the glass fiber is preferably in the range of 0.1 μm to 20 μm. Within such a range, the balance between the manufacturing cost of the non-woven fabric and the uniformity is good.

本発明においては、特にガラス繊維の平均繊維径は、1μm以下がより好ましく、0.1μm〜1μmがさらに好ましい。平均繊維径がこのような値であると、不織布に加工した際に、ガラス繊維が高密度で織り込まれることになり、高分子電解質膜の強度の向上に好適である。 In the present invention, the average fiber diameter of the glass fiber is more preferably 1 μm or less, further preferably 0.1 μm to 1 μm. When the average fiber diameter is such a value, the glass fibers are woven at a high density when the non-woven fabric is processed, which is suitable for improving the strength of the polymer electrolyte membrane.

平均繊維径が異なる複数種のガラス繊維を混合してもよい。平均繊維径が1μm以下のものに、平均繊維径が1μmを超え10μm未満のものを混合したものを用いると、ガラス不織布の剛性が向上し、高い乾湿サイクル耐性を発現するため、より好ましい。 A plurality of types of glass fibers having different average fiber diameters may be mixed. It is more preferable to use a mixture of one having an average fiber diameter of 1 μm or less and one having an average fiber diameter of more than 1 μm and less than 10 μm because the rigidity of the glass nonwoven fabric is improved and high wet-wet cycle resistance is exhibited.

平均繊維径が1μmを超え10μm未満のガラス繊維の含有率は、平均繊維径が1μm以下のガラス繊維と平均繊維径が1μmを超え10μm未満のガラス繊維の合計100重量%に対し、10〜70重量%であることが好ましい。このような範囲であれば高分子電解質膜の剛性および引張強度のバランスが良好となりかつ高分子電解質が均一に保持される。 The content of glass fibers having an average fiber diameter of more than 1 μm and less than 10 μm is 10 to 70 with respect to 100% by weight of the total of glass fibers having an average fiber diameter of 1 μm or less and glass fibers having an average fiber diameter of more than 1 μm and less than 10 μm. It is preferably% by weight. Within such a range, the balance between the rigidity and the tensile strength of the polymer electrolyte membrane is good, and the polymer electrolyte is uniformly maintained.

繊維の繊維径は、通常ある程度ばらつきがあるが、本発明でいう繊維径としては、平均値を用いる。ガラス繊維の繊維径は、光学顕微鏡による観察により測定することができる。より具体的には、不織布中の任意の約10本の繊維径を上記のようにして測定し、その平均値をガラス不織布の繊維径とする。 The fiber diameter of the fiber usually varies to some extent, but an average value is used as the fiber diameter in the present invention. The fiber diameter of the glass fiber can be measured by observation with an optical microscope. More specifically, any about 10 fiber diameters in the non-woven fabric are measured as described above, and the average value thereof is taken as the fiber diameter of the glass non-woven fabric.

不織布を構成するガラス繊維の平均繊維長は、0.5mm〜20mmの範囲が好ましく、2mm〜15mmの範囲にあることが好ましい。平均繊維長が0.5mm未満であると、不織布の機械的強度が低下するため、電解質膜の補強効果が減少する。一方、平均繊維長が20mmを超えると、不織布成形時におけるガラス繊維の分散性が低下し、厚さの均一性や、目付量の均一性が低下する。その結果、電解質膜の補強に適した不織布が得られなくなる。 The average fiber length of the glass fibers constituting the non-woven fabric is preferably in the range of 0.5 mm to 20 mm, and preferably in the range of 2 mm to 15 mm. If the average fiber length is less than 0.5 mm, the mechanical strength of the non-woven fabric is lowered, so that the reinforcing effect of the electrolyte membrane is reduced. On the other hand, when the average fiber length exceeds 20 mm, the dispersibility of the glass fiber at the time of molding the non-woven fabric is lowered, and the uniformity of the thickness and the uniformity of the grain size are lowered. As a result, a non-woven fabric suitable for reinforcing the electrolyte membrane cannot be obtained.

本発明で用いられる補強材には、有機繊維が混合される。有機繊維の具体例としては、特に限定されず、種々のものを用いることができる。例示するならば、ポリ塩化ビニル繊維、塩化ビニル−酢酸ビニル共重合体繊維、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレンなどのポリエチレン繊維、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレンなどのポリプロピレン繊維、ポリアクリロニトリル、塩化ビニル−アクリロニトリル共重合体等のアクリル系繊維、ビニロン繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンナフタレート等のポリエステル繊維、6−ナイロン、6,6−ナイロン、6,12−ナイロン等のポリアミド繊維、セルロース繊維、レーヨン繊維、ポリ乳酸繊維、ポリイミド繊維、ポリベンゾオキサゾール繊維、アラミド繊維等が挙げられる。 Organic fibers are mixed with the reinforcing material used in the present invention. Specific examples of the organic fiber are not particularly limited, and various organic fibers can be used. For example, polyvinyl chloride fiber, vinyl chloride-vinyl acetate copolymer fiber, low density polyethylene, linear low density polyethylene, polyethylene fiber such as high density polyethylene, homopolypoly, random polypropylene, block polypropylene and other polypropylene. Fibers, acrylic fibers such as polyacrylonitrile, vinyl chloride-acrylonitrile copolymer, vinylon fibers, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyester fibers such as polyethylene naphthalate, 6-nylon, 6,6-nylon, 6 , 12-Nylon and other polyamide fibers, cellulose fibers, rayon fibers, polylactic acid fibers, polyimide fibers, polybenzoxazole fibers, aramid fibers and the like.

これらのうち、柔軟性に優れ、耐熱性、耐酸性等の耐久性が高く、安価であるという理由で、ポリエステル繊維、ビニロン繊維、ポリアクリロニトリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアミド繊維、セルロース繊維、レーヨン繊維、ポリ乳酸繊維、が好ましく、ポリエステル繊維、特にポリエチレンテレフタレートが、より好ましい。これら有機繊維は1種類を用いてもよいし、2種類以上を組み合わせて用いてもよい。 Of these, polyester fiber, vinylon fiber, polyacrylonitrile fiber, polyethylene fiber, polypropylene fiber, polyamide fiber, cellulose fiber, because of their excellent flexibility, high durability such as heat resistance and acid resistance, and low cost. Rayon fiber and polylactic acid fiber are preferable, and polyester fiber, particularly polyethylene terephthalate is more preferable. One type of these organic fibers may be used, or two or more types may be used in combination.

有機繊維の平均繊維径は、0.1〜20μmの範囲にあることが好ましく、1〜10μmがより好ましい。平均繊維径が0.1μmより細い場合は、有機繊維の強度が弱くなりすぎ、補強の効果が低下する。20μmより太い場合は、厚さが均一な不織布を形成することが困難になる。 The average fiber diameter of the organic fibers is preferably in the range of 0.1 to 20 μm, more preferably 1 to 10 μm. When the average fiber diameter is smaller than 0.1 μm, the strength of the organic fiber becomes too weak and the reinforcing effect is reduced. If it is thicker than 20 μm, it becomes difficult to form a non-woven fabric having a uniform thickness.

有機繊維の長さは0.5mm〜20mmの範囲であることが好ましく、2mm〜15mmの範囲にあることが好ましい。平均繊維長が0.5mm未満であると、不織布の機械的強度が低下するため、電解質膜の補強効果が減少する。一方、平均繊維長が20mmを超えると、不織布成形時における有機繊維の分散性が低下し、厚さの均一性や、目付量の均一性が低下する。その結果、電解質膜の補強に適した不織布が得られなくなる。 The length of the organic fiber is preferably in the range of 0.5 mm to 20 mm, preferably in the range of 2 mm to 15 mm. If the average fiber length is less than 0.5 mm, the mechanical strength of the non-woven fabric is lowered, so that the reinforcing effect of the electrolyte membrane is reduced. On the other hand, when the average fiber length exceeds 20 mm, the dispersibility of the organic fibers at the time of molding the non-woven fabric is lowered, and the uniformity of the thickness and the uniformity of the basis weight are lowered. As a result, a non-woven fabric suitable for reinforcing the electrolyte membrane cannot be obtained.

本発明の補強材におけるガラス繊維と有機繊維との混合比率は、重量比で、95/5〜5/95の範囲にあることが好ましく、90/10〜10/90がより好ましい。有機繊維の割合が5重量%を下回ると、有機繊維による柔軟化の効果が十分得られず、95重量%を超えると、不織布の強度が不足し、本発明の効果を発現しにくい。 The mixing ratio of the glass fiber and the organic fiber in the reinforcing material of the present invention is preferably in the range of 95/5 to 5/95, more preferably 90/10 to 10/90 in terms of weight ratio. If the proportion of the organic fiber is less than 5% by weight, the effect of softening by the organic fiber cannot be sufficiently obtained, and if it exceeds 95% by weight, the strength of the non-woven fabric is insufficient and the effect of the present invention is difficult to be exhibited.

補強材が更にバインダーを含むことが好ましい。バインダーは、ガラス繊維及び有機繊維どうしを拘束する機能を有する。 It is preferable that the reinforcing material further contains a binder. The binder has a function of binding glass fibers and organic fibers to each other.

バインダーとしては種々の液状バインダーが知られており、例えば、アクリル樹脂ディスパージョン、アクリル樹脂エマルション、フッ素樹脂ディスパージョン、フッ素樹脂エマルション、ポリウレタンディスパージョン、ポリウレタンエマルション、シリコーン樹脂ディスパージョン、シリコーン樹脂エマルション、ポリイミドワニス、ポリビニルアルコール水溶液、コロイダルシリカディスパージョン、アルキルシリケート、ケイ素又はチタンのアルコキシド、チタニアゾル等がある。 Various liquid binders are known as binders, for example, acrylic resin dispersion, acrylic resin emulsion, fluororesin dispersion, fluororesin emulsion, polyurethane dispersion, polyurethane emulsion, silicone resin dispersion, silicone resin emulsion, polyimide. There are varnish, polyvinyl alcohol aqueous solution, colloidal silica dispersion, alkyl silicate, silicon or titanium emulsion, titania sol and the like.

また、バインダーとしては、一般にシランカップリング剤と呼ばれるシリコン系化合物、エポキシ樹脂等の硬化性樹脂を用いることも可能であり、エポキシ樹脂が好ましい。 Further, as the binder, a curable resin such as a silicon compound generally called a silane coupling agent or an epoxy resin can be used, and an epoxy resin is preferable.

シリコン系化合物の例としては、まず、一般的にシランカップリング剤と称されるものが挙げられる。具体例としては、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリクロロシラン、ビニルトリメトキシシラン等のビニルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン等のアクリルシラン、γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ−ウレイドプロピルトリエトキシシラン等のウレイドシラン、γ−クロロプロピルトリメトキシシラン等のクロロシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプトシラン、γ−イソシアナートプロピルトリメトキシシラン等のイソシアナートシラン等が挙げられる。また、上記アミノシランとエポキシシランの反応物、アミノシランとイソシアナートシランの反応物も用いることができる。これらは単独で用いてもよく、2種類以上を混合して用いてもよい。 First, examples of silicon-based compounds include those generally referred to as silane coupling agents. Specific examples include vinylsilanes such as vinyltris (β-methoxyethoxy) silanes, vinyltrichlorosilanes and vinyltrimethoxysilanes, acrylic silanes such as γ-methacryloyloxypropyltrimethoxysilanes, γ-aminopropyltrimethoxysilanes and N-β. Aminosilanes such as-(aminoethyl) -γ-aminopropyltrimethoxysilane, epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-ureidopropyl Examples thereof include ureidosilanes such as triethoxysilane, chlorosilanes such as γ-chloropropyltrimethoxysilane, mercaptosilanes such as γ-mercaptopropyltrimethoxysilane, and isocyanatosilanes such as γ-isocyanatopropyltrimethoxysilane. Further, the above-mentioned reaction product of aminosilane and epoxysilane and the reaction product of aminosilane and isocyanatesilane can also be used. These may be used alone or in combination of two or more.

バインダーとして一般的に用いられる上述の液状バインダーで処理した後に、さらにシランカップリング剤処理を施してもよい。液状バインダーとシランカップリング剤は、それぞれ独立した機構で補強の効果を発揮するため、それらは併用することができ、その効果は相乗される。 After the treatment with the above-mentioned liquid binder generally used as a binder, a silane coupling agent treatment may be further performed. Since the liquid binder and the silane coupling agent exert a reinforcing effect by independent mechanisms, they can be used together, and the effects are synergized.

シランカップリング剤以外のシリコン系化合物としては、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、n−プロピルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、n−ブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリメトキシシラン、n−デシルトリメトキシシラン、n−ドデシルトリメトキシシラン等のアルキルシリケート、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリメチルフェニルシロキサン等のポリシロキサン等のポリシロキサンが挙げられる。 Silicon-based compounds other than the silane coupling agent include tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, n-propyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, and n-butyl. Alkyl silicates such as trimethoxysilane, n-hexyltrimethoxysilane, n-octyltrimethoxysilane, n-decyltrimethoxysilane, n-dodecyltrimethoxysilane, polydimethylsiloxane, polydiethylsiloxane, polymethylphenylsiloxane, etc. Examples thereof include polysiloxane such as polysiloxane.

エポキシ系化合物としては、特に限定はなく、公知のものを使用することができる。例示するならば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールAプロプレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、等が挙げられる。 The epoxy compound is not particularly limited, and known ones can be used. Examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, glycidyl ether type epoxy resin with bisphenol A proprene oxide adduct, hydrogenated bisphenol A type epoxy resin, and the like.

また、エポキシ樹脂の硬化剤についても公知のものを使用することができ、例示するならば、ジエチレントリアミン、トリエチレンテトラミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド、メンタンジアミン、キシレンジアミン等のアミン系化合物、エチルメチルイミダゾール、各種ポリアミド樹脂、無水フタル酸、無水マレイン酸、無水ドデシルコハク酸、無水ヘキサヒドロフタル酸、無水メチルナジック酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、無水ジクロロコハク酸等の酸無水物が挙げられる。 Also, known curing agents for epoxy resins can be used, and for example, diethylenetriamine, triethylenetetramine, diethylaminopropylamine, N-aminoethylpiperazine, benzyldimethylamine, tris (dimethylaminomethyl). Amine compounds such as phenol, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dicyandiamide, mentandiamine, xylene diamine, ethylmethylimidazole, various polyamide resins, phthalic anhydride, maleic anhydride, dodecylsuccinic anhydride, hexahydrochloride. Acid anhydrides such as phthalic acid, methylnadic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, and dichlorosuccinic anhydride can be mentioned.

上記のバインダーは、無機バインダーを含んでいてもよい。無機バインダーとしては、シリカゾル、アルミナゾル、チタニアゾルのような合成無機系ゾル(微粒子として水に分散しており、乾燥固化後にゲルとなり硬化するもの)、カオリン、クレー、セピオライト、アタパルジャイト、ベントナイトのような天然系鉱物紛体(水に分散後、乾燥時に固化するもの)、マイカ、スメクタイトのような鉱物系鱗片状物、シリカフレーク、シリカ−チタニアフレーク、アルミナフレークのような合成鱗片状物(水に分散しており、乾燥時に固結して自己膜を形成するもの)、シリカ微粒子等の無機バインダーが用いられ、不純物の少ない合成物の無機バインダーが好ましく、平均粒径0.01〜2μm、好ましくは0.1〜1μm、より好ましくは0.2〜0.6μmのものが用いられる。 The above binder may contain an inorganic binder. Inorganic binders include synthetic inorganic sol such as silica sol, alumina sol, and titania sol (which are dispersed in water as fine particles and harden as a gel after drying and solidifying), and natural minerals such as kaolin, clay, sepiolite, attapulsite, and bentonite. Mineral powders (dispersed in water and solidified when dried), mineral scales such as mica and smectite, synthetic scales such as silica flakes, silica-titania flakes, and alumina flakes (dispersed in water) (Those that solidify when dried to form a self-film), inorganic binders such as silica fine particles are used, and synthetic inorganic binders with few impurities are preferable, and the average particle size is 0.01 to 2 μm, preferably 0. .1-1 μm, more preferably 0.2-0.6 μm is used.

バインダーの添加量は、バインダーの固形分の付着量が繊維の質量の0.5〜10%(より好ましくは2〜9%)の範囲となることが好ましい。 The amount of the binder added is preferably such that the amount of the solid content of the binder adhered is in the range of 0.5 to 10% (more preferably 2 to 9%) of the mass of the fiber.

バインダーを用いることによって、繊維が強固に拘束され、不織布の寸法安定性と強度が向上するとともに、これにより補強された高分子電解質膜の耐膨潤性が改良され、高い乾湿サイクル耐性を示すようになる。 By using the binder, the fibers are firmly restrained, the dimensional stability and strength of the non-woven fabric are improved, and the swelling resistance of the reinforced polymer electrolyte membrane is improved so as to exhibit high wet-wet cycle resistance. Become.

本発明における補強材は、以下の2つ方法で製造できる。
第一の方法では、まず、ガラス繊維と有機繊維、及び、繊維どうしの結び付きを強めるバインダーの成分とを含む混合液を調製する(工程(i))。工程(i)の混合液は、分散剤、界面活性剤、pH調整剤、凝集剤等を含んでいてもよい。次にその混合液から、繊維とバインダーを含む不織布を形成する(工程(ii))。不織布は、たとえば、一般的な湿式抄造の方法で形成できる。不織布を形成した後、必要に応じて熱処理等を行ってもよい。工程(ii)によって、繊維どうしがバインダーで拘束された不織布が得られる。
The reinforcing material in the present invention can be produced by the following two methods.
In the first method, first, a mixed solution containing glass fibers, organic fibers, and a binder component that strengthens the bond between the fibers is prepared (step (i)). The mixed solution of step (i) may contain a dispersant, a surfactant, a pH adjuster, a flocculant and the like. Next, a non-woven fabric containing fibers and a binder is formed from the mixed solution (step (ii)). The non-woven fabric can be formed, for example, by a general wet papermaking method. After forming the non-woven fabric, heat treatment or the like may be performed if necessary. The step (ii) provides a non-woven fabric in which the fibers are bound to each other with a binder.

第二の方法では、まず、上述の繊維を用いて、たとえば一般的な湿式抄造の方法で、不織布を形成する(工程(I))。次にバインダーの成分を含む液体を不織布に塗布した後、乾燥させることによって、繊維どうしの結びつきを強める(工程(II))。乾燥時に熱処理を行ってもよい。バインダーの塗布は、バインダーに不織布を浸漬又は不織布にバインダーを含浸させることによって行ってもよい。工程(II)では、繊維間に膜が形成されることを抑制するため、バインダーを塗布した後、余分なバインダーを除去することが好ましい。 In the second method, first, the above-mentioned fibers are used to form a non-woven fabric, for example, by a general wet papermaking method (step (I)). Next, a liquid containing a binder component is applied to the non-woven fabric and then dried to strengthen the bond between the fibers (step (II)). Heat treatment may be performed at the time of drying. The binder may be applied by immersing the non-woven fabric in the binder or impregnating the non-woven fabric with the binder. In step (II), it is preferable to remove the excess binder after applying the binder in order to suppress the formation of a film between the fibers.

第一の方法は、製造工程が簡単であるという利点がある。一方、第二の方法は、繊維の交点にバインダーを集中させることが可能であり、少ないバインダーの量で高い効果が得られるという利点がある。 The first method has the advantage that the manufacturing process is simple. On the other hand, the second method has an advantage that the binder can be concentrated at the intersection of the fibers, and a high effect can be obtained with a small amount of the binder.

補強材における平均厚みの上限が50μm以下であることが好ましく、30μm以下がより好ましい。本発明の高分子電解質膜は、300μm以下が好ましいことから、これと複合するガラス不織布も、機械強度向上の効果を持つ範囲内で薄いことが好ましい。また、補強材における平均厚みの下限は、強度向上の点から、5μm以上が好ましく、10μm以上がより好ましい。 The upper limit of the average thickness of the reinforcing material is preferably 50 μm or less, more preferably 30 μm or less. Since the polymer electrolyte membrane of the present invention is preferably 300 μm or less, it is preferable that the glass nonwoven fabric composited with the polymer electrolyte membrane is also thin within a range having an effect of improving mechanical strength. Further, the lower limit of the average thickness of the reinforcing material is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of improving the strength.

補強材の平均厚みは、補強材全体に均等な圧力(20kPa)を加え、ダイヤルゲージを用いて測定することができる。より具体的には、不織布の任意の約10箇所の厚さを上記のようにして測定し、その平均値を補強材の厚さとする。 The average thickness of the reinforcing material can be measured by applying a uniform pressure (20 kPa) to the entire reinforcing material and using a dial gauge. More specifically, the thickness of any about 10 points of the non-woven fabric is measured as described above, and the average value is taken as the thickness of the reinforcing material.

補強材の平均厚みが上述の範囲である場合、その目付量(単位面積当たりの質量)は、2〜50g/m2であることが好ましく、2〜25g/m2の範囲であることがより好ましい。目付量が2g/m2以上であれば、繊維どうしの絡み合いが多くなり、引張強度が向上する。一方、目付量が50g/m2以下であれば、電解質膜の補強材としては好適な目付量であり、プレス等によって目付量を小さくする必要がない。 When the average thickness of the reinforcing material is in the above range, the basis weight (mass per unit area) is preferably 2 to 50 g / m 2 , and more preferably 2 to 25 g / m 2. preferable. When the basis weight is 2 g / m 2 or more, the fibers are more entangled with each other and the tensile strength is improved. On the other hand, when the basis weight is 50 g / m 2 or less, the basis weight is suitable as a reinforcing material for the electrolyte membrane, and it is not necessary to reduce the basis weight by pressing or the like.

補強材は、機械強度の向上と複合化によるプロトン伝導性低下を最小限に抑えるという点から、空隙率80%以上が好ましく、85〜95%がより好ましい。 The reinforcing material preferably has a porosity of 80% or more, more preferably 85 to 95%, from the viewpoint of improving the mechanical strength and minimizing the decrease in proton conductivity due to compounding.

補強材の空隙率は、補強材の体積と重量から比重を算出し、これを繊維の真比重で除することにより算出することができる。 The porosity of the reinforcing material can be calculated by calculating the specific gravity from the volume and weight of the reinforcing material and dividing this by the true specific gravity of the fiber.

本発明の高分子電解質膜は、上記高分子電解質と補強材が複合されてなるものである。すなわち、本発明の高分子電解質膜は、スルホン酸基を有し、主鎖が主に芳香環からなる炭化水素系高分子電解質に 補強材が包埋された形で複合されてなるものである。 The polymer electrolyte membrane of the present invention is a composite of the above-mentioned polymer electrolyte and a reinforcing material. That is, the polymer electrolyte membrane of the present invention is composed of a hydrocarbon-based polymer electrolyte having a sulfonic acid group and having a main chain mainly composed of an aromatic ring, in which a reinforcing material is embedded. ..

複合の方法は、従来公知の方法を適用しうる。簡易的な方法としては、ガラス等の基板上に補強材を固定し、その後、高分子電解質をキャストして溶媒を除去する方法;ガラス等の基板上にまず高分子電解質の溶液をキャストし、その後、その上に補強材を載せ、さらに高分子電解質の溶液をキャストして、溶媒を除去する方法;高分子電解質の溶液に補強材をディップすることにより、補強材の空隙中に高分子電解質を含浸させ、溶液から、溶液を含んだ補強材を取り出し、例えば垂直状態で広げた状態で溶媒を除去する方法等が例示される。そして、いずれかの方法を用いた場合、補強材を構成する繊維間に高分子電解質が存在し、高分子電解質と補強材が複合された高分子電解質膜となる。 As the composite method, a conventionally known method can be applied. As a simple method, a reinforcing material is fixed on a substrate such as glass, and then a polymer electrolyte is cast to remove the solvent; a solution of the polymer electrolyte is first cast on a substrate such as glass. After that, a reinforcing material is placed on the reinforcing material, and a solution of the polymer electrolyte is cast to remove the solvent; by dipping the reinforcing material into the solution of the polymer electrolyte, the polymer electrolyte is placed in the voids of the reinforcing material. Is impregnated, a reinforcing material containing the solution is taken out from the solution, and for example, a method of removing the solvent in a vertically spread state is exemplified. When either method is used, the polymer electrolyte exists between the fibers constituting the reinforcing material, and the polymer electrolyte membrane is formed by combining the polymer electrolyte and the reinforcing material.

なお、高分子電解質溶液とする場合に用いられる溶媒としては、例えば、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン、N−メチルピロリドン等が挙げられる。溶媒の除去は、好ましくは10〜200℃、より好ましくは40〜150℃の温度で乾燥させることにより行う。乾燥時間は、枚葉で乾燥する場合は、乾燥温度を比較的高めに設定し、20秒〜10分間が好ましい。その他、高分子電解質とガラス不織布を加熱圧着する方法;溶媒を含んだ半凝固状態の高分子電解質2枚でガラス不織布を挟み込み、プレス、乾燥による方法等も適用しうる。前記のようにして、高分子電解質と補強材が複合されてなる、本発明の高分子電解質膜を得ることができる。 Examples of the solvent used for preparing the polymer electrolyte solution include dimethyl sulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, and N-methyl. Examples thereof include pyrrolidone. The solvent is removed by drying at a temperature of preferably 10 to 200 ° C, more preferably 40 to 150 ° C. When drying with a single leaf, the drying time is preferably set to a relatively high drying temperature of 20 seconds to 10 minutes. In addition, a method of heat-bonding the polymer electrolyte and the glass non-woven fabric; a method of sandwiching the glass non-woven fabric between two semi-solidified polymer electrolytes containing a solvent, pressing, and drying can also be applied. As described above, the polymer electrolyte membrane of the present invention in which the polymer electrolyte and the reinforcing material are composited can be obtained.

本発明の高分子電解質膜における高分子電解質としては、本発明の上記高分子電解質を単独で用いてもよいし、その他の高分子電解質等を混合して用いてもよい。
また、本発明の高分子電解質膜は、上記高分子電解質と補強材以外の添加物を含んでいてもよい。
As the polymer electrolyte in the polymer electrolyte membrane of the present invention, the above-mentioned polymer electrolyte of the present invention may be used alone, or other polymer electrolytes and the like may be mixed and used.
Further, the polymer electrolyte membrane of the present invention may contain additives other than the above-mentioned polymer electrolyte and the reinforcing material.

プロトン伝導性の点から、本発明の高分子電解質膜においては、本発明の高分子電解質が、前記高分子電解質膜全体の70重量%以上を占める主成分であることが好ましい。また、電解質膜を得た後に、分子配向等を制御するために二軸延伸等の処理を施したり、結晶化度や残存応力を制御するための熱処理を施しても構わない。さらに、製膜時に適当な化学的処理を施してもよい。化学的処理とは、例えば、電解質膜の強度を上げるための架橋、伝導度を上げるためのプロトン性化合物の添加・耐久性向上やイオン架橋のための微量の多価金属イオンの添加等が挙げられる。いずれにしても、本発明における高分子電解質を用いて、従来公知の技術と組み合わせて製造される高分子電解質膜は、本発明の範疇である。 From the viewpoint of proton conductivity, in the polymer electrolyte membrane of the present invention, it is preferable that the polymer electrolyte of the present invention is the main component accounting for 70% by weight or more of the entire polymer electrolyte membrane. Further, after obtaining the electrolyte membrane, a treatment such as biaxial stretching may be performed to control the molecular orientation or the like, or a heat treatment may be performed to control the crystallinity and the residual stress. Further, an appropriate chemical treatment may be applied at the time of film formation. Examples of the chemical treatment include cross-linking to increase the strength of the electrolyte membrane, addition of a protonic compound to increase conductivity, improvement of durability, addition of a trace amount of polyvalent metal ion for ion cross-linking, and the like. Be done. In any case, the polymer electrolyte membrane produced by using the polymer electrolyte in the present invention in combination with conventionally known techniques is within the scope of the present invention.

また、本発明の高分子電解質膜において、通常用いられる各種添加剤、樹脂劣化防止のための酸化防止剤、フィルムとしての成形加工における取扱を向上させるための帯電防止剤や滑剤等は、電解質膜としての加工や性能に影響を及ぼさない範囲で適宜用いることができる。 Further, in the polymer electrolyte membrane of the present invention, various additives usually used, antioxidants for preventing resin deterioration, antistatic agents and lubricants for improving handling in molding as a film are used as electrolyte membranes. It can be appropriately used as long as it does not affect the processing and performance of the product.

本発明の高分子電解質膜の厚さとしては、用途に応じて任意の厚さを選択することができる。例えば、燃料電池として用いる際の高分子電解質膜の抵抗を低減することを考慮した場合、高分子電解質膜の厚さは薄いほどよい。一方、高分子電解質膜のガス遮断性、ハンドリング性、電極との接合時の耐破れ性等を考慮すると、高分子電解質膜の厚さは薄すぎると好ましくない場合がある。これらを考慮すると、高分子電解質膜の厚さは、5μm以上300μm以下が好ましく、10μm以上100μm以下がより好ましく、また、燃料電池として出力を重視する場合等は10μ以上50μm以下が特に好ましい。高分子電解質膜の厚さが5μm以上300μm以下であれば、製造が容易であり、膜抵抗と機械物性のバランスが取れており、燃料電池材料として加工する際のハンドリング性にも優れる。前記高分子電解質膜の厚さは、実施例に記載の測定方法により求めることができる。 As the thickness of the polymer electrolyte membrane of the present invention, any thickness can be selected depending on the intended use. For example, when considering reducing the resistance of the polymer electrolyte membrane when used as a fuel cell, the thinner the polymer electrolyte membrane, the better. On the other hand, considering the gas barrier property, handleability, tear resistance at the time of bonding with the electrode, etc. of the polymer electrolyte membrane, it may not be preferable if the thickness of the polymer electrolyte membrane is too thin. Considering these, the thickness of the polymer electrolyte membrane is preferably 5 μm or more and 300 μm or less, more preferably 10 μm or more and 100 μm or less, and particularly preferably 10 μm or more and 50 μm or less when the output is important as a fuel cell. When the thickness of the polymer electrolyte membrane is 5 μm or more and 300 μm or less, it is easy to manufacture, the membrane resistance and the mechanical properties are well-balanced, and the handleability when processing as a fuel cell material is also excellent. The thickness of the polymer electrolyte membrane can be determined by the measuring method described in Examples.

本発明の高分子電解質膜のイオン交換当量(IEC)の調整は、例えば、高分子電解質膜として、高分子電解質以外の材料を含ませることで適宜調整しうる。 The ion exchange equivalent (IEC) of the polymer electrolyte membrane of the present invention can be appropriately adjusted by including, for example, a material other than the polymer electrolyte as the polymer electrolyte membrane.

本発明にかかる膜/電極接合体(以下、「MEA」と表記する)は、本発明の高分子電解質膜に電極触媒を塗布することにより得られる。本発明で使用される電極触媒とは、文字通り、当業者にとって従来公知の電極触媒であればよく、導電性触媒担体と前記導電性触媒担体に担持された触媒活性物質を含むものであればよく、その他の具体的な構成については特に限定されない。具体的には、燃料電池の電極反応に対して活性な触媒が使用される。アノード側では、燃料(水素やメタノールなど)の酸化能を有する触媒が使用される。 The membrane / electrode assembly according to the present invention (hereinafter referred to as "MEA") can be obtained by applying an electrode catalyst to the polymer electrolyte membrane of the present invention. The electrode catalyst used in the present invention may literally be an electrode catalyst conventionally known to those skilled in the art, and may contain a conductive catalyst carrier and a catalytically active substance supported on the conductive catalyst carrier. , Other specific configurations are not particularly limited. Specifically, a catalyst that is active against the electrode reaction of the fuel cell is used. On the anode side, a catalyst capable of oxidizing fuel (hydrogen, methanol, etc.) is used.

導電性触媒担体としては、具体的には、カーボンブラック、ケッチェンブラック、活性炭、カーボンナノホーン、カーボンナノチューブなどの高表面積のカーボン担体が挙げられ、触媒担持能や電子伝導性、電気化学的安定性などから、これらの材料が好ましい。 Specific examples of the conductive catalyst carrier include high surface area carbon carriers such as carbon black, Ketjen black, activated carbon, carbon nanohorns, and carbon nanotubes, and include catalyst-supporting ability, electron conductivity, and electrochemical stability. Therefore, these materials are preferable.

触媒活性物質としては、具体的には、白金、コバルト、ルテニウム等が例示でき、これらを単独で、あるいはこれらの少なくとも一種を含んだ合金、さらには任意の混合物として使用しても構わない。特に燃料の酸化能、酸化剤の還元能、耐久性を考慮すると、白金又は白金を含む合金であることが好ましい。これらは必要に応じて、安定化や長寿命化のために、鉄、錫、希土類元素等を用い、3成分以上で構成してもよい。 Specific examples of the catalytically active substance include platinum, cobalt, ruthenium and the like, and these may be used alone, as an alloy containing at least one of these, or as an arbitrary mixture. In particular, considering the oxidizing ability of the fuel, the reducing ability of the oxidizing agent, and the durability, platinum or an alloy containing platinum is preferable. If necessary, iron, tin, rare earth elements and the like may be used for stabilization and longevity, and these may be composed of three or more components.

電極触媒層は、高分子電解質、電極触媒及び溶媒を含む触媒インクを支持体上に塗布し、溶媒を除去することによって調製することができる。 The electrode catalyst layer can be prepared by applying a catalyst ink containing a polymer electrolyte, an electrode catalyst and a solvent onto a support and removing the solvent.

溶媒としては、高分子電解質を溶解でき、燃料電池用触媒を被毒しないものであれば何ら制限なく使用可能である。 As the solvent, any solvent that can dissolve the polymer electrolyte and does not poison the fuel cell catalyst can be used without any limitation.

前記触媒インクは、必要に応じて非電解質バインダー、撥水剤、分散剤、増粘剤、造孔剤などの添加剤を含んでいても構わない。また、これらの添加剤は、当業者にとって従来公知のものが使用可能であり、その他の具体的な構成については特に限定されない。前記組成及び方法で調製された触媒インクは、粘度や基材の種類に応じて、下記に示すような塗布方法が利用できる。前記触媒インクの基材への塗布方法としては、当業者にとって従来公知の塗布方法であればよく、その他の具体的な構成については特に限定されない。例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷などを利用する方法が列挙できるが、これらに限定されるものではない。 The catalyst ink may contain additives such as a non-electrolyte binder, a water repellent, a dispersant, a thickener, and a pore-forming agent, if necessary. Further, as these additives, those conventionally known to those skilled in the art can be used, and other specific configurations are not particularly limited. For the catalyst ink prepared by the above composition and method, a coating method as shown below can be used depending on the viscosity and the type of the base material. The coating method of the catalyst ink on the substrate may be any coating method conventionally known to those skilled in the art, and other specific configurations are not particularly limited. For example, methods using knife coaters, bar coaters, sprays, dip coaters, spin coaters, roll coaters, die coaters, curtain coaters, screen printing, etc. can be listed, but are not limited thereto.

基材として高分子フィルムを使用した場合には、燃料電池用触媒層転写シートが、基材として導電性多孔質シートを使用した場合には、燃料電池用ガス拡散電極が、それぞれ製造できる。MEAを作製する方法は、従来検討されている、パーフルオロカーボンスルホン酸からなる高分子電解質膜やその他の炭化水素系高分子電解質膜(例えば、スルホン酸化ポリエーテルエーテルケトン、スルホン酸化ポリエーテルスルホン、スルホン酸化ポリスルホン、スルホン酸化ポリイミド、スルホン酸化ポリフェニレンサルファイドなど)で行われる公知の方法が適用可能である。かかるMEAは、例えば、燃料電池、特に、固体高分子形燃料電池に用いることができる。 When a polymer film is used as the base material, a catalyst layer transfer sheet for a fuel cell can be manufactured, and when a conductive porous sheet is used as a base material, a gas diffusion electrode for a fuel cell can be manufactured. The method for producing MEA has been conventionally studied, such as a polymer electrolyte membrane made of perfluorocarbon sulfonic acid and other hydrocarbon-based polymer electrolyte membranes (for example, sulfonated polyether ether ketone, sulfonated polyether sulfone, sulfone). Known methods performed with polysulfone oxide, polyimide sulfonated, polyphenylene sulfide sulfonated, etc.) are applicable. Such MEA can be used, for example, in a fuel cell, particularly a polymer electrolyte fuel cell.

以下実施例により本発明をさらに詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to the following examples.

(分子量の測定)
GPC法により分子量を測定した。条件は以下の通り。
GPC測定装置:HLC−8220(東ソー株式会社製)
カラム:SuperAW4000及びSuperAW2500(昭和電工株式会社製)の2本を直列に接続
カラム温度:40℃
移動相溶媒:NMP(N−メチルピロリドン、LiBrを10mmol/dm3になるように添加)
溶媒流量:0.3mL/min
標準物質:TSK標準ポリスチレン(東ソー株式会社製)
以下、標準ポリスチレンで換算した数平均分子量をMnと表記し、標準ポリスチレンで換算した重量平均分子量をMwと表記する。
(Measurement of molecular weight)
The molecular weight was measured by the GPC method. The conditions are as follows.
GPC measuring device: HLC-8220 (manufactured by Tosoh Corporation)
Column: Two SuperAW4000 and SuperAW2500 (manufactured by Showa Denko KK) are connected in series. Column temperature: 40 ° C.
Mobile phase solvent: NMP (N-methylpyrrolidone, LiBr added to 10 mmol / dm3)
Solvent flow rate: 0.3 mL / min
Standard substance: TSK standard polystyrene (manufactured by Tosoh Corporation)
Hereinafter, the number average molecular weight converted with standard polystyrene is referred to as Mn, and the weight average molecular weight converted with standard polystyrene is referred to as Mw.

(イオン交換容量の測定)
測定サンプルとして、酸処理後の膜を10〜20mg切り出し、80℃で減圧乾燥し、乾燥重量(Wdry)を測定した。この膜を、飽和NaCl水溶液(30mL)に室温で24時間浸漬させることで、イオン基をH+型からNa+型へ変換した。その後得られた溶液に含まれるHClを、電位差自動滴定装置AT−510(京都電子工業株式会社製)を用いて0.01M NaOH水溶液により定量し、以下の式を用いてイオン交換容量IEC値を算出した。同一の膜について2サンプル作成し、2回の測定の平均値を滴定による算出IEC値とした。
(Measurement of ion exchange capacity)
As a measurement sample, 10 to 20 mg of the acid-treated membrane was cut out, dried under reduced pressure at 80 ° C., and the dry weight (W dry ) was measured. The membrane was immersed in a saturated aqueous NaCl solution (30 mL) at room temperature for 24 hours to convert the ionic groups from H + type to Na + type. After that, HCl contained in the obtained solution was quantified with a 0.01 M NaOH aqueous solution using an automatic potential difference titrator AT-510 (manufactured by Kyoto Electronics Co., Ltd.), and the ion exchange capacity IEC value was calculated using the following formula. Calculated. Two samples were prepared for the same membrane, and the average value of the two measurements was taken as the calculated IEC value by titration.

Figure 0006779449
Figure 0006779449

(膨潤率の測定)
約2cm×3cmにカットした高分子電解質膜のサンプルを準備し、これを純水に室温で6時間浸漬した。浸漬直後のサンプル、及びそれを100℃で2時間真空乾燥を行って絶乾状態としたサンプルの平面方向、垂直方向の寸法変化、及び重量を測定し、変化率を計算した。平面方向については、4辺の寸法変化を測定し、その平均値を結果とした。垂直方向(膜厚方向)については、面内の3点の寸法変化を測定し、その平均値を結果とした。
(Measurement of swelling rate)
A sample of a polymer electrolyte membrane cut into about 2 cm × 3 cm was prepared, and this was immersed in pure water at room temperature for 6 hours. The dimensional changes and weights of the sample immediately after immersion and the sample which was vacuum-dried at 100 ° C. for 2 hours to be in an absolutely dry state were measured, and the rate of change was calculated. In the plane direction, the dimensional changes on the four sides were measured, and the average value was used as the result. In the vertical direction (film thickness direction), dimensional changes at three points in the plane were measured, and the average value was used as the result.

(プロトン伝導度の測定)
電解質膜のプロトン伝導度測定は、日本ベル株式会社製電解質評価装置(MSB−AD−V−FC)を用いて行った。チャンバー内温度は80℃一定で、相対湿度(RH)20%、40%、60%、80%、及び、90%の条件下で行った。測定は、RH=20%→40%→60%→80%→90%→80%→60%→40%→20%を1サイクルとして、2サイクル目の湿度降下時の値を測定結果として用いた。サンプルのサイズは1.0cm×3.0cm、Auプローブ間の距離は1.0cmとし、Solartron 1255B/1287(株式会社東陽テクニカ製)を用いて、交流4端子法(300mV、1−100000Hz)により測定を行った。インピーダンスZはボードプロットにより位相角が0°に近い値でかつ1000Hzに近い値を用いた。導電率σ(S/cm)は次式により計算した。
σ=(L/Z)×1/A
ここでLはAuプローブ間の距離(1.0cm)、Aはサンプルの断面積(1cm×膜厚Xcm)である。
(Measurement of proton conductivity)
The proton conductivity of the electrolyte membrane was measured using an electrolyte evaluation device (MSB-AD-V-FC) manufactured by Nippon Bell Co., Ltd. The temperature in the chamber was constant at 80 ° C., and the relative humidity (RH) was 20%, 40%, 60%, 80%, and 90%. For the measurement, RH = 20% → 40% → 60% → 80% → 90% → 80% → 60% → 40% → 20% as one cycle, and the value at the time of humidity drop in the second cycle is used as the measurement result. There was. The size of the sample is 1.0 cm x 3.0 cm, the distance between Au probes is 1.0 cm, and using Solartron 1255B / 1287 (manufactured by Toyo Corporation), the AC 4-terminal method (300 mV, 1-10000 Hz) is used. Measurements were made. As the impedance Z, a value having a phase angle close to 0 ° and a value close to 1000 Hz was used according to the board plot. The conductivity σ (S / cm) was calculated by the following formula.
σ = (L / Z) × 1 / A
Here, L is the distance between Au probes (1.0 cm), and A is the cross-sectional area of the sample (1 cm × film thickness X cm).

(乾湿サイクル特性の評価)
試験用サンプルの作製、及び試験条件は、燃料電池実用化推進協議会(FCCJ)が推奨するプロトコルに従った。白金−カーボン触媒(田中貴金属製TEC10E50E)、Nafionバインダー(Dupont製 D−521,IEC=0.95−1.03meq./g)、純水、及びエタノールをボールミルで30分混合し、触媒インクを得た。バインダー/カーボンの重量比率は0.7に調整した。実施例及び比較例で作製する電解質膜の両面に上記で得た触媒インクをスプレーコートした。得られた膜−電極接合体(MEA)を60℃で6時間乾燥した後、140℃、10kgf/cm2の条件で3分間、ホットプレスした。電極が形成された面積は25cm2(5×5cm)、白金担持量は、アノード、カソードともに0.2mg/cm2とした。MEAをガスケット(PTFE製、厚さ200μm)及びガス拡散層(SGLカーボン社製SGL25BC、厚さ235μm)で挟み、日本自動車研究所(JARI)の標準セル(アノード、カソードともにサーペンタイン型のガス流路を有する)に組み込み、12本のネジを使用して3Nの締め付け力で固定した。特性評価では、アノード、カソードともに、窒素ガスを800mL/minで流し、ガスは80℃で乾燥状態(0%RH)と湿潤状態(150%RH)を2分間ずつ保持しながら交換し、乾湿サイクル試験を行った。所定時間後、アノードに水素を200mL/minで、カソードに窒素を200mL/minで流し(ガスは80℃、常圧)、電圧を0.2〜0.5Vの範囲で掃引して電流密度を測定した。0.4〜0.5V近傍の直線部を0Vまで外挿したときの切片をクロスオーバー電流密度とし、初期値の10倍に達した時点を電解質膜の乾湿サイクル耐性とした。
(Evaluation of dry / wet cycle characteristics)
Preparation of test samples and test conditions were in accordance with the protocol recommended by the Fuel Cell Practical Use Promotion Council (FCCJ). Platinum-carbon catalyst (TEC10E50E manufactured by Tanaka Kikinzoku), Nafion binder (D-521, IEC = 0.95-1.03meq. / G manufactured by DuPont), pure water, and ethanol are mixed in a ball mill for 30 minutes to prepare the catalyst ink. Obtained. The binder / carbon weight ratio was adjusted to 0.7. The catalyst inks obtained above were spray-coated on both sides of the electrolyte membranes produced in Examples and Comparative Examples. The obtained membrane-electrode assembly (MEA) was dried at 60 ° C. for 6 hours and then hot-pressed at 140 ° C. and 10 kgf / cm 2 for 3 minutes. The area where the electrodes were formed was 25 cm 2 (5 × 5 cm), and the amount of platinum supported was 0.2 mg / cm 2 for both the anode and the cathode. The MEA is sandwiched between a gasket (PTFE, thickness 200 μm) and a gas diffusion layer (SGL carbon SGL25BC, thickness 235 μm), and is a standard cell of Japan Automobile Research Institute (JARI) (anode and cathode are both serpentine type gas flow paths). It was installed in (with) and fixed with a tightening force of 3N using 12 screws. In the characteristic evaluation, nitrogen gas was flowed at 800 mL / min for both the anode and the cathode, and the gas was exchanged at 80 ° C. while holding the dry state (0% RH) and the wet state (150% RH) for 2 minutes each, and the dry-wet cycle. The test was performed. After a predetermined time, hydrogen is passed through the anode at 200 mL / min and nitrogen is passed through the cathode at 200 mL / min (gas is 80 ° C., normal pressure), and the voltage is swept in the range of 0.2 to 0.5 V to increase the current density. It was measured. The crossover current density was defined as the section when the straight portion in the vicinity of 0.4 to 0.5 V was extrapolated to 0 V, and the time when it reached 10 times the initial value was defined as the wet-wet cycle resistance of the electrolyte membrane.

(使用した不織布)
表1に示す特性を有する不織布を調製し、使用した。
(Non-woven fabric used)
Nonwoven fabrics having the properties shown in Table 1 were prepared and used.

Figure 0006779449
Figure 0006779449

(製造例1)
温度計及び攪拌子を備え付けた500mLの3つ口フラスコに、4,4−ジクロロベンゾフェノン(75g,300mmol)、30%発煙硫酸(400g,1.5mol)を加えた。130℃に加熱し、6時間攪拌を続けた。室温まで冷却した後、反応液を氷水に少しずつ加えた。NaOH水溶液を加えて中和した後、析出した白色固体を濾過により回収した。減圧下、105℃で乾燥することにより、下式に示すスルホン酸基含有モノマーを112g得た。
(Manufacturing Example 1)
4,4-Dichlorobenzophenone (75 g, 300 mmol) and 30% fuming sulfuric acid (400 g, 1.5 mol) were added to a 500 mL three-necked flask equipped with a thermometer and a stir bar. The mixture was heated to 130 ° C. and stirring was continued for 6 hours. After cooling to room temperature, the reaction solution was added little by little to ice water. After neutralization by adding an aqueous NaOH solution, the precipitated white solid was recovered by filtration. By drying at 105 ° C. under reduced pressure, 112 g of the sulfonic acid group-containing monomer represented by the following formula was obtained.

Figure 0006779449
Figure 0006779449

(製造例2)
還流管とDeanStark管を取り付けた500mLの4つ口フラスコに、4,4’−ジクロロジフェニルスルホン(31.6g,110mmol)、4,4’−ジヒドロキシベンゾフェノン(21.4g,100mmol)、炭酸カリウム(20.7g,150mmol)、ジメチルアセトアミド(200mL)、及びトルエン(50mL)を加えた。混合物を170℃に加熱し、生成した水を除去しながら35時間、攪拌を続けた。4,4’−ジクロロジフェニルスルホン(0.5g)を追加し、さらに5時間攪拌した。混合物を、濾紙を用いて濾過し、過剰の炭酸カリウムを除去した後、濾液を500mLのメタノールに注いで、生成物を再沈殿させた。生成物を減圧下、70℃で4時間乾燥させた後、500mLの純水で、60℃で2回洗浄、さらに500mLのメタノールで60℃で1回洗浄し、減圧下、70℃で一晩乾燥させ、下式の疎水部オリゴマーを41.5g得た。GPCによる分子量はMn=6,600、Mw=18,800であった。
(Manufacturing Example 2)
4,4'-Dichlorodiphenyl sulfone (31.6 g, 110 mmol), 4,4'-dihydroxybenzophenone (21.4 g, 100 mmol), potassium carbonate (21.4 g, 100 mmol) in a 500 mL four-necked flask equipped with a reflux tube and a DeanStark tube. 20.7 g, 150 mmol), dimethylacetamide (200 mL), and toluene (50 mL) were added. The mixture was heated to 170 ° C. and stirring was continued for 35 hours while removing the water produced. 4,4'-Dichlorodiphenyl sulfone (0.5 g) was added, and the mixture was further stirred for 5 hours. The mixture was filtered through filter paper to remove excess potassium carbonate and then the filtrate was poured into 500 mL of methanol to reprecipitate the product. The product was dried under reduced pressure at 70 ° C. for 4 hours, then washed twice at 60 ° C. with 500 mL of pure water, once at 60 ° C. with 500 mL of methanol, and overnight at 70 ° C. under reduced pressure. The mixture was dried to obtain 41.5 g of the hydrophobic moiety oligomer of the following formula. The molecular weight by GPC was Mn = 6,600 and Mw = 18,800.

Figure 0006779449
Figure 0006779449

(製造例3)
メカニカルスターラー、還流管、DeanStark管を取り付けた1Lの4つ口フラスコに、製造例1で得られたスルホン酸基含有化合物(24g, 52.7mmol)、製造例2で得られた疎水部オリゴマー(16g)、2,2’−ビピリジル(11.56g)、ジメチルスルホキシド(480mL)、及びトルエン(120mL)を窒素雰囲気化に加え、170℃に3時間加熱して、共沸脱水した。170℃でトルエンを留去した後、80℃まで冷却し、ビス(1,5−シクロオクタジエン)ニッケル(20g)を添加し、そのままの温度で2時間攪拌した。反応液を700mLのメタノールに注いで再沈殿させた後、固形分を6N塩酸(600mL)で2回洗浄し、さらに純水で、洗浄液のpHが7になるまで繰り返し洗浄した。固形分を減圧下、105℃で一晩乾燥し、下式の高分子電解質(33.2g)を得た。前記高分子電解質を、粉砕機を用いて微粉とした後、塩化メチレン及びメタノールで洗浄し、ジメチルスルホキシドに溶解して、固形分濃度が約12%の高分子電解質溶液を得た。得られた高分子電解質は、比較例2に示すように、単独で製膜し、その分子量をGPCで測定したところ、Mn=134,000、Mw=413,000であった。また、イオン交換容量は、2.58meq./gであった。
(Manufacturing Example 3)
The sulfonic acid group-containing compound (24 g, 52.7 mmol) obtained in Production Example 1 and the hydrophobic part oligomer obtained in Production Example 2 were placed in a 1 L four-necked flask equipped with a mechanical stirrer, a reflux tube, and a DeanStark tube. 16 g), 2,2'-bipyridyl (11.56 g), dimethyl sulfoxide (480 mL), and toluene (120 mL) were added to the nitrogen atmosphere and heated to 170 ° C. for 3 hours for azeotropic dehydration. After distilling off toluene at 170 ° C., the mixture was cooled to 80 ° C., bis (1,5-cyclooctadiene) nickel (20 g) was added, and the mixture was stirred at the same temperature for 2 hours. After pouring the reaction solution into 700 mL of methanol and reprecipitating, the solid content was washed twice with 6N hydrochloric acid (600 mL), and further washed repeatedly with pure water until the pH of the washing solution reached 7. The solid content was dried under reduced pressure at 105 ° C. overnight to obtain the polymer electrolyte (33.2 g) of the following formula. The polymer electrolyte was pulverized using a pulverizer, washed with methylene chloride and methanol, and dissolved in dimethyl sulfoxide to obtain a polymer electrolyte solution having a solid content concentration of about 12%. As shown in Comparative Example 2, the obtained polymer electrolyte was independently formed into a film, and its molecular weight was measured by GPC and found to be Mn = 134,000 and Mw = 413,000. The ion exchange capacity is 2.58 meq. It was / g.

Figure 0006779449
Figure 0006779449

(実施例1)
ガラス板上に、厚み188μmのPETフィルムを貼り付け、製造例3で調製した高分子電解質溶液をバーコーターにて塗布した。塗布膜の上に、表1のガラス繊維/PET繊維(60wt%/40wt%)からなる不織布A(10cm×10cm)を、泡が混入しないように静かに置いた後、再度、製造例3の高分子電解質溶液をバーコーターにて塗布した。得られた複合膜を、ガラス基板上のPETフィルムに塗布したまま、ホットプレートを用いて120℃で12時間乾燥した。膜をガラス板から取り外し、6N塩酸、続いて蒸留水で洗浄し、表面の水をふき取り、60℃で30分乾燥することにより、補強膜を得た。補強膜のイオン交換当量、膨潤率、乾湿サイクル耐性を、上述の方法により測定した。結果を表2にまとめた。また、プロトン伝導度を上述の方法により測定し、測定結果を図1に示した。なお、図1においてタテ軸の”Proton conductivity”(プロトン伝導度)の例えば「1.E-02」は「1×10-2」のことである。
(Example 1)
A PET film having a thickness of 188 μm was attached onto a glass plate, and the polymer electrolyte solution prepared in Production Example 3 was applied with a bar coater. Non-woven fabric A (10 cm × 10 cm) made of the glass fiber / PET fiber (60 wt% / 40 wt%) shown in Table 1 is gently placed on the coating film so as not to mix bubbles, and then again in Production Example 3. The polymer electrolyte solution was applied with a bar coater. The obtained composite film was dried at 120 ° C. for 12 hours using a hot plate while being applied to the PET film on the glass substrate. The membrane was removed from the glass plate, washed with 6N hydrochloric acid and then distilled water, the surface water was wiped off, and the membrane was dried at 60 ° C. for 30 minutes to obtain a reinforcing membrane. The ion exchange equivalent, swelling rate, and dry-wet cycle resistance of the reinforcing film were measured by the above-mentioned methods. The results are summarized in Table 2. Moreover, the proton conductivity was measured by the above-mentioned method, and the measurement result is shown in FIG. In FIG. 1, for example, "1.E-02" of "Proton conductivity" of the vertical axis means "1 x 10 -2 ".

(比較例1)
製造例3の高分子電解質溶液を用い、不織布Bを用いる以外は、実施例1と同様にして補強膜を得た。イオン交換当量、膨潤率、及び乾湿サイクル耐性を、上述の方法により測定した。結果を表2に示した。
(Comparative Example 1)
A reinforcing film was obtained in the same manner as in Example 1 except that the polymer electrolyte solution of Production Example 3 was used and the non-woven fabric B was used. Ion exchange equivalent, swelling rate, and wet-wet cycle resistance were measured by the methods described above. The results are shown in Table 2.

(比較例2)
製造例3の高分子電解質溶液を用い、補強材を使用せずに、電解質膜を作製した。イオン交換当量、膨潤率、乾湿サイクル耐性、プロトン伝導度を、上述の方法により測定した。結果を表2及び図1に示した。
(Comparative Example 2)
An electrolyte membrane was prepared using the polymer electrolyte solution of Production Example 3 without using a reinforcing material. Ion exchange equivalent, swelling rate, wet-wet cycle resistance, and proton conductivity were measured by the methods described above. The results are shown in Table 2 and FIG.

実施例1は、ガラス繊維と有機繊維を混合した補強材を用いている。比較例1は、ガラス繊維のみから作製した補強材を用いている。比較例2では、補強材を用いていない。実施例の高分子電解質膜は、比較例に比べ、膨潤率が低く抑制され、高い乾湿サイクル耐性を有することがわかる。また、実施例の高分子電解質は、非電解質の不織布と複合化されている分、プロトン伝導率が若干低下するものの、依然として高い値を示すことがわかる。 In Example 1, a reinforcing material in which glass fiber and organic fiber are mixed is used. In Comparative Example 1, a reinforcing material made only of glass fiber is used. In Comparative Example 2, no reinforcing material is used. It can be seen that the polymer electrolyte membrane of the example has a low swelling rate and is suppressed as compared with the comparative example, and has high resistance to the wet and dry cycle. Further, it can be seen that the polymer electrolyte of the example still shows a high value although the proton conductivity is slightly lowered because it is composited with the non-electrolyte non-woven fabric.

Figure 0006779449
Figure 0006779449

Claims (14)

スルホン酸基を有し、主鎖が主に芳香環を含む炭化水素系電解質と補強材が複合されている高分子電解質膜であって、前記補強材はガラス繊維と有機繊維の混合物を含む不織布であり、
前記ガラス繊維は、平均繊維径が1μm以下のものと、平均繊維径が1μmを超え10μm未満のものとの混合物であり、
平均繊維径が1μmを超え10μm未満のガラス繊維の含有率は、平均繊維径が1μm以下のガラス繊維と平均繊維径が1μmを超え10μm未満のガラス繊維の合計100重量%に対し、10〜70重量%であることを特徴とする高分子電解質膜。
A polymer electrolyte membrane in which a hydrocarbon electrolyte having a sulfonic acid group and a main chain mainly containing an aromatic ring and a reinforcing material are composited, and the reinforcing material is a non-woven fabric containing a mixture of glass fiber and organic fiber. der is,
The glass fiber is a mixture of one having an average fiber diameter of 1 μm or less and one having an average fiber diameter of more than 1 μm and less than 10 μm.
The content of glass fibers having an average fiber diameter of more than 1 μm and less than 10 μm is 10 to 70 with respect to 100% by weight of the total of glass fibers having an average fiber diameter of 1 μm or less and glass fibers having an average fiber diameter of more than 1 μm and less than 10 μm. A polymer electrolyte membrane characterized by being by weight% .
前記炭化水素系電解質は、スルホン酸基を有し主鎖が主に芳香環からなる親水部セグメントと、実質的にスルホン酸基を有さない疎水部セグメントとを主鎖とする高分子電解質である請求項1に記載の高分子電解質膜。 The hydrocarbon-based electrolyte is a polymer electrolyte having a hydrophilic portion segment having a sulfonic acid group and the main chain mainly consisting of an aromatic ring, and a hydrophobic portion segment having substantially no sulfonic acid group as the main chain. The polymer electrolyte membrane according to claim 1. 前記有機繊維は、ポリエステル、ビニロン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリアミド、セルロース、レーヨン及びポリ乳酸から選ばれる少なくとも1種の繊維である請求項1または2に記載の高分子電解質膜。 The polymer electrolyte membrane according to claim 1 or 2, wherein the organic fiber is at least one fiber selected from polyester, vinylon, polyacrylonitrile, polyethylene, polypropylene, polyamide, cellulose, rayon and polylactic acid. 前記有機繊維はポリエチレンテレフタレート繊維である請求項1〜3のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 3, wherein the organic fiber is a polyethylene terephthalate fiber. 前記有機繊維の平均繊維径は1〜10μmである請求項1〜4のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 4, wherein the average fiber diameter of the organic fiber is 1 to 10 μm. 前記ガラス繊維の平均繊維径は1μm以下である請求項1〜5のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 5, wherein the average fiber diameter of the glass fiber is 1 μm or less. 前記ガラス繊維と前記有機繊維の混合割合は、重量比で95/5〜5/95である請求項1〜のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 6 , wherein the mixing ratio of the glass fiber and the organic fiber is 95/5 to 5/95 by weight. 前記不織布はバインダー成分を含む請求項1〜のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 7 , wherein the nonwoven fabric contains a binder component. 前記バインダー成分はエポキシ系樹脂である請求項に記載の高分子電解質膜。 The polymer electrolyte membrane according to claim 8 , wherein the binder component is an epoxy resin. 前記高分子電解質膜は、イオン交換容量が1.5〜3.5meq./gである請求項1〜のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane has an ion exchange capacity of 1.5 to 3.5 meq. The polymer electrolyte membrane according to any one of claims 1 to 9 , which is / g. 前記不織布の圧力20kPaにおける平均厚みが5〜50μmであり、単位面積当たりの質量が5〜50g/m2である請求項1〜10のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 10 , wherein the non-woven fabric has an average thickness of 5 to 50 μm at a pressure of 20 kPa and a mass per unit area of 5 to 50 g / m 2 . 前記補強材を構成する繊維間に高分子電解質が存在している請求項1〜11のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 11 , wherein the polymer electrolyte is present between the fibers constituting the reinforcing material. 請求項1〜12のいずれかに記載の高分子電解質膜を用いた燃料電池用膜/電極接合体。 A membrane / electrode assembly for a fuel cell using the polymer electrolyte membrane according to any one of claims 1 to 12 . 請求項1〜12のいずれかに記載の高分子電解質膜を用いた燃料電池。 A fuel cell using the polymer electrolyte membrane according to any one of claims 1 to 12 .
JP2016086979A 2016-04-25 2016-04-25 Polymer electrolyte membrane and its use Active JP6779449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086979A JP6779449B2 (en) 2016-04-25 2016-04-25 Polymer electrolyte membrane and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086979A JP6779449B2 (en) 2016-04-25 2016-04-25 Polymer electrolyte membrane and its use

Publications (2)

Publication Number Publication Date
JP2017199464A JP2017199464A (en) 2017-11-02
JP6779449B2 true JP6779449B2 (en) 2020-11-04

Family

ID=60238064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086979A Active JP6779449B2 (en) 2016-04-25 2016-04-25 Polymer electrolyte membrane and its use

Country Status (1)

Country Link
JP (1) JP6779449B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7516783B2 (en) * 2020-03-05 2024-07-17 東レ株式会社 Composite polymer electrolyte membrane roll
CN112221357B (en) * 2020-09-14 2022-09-27 湖北工程学院 Sulfonated polyether-ether-ketone composite membrane of attapulgite and metal organic framework composite material and preparation method and application thereof
KR102424560B1 (en) * 2020-09-21 2022-07-25 한국앤컴퍼니 주식회사 Electrode plate manufacturing method for lead acid battery with improved charging efficiency and low-temperature starting capability by applying ion conductive polymer electrolyte membrane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165047A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Membrane-electrode junction, and fuel cell using the same
JP2005011724A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
JP2007250452A (en) * 2006-03-17 2007-09-27 Toyota Motor Corp Manufacturing method of electrolyte membrane for fuel cell
JP2010232121A (en) * 2009-03-30 2010-10-14 Kuraray Co Ltd Electrolyte composite membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2012109231A (en) * 2010-10-21 2012-06-07 Sumitomo Chemical Co Ltd Polymer electrolyte membrane, membrane-electrode assembly and solid polymer fuel cell
JP5398687B2 (en) * 2010-11-26 2014-01-29 日本板硝子株式会社 Solid electrolyte membrane reinforcement
JP5950323B2 (en) * 2011-06-03 2016-07-13 株式会社カネカ POLYMER ELECTROLYTE AND USE THEREOF
CN105264135A (en) * 2013-07-01 2016-01-20 日本板硝子株式会社 Reinforcing material for proton-conducting film, proton-conducting film comprising same, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP2017199464A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
Lee et al. Enhanced performance of a sulfonated poly (arylene ether ketone) block copolymer bearing pendant sulfonic acid groups for polymer electrolyte membrane fuel cells operating at 80% relative humidity
Wang et al. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries
Zhang et al. Synthesis and alkaline stability of novel cardo poly (aryl ether sulfone) s with pendent quaternary ammonium aliphatic side chains for anion exchange membranes
Pang et al. Novel wholly aromatic sulfonated poly (arylene ether) copolymers containing sulfonic acid groups on the pendants for proton exchange membrane materials
Wu et al. Novel anion-exchange organic–inorganic hybrid membranes: preparation and characterizations for potential use in fuel cells
US8455141B2 (en) Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
Zhang et al. Quaternized poly (ether ether ketone) s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells
US7442459B2 (en) Solid electrolyte, membrane and electrode assembly, and fuel cell
CN102017264A (en) Ionic liquid-containing catalyst ink and the use thereof in the production of electrodes, CCMs, GDEs and MEAs
Wang et al. Synthesis and properties of sulfonated poly (arylene ether ketone sulfone) containing amino groups/functional titania inorganic particles hybrid membranes for fuel cells
CN116348417A (en) Polymer electrolyte composite
JP4572512B2 (en) POLYMER ELECTROLYTE, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND POLYMER ELECTROLYTE FUEL CELL USING SAME
JP6779449B2 (en) Polymer electrolyte membrane and its use
Jutemar et al. Influence of the polymer backbone structure on the properties of aromatic ionomers with pendant sulfobenzoyl side chains for use as proton-exchange membranes
WO2014050928A1 (en) Anionic exchange resin, electrolyte layer for fuel cell, binder for forming electrode catalyst layer, cell electrode catalyst layer, and fuel cell
JPWO2014157389A1 (en) Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, polymer electrolyte fuel cell, water electrolysis cell, and water electrolysis apparatus
JP6259494B2 (en) Fuel cell electrolyte membrane containing polymer blend, membrane-electrode assembly containing the same, and fuel cell
JP5892643B2 (en) Polymer electrolyte membrane and use thereof
Ding et al. Quaternized poly (2, 6‐dimethyl‐1, 4‐phenylene oxide) crosslinked by tertiary amine and siloxane for anion exchange membranes
Li et al. In situ-doped sulfonated schiff-base networks in SPEEK composite membranes with enhanced proton conductivity
Pezzin et al. Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes
JP6813835B2 (en) Polymer electrolyte and its use
Msomi et al. Quaternized poly (2, 6 dimethyl–1, 4 phenylene oxide)/polysulfone blended anion exchange membrane for alkaline fuel cells application
Kim et al. Properties of composite membrane based on sulfonated poly (arylene ether sulfone): effect of functional groups in phosphotungstic acid particles prepared by sol–gel method
JP6547223B2 (en) Polymer electrolyte membrane, membrane / electrode assembly and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6779449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250