JP6778370B2 - Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method - Google Patents

Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method Download PDF

Info

Publication number
JP6778370B2
JP6778370B2 JP2015173229A JP2015173229A JP6778370B2 JP 6778370 B2 JP6778370 B2 JP 6778370B2 JP 2015173229 A JP2015173229 A JP 2015173229A JP 2015173229 A JP2015173229 A JP 2015173229A JP 6778370 B2 JP6778370 B2 JP 6778370B2
Authority
JP
Japan
Prior art keywords
fuel electrode
range
ammonia
electrode material
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173229A
Other languages
Japanese (ja)
Other versions
JP2017050180A (en
Inventor
江口 浩一
浩一 江口
松井 敏明
敏明 松井
広樹 室山
広樹 室山
岳太 岡西
岳太 岡西
一成 宮崎
一成 宮崎
川原 潤
潤 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Kyoto University
Original Assignee
Mitsui Chemicals Inc
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Kyoto University filed Critical Mitsui Chemicals Inc
Priority to JP2015173229A priority Critical patent/JP6778370B2/en
Publication of JP2017050180A publication Critical patent/JP2017050180A/en
Application granted granted Critical
Publication of JP6778370B2 publication Critical patent/JP6778370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、燃料極材料、固体酸化物形燃料電池用セル、水素製造用触媒及び水素製造方法に関する。 The present invention relates to fuel electrode materials, solid oxide fuel cell cells, hydrogen production catalysts, and hydrogen production methods.

水素は世界的なエネルギー需要の増加や地球規模の気候変動といった問題を解決するための新たなエネルギー源として期待されており、関連する様々な技術が開発されている。しかしながら、水素の貯蔵・輸送に高いコストがかかり、燃料電池での発電コストが高くなるという問題がある。 Hydrogen is expected as a new energy source to solve problems such as increasing global energy demand and global climate change, and various related technologies are being developed. However, there is a problem that the storage and transportation of hydrogen are expensive and the power generation cost of the fuel cell is high.

そこで、水素と比べて低コストでの輸送・貯蔵が可能であり、分解反応により比較的容易に水素を生成できるアンモニアが水素キャリアとして有用であると考えられている。そのため、アンモニアの分解反応を効率的に進行させ、生成された水素を燃料電池用原料とする技術が検討されている。 Therefore, it is considered that ammonia, which can be transported and stored at a lower cost than hydrogen and can generate hydrogen relatively easily by a decomposition reaction, is useful as a hydrogen carrier. Therefore, a technique for efficiently advancing the decomposition reaction of ammonia and using the generated hydrogen as a raw material for a fuel cell is being studied.

ここで、前述のようにアンモニアの分解により、燃料電池用原料として水素を生成するのではなく、アンモニアを燃料電池用原料として直接燃料電池に供給し発電することができれば、より安価な電力を得ることが可能となり、産業上非常に有益な技術となる。 Here, if hydrogen can be directly supplied to the fuel cell as a raw material for a fuel cell to generate electricity instead of generating hydrogen as a raw material for a fuel cell by decomposing ammonia as described above, cheaper electric power can be obtained. It will be possible and it will be a very useful technology in industry.

燃料電池の中でも固体酸化物形燃料電池(SOFC)は、比較的高い温度で動作する。そのため、アンモニアを固体酸化物形燃料電池の燃料極側に供給することにより、供給されたアンモニアは燃料極上で分解されて水素となり、高効率で発電できるというメリットがある。 Among fuel cells, solid oxide fuel cells (SOFCs) operate at relatively high temperatures. Therefore, by supplying ammonia to the fuel electrode side of the solid oxide fuel cell, the supplied ammonia is decomposed on the fuel electrode to hydrogen, which has an advantage that power can be generated with high efficiency.

アンモニアを含有するガスを燃料として用いた固体酸化物形燃料電池(アンモニアSOFC)の燃料極には、アンモニア分解反応による水素生成、水素解離反応によるプロトン生成を効率よく進行させることが求められる。さらに、燃料極及び固体電解質の熱膨張係数を整合させることや良好な電子伝導性を有する燃料極を採用することを考慮する必要がある。これらの条件を満たす材料として、固体電解質と電子伝導性金属とを混合したサーメットと呼ばれる材料が燃料極に使用されている。 The fuel electrode of a solid oxide fuel cell (ammonia SOFC) using a gas containing ammonia as a fuel is required to efficiently promote hydrogen generation by an ammonia decomposition reaction and proton generation by a hydrogen dissociation reaction. Furthermore, it is necessary to consider matching the coefficient of thermal expansion of the fuel electrode and the solid electrolyte and adopting a fuel electrode having good electron conductivity. As a material satisfying these conditions, a material called cermet, which is a mixture of a solid electrolyte and an electron conductive metal, is used for the fuel electrode.

固体酸化物形燃料電池の電解質は、酸化物イオン導電体とプロトン導電体とに分類される。前者では反応温度が700℃〜1000℃と高いが、後者では反応温度が400℃〜700℃と比較的低温で発電を実施できる。またプロトン導電体を用いた場合には水蒸気が空気極で生成される。これらの特徴から、アンモニアを燃料する固体酸化物形燃料電池の電解質にプロトン導電体を用いた場合には、(1)燃料が希釈されない、(2)アンモニアが酸化されないためNOが生成しない、(3)作動温度を下げられるため、周辺部材に高温であっても耐久性を有するセラミック等の高価な材料を使用する必要がない、というメリットがある。一方で、固体酸化物形燃料電池の電解質に酸化物イオン導電体を用いた場合よりも作動温度が低いため、燃料極でのアンモニア分解反応が進行し難いというデメリットがある。そこで、固体酸化物形燃料電池の電解質にプロトン導電体を用いた場合には、アンモニア分解活性が高い材料を燃料極材料として選択する必要があり、様々な材料が開発されている(例えば、非特許文献1〜4参照)。 Electrolytes of solid oxide fuel cells are classified into oxide ion conductors and proton conductors. In the former case, the reaction temperature is as high as 700 ° C. to 1000 ° C., but in the latter case, power generation can be performed at a relatively low reaction temperature of 400 ° C. to 700 ° C. When a proton conductor is used, water vapor is generated at the air electrode. Due to these characteristics, when a proton conductor is used as the electrolyte of a solid oxide fuel cell that fuels ammonia, (1) the fuel is not diluted, and (2) NO x is not generated because ammonia is not oxidized. (3) Since the operating temperature can be lowered, there is an advantage that it is not necessary to use an expensive material such as ceramic which has durability even at a high temperature for the peripheral members. On the other hand, since the operating temperature is lower than that when the oxide ion conductor is used as the electrolyte of the solid oxide fuel cell, there is a demerit that the ammonia decomposition reaction at the fuel electrode is difficult to proceed. Therefore, when a proton conductor is used as the electrolyte of a solid oxide fuel cell, it is necessary to select a material having high ammonia decomposition activity as a fuel electrode material, and various materials have been developed (for example, non-existent materials). See Patent Documents 1 to 4).

また、固体酸化物形燃料電池の電解質に用いられるプロトン導電体としては、ペロブスカイト型構造を有するバリウムセレート(BaCeO)、バリウムジルコネート(BaZrO)、バリウムジルコネートセレート(BaZr1−xCe)にドーパントとして希土類を添加したものが高いプロトン導電度を示すことが知られている(例えば、非特許文献5参照)。 Further, as the proton conductor used for the electrolyte of the solid oxide fuel cell, barium serate (BaCeO 3 ), barium zirconate (BaZrO 3 ), and barium zirconate serate (BaZr 1-x ) having a perovskite type structure are used. It is known that a substance obtained by adding a rare earth element as a dopant to Ce x O 3 ) exhibits high proton conductivity (see, for example, Non-Patent Document 5).

また、バリウムジルコネートやバリウムジルコネートセレートについては、ジルコニウム含有量が増えるに伴い安定性が向上することが知られている(例えば、非特許文献6参照)。 Further, it is known that the stability of barium zirconate and barium zirconate serate improves as the zirconium content increases (see, for example, Non-Patent Document 6).

J.Yang, T.Akagi, T.Okanishi, H.Muroyama, T.Matsui, and K.Eguchi “Catalytic influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxidce Fuel Cells”Fuel Cells., 15(2),390-397(2015)J.Yang, T.Akagi, T.Okanishi, H.Muroyama, T.Matsui, and K.Eguchi “Catalytic influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxidce Fuel Cells” Fuel Cells., 15 (2), 390-397 (2015) Jung Yang, Ahmed Fathi Salem Molouk, Takeou Okanishi, Hiroki Muroyama, Toshiaki Matsui, and Koichi Eguchi “Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3-σ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells”ACS APPLIED MATERIALS & INTERFACES., 7,7406-7412(2015)Jung Yang, Ahmed Fathi Salem Molouk, Takeou Okanishi, Hiroki Muroyama, Toshiaki Matsui, and Koichi Eguchi “Electrochemical and Catalytic Properties of Ni / BaCe0.75Y0.25O3-σ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells” ACS APPLIED MATERIALS & INTERFACES., 7,7406-7412 (2015) Kui Xie, Ruiqiang Yan, Dehua Dong, Songlin Wang, Xiaorui Chen, Tao Jiang, Bin Liu, Ming Wei, Xingqin Liu, Guangyao Meng”A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells”Journal of Power Souces 179, 576-583(2008)Kui Xie, Ruiqiang Yan, Dehua Dong, Songlin Wang, Xiaorui Chen, Tao Jiang, Bin Liu, Ming Wei, Xingqin Liu, Guangyao Meng ”A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells” Journal of Power Souces 179, 576-583 (2008) Ye Lin, Ran Ran, Youmin Guo, Wei Zhou, Rui Cai, Jun Wang, Zongping Shao”Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures”INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 35, 2637-2642(2010)Ye Lin, Ran Ran, Youmin Guo, Wei Zhou, Rui Cai, Jun Wang, Zongping Shao ”Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 35, 2637-2642 (2010) ) K.D.Kreuer, Annual Review of Matterial Research. Volume 33, 333-359,2003 “Proton-Conducting Oxides”K.D.Kreuer, Annual Review of Matterial Research. Volume 33, 333-359,2003 “Proton-Conducting Oxides” Emiliana Fabbri,Alessandra D'Epifanio,Elisabetta Di Bartolomeo,Silvia Licoccia,Enrico Traversa, Solid State Ionics, vol179,558-564,2008“Tailoring the chemical stability of Ba(Ce0.8 − xZrx)Y0.2O3 − δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”Emiliana Fabbri, Alessandra D'Epifanio, Elisabetta Di Bartolomeo, Silvia Licoccia, Enrico Traversa, Solid State Ionics, vol179,558-564,2008 “Tailoring the chemical stability of Ba (Ce0.8 − xZrx) Y0.2O3 − δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) ”

現状、アンモニア分解活性が高い燃料極材料が求められている。
このような状況に鑑み、本発明は、効率的にアンモニアを水素に分解することができる燃料極材料を提供することを目的とする。さらに、本発明は、このような燃料極材料を含む燃料極を有する固体酸化物形燃料電池用セル、高いアンモニア分解能を有する水素製造用触媒及び当該触媒を用いる水素製造方法を提供することも目的とする。
At present, there is a demand for a fuel electrode material having high ammonia decomposition activity.
In view of such a situation, an object of the present invention is to provide a fuel electrode material capable of efficiently decomposing ammonia into hydrogen. Another object of the present invention is to provide a cell for a solid oxide fuel cell having a fuel electrode containing such a fuel electrode material, a hydrogen production catalyst having a high ammonia resolution, and a hydrogen production method using the catalyst. And.

本発明者らは上記の課題に鑑み鋭意検討した結果、より汎用性の高い技術として本発明に係る燃料極材料、固体酸化物形燃料電池用セル、水素製造用触媒及び水素製造方法を完成させるに至った。 As a result of diligent studies in view of the above problems, the present inventors complete the fuel electrode material, the solid oxide fuel cell, the hydrogen production catalyst, and the hydrogen production method according to the present invention as a more versatile technique. It came to.

上記課題を解決するための具体的手段は以下の通りである。
[1] アンモニアを含有する原料ガスを燃料とする固体酸化物形燃料電池の燃料極材料であって、金属成分(X)と以下の式(1)で表される化合物との複合体を含む燃料極材料。
AZrCe 式(1)
[式(1)中、Aは、Mg、Ca、Sr及びBaからなる群より選ばれる1種以上の元素を示し、Mは、Y、Sc、La、Yb、Sm及びGdからなる群より選ばれる1種以上の元素を示す。a、b及びcは組成比を示す。aは、0.2〜1.0の範囲の数値であり、bは、0〜0.8の範囲の数値であり、cは、0.01〜0.8の範囲の数値である。]
[2] 前記金属成分(X)は、ニッケル、コバルト、銅、鉄、ルテニウム、パラジウム及び白金からなる群より選ばれる1種以上の元素を含む[1]に記載の燃料極材料。
[3] aは、0.4〜1.0の範囲である[1]又は[2]に記載の燃料極材料。
[4] bは、0.2〜0.8の範囲である[1]〜[3]のいずれか1つに記載の燃料極材料。
[5] Aは、Baである[1]〜[4]のいずれか1つに記載の燃料極材料。
[6] Mは、Yである[1]〜[5]のいずれか1つに記載の燃料極材料。
Specific means for solving the above problems are as follows.
[1] A fuel electrode material for a solid oxide fuel cell that uses a raw material gas containing ammonia as a fuel, and contains a composite of a metal component (X) and a compound represented by the following formula (1). Fuel electrode material.
AZr a Ce b M c O 3 formula (1)
[In formula (1), A represents one or more elements selected from the group consisting of Mg, Ca, Sr and Ba, and M is selected from the group consisting of Y, Sc, La, Yb, Sm and Gd. Indicates one or more elements. a, b and c indicate the composition ratio. a is a numerical value in the range of 0.2 to 1.0, b is a numerical value in the range of 0 to 0.8, and c is a numerical value in the range of 0.01 to 0.8. ]
[2] The fuel electrode material according to [1], wherein the metal component (X) contains one or more elements selected from the group consisting of nickel, cobalt, copper, iron, ruthenium, palladium and platinum.
[3] The fuel electrode material according to [1] or [2], wherein a is in the range of 0.4 to 1.0.
[4] b is the fuel electrode material according to any one of [1] to [3], which is in the range of 0.2 to 0.8.
[5] A is the fuel electrode material according to any one of [1] to [4], which is Ba.
[6] The fuel electrode material according to any one of [1] to [5], wherein M is Y.

[7] [1]〜[6]のいずれか1つに記載の燃料極材料を含む燃料極を有し、アンモニアを含有する原料ガスを燃料とする固体酸化物形燃料電池用セル。 [7] A cell for a solid oxide fuel cell having a fuel electrode containing the fuel electrode material according to any one of [1] to [6] and using a raw material gas containing ammonia as a fuel.

[8] 金属成分(X)と以下の式(1)で表される化合物との複合体を含み、アンモニアを分解して水素を製造するための水素製造用触媒。
AZrCe 式(1)
[式(1)中、Aは、Mg、Ca、Sr及びBaからなる群より選ばれる1種以上の元素を示し、Mは、Y、Sc、La、Yb、Sm及びGdからなる群より選ばれる1種以上の元素を示す。a、b及びcは組成比を示す。aは、0.2〜1.0の範囲の数値であり、bは、0〜0.8の範囲の数値であり、cは、0.01〜0.8の範囲の数値である。]
[8] A catalyst for producing hydrogen, which contains a complex of a metal component (X) and a compound represented by the following formula (1), and decomposes ammonia to produce hydrogen.
AZr a Ce b M c O 3 formula (1)
[In formula (1), A represents one or more elements selected from the group consisting of Mg, Ca, Sr and Ba, and M is selected from the group consisting of Y, Sc, La, Yb, Sm and Gd. Indicates one or more elements. a, b and c indicate the composition ratio. a is a numerical value in the range of 0.2 to 1.0, b is a numerical value in the range of 0 to 0.8, and c is a numerical value in the range of 0.01 to 0.8. ]

[9] [8]の水素製造用触媒の存在下に、アンモニアを含有する原料ガス中のアンモニアを分解して水素を製造する水素製造方法。
[10] 前記原料ガスは、アンモニアを1体積%以上100体積%以下の範囲で含む[9]に記載の水素製造方法。
[9] A hydrogen production method for producing hydrogen by decomposing ammonia in a raw material gas containing ammonia in the presence of the hydrogen production catalyst of [8].
[10] The hydrogen production method according to [9], wherein the raw material gas contains ammonia in a range of 1% by volume or more and 100% by volume or less.

本発明によれば、効率的にアンモニアを水素に分解することができる燃料極材料が提供される。さらに、本発明によれば、このような燃料極材料を含む燃料極を有する固体酸化物形燃料電池用セル、高いアンモニア分解能を有する水素製造用触媒及び当該触媒を用いる水素製造方法が提供される。 According to the present invention, there is provided a fuel electrode material capable of efficiently decomposing ammonia into hydrogen. Further, according to the present invention, there is provided a cell for a solid oxide fuel cell having a fuel electrode containing such a fuel electrode material, a hydrogen production catalyst having a high ammonia resolution, and a hydrogen production method using the catalyst. ..

本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the present specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

〔燃料極材料の組成〕
本実施形態における燃料極材料は、アンモニアを含有する原料ガスを燃料とする固体酸化物形燃料電池の燃料極材料であって、金属成分(X)と以下の式(1)で表される化合物との複合体を含む。
AZrCe 式(1)
[式(1)中、Aは、Mg、Ca、Sr及びBaからなる群より選ばれる1種以上の元素を示し、Mは、Y、Sc、La、Yb、Sm及びGdからなる群より選ばれる1種以上の元素を示す。a、b及びcは組成比を示す。aは、0.2〜1.0の範囲の数値であり、bは、0〜0.8の範囲の数値であり、cは、0.01〜0.8の範囲の数値である。]
[Composition of fuel electrode material]
The fuel electrode material in the present embodiment is a fuel electrode material of a solid oxide fuel cell using a raw material gas containing ammonia as a fuel, and has a metal component (X) and a compound represented by the following formula (1). Includes a complex with.
AZr a Ce b M c O 3 formula (1)
[In formula (1), A represents one or more elements selected from the group consisting of Mg, Ca, Sr and Ba, and M is selected from the group consisting of Y, Sc, La, Yb, Sm and Gd. Indicates one or more elements. a, b and c indicate the composition ratio. a is a numerical value in the range of 0.2 to 1.0, b is a numerical value in the range of 0 to 0.8, and c is a numerical value in the range of 0.01 to 0.8. ]

本実施形態に係る燃料極材料は、アンモニアを燃料とする固体酸化物形燃料電池用の燃料極材料である。また、燃料極材料は、上述の金属成分(X)と式(1)で表される化合物との複合体を含んでいればよく、複合体の成分として他の成分をさらに含んでいてもよく、複合体以外の構成成分をさらに含んでいてもよい。 The fuel electrode material according to the present embodiment is a fuel electrode material for a solid oxide fuel cell using ammonia as a fuel. Further, the fuel electrode material may contain a complex of the above-mentioned metal component (X) and the compound represented by the formula (1), and may further contain other components as components of the complex. , A component other than the complex may be further contained.

本実施形態に係る燃料極材料から燃料極を形成し、この燃料極を用いて作製した固体酸化物形燃料電池は、燃料極側から供給されたアンモニアを効率的に水素に分解することができる。 A solid oxide fuel cell produced by forming a fuel electrode from the fuel electrode material according to the present embodiment and using the fuel electrode can efficiently decompose ammonia supplied from the fuel electrode side into hydrogen. ..

(金属成分(X))
金属成分(X)は、本実施形態に係る燃料極材料に含まれる複合体の構成成分の一つである。金属成分(X)は、特に限定されないが、周期律表の5族〜12族の中から選ばれる少なくとも1種の金属元素を含むことが好ましく、ニッケル、コバルト、銅、鉄、ルテニウム、パラジウム及び白金からなる群より選ばれる少なくとも1種の元素を含むことがより好ましく、ニッケル、ルテニウム及び白金からなる群より選ばれる少なくとも1種の元素を含むことがさらに好ましく、ニッケルを含むことが特に好ましい。
(Metal component (X))
The metal component (X) is one of the constituent components of the composite contained in the fuel electrode material according to the present embodiment. The metal component (X) is not particularly limited, but preferably contains at least one metal element selected from Group 5 to Group 12 of the periodic table, nickel, cobalt, copper, iron, ruthenium, palladium and the like. It is more preferable to contain at least one element selected from the group consisting of platinum, further preferably to contain at least one element selected from the group consisting of nickel, ruthenium and platinum, and particularly preferably to contain nickel.

金属成分(X)の化学的な形態については特に制限はなく、電子伝導性金属を含んでいれば他の元素を同時に含んだ形態として存在していてもよい。金属成分(X)の化学的な形態としては、単体金属、合金、窒化物、酸化物、複合酸化物、炭化物、水酸化物、これらの混合物等が挙げられ、中でも単体金属、合金、窒化物、酸化物、複合酸化物又はこれらの混合物が好ましい。金属成分(X)がニッケルを含む場合について、具体的な化学的形態としては、ニッケル金属、酸化ニッケル(NiO)、窒化ニッケル(NiN)が挙げられるが、これらに限定されるものではない。中でも金属成分がニッケルを含む場合、化学的形態としてはニッケル金属又は酸化ニッケルが好ましく、ニッケル金属がさらに好ましい。 The chemical form of the metal component (X) is not particularly limited, and may exist as a form containing other elements at the same time as long as it contains an electron conductive metal. Examples of the chemical form of the metal component (X) include elemental metals, alloys, nitrides, oxides, composite oxides, carbides, hydroxides, and mixtures thereof. Among them, elemental metals, alloys, and nitrides. , Oxides, composite oxides or mixtures thereof. Case the metal component (X) comprises nickel, as a specific chemical form, nickel metal, nickel oxide (NiO), but nickel nitride (Ni 3 N) and the like, but the invention is not limited to .. Among them, when the metal component contains nickel, nickel metal or nickel oxide is preferable as a chemical form, and nickel metal is more preferable.

(式(1)で表される化合物)
式(1)で表される化合物は、本実施形態に係る燃料極材料に含まれる複合体の構成成分の一つである。式(1)で表される化合物は上記組成であれば特に限定されないが、プロトン伝導性を有する化合物であることが好ましい。プロトン伝導性を有する化合物は、一般的にペロブスカイト構造を有しているが、本実施形態で用いるプロトン導電性を有する化合物の構造はそれに限定されない。
(Compound represented by formula (1))
The compound represented by the formula (1) is one of the constituent components of the complex contained in the fuel electrode material according to the present embodiment. The compound represented by the formula (1) is not particularly limited as long as it has the above composition, but is preferably a compound having proton conductivity. The compound having proton conductivity generally has a perovskite structure, but the structure of the compound having proton conductivity used in the present embodiment is not limited thereto.

式(1)中、aは、0.2〜1.0の範囲であれば特に制限はないが、0.4〜1.0の範囲であることが好ましく、0.5〜1.0の範囲であることがより好ましい。 In the formula (1), a is not particularly limited as long as it is in the range of 0.2 to 1.0, but is preferably in the range of 0.4 to 1.0, preferably 0.5 to 1.0. It is more preferably in the range.

式(1)中、bは、0〜0.8の範囲であれば特に制限はないが、アンモニア分解活性をより高める点から0.2以上であることが好ましい。また、bは0.6以下であることが好ましく、0.4以下であることがより好ましく、0.3以下であることがさらに好ましい。 In the formula (1), b is not particularly limited as long as it is in the range of 0 to 0.8, but is preferably 0.2 or more from the viewpoint of further enhancing the ammonia decomposition activity. Further, b is preferably 0.6 or less, more preferably 0.4 or less, and further preferably 0.3 or less.

また、a+bとしては、0.2〜1.8の範囲であれば特に制限はないが、0.2〜1.0の範囲であることが好ましく、0.6〜0.95の範囲であることがより好ましく、0.8〜0.9の範囲であることがさらに好ましい。 The a + b is not particularly limited as long as it is in the range of 0.2 to 1.8, but is preferably in the range of 0.2 to 1.0, and is preferably in the range of 0.6 to 0.95. More preferably, it is more preferably in the range of 0.8 to 0.9.

式(1)中、cは、0.01〜0.8の範囲であれば特に制限はないが、0.05以上であることが好ましく、0.1以上であることがより好ましい。また、cは0.6以下であることが好ましく、0.4以下であることがより好ましく、0.2以下であることがさらに好ましい。
他にも、式(1)において、a+b+c=1.0を満たすことが好ましい。
In the formula (1), c is not particularly limited as long as it is in the range of 0.01 to 0.8, but is preferably 0.05 or more, and more preferably 0.1 or more. Further, c is preferably 0.6 or less, more preferably 0.4 or less, and further preferably 0.2 or less.
In addition, it is preferable to satisfy a + b + c = 1.0 in the formula (1).

式(1)で表される化合物(好ましくは、プロトン導電性化合物)の構造及び化学的な形態については特に制限はない。式(1)で表される化合物において、典型的な構造としてペロブスカイト型構造が挙げられ、典型的な化学的形態として元素(A)、ジルコニウム、セリウム、元素(M)の各酸化物の物理的な混合物、これらの複合酸化物などが挙げられる。 The structure and chemical form of the compound represented by the formula (1) (preferably a proton conductive compound) are not particularly limited. In the compound represented by the formula (1), a perovskite-type structure is mentioned as a typical structure, and the physical form of each oxide of the element (A), zirconium, cerium, and element (M) is a typical chemical form. Mixtures, composite oxides of these, and the like.

式(1)中の元素(A)は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群より選ばれる少なくとも1種の元素であり、中でもカルシウム、ストロンチウム及びバリウムからなる群より選ばれる少なくとも1種の元素であることが好ましく、バリウムを含む元素であることがより好ましい。 The element (A) in the formula (1) is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba), among which calcium, strontium and It is preferably at least one element selected from the group consisting of barium, and more preferably an element containing barium.

元素(A)の化学的な形態については特に制限はなく、元素(A)を含んでいれば他の元素を同時に含んだ形態として存在していてもよい。また元素(A)は複数の形態の混合体として存在していてもよいが、式(1)中に含まれる全ての元素(A)のうち30%〜100%が酸化物又は複合酸化物であることが特に好ましい。 The chemical form of the element (A) is not particularly limited, and as long as the element (A) is contained, it may exist as a form containing another element at the same time. The element (A) may exist as a mixture of a plurality of forms, but 30% to 100% of all the elements (A) contained in the formula (1) are oxides or composite oxides. It is particularly preferable to have.

ジルコニウムの化学的な形態については特に制限はなく、ジルコニウムを含んでいれば他の元素を同時に含んだ形態として存在していてもよい。またジルコニウムは複数の形態の混合体として存在していてもよいが、式(1)中に含まれる全てのジルコニウムのうち30%〜100%が酸化物又は複合酸化物であることが特に好ましい。 The chemical form of zirconium is not particularly limited, and as long as zirconium is contained, it may exist as a form containing other elements at the same time. Zirconium may exist as a mixture of a plurality of forms, but it is particularly preferable that 30% to 100% of all zirconium contained in the formula (1) is an oxide or a composite oxide.

セリウムの化学的な形態については特に制限はなく、セリウムを含む場合はセリウムを含んでいれば他の元素を同時に含んだ形態として存在していてもよい。またセリウムは複数の形態の混合体として存在していてもよいが、式(1)中に含まれる全てのセリウムのうち30%〜100%が酸化物又は複合酸化物であることが特に好ましい。 The chemical form of cerium is not particularly limited, and when cerium is contained, it may exist as a form containing other elements at the same time as long as it contains cerium. Further, cerium may exist as a mixture of a plurality of forms, but it is particularly preferable that 30% to 100% of all cerium contained in the formula (1) is an oxide or a composite oxide.

式(1)中の元素(M)は、イットリウム(Y)、スカンジウム(Sc)、ランタン(La)、イッテルビウム(Yb)、サマリウム(Sm)及びガドリニウム(Gd)からなる群より選ばれる少なくとも1種の元素であり、中でもイットリウム、ランタン及びサマリウムからなる群より選ばれる少なくとも1種の元素であることが好ましく、イットリウムを含む元素であることがより好ましい。 The element (M) in the formula (1) is at least one selected from the group consisting of yttrium (Y), scandium (Sc), lantern (La), itterbium (Yb), samarium (Sm) and gadrinium (Gd). Of these, at least one element selected from the group consisting of yttrium, lantern and samarium is preferable, and an element containing yttrium is more preferable.

式(1)中の元素(M)の化学的な形態については特に制限はない。元素(M)がイットリウムである場合の化学的な形態を具体的に挙げると、イットリウムを含んでいれば他の元素を同時に含んだ形態として存在していてもよく、複数の形態の混合体として存在していてもよいが、式(1)中に含まれる全てのイットリウムのうち30%〜100%が酸化物又は複合酸化物であることが特に好ましい。 There is no particular limitation on the chemical form of the element (M) in the formula (1). Specific examples of the chemical form when the element (M) is yttrium may exist as a form containing other elements at the same time as long as it contains yttrium, and as a mixture of a plurality of forms. Although it may be present, it is particularly preferable that 30% to 100% of all yttrium contained in the formula (1) is an oxide or a composite oxide.

<式(1)で表される化合物の調製方法>
式(1)で表される化合物(好ましくは、プロトン導電性化合物)の調製方法については特に制限はない。式(1)で表される化合物の調製に用いる手法としては主に、固体成分を溶液成分に浸漬させて調製する含浸法、気体成分を固体成分と接触させる蒸着法、溶液成分から固体成分を沈殿させる沈殿法、及び複数種の固体成分を混合する固相混合法の4種の手法が挙げられる。
<Method for preparing the compound represented by the formula (1)>
The method for preparing the compound represented by the formula (1) (preferably a proton conductive compound) is not particularly limited. The methods used for preparing the compound represented by the formula (1) are mainly an impregnation method in which a solid component is immersed in a solution component to prepare the compound, a precipitation method in which a gas component is brought into contact with the solid component, and a solid component from the solution component. There are four methods, a precipitation method for precipitating and a solid phase mixing method for mixing a plurality of types of solid components.

上記含浸法について、固体成分を溶液成分に浸漬させて調製する手法であれば公知の手法が特に制限なく用いられる。具体的には、ポアフィリング法、インシピエント・ウェットネス(incipient wetness)法、平衡吸着法、蒸発乾固法、噴霧乾燥法、沈着法、イオン交換法などが挙げられる。また使用する溶液成分については組成及び濃度について特に制限はなく、複数の成分を含んでいてもよい。 Regarding the above impregnation method, a known method can be used without particular limitation as long as it is a method of preparing by immersing a solid component in a solution component. Specific examples thereof include a pore filling method, an incipient wetness method, an equilibrium adsorption method, an evaporative drying method, a spray drying method, a deposition method, and an ion exchange method. The composition and concentration of the solution components to be used are not particularly limited, and a plurality of components may be contained.

上記蒸着法について、気体成分を固体成分と接触させて調製する手法であれば公知の手法が特に制限なく用いられる。具体的には、化学蒸着法、真空蒸着法、スパッタリング法等が挙げられる。また使用する溶液成分については組成について特に制限はなく、複数の成分を含んでいてもよく、また不活性な同伴ガスを含んでいてもよい。 Regarding the above-mentioned vapor deposition method, a known method can be used without particular limitation as long as it is a method of preparing by contacting a gas component with a solid component. Specific examples thereof include a chemical vapor deposition method, a vacuum vapor deposition method, and a sputtering method. The composition of the solution component to be used is not particularly limited, and a plurality of components may be contained, or an inert accompanying gas may be contained.

上記沈殿法について、溶液成分から固体成分を沈殿させて調製する手法であれば公知の手法が特に制限なく用いられる。具体的には、1種類のカチオンを含む溶液から沈殿剤添加により同カチオンの難溶性塩を沈殿させる一般的な沈殿法に加え、2種類以上のカチオンを含む溶液から沈殿剤添加により複数の難溶性塩を同時に沈殿させる共沈法、溶液中の溶質を加水分解及び縮重合により沈殿させるゾルゲル法などが挙げられる。共沈法を用いる場合について、クエン酸、シュウ酸等の多価カルボン酸を沈殿促進剤として添加してもよい。 Regarding the above-mentioned precipitation method, a known method can be used without particular limitation as long as it is a method for preparing by precipitating a solid component from a solution component. Specifically, in addition to the general precipitation method of precipitating a sparingly soluble salt of the same cation from a solution containing one type of cation by adding a precipitant, a plurality of difficulties can be obtained by adding a precipitant from a solution containing two or more types of cations. Examples thereof include a co-precipitation method in which a soluble salt is simultaneously precipitated, and a solgel method in which a solute in a solution is precipitated by hydrolysis and condensation polymerization. When the coprecipitation method is used, a polyvalent carboxylic acid such as citric acid or oxalic acid may be added as a precipitation accelerator.

上記固相混合法について、複数種の固体成分を混合して調製する手法であれば公知の手法が特に制限なく用いられる。具体的には、反応を伴わずに複数種の固体成分を物理的に混合するだけの物理混合法、混合した複数種の固体成分を高温処理等により反応させて複合化させる固相合成法などが挙げられる。 With respect to the solid phase mixing method, a known method can be used without particular limitation as long as it is a method of mixing and preparing a plurality of types of solid components. Specifically, a physical mixing method in which a plurality of types of solid components are only physically mixed without a reaction, a solid-phase synthesis method in which a plurality of mixed solid components are reacted by high-temperature treatment or the like to be complexed, etc. Can be mentioned.

上記4種の手法(含浸法、蒸着法、沈殿法、固相合成法)を用いて式(1)で表される化合物を調製する場合について、4種の中から複数の手法を組み合わせて用いてもよく、また同じ手法を複数回用いてもよい。具体的な調製方法として以下(i)〜(iii)の3つの方法が挙げられる。
(i)元素(M)を含む固体成分に対し、元素(A)、ジルコニウム、セリウムを含む溶液成分を用いて含浸法により担持し、式(1)で表される化合物とする。
(ii)元素(A)、ジルコニウム、セリウム、元素(M)を含む溶液成分から沈殿法により元素(A)、ジルコニウム、セリウム、元素(M)を含む固体成分を沈殿させ、式(1)で表される化合物とする。
(iii)元素(A)を含む固体成分、ジルコニウムを含む固体成分、セリウムを含む固体成分、元素(M)を含む固体成分を固相混合法により混合し、式(1)で表される化合物とする。
When preparing the compound represented by the formula (1) using the above four methods (impregnation method, thin film deposition method, precipitation method, solid phase synthesis method), a plurality of methods are used in combination from the four methods. The same method may be used multiple times. Specific preparation methods include the following three methods (i) to (iii).
(I) A solid component containing the element (M) is supported by an impregnation method using a solution component containing the element (A), zirconium and cerium to obtain a compound represented by the formula (1).
(Ii) A solid component containing element (A), zirconium, cerium, and element (M) is precipitated from a solution component containing element (A), zirconium, cerium, and element (M) by a precipitation method, and the formula (1) is used. Let it be the compound represented.
(Iii) A compound represented by the formula (1) by mixing a solid component containing the element (A), a solid component containing zirconium, a solid component containing cerium, and a solid component containing the element (M) by a solid phase mixing method. And.

(i)及び(iii)の調製方法で用いる固体成分については特に制限はないが、具体的には、市販品や、元素(A)、ジルコニウム、セリウム又は元素(M)を含む溶液から沈殿法により調製した固体成分などを用いてもよい。(i)及び(iii)の調製方法で用いる固体成分の化学的な形態に特に制限はないが、それぞれの元素の酸化物が好ましい形態として挙げられる。 The solid component used in the preparation methods of (i) and (iii) is not particularly limited, but specifically, a precipitation method is performed from a commercially available product or a solution containing the element (A), zirconium, cerium or the element (M). You may use the solid component prepared by the above. The chemical form of the solid component used in the preparation methods of (i) and (iii) is not particularly limited, but oxides of each element can be mentioned as preferable forms.

(i)及び(ii)の調製方法で用いる溶液成分についても特に制限はないが、元素(A)、ジルコニウム、セリウム、及び元素(M)を含有する水溶性化合物を水に溶解させて調製した水溶液を用いることが好ましい。また溶液成分として水溶液を用いた場合について、沈殿剤としてアルカリ性化合物を用いてもよい。沈殿剤として用いるアルカリ性化合物としては、特に制限はないが具体的には、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、これらの水溶液などが挙げられる。アンモニアは、尿素を溶液中で分解して発生させてもよい。 The solution components used in the preparation methods of (i) and (ii) are also not particularly limited, but prepared by dissolving a water-soluble compound containing the element (A), zirconium, cerium, and the element (M) in water. It is preferable to use an aqueous solution. Further, when an aqueous solution is used as a solution component, an alkaline compound may be used as a precipitant. The alkaline compound used as the precipitant is not particularly limited, and specific examples thereof include ammonia, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and aqueous solutions thereof. Ammonia may be generated by decomposing urea in a solution.

式(1)で表される化合物の調製過程で取り扱う固体成分について、必要に応じて酸化雰囲気での焼成処理を施してもよい。該焼成処理は、上記式(1)で表される化合物の調製法において、それぞれの調製工程での最初、途中、最後のいずれで実施してもよく、また複数回実施してもよい。中でも特に、全調製工程の最後に該焼成処理を実施することが好ましい。 If necessary, the solid component handled in the process of preparing the compound represented by the formula (1) may be calcined in an oxidizing atmosphere. In the method for preparing the compound represented by the above formula (1), the firing treatment may be carried out at the beginning, the middle, or the end of each preparation step, or may be carried out a plurality of times. Above all, it is particularly preferable to carry out the firing treatment at the end of the entire preparation step.

上記焼成処理における酸化雰囲気としては、例えば空気下、酸素と窒素の混合ガス下などが挙げられるが、特にこれらに限定されるものではない。 Examples of the oxidizing atmosphere in the firing treatment include, but are not limited to, under air and under a mixed gas of oxygen and nitrogen.

上記焼成処理について焼成温度、焼成時間等の条件に制限はない。特に全調製工程の最後に該焼成処理を実施する場合については、焼成処理温度は500℃〜1400℃の範囲であることが好ましく、700℃〜1300℃の範囲であることがより好ましい。また、全調製工程の最後に該焼成処理を実施する場合についての焼成処理時間は0.1時間〜48時間の範囲であることが好ましく、0.5時間〜24時間の範囲であることがより好ましい。 Regarding the above firing process, there are no restrictions on conditions such as firing temperature and firing time. In particular, when the firing treatment is carried out at the end of the entire preparation step, the firing treatment temperature is preferably in the range of 500 ° C. to 1400 ° C., more preferably in the range of 700 ° C. to 1300 ° C. Further, the firing treatment time when the firing treatment is carried out at the end of the entire preparation step is preferably in the range of 0.1 hour to 48 hours, and more preferably in the range of 0.5 hour to 24 hours. preferable.

金属成分(X)と式(1)で表される化合物とを複合させる方法については、特に制限はない。本発明における複合とは、全ての成分が共存している状態を意味し、共存してさえいれば状態については特に制限はない。それぞれの成分が異なる化学的形態として存在していてもよく、一つの複合体として存在してもよい。複合させる方法については特に制限はないが、金属成分(X)の原料と式(1)で表される化合物とをボールミル等により物理混合させたり、式(1)で表される化合物に金属成分(X)の原料を含んだ溶液を含浸させたりしてもよい。 There is no particular limitation on the method of combining the metal component (X) and the compound represented by the formula (1). The compound in the present invention means a state in which all the components coexist, and there is no particular limitation on the state as long as they coexist. Each component may exist as a different chemical form, or may exist as a single complex. The method of combining is not particularly limited, but the raw material of the metal component (X) and the compound represented by the formula (1) are physically mixed by a ball mill or the like, or the metal component is mixed with the compound represented by the formula (1). The solution containing the raw material (X) may be impregnated.

金属成分(X)の式(1)で表される化合物に対する体積比率については特に制限はないが、体積比率として10%〜90%の範囲であることが好ましく、30%〜70%の範囲であることがより好ましく、40%〜60%の範囲であることがさらに好ましい。 The volume ratio of the metal component (X) to the compound represented by the formula (1) is not particularly limited, but the volume ratio is preferably in the range of 10% to 90%, preferably in the range of 30% to 70%. It is more preferably in the range of 40% to 60%.

本実施形態に係る燃料極材料を燃料極として用いる形態については特に制限はないが、例えば、燃料極材料に添加物を加えてペースト化し、固体電解質に塗布して用いてもよい。添加物の種類には特に制限はないが、具体的には賦孔剤、増粘剤などが挙げられる。賦孔剤としては特に制限はないが、具体的には焼成処理により容易に除去されるカルボキシメチルセルロース、ポリスチレン、カーボンブラック等が挙げられる。また増粘剤についても特に制限はないが、具体的にはポリエチレングリコール、ポリビニルブチラール等が挙げられる。ペースト化した燃料極材料を固体電解質に塗布する方法としては、特に限定されないが、具体的にはスクリーン印刷法等が挙げられる。 The mode in which the fuel electrode material according to the present embodiment is used as the fuel electrode is not particularly limited, but for example, an additive may be added to the fuel electrode material to form a paste, which may be applied to a solid electrolyte for use. The type of additive is not particularly limited, and specific examples thereof include a pore-forming agent and a thickener. The pore-forming agent is not particularly limited, and specific examples thereof include carboxymethyl cellulose, polystyrene, carbon black, etc., which are easily removed by a firing treatment. The thickener is also not particularly limited, and specific examples thereof include polyethylene glycol and polyvinyl butyral. The method of applying the pasted fuel electrode material to the solid electrolyte is not particularly limited, and specific examples thereof include a screen printing method.

金属成分(X)と式(1)で表される化合物とを複合する過程及び複合したものを固体電解質と接合させる過程において、必要に応じて酸化雰囲気での焼成処理及び還元雰囲気での還元処理のうちどちらか一方、又は両方を施してもよい。該焼成処理及び該還元処理は、上記の各過程において、それぞれの過程に含まれるすべての工程の最初、途中、最後のいずれで実施してもよく、また複数回実施してもよい。中でも特に、燃料極と固体電解質とを接合させたのちに該焼成処理及び該還元処理を順に実施することが好ましい。 In the process of combining the metal component (X) and the compound represented by the formula (1) and the process of joining the compound with the solid electrolyte, if necessary, a firing treatment in an oxidizing atmosphere and a reduction treatment in a reducing atmosphere. Either one or both may be applied. The firing treatment and the reduction treatment may be carried out at the beginning, the middle, or the end of all the steps included in each of the above steps, or may be carried out a plurality of times. Above all, it is particularly preferable to carry out the firing treatment and the reduction treatment in order after joining the fuel electrode and the solid electrolyte.

上記焼成処理における酸化雰囲気としては、例えば空気下、酸素と窒素の混合ガス下などが挙げられるが、特にこれらに限定されるものではない。 Examples of the oxidizing atmosphere in the firing treatment include, but are not limited to, under air and under a mixed gas of oxygen and nitrogen.

上記還元処理における還元雰囲気としては、例えば水素雰囲気下、一酸化炭素雰囲気下、一酸化窒素雰囲気下などが挙げられるが、特にこれらに限定されるものではない。 Examples of the reducing atmosphere in the reduction treatment include, but are not limited to, a hydrogen atmosphere, a carbon monoxide atmosphere, and a nitric oxide atmosphere.

上記焼成処理について焼成温度、焼成時間等の条件に制限はない。特に全調製工程の最後に該焼成処理及び該還元処理を順に実施する場合の焼成処理については、焼成処理温度は100℃〜1400℃の範囲であることが好ましく、700℃〜1300℃の範囲であることがより好ましい。焼成処理時間については0.1時間〜48時間の範囲であることが好ましく、0.5時間〜24時間の範囲であることがより好ましい。 Regarding the above firing process, there are no restrictions on conditions such as firing temperature and firing time. In particular, for the firing treatment when the firing treatment and the reduction treatment are carried out in order at the end of the entire preparation step, the firing treatment temperature is preferably in the range of 100 ° C. to 1400 ° C., and in the range of 700 ° C. to 1300 ° C. More preferably. The firing treatment time is preferably in the range of 0.1 hour to 48 hours, more preferably in the range of 0.5 hour to 24 hours.

上記還元処理について還元温度、還元時間等の条件に制限はない。特に全調製工程の最後に該還元処理を実施する場合については、還元処理温度は400℃〜1400℃の範囲であることが好ましく、600℃〜1200℃の範囲であることがより好ましい。還元処理時間については0.1時間〜48時間の範囲であることが好ましく、0.5時間〜24時間の範囲であることがより好ましい。 There are no restrictions on the conditions such as reduction temperature and reduction time for the above reduction treatment. In particular, when the reduction treatment is carried out at the end of the entire preparation step, the reduction treatment temperature is preferably in the range of 400 ° C. to 1400 ° C., more preferably in the range of 600 ° C. to 1200 ° C. The reduction treatment time is preferably in the range of 0.1 hour to 48 hours, more preferably in the range of 0.5 hour to 24 hours.

また、該焼成処理及び該還元処理については、燃料極材料を固体酸化物形燃料電池用セルとしてからどちらか一方の処理、又は両方の処理を実施し、そのまま発電に用いてもよい。 Further, in the firing treatment and the reduction treatment, one or both treatments may be carried out after the fuel electrode material is used as a cell for a solid oxide fuel cell, and the fuel electrode material may be used as it is for power generation.

金属成分(X)の原料としては、単体金属、金属化合物などであれば特に制限はない。具体的には、ニッケル成分の原料としては硝酸ニッケル(II)、酸化ニッケル(II)、塩化ニッケル(II)、水酸化ニッケル(II)、硫酸ニッケル(II)、酢酸ニッケル(II)、炭酸ニッケル(II)、塩基性炭酸ニッケル(II)などのニッケル化合物、金属ニッケルなどが挙げられ、コバルト成分の原料としては硝酸コバルト(II)、酸化コバルト(II)、塩化コバルト(II)、水酸化コバルト(II)、硫酸コバルト(II)、酢酸コバルト(II)、炭酸コバルト(II)、塩基性炭酸コバルト(II)などのコバルト化合物、金属コバルトなどが挙げられ、鉄成分の原料としては硝酸鉄(II)、硝酸鉄(III)、酸化鉄(II)、酸化鉄(III)、塩化鉄(II)、塩化鉄(III)、水酸化鉄(II)、水酸化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、酢酸鉄(II)、塩基性酢酸鉄(III)、炭酸鉄(II)などの鉄化合物、金属鉄などが挙げられ、銅成分の原料としては、硝酸銅(II)、酸化銅(II)などの銅化合物が挙げられ、パラジウム成分の原料としては、塩化パラジウム(II)、酢酸パラジウム(II)などのパラジウム化合物が挙げられ、白金成分の原料としては、テトラクロロ白金(II)、ヘキサクロロ白金(IV)酸などの白金化合物が挙げられ、ルテニウム成分の原料としては、塩化ルテニウム(III)、酸化ルテニウム(IV)などのルテニウム化合物が挙げられる。 The raw material for the metal component (X) is not particularly limited as long as it is a simple substance metal, a metal compound, or the like. Specifically, as raw materials for the nickel component, nickel nitrate (II), nickel oxide (II), nickel chloride (II), nickel hydroxide (II), nickel sulfate (II), nickel acetate (II), nickel carbonate Nickel compounds such as (II) and basic nickel carbonate (II), metallic nickel, etc. can be mentioned, and the raw materials for the cobalt component include cobalt nitrate (II), cobalt oxide (II), cobalt chloride (II), and cobalt hydroxide. Cobalt compounds such as (II), cobalt sulfate (II), cobalt acetate (II), cobalt carbonate (II), basic cobalt carbonate (II), metallic cobalt, etc. can be mentioned, and iron nitrate (II) is a raw material for iron components. II), iron nitrate (III), iron oxide (II), iron oxide (III), iron chloride (II), iron chloride (III), iron hydroxide (II), iron hydroxide (III), iron sulfate (II) Examples include iron compounds such as II), iron (III) sulfate, iron (II) acetate, basic iron (III) acetate, and iron (II) carbonate, and metallic iron. Copper nitrate (II) is a raw material for the copper component. Copper compounds such as II) and copper oxide (II) can be mentioned, and palladium compounds such as palladium chloride (II) and palladium (II) acetate can be mentioned as raw materials for the palladium component, and tetra as a raw material for the platinum component. Platinum compounds such as chloroplatinium (II) and hexachloroplatinum (IV) acid can be mentioned, and examples of the raw material of the ruthenium component include ruthenium compounds such as ruthenium chloride (III) and ruthenium oxide (IV).

式(1)中の元素(A)の原料としては、元素(A)を成分とする化合物であれば特に制限はない。具体的には、マグネシウムの原料としては、硝酸マグネシウム(II)、酸化マグネシウム(II)、塩化マグネシウム(II)、水酸化マグネシウム(II)、硫酸マグネシウム(II)、酢酸マグネシウム(II)、炭酸マグネシウム(II)などが挙げられ、カルシウムの原料としては、硝酸カルシウム(II)、酸化カルシウム(II)、塩化カルシウム(II)、水酸化カルシウム(II)、硫酸カルシウム(II)、酢酸カルシウム(II)、炭酸カルシウム(II)などが挙げられ、ストロンチウムの原料としては、硝酸ストロンチウム(II)、酸化ストロンチウム(II)、塩化ストロンチウム(II)、水酸化ストロンチウム(II)、硫酸ストロンチウム(II)、酢酸ストロンチウム(II)、炭酸ストロンチウム(II)などが挙げられ、バリウムの原料としては、硝酸バリウム(II)、酸化バリウム(II)、塩化バリウム(II)、水酸化バリウム(II)、硫酸バリウム(II)、酢酸バリウム(II)、炭酸バリウム(II)などが挙げられる。 The raw material of the element (A) in the formula (1) is not particularly limited as long as it is a compound containing the element (A) as a component. Specifically, as raw materials for magnesium, magnesium nitrate (II), magnesium oxide (II), magnesium chloride (II), magnesium hydroxide (II), magnesium sulfate (II), magnesium acetate (II), magnesium carbonate Examples of calcium raw materials include calcium nitrate (II), calcium oxide (II), calcium chloride (II), calcium hydroxide (II), calcium sulfate (II), and calcium acetate (II). , Calcium (II), etc., and examples of raw materials for strontium include strontium nitrate (II), strontium oxide (II), strontium chloride (II), strontium hydroxide (II), strontium sulfate (II), and strontium acetate. Examples of the raw material of barium include barium nitrate (II), barium oxide (II), barium chloride (II), barium hydroxide (II), and barium sulfate (II). , Barium acetate (II), barium carbonate (II) and the like.

ジルコニウムの原料としては、ジルコニウムを成分とする化合物であれば特に制限はない。具体的には、硝酸ジルコニル(IV)二水和物、酸化ジルコニウム(IV)、塩化ジルコニウム(IV)、硫酸ジルコニウム(IV)、酢酸ジルコニウム(IV)等が挙げられる。 The raw material for zirconium is not particularly limited as long as it is a compound containing zirconium as a component. Specific examples thereof include zirconyl nitrate (IV) dihydrate, zirconium oxide (IV), zirconium chloride (IV), zirconium sulfate (IV), zirconium acetate (IV) and the like.

セリウムの原料としては、セリウムを成分とする化合物であれば特に制限はない。具体的には、硝酸セリウム(IV)六水和物、酸化セリウム(IV)、塩化セリウム(IV)、酢酸セリウム(IV)等が挙げられる。 The raw material for cerium is not particularly limited as long as it is a compound containing cerium as a component. Specific examples thereof include cerium nitrate (IV) hexahydrate, cerium oxide (IV), cerium chloride (IV), cerium acetate (IV) and the like.

式(1)中の元素(M)の原料としては、元素(M)を成分とする化合物であれば特に制限はない。具体的には、イットリウムの原料としては、硝酸イットリウム(III)、酸化イットリウム(III)、塩化イットリウム(III)、水酸化イットリウム(III)、硫酸イットリウム(III)、酢酸イットリウム(III)、炭酸イットリウム(III)などが挙げられ、スカンジウムの原料としては、硝酸スカンジウム(III)、酸化スカンジウム(III)、塩化スカンジウム(III)、水酸化スカンジウム(III)、硫酸スカンジウム(III)、酢酸スカンジウム(III)、炭酸スカンジウム(III)などが挙げられ、ランタンの原料としては、硝酸ランタン(III)、酸化ランタン(III)、塩化ランタン(III)、水酸化ランタン(III)、硫酸ランタン(III)、酢酸ランタン(III)、炭酸ランタン(III)などが挙げられ、イッテルビウムの原料としては、硝酸イッテルビウム(III)、酸化イッテルビウム(III)、塩化イッテルビウム(III)、水酸化イッテルビウム(III)、硫酸イッテルビウム(III)、酢酸イッテルビウム(III)、炭酸イッテルビウム(III)などが挙げられ、サマリウムの原料としては、硝酸サマリウム(III)、酸化サマリウム(III)、塩化サマリウム(III)、硫酸サマリウム(III)、酢酸サマリウム(III)、炭酸サマリウム(III)などが挙げられ、ガドリニウムの原料としては、硝酸ガドリニウム(III)、酸化ガドリニウム(III)、塩化ガドリニウム(III)、硫酸ガドリニウム(III)、酢酸ガドリニウム(III)、炭酸ガドリニウム(III)などが挙げられる。 The raw material of the element (M) in the formula (1) is not particularly limited as long as it is a compound containing the element (M) as a component. Specifically, as raw materials for ytterbium, ytterbium nitrate (III), ytterbium oxide (III), ytterbium chloride (III), ytterbium hydroxide (III), ytterbium sulfate (III), ytterbium acetate (III), ytterbium carbonate Examples of the raw material of scandium include scandium nitrate (III), scandium oxide (III), scandium chloride (III), scandium hydroxide (III), scandium sulfate (III), scandium acetate (III). , Scandium carbonate (III), etc., and examples of lanthanum raw materials include lanthanum nitrate (III), lanthanum oxide (III), lanthanum chloride (III), lanthanum hydroxide (III), lanthanum sulfate (III), and lanthanum acetate. (III), lanthanum carbonate (III) and the like, and examples of the raw material of ytterbium are ytterbium nitrate (III), ytterbium oxide (III), ytterbium chloride (III), ytterbium hydroxide (III), ytterbium sulfate (III). , Ytterbium acetate (III), ytterbium carbonate (III), etc., as raw materials for samarium, samarium nitrate (III), samarium oxide (III), samarium chloride (III), samarium sulfate (III), samarium acetate ( Examples include samarium carbonate (III) and samarium carbonate (III). Examples of raw materials for gadrinium include gadrinium nitrate (III), gadrinium oxide (III), gadrinium chloride (III), gadrinium sulfate (III), gadrinium acetate (III), and carbonate. Examples include gadolinium (III).

〔固体酸化物形燃料電池用セルの構成〕
本実施形態に係る燃料極材料は、例えば、アンモニアを含有するガスを燃料とする固体酸化物形燃料電池に用いられる燃料極材料(アンモニアSOFC用燃料極材料)であってもよい。アンモニアSOFC用燃料極材料は、あらゆるタイプのアンモニアSOFC用セルで使用することができる。アンモニアSOFC用セルは、本実施形態に係る燃料極材料を含む燃料極を有し、アンモニアを含有する原料ガスを燃料とするものであればよい。また、アンモニアSOFC用セルは、具体的には、平板型セル、円筒型セルなどが挙げられる。平板型セルとしては、より具体的には、電解質支持型セル、燃料極支持型セル、空気極支持型セル等が挙げられる。
[Structure of solid oxide fuel cell]
The fuel electrode material according to the present embodiment may be, for example, a fuel electrode material (fuel electrode material for ammonia SOFC) used in a solid oxide fuel cell using a gas containing ammonia as a fuel. The fuel electrode material for ammonia SOFC can be used in all types of ammonia SOFC cells. The ammonia SOFC cell may have a fuel electrode containing the fuel electrode material according to the present embodiment and may use a raw material gas containing ammonia as a fuel. Specific examples of the ammonia SOFC cell include a flat plate cell and a cylindrical cell. More specific examples of the flat plate type cell include an electrolyte support type cell, a fuel pole support type cell, an air pole support type cell, and the like.

アンモニアSOFC用燃料極材料の使用形態には特に制限はないが、一般的な燃料電池の形態と同様に、固体電解質の片面に燃料極を、他方の面に空気極を堆積させたSOFC用セルとして使用することができる。 The usage form of the fuel electrode material for ammonia SOFC is not particularly limited, but as in the form of a general fuel cell, a cell for SOFC in which a fuel electrode is deposited on one side of a solid electrolyte and an air electrode is deposited on the other side. Can be used as.

本実施形態に係るSOFC用セルについて、固体電解質は様々な形態で用いることができる。典型的には、平板の形態又はフィルム、薄膜、コーティングなどの形態である。また、固体電解質の材質に特に限定はなく、例えば、BZY(バリウムジルコネート)、BCY(バリウムセレート)、SZY(ストロンチウムジルコネート)、SCY(ストロンチウムセレート)などのような公知のプロトン導電性化合物が挙げられる。 For the SOFC cell according to this embodiment, the solid electrolyte can be used in various forms. Typically, it is in the form of a flat plate or a film, thin film, coating, or the like. The material of the solid electrolyte is not particularly limited, and is known as proton conductivity such as BZY (barium zirconate), BCY (barium serate), SZY (strontium zirconate), SCY (strontium serate) and the like. Examples include compounds.

本実施形態に係るSOFC用セルの空気極材料として特に制限はなく、一般に固体酸化物形燃料電池に使用されているものが使用可能である。具体的には、LSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、白金などが挙げられる。 The air electrode material of the SOFC cell according to the present embodiment is not particularly limited, and a material generally used for a solid oxide fuel cell can be used. Specific examples thereof include LSCF (lanternstrontium cobalt iron oxide), LSM (lanternstrontium manganese oxide), and platinum.

(原料ガス)
アンモニアを含有する原料ガスの組成については特に制限は無く、アンモニアを含んでさえいればアンモニア以外の成分を含んでいてもよい。原料ガス中のアンモニア濃度としては、1体積%〜100体積%の範囲内であることが好ましく、20体積%〜100体積%の範囲内であることがより好ましく、50体積%〜100体積%の範囲内であることがさらに好ましく、90体積%〜100体積%の範囲内であることが特に好ましい。
(Raw material gas)
The composition of the raw material gas containing ammonia is not particularly limited, and may contain components other than ammonia as long as it contains ammonia. The concentration of ammonia in the raw material gas is preferably in the range of 1% by volume to 100% by volume, more preferably in the range of 20% by volume to 100% by volume, and 50% by volume to 100% by volume. It is more preferably within the range, and particularly preferably within the range of 90% by volume to 100% by volume.

上記原料ガスに含まれるアンモニア以外の成分については特に制限はないが、具体的にはヘリウム、窒素、アルゴン、水蒸気、二酸化炭素、一酸化炭素、水素、炭化水素類、などが挙げられる。中でも水蒸気、一酸化炭素、水素が好ましい。 The components other than ammonia contained in the raw material gas are not particularly limited, and specific examples thereof include helium, nitrogen, argon, water vapor, carbon dioxide, carbon monoxide, hydrogen, and hydrocarbons. Of these, water vapor, carbon monoxide, and hydrogen are preferable.

〔水素製造用触媒〕
金属成分(X)と以下の式(1)で表される化合物との複合体を含み、アンモニアを分解して水素を製造するための水素製造用触媒についても本発明の範囲に包含される。なお、金属成分(X)及び式(1)で表される化合物については、上述の燃料極材料と同様であるため、その説明を省略する。
AZrCe 式(1)
[式(1)中、AはMg、Ca、Sr及びBaからなる群より選ばれる1種以上の元素、MはY、Sc、La、Yb、Sm及びGdからなる群より選ばれる1種以上の元素を示す。a、b及びcは組成比を示す。aは0.2〜1.0、bは0〜0.8、cは0.01〜0.8の範囲の数値である。]
[Catalyst for hydrogen production]
A catalyst for producing hydrogen, which contains a complex of a metal component (X) and a compound represented by the following formula (1) and is used for decomposing ammonia to produce hydrogen, is also included in the scope of the present invention. Since the metal component (X) and the compound represented by the formula (1) are the same as those of the fuel electrode material described above, the description thereof will be omitted.
AZr a Ce b M c O 3 formula (1)
[In formula (1), A is one or more elements selected from the group consisting of Mg, Ca, Sr and Ba, and M is one or more selected from the group consisting of Y, Sc, La, Yb, Sm and Gd. Indicates the element of. a, b and c indicate the composition ratio. a is 0.2 to 1.0, b is 0 to 0.8, and c is a numerical value in the range of 0.01 to 0.8. ]

上記水素製造用触媒を用いることにより、効率的にアンモニアを水素に分解することができる。また、本実施形態に係る水素製造方法では、上記水素製造用触媒の存在下に、原料ガス中のアンモニアを分解して水素を製造すればよく、このとき、原料ガス中のアンモニア濃度は、前述の範囲内であることが好ましい。 By using the above catalyst for hydrogen production, ammonia can be efficiently decomposed into hydrogen. Further, in the hydrogen production method according to the present embodiment, hydrogen may be produced by decomposing ammonia in the raw material gas in the presence of the hydrogen production catalyst. At this time, the concentration of ammonia in the raw material gas is described above. It is preferably within the range of.

(反応温度)
本実施形態に係る水素製造方法では、アンモニアを分解する際の水素製造用触媒の温度が、200℃〜1000℃の範囲内であることが好ましく、300℃〜900℃の範囲内であることがより好ましく、400℃〜700℃の範囲内であることが特に好ましい。
(Reaction temperature)
In the hydrogen production method according to the present embodiment, the temperature of the hydrogen production catalyst when decomposing ammonia is preferably in the range of 200 ° C. to 1000 ° C., and preferably in the range of 300 ° C. to 900 ° C. More preferably, it is particularly preferably in the range of 400 ° C. to 700 ° C.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何らかの制限を受けるものではない。また、実施例1〜3は、いずれも参考例と読み替えるものとする。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited by these examples. In addition, all of Examples 1 to 3 shall be read as reference examples.

(燃料極材料調製例1)Ni−BaZr0.90.1
5.2gの硝酸バリウム(和光純薬工業株式会社製)、4.8gの硝酸ジルコニル二水和物(和光純薬工業株式会社製)及び0.77gの硝酸イットリウム六水和物(シグマアルドリッチ社製)を蒸留水に加え、70℃で加熱撹拌し、溶解させた。次いで調製した溶液に12.6gのクエン酸一水和物(和光純薬工業株式会社製)を加えて撹拌した。さらに、その溶液に28質量%アンモニア水(和光純薬工業株式会社製)を加えてpH=8.0とし、70℃で一晩撹拌しゲル化させた。得られたゲルを3時間ホットプレート上にて350℃で仮焼成した後、空気下1200℃で5時間焼成した。得られた固体成分1.0gに蒸留水に溶解した3.3gの硝酸ニッケル六水和物(和光純薬工業株式会社製)を加え、80℃のウォーターバスを用いて蒸発乾固した。得られた固体成分を空気下700℃で5時間焼成することにより、NiとBaZr0.90.1との複合体であるNi−BaZr0.90.1を調製した。
(Fuel electrode material preparation example 1) Ni-BaZr 0.9 Y 0.1 O 3
5.2 g of barium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.), 4.8 g of zirconyl dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.77 g of ittium nitrate hexahydrate (manufactured by Sigma Aldrich) Was added to distilled water and heated and stirred at 70 ° C. to dissolve it. Next, 12.6 g of citric acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the prepared solution and stirred. Further, 28 mass% aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the solution to adjust the pH to 8.0, and the mixture was stirred overnight at 70 ° C. to gel. The obtained gel was calcined on a hot plate for 3 hours at 350 ° C., and then calcined at 1200 ° C. in air for 5 hours. 3.3 g of nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in distilled water was added to 1.0 g of the obtained solid component, and the mixture was evaporated to dryness using a water bath at 80 ° C. By the obtained solid component is calcined 5 hours at 700 ° C. air, prepared Ni-BaZr 0.9 Y 0.1 O 3 which is a complex of Ni and BaZr 0.9 Y 0.1 O 3 did.

(燃料極材料調製例2)Ni−BaZr0.80.2
硝酸ジルコニル二水和物4.8g及び硝酸イットリウム六水和物0.77gの代わりに、硝酸ジルコニル二水和物4.3g及び硝酸イットリウム六水和物1.5gを使用した以外は、燃料極材料調製例1と同様にしてNiとBaZr0.80.2との複合体であるNi−BaZr0.80.2を調製した。
(Fuel electrode material preparation example 2) Ni-BaZr 0.8 Y 0.2 O 3
Fuel poles except that 4.3 g of zirconyl dihydrate nitrate and 1.5 g of yttrium hexahydrate nitrate were used instead of 4.8 g of zirconyl dihydrate dihydrate and 0.77 g of yttrium hexahydrate nitrate. in the same manner as the material prepared in example 1 was prepared Ni-BaZr 0.8 Y 0.2 O 3 which is a complex of Ni and BaZr 0.8 Y 0.2 O 3.

(燃料極材料調製例3)Ni−BaZr0.7Ce0.10.2
5.2gの硝酸バリウム、3.7gの硝酸ジルコニル二水和物、0.87gの硝酸セリウム六水和物(和光純薬工業株式会社製)及び1.5gの硝酸イットリウム六水和物(シグマアルドリッチ社製)を蒸留水に加え、70℃で加熱撹拌し、溶解させた。次いで調製した溶液に12.6gのクエン酸一水和物(和光純薬工業株式会社製)を加えて撹拌した。さらにその溶液に28質量%アンモニア水(和光純薬工業株式会社製)を加えてpH=8.0とし、70℃で一晩撹拌しゲル化させた。得られたゲルを350℃で3時間ホットプレート上で仮焼成した後、空気下1200℃で5時間焼成した。得られた固体成分1.0gに蒸留水に溶解した3.3gの硝酸ニッケル六水和物(和光純薬工業株式会社製)を加え、80℃のウォーターバスを用いて蒸発乾固した。得られた固体成分を空気下700oCで5時間焼成することによりNiとBaZr0.7Ce0.10.2との複合体であるNi−BaZr0.7Ce0.10.2を調製した。
(Fuel electrode material preparation example 3) Ni-BaZr 0.7 Ce 0.1 Y 0.2 O 3
5.2 g of barium nitrate, 3.7 g of zirconyl nitrate dihydrate, 0.87 g of cerium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.5 g of ittium nitrate hexahydrate (Sigma) Aldrich) was added to distilled water and heated and stirred at 70 ° C. to dissolve it. Next, 12.6 g of citric acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the prepared solution and stirred. Further, 28% by mass aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the solution to adjust the pH to 8.0, and the mixture was stirred overnight at 70 ° C. to gel. The obtained gel was calcined on a hot plate at 350 ° C. for 3 hours, and then calcined at 1200 ° C. for 5 hours under air. 3.3 g of nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in distilled water was added to 1.0 g of the obtained solid component, and the mixture was evaporated to dryness using a water bath at 80 ° C. The obtained solid component was calcined at 700 oC in the air for 5 hours to form a composite of Ni and BaZr 0.7 Ce 0.1 Y 0.2 O 3, and Ni-BaZr 0.7 Ce 0.1 Y 0. .2 O 3 was prepared.

(燃料極材料調製例4)Ni−BaZr0.6Ce0.20.2
硝酸ジルコニル二水和物3.7g及び硝酸セリウム六水和物0.87gの代わりに、硝酸ジルコニル二水和物3.2g及び硝酸セリウム六水和物1.7gを使用した以外は、燃料極材料調製例3と同様にしてNiとBaZr0.6Ce0.20.2との複合体であるNi−BaZr0.6Ce0.20.2を調製した。
(Fuel electrode material preparation example 4) Ni-BaZr 0.6 Ce 0.2 Y 0.2 O 3
Fuel poles except that 3.2 g of zirconyl nitrate dihydrate and 1.7 g of cerium hexahydrate were used instead of 3.7 g of zirconyl nitrate dihydrate and 0.87 g of cerium hexahydrate. the Ni-BaZr 0.6 Ce 0.2 Y 0.2 O 3 which is a complex of Ni and BaZr 0.6 Ce 0.2 Y 0.2 O 3 in the same manner as the material in preparation example 3 was prepared.

(燃料極材料調製例5)Ni−BaZr0.5Ce0.30.2
硝酸ジルコニル二水和物3.7g及び硝酸セリウム六水和物0.87gの代わりに、硝酸ジルコニル二水和物2.7g及び硝酸セリウム六水和物2.6gを使用した以外は、燃料極材料調製例3と同様にしてNiとBaZr0.5Ce0.30.2との複合体であるNi−BaZr0.5Ce0.30.2を調製した。
(Fuel electrode material preparation example 5) Ni-BaZr 0.5 Ce 0.3 Y 0.2 O 3
Fuel electrode except that 2.7 g of zirconyl nitrate dihydrate and 2.6 g of cerium hexahydrate hexahydrate were used instead of 3.7 g of zirconyl nitrate dihydrate and 0.87 g of cerium hexahydrate hexahydrate. the Ni-BaZr 0.5 Ce 0.3 Y 0.2 O 3 which is a complex of Ni and BaZr 0.5 Ce 0.3 Y 0.2 O 3 in the same manner as the material in preparation example 3 was prepared.

(燃料極材料調製例6)Ni−BaCe0.90.1
4.8gの硝酸ジルコニル二水和物の代わりに硝酸セリウム六水和物7.8gを使用した以外は、燃料極材料調製例1と同様にしてNiとBaCe0.90.1との複合体であるNi−BaCe0.90.1を調製した。
(Fuel electrode material preparation example 6) Ni-BaCe 0.9 Y 0.1 O 3
Ni and BaCe 0.9 Y 0.1 O 3 in the same manner as in Fuel Polar Material Preparation Example 1 except that 7.8 g of cerium nitrate hexahydrate was used instead of 4.8 g of zirconyl nitrate dihydrate. Ni-BaCe 0.9 Y 0.1 O 3 which is a complex with and was prepared.

(燃料極材料調製例7)Ni−BaZr0.1Ce0.70.2
硝酸ジルコニル二水和物3.7g及び硝酸セリウム六水和物0.87gの代わりに、硝酸ジルコニル二水和物0.53g及び硝酸セリウム六水和物6.0gを使用した以外は燃料極材料調製例3と同様にしてNiとBaZr0.1Ce0.70.2との複合体であるNi−BaZr0.1Ce0.70.2を調製した。
(Fuel electrode material preparation example 7) Ni-BaZr 0.1 Ce 0.7 Y 0.2 O 3
Fuel electrode material except that 0.53 g of zirconyl nitrate dihydrate and 6.0 g of cerium hexahydrate were used instead of 3.7 g of zirconyl nitrate dihydrate and 0.87 g of cerium hexahydrate. in the same manner as in preparation example 3 was prepared Ni-BaZr 0.1 Ce 0.7 Y 0.2 O 3 which is a complex of Ni and BaZr 0.1 Ce 0.7 Y 0.2 O 3 .

[実施例1]活性評価:アンモニア分解反応
燃料極材料調製例1で調製した燃料極材料について、固定床流通式反応装置を用いてアンモニア分解反応を行い活性評価した。0.30gのNi−BaZr0.90.1を触媒として反応管に充填し、空気流通下で600℃まで昇温させた。次いでアルゴン希釈した50体積%水素を80Ncc/minの流量で反応管に流通させながら600℃、全圧0.10MPaで2時間流通させ還元処理を行った。還元処理後、ガスを100体積%アルゴンに切替え、500℃に降温し、全圧0.10MPaにおいて流通ガスを100体積%アンモニアガスに切り替え、30Ncc/minの流量で反応管に流通させてアンモニア分解反応を行った。
アンモニア分解率は以下の式を用いて算出し、分解率は63%となった。
アンモニア分解率(%)=(水素生成量+窒素生成量)/(2×アンモニア供給量)×100
[Example 1] Activity evaluation: Ammonia decomposition reaction The fuel electrode material prepared in Preparation Example 1 was subjected to an ammonia decomposition reaction using a fixed bed flow reactor to evaluate the activity. The reaction tube was filled with 0.30 g of Ni-BaZr 0.9 Y 0.1 O 3 as a catalyst, and the temperature was raised to 600 ° C. under air flow. Next, 50% by volume hydrogen diluted with argon was circulated through the reaction tube at a flow rate of 80 Ncc / min and circulated at 600 ° C. and a total pressure of 0.10 MPa for 2 hours for reduction treatment. After the reduction treatment, the gas is switched to 100% by volume argon, the temperature is lowered to 500 ° C., the flowing gas is switched to 100% by volume ammonia gas at a total pressure of 0.10 MPa, and the gas is passed through a reaction tube at a flow rate of 30 Ncc / min to decompose ammonia. The reaction was carried out.
The ammonia decomposition rate was calculated using the following formula, and the decomposition rate was 63%.
Ammonia decomposition rate (%) = (hydrogen production + nitrogen production) / (2 x ammonia supply) x 100

[実施例2]
触媒として、燃料極材料調製例2で調製したNi−BaZr0.80.2を0.30g用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は60%となった。
[Example 2]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-BaZr 0.8 Y 0.2 O 3 prepared in Fuel Polar Material Preparation Example 2 was used as a catalyst.
The ammonia decomposition rate was 60%.

[実施例3]
触媒として、燃料極材料調製例3で調製したNi−BaZr0.7Ce0.10.2を0.30g用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は60%となった。
[Example 3]
Activity evaluation by ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-BaZr 0.7 Ce 0.1 Y 0.2 O 3 prepared in Fuel Polar Material Preparation Example 3 was used as a catalyst. did.
The ammonia decomposition rate was 60%.

[実施例4]
触媒として、燃料極材料調製例4で調製したNi−BaZr0.6Ce0.20.2を0.30g用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は67%となった。
[Example 4]
Activity evaluation by ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-BaZr 0.6 Ce 0.2 Y 0.2 O 3 prepared in Fuel Polar Material Preparation Example 4 was used as a catalyst. did.
The ammonia decomposition rate was 67%.

[実施例5]
触媒として、燃料極材料調製例5で調製したNi−BaZr0.5Ce0.30.2を0.30g用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は65%となった。
[Example 5]
Activity evaluation by ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-BaZr 0.5 Ce 0.3 Y 0.2 O 3 prepared in Fuel Polar Material Preparation Example 5 was used as a catalyst. did.
The ammonia decomposition rate was 65%.

[比較例1]
触媒として、燃料極材料調製例6で調製したNi−BaCe0.90.1を0.30g用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は54%となった。
[Comparative Example 1]
The activity was evaluated by an ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-BaCe 0.9 Y 0.1 O 3 prepared in Fuel Polar Material Preparation Example 6 was used as a catalyst.
The ammonia decomposition rate was 54%.

[比較例2]
触媒として、燃料極材料調製例7で調製したNi−BaZr0.1Ce0.70.2を0.30g用いた以外は実施例1と同様にして、アンモニア分解反応により活性評価した。
アンモニア分解率は57%となった。
[Comparative Example 2]
Activity evaluation by ammonia decomposition reaction in the same manner as in Example 1 except that 0.30 g of Ni-BaZr 0.1 Ce 0.7 Y 0.2 O 3 prepared in Fuel Polar Material Preparation Example 7 was used as a catalyst. did.
The ammonia decomposition rate was 57%.

実施例1〜5及び比較例1、2におけるアンモニア分解率の結果を以下の表1に示す。 The results of the ammonia decomposition rate in Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1 below.

以上の実施例1〜5及び比較例1、2により式(1)中のaが0.2〜1.0の範囲である場合に、aが0.2未満である場合よりも高いアンモニア分解活性を示すことが明らかとなった。 According to Examples 1 to 5 and Comparative Examples 1 and 2 above, when a in the formula (1) is in the range of 0.2 to 1.0, the ammonia decomposition is higher than when a is less than 0.2. It was revealed that it showed activity.

[実施例6]
<SOFC用セル作製例1>
5.2gの硝酸バリウム(和光純薬工業株式会社製)、4.3gの硝酸ジルコニル二水和物(和光純薬工業株式会社製)及び1.5gの硝酸イットリウム六水和物(シグマアルドリッチ社製)を蒸留水に加え、70℃で加熱撹拌し、溶解させた。次いで調製した溶液に12.6gのクエン酸一水和物(和光純薬工業株式会社製)を加えて撹拌した。さらにその溶液に28質量%アンモニア水(和光純薬工業株式会社製)を加えてpH=8.0とし、70℃で一晩撹拌しゲル化させた。得られたゲルを3時間ホットプレート上にて350℃で仮焼成した後、空気下1200℃で5時間焼成し、固体成分を得た(BaZr0.80.2とする)。3.8gのBaZr0.80.2、5.7gの酸化ニッケル(和光純薬工業株式会社製)及び0.5gのポリビニルブチラール(平均分子量630、和光純薬工業株式会社)を用いて一晩乾式ボールミルを行った。混合した粉末2gを30MPaで一軸加圧成形して得られた支持体上に、BaZr0.80.2粉末0.1gを広げ、再び30MPaで一軸加圧成形した後、200MPaで冷間静水圧加圧を行い、1400℃で5時間焼成することでアノードをNiO−BaZr0.80.2、電解質をBaZr0.80.2とするペレットを作製した。カソードとして白金ペースト(U−3402、エヌ・イーケムキャット)を電解質に直径10mmの円状に塗布し、空気中900℃で2時間焼成することでアノード支持型セルを得た。
[Example 6]
<Example 1 for producing SOFC cell>
5.2 g of barium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.), 4.3 g of zirconyl dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.5 g of ittium nitrate hexahydrate (manufactured by Sigma Aldrich) Was added to distilled water and heated and stirred at 70 ° C. to dissolve it. Next, 12.6 g of citric acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the prepared solution and stirred. Further, 28% by mass aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the solution to adjust the pH to 8.0, and the mixture was stirred overnight at 70 ° C. to gel. The obtained gel was calcined on a hot plate for 3 hours at 350 ° C. and then calcined at 1200 ° C. in air for 5 hours to obtain a solid component (BaZr 0.8 Y 0.2 O 3 ). 3.8 g of BaZr 0.8 Y 0.2 O 3 , 5.7 g of nickel oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5 g of polyvinyl butyral (average molecular weight 630, Wako Pure Chemical Industries, Ltd.) The dry ball mill was carried out overnight. BaZr 0.8 Y 0.2 O 3 powder 0.1 g was spread on a support obtained by uniaxial pressure molding of 2 g of the mixed powder at 30 MPa, uniaxial pressure molding at 30 MPa, and then at 200 MPa. Cold hydrostatic pressure is applied and calcined at 1400 ° C. for 5 hours to prepare pellets having an anode of NiO-BaZr 0.8 Y 0.2 O 3 and an electrolyte of BaZr 0.8 Y 0.2 O 3. did. A platinum paste (U-3402, N.E. Chemcat) was applied to an electrolyte in a circular shape having a diameter of 10 mm as a cathode, and calcined in air at 900 ° C. for 2 hours to obtain an anode-supported cell.

作製したアノード支持型セルを測定装置(BEL−SOFC、日本ベル株式会社製)に設置した。ガスシール材にはガラスリングを使用し、ガス漏れを防ぐためにアノード支持体の周囲にガラスペーストを塗布した。ガス流路となる管には全てアルミナ管を用いた。また、集電体には白金線を付けた白金メッシュを用いた。セルの設置後、800℃まで昇温することでガラスリングを融かした。その後700℃まで降温し、前処理として15体積%H−85体積%Ar混合ガスをアノード側に1時間供給し、前処理を行った。発電温度は700℃とした。アノード側には66.7体積%NH−1.6体積%HO−31.7体積%Ar混合ガスを供給し、カソード側には100mLの純酸素を供給し電池性能を評価した。700℃において端子電圧0.6Vのとき、175mAcm−2の電流密度が得られた。
以上により、本燃料極材料が電池材料として使用できることが示された。
The produced anode-supported cell was installed in a measuring device (BEL-SOFC, manufactured by Nippon Bell Co., Ltd.). A glass ring was used as the gas sealant, and a glass paste was applied around the anode support to prevent gas leakage. Alumina pipes were used for all the pipes serving as gas flow paths. A platinum mesh with a platinum wire was used as the current collector. After the cell was installed, the temperature was raised to 800 ° C. to melt the glass ring. Then the temperature was lowered to 700 ° C., pretreatment of 15 vol% H 2 -85 vol% Ar mixed gas was supplied for 1 hour to the anode side as, pretreated. The power generation temperature was 700 ° C. Supplying 66.7 vol% NH 3 -1.6 vol% H 2 O-31.7 vol% Ar mixed gas to the anode side, the cathode side to evaluate cell performance by supplying pure oxygen 100 mL. When the terminal voltage was 0.6 V at 700 ° C., a current density of 175 mAcm- 2 was obtained.
From the above, it was shown that this fuel electrode material can be used as a battery material.

本発明は、アンモニアをエネルギー源として直接燃料電池にて利用する分野に好適に適用することができる。 The present invention can be suitably applied to a field in which ammonia is directly used as an energy source in a fuel cell.

Claims (9)

アンモニアを含有する原料ガスを燃料とする固体酸化物形燃料電池の燃料極材料であって、金属成分(X)と以下の式(1)で表される化合物との複合体を含む燃料極材料。
AZrCe 式(1)
[式(1)中、Aは、Baを示し、Mは、を示す。a、b及びcは組成比を示す。aは、0.2〜1.0の範囲の数値であり、bは、0.2〜0.6の範囲の数値であり、cは、0.01〜0.8の範囲の数値である。]
A fuel electrode material for a solid oxide fuel cell that uses a raw material gas containing ammonia as a fuel and contains a composite of a metal component (X) and a compound represented by the following formula (1). ..
AZr a Ce b M c O 3 formula (1)
[In the formula (1), A represents Ba and M represents Y. a, b and c indicate the composition ratio. a is a numerical value in the range of 0.2 to 1.0, b is a numerical value in the range of 0.2 to 0.6, and c is a numerical value in the range of 0.01 to 0.8. .. ]
前記金属成分(X)は、ニッケル、コバルト、銅、鉄、ルテニウム、パラジウム及び白金からなる群より選ばれる1種以上の元素を含む請求項1に記載の燃料極材料。 The fuel electrode material according to claim 1, wherein the metal component (X) contains one or more elements selected from the group consisting of nickel, cobalt, copper, iron, ruthenium, palladium and platinum. aは、0.4〜1.0の範囲である請求項1又は請求項2に記載の燃料極材料。 The fuel electrode material according to claim 1 or 2, wherein a is in the range of 0.4 to 1.0. bは、0.2〜0.4の範囲である請求項1〜請求項3のいずれか1項に記載の燃料極材料。 b is the fuel electrode material according to any one of claims 1 to 3, which is in the range of 0.2 to 0.4. bは、0.2〜0.3の範囲である請求項1〜請求項4のいずれか1項に記載の燃料極材料。 b is the fuel electrode material according to any one of claims 1 to 4, which is in the range of 0.2 to 0.3. 請求項1〜請求項のいずれか1項に記載の燃料極材料を含む燃料極を有し、アンモニアを含有する原料ガスを燃料とする固体酸化物形燃料電池用セル。 A cell for a solid oxide fuel cell having a fuel electrode containing the fuel electrode material according to any one of claims 1 to 5 , and using a raw material gas containing ammonia as a fuel. 金属成分(X)と以下の式(1)で表される化合物との複合体を含み、アンモニアを分解して水素を製造するための水素製造用触媒。
AZrCe 式(1)
[式(1)中、Aは、Baを示し、Mは、を示す。a、b及びcは組成比を示す。aは、0.2〜1.0の範囲の数値であり、bは、0.2〜0.6の範囲の数値であり、cは、0.01〜0.8の範囲の数値である。]
A catalyst for producing hydrogen, which contains a complex of a metal component (X) and a compound represented by the following formula (1), and decomposes ammonia to produce hydrogen.
AZr a Ce b M c O 3 formula (1)
[In the formula (1), A represents Ba and M represents Y. a, b and c indicate the composition ratio. a is a numerical value in the range of 0.2 to 1.0, b is a numerical value in the range of 0.2 to 0.6, and c is a numerical value in the range of 0.01 to 0.8. .. ]
請求項の水素製造用触媒の存在下に、アンモニアを含有する原料ガス中のアンモニアを分解して水素を製造する水素製造方法。 A hydrogen production method for producing hydrogen by decomposing ammonia in a raw material gas containing ammonia in the presence of the hydrogen production catalyst according to claim 7 . 前記原料ガスは、アンモニアを1体積%以上100体積%以下の範囲で含む請求項に記載の水素製造方法。 The hydrogen production method according to claim 8 , wherein the raw material gas contains ammonia in a range of 1% by volume or more and 100% by volume or less.
JP2015173229A 2015-09-02 2015-09-02 Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method Active JP6778370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173229A JP6778370B2 (en) 2015-09-02 2015-09-02 Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173229A JP6778370B2 (en) 2015-09-02 2015-09-02 Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2017050180A JP2017050180A (en) 2017-03-09
JP6778370B2 true JP6778370B2 (en) 2020-11-04

Family

ID=58279557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173229A Active JP6778370B2 (en) 2015-09-02 2015-09-02 Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method

Country Status (1)

Country Link
JP (1) JP6778370B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478784B2 (en) 2020-02-04 2022-10-25 Saudi Arabian Oil Company Catalyst compositions for ammonia decomposition
JP7352487B2 (en) * 2020-02-21 2023-09-28 株式会社日本触媒 Ammonia decomposition catalyst
CN116472365A (en) 2020-07-06 2023-07-21 沙特阿拉伯石油公司 Method for producing compressed hydrogen using electrochemical system
JP7291819B1 (en) 2022-02-08 2023-06-15 株式会社三井E&S AMMONIA SOLID OXIDE FUEL CELL SYSTEM, OPERATING METHOD, AND PROGRAM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036057A1 (en) * 2010-09-13 2012-03-22 住友電気工業株式会社 Gas-decomposition device, electrochemical reaction device, and method for manufacturing said devices
JP5812513B2 (en) * 2011-10-03 2015-11-17 住友電気工業株式会社 Gas decomposition power generation system
JP6191090B2 (en) * 2013-08-27 2017-09-06 住友電気工業株式会社 ELECTRODE MATERIAL FOR FUEL ELECTRODE, SOLID ELECTROLYTE ELECTRODE LAMINATE, SOLID ELECTROLYTE ELECTRODE LAMINATE MANUFACTURING METHOD, AND FUEL CELL
JP6370696B2 (en) * 2014-12-01 2018-08-08 住友電気工業株式会社 Cell structure, electrolyte membrane-electrode assembly, and fuel cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
US11994062B2 (en) 2021-05-14 2024-05-28 AMOGY, Inc. Systems and methods for processing ammonia
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US12097482B2 (en) 2021-06-11 2024-09-24 AMOGY, Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11975968B2 (en) 2022-10-06 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP2017050180A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6778370B2 (en) Fuel electrode material, solid oxide fuel cell cell, hydrogen production catalyst and hydrogen production method
Zhang et al. Electrochemical reduction of CO2 in solid oxide electrolysis cells
Tian et al. Progress and potential for symmetrical solid oxide electrolysis cells
Da Silva et al. Novel materials for solid oxide fuel cell technologies: A literature review
He et al. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures
Bi et al. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides
Sajid et al. A perspective on development of fuel cell materials: Electrodes and electrolyte
Radenahmad et al. Proton-conducting electrolytes for direct methanol and direct urea fuel cells–A state-of-the-art review
ES2697050T3 (en) A method for the production of light hydrocarbons from gas with a high content of methane, a solid oxide fuel cell for the production of light hydrocarbons from gas with a high methane content, and a catalyst for the production of light hydrocarbons from gas with high methane content
Wei et al. Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells
Zhang et al. Nano-CeO2-modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells
US20110183221A1 (en) Catalytic layer for oxygen activation on ionic solid electrolytes at high temperature
Uhm et al. Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell
Bai et al. New SOFC cathode: 3D core–shell-structured La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ@ PrO2− δ nanofibers prepared by coaxial electrospinning
Xu et al. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels
Weng et al. Proton conducting membranes for hydrogen and ammonia production
Hou et al. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer
CN104934615A (en) Application of tin-containing nanometer oxide to cathode of low-temperature solid oxide fuel cell
Ahmed et al. Highly efficient composite electrolyte for natural gas fed fuel cell
US8986894B2 (en) Solid electrolyte including layered metal oxide, fuel cell including thereof, production method for solid electrolyte, and production method for electrode catalyst
US10326157B2 (en) Modified solid oxide fuel cell
JP5555474B2 (en) SOLAR ELECTRODE FOR SOLID OXIDE FUEL CELL, SOLID OXIDE FUEL CELL, AND METHOD FOR OPERATING SOLID OXIDE FUEL CELL
CN112349913B (en) High-performance reversible solid oxide battery electrode material composition and preparation method thereof
Sorcar et al. A catalyst support for direct-ammonia solid-oxide fuel cell anodes based on lanthanum titanium oxynitride
CA2893153C (en) Mixed metal oxide electrode material for solid oxide and reversible solid oxide fuel cell applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6778370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250