JP6777852B2 - Fluorine-containing compound gas detection method - Google Patents

Fluorine-containing compound gas detection method Download PDF

Info

Publication number
JP6777852B2
JP6777852B2 JP2016184095A JP2016184095A JP6777852B2 JP 6777852 B2 JP6777852 B2 JP 6777852B2 JP 2016184095 A JP2016184095 A JP 2016184095A JP 2016184095 A JP2016184095 A JP 2016184095A JP 6777852 B2 JP6777852 B2 JP 6777852B2
Authority
JP
Japan
Prior art keywords
fluorine
containing compound
gas
compound gas
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016184095A
Other languages
Japanese (ja)
Other versions
JP2018048888A (en
Inventor
広志 市丸
広志 市丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2016184095A priority Critical patent/JP6777852B2/en
Publication of JP2018048888A publication Critical patent/JP2018048888A/en
Application granted granted Critical
Publication of JP6777852B2 publication Critical patent/JP6777852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、微量のフッ素含有化合物ガスを検出することができるフッ素含有化合物ガスの検出方法に関するものである。 The present invention relates to a method for detecting a fluorine-containing compound gas capable of detecting a trace amount of the fluorine-containing compound gas.

クロロフルオロカーボン、パーフルオロカーボン、パーフルオロコンパウンズ等のフッ素含有化合物ガスの中には、オゾン破壊係数(ODP)や地球温暖化係数(GWP)の高いものが数多く存在し、近年国際的に大きな問題となっている。このためODPやGWPの低い代替ガスも開発されてきているが、これらの中には可燃性または毒性のあるガスも多く含まれている。 Many fluorocarbon compound gases such as chlorofluorocarbons, perfluorocarbons, and perfluorocompounds have high ozone depletion potential (ODP) and global warming potential (GWP), which has become a major international problem in recent years. It has become. For this reason, alternative gases with low ODP and GWP have been developed, but many of them are flammable or toxic.

これらフッ素含有化合物ガスの検出には、フッ素含有化合物ガスの赤外線吸収を利用した赤外線式や熱線コイルの抵抗変化を利用した熱線式のセンサーが存在するが、いずれも検出下限が数100ppmであり、数ppmのフッ素含有化合物ガスの検出は不可能であった。近年開発されてきているODPやGWPの低い代替ガス中には、可燃性または毒性のあるガスも多く含まれており、これらガスについては数ppmオーダーの微量の検出が必要となってきている。 For the detection of these fluorine-containing compound gases, there are infrared type sensors that utilize the infrared absorption of the fluorine-containing compound gas and heat ray type sensors that utilize the resistance change of the heat ray coil, but the lower limit of detection is several hundred ppm in both cases. It was impossible to detect a few ppm of fluorine-containing compound gas. The alternative gases with low ODP and GWP that have been developed in recent years include many flammable or toxic gases, and it is necessary to detect a trace amount of these gases on the order of several ppm.

数ppmオーダーの微量のフッ素含有化合物ガスの検出方法として、本出願人は、当該ガスを加熱した固体金属と接触反応させ検知しやすいガスに変換し、当該ガスを、電気分解を使用したガス検知器やテープ式のガス検知器の出力により検出することを特徴とするフッ素含有化合物ガスの検出方法を開示した(特許文献1)。また、さらに反応温度を下げても必要な反応速度が得られる方法として、表面にアルカリ金属フッ化物を添着した当該固体金属を用いる方法を提案した(特許文献2)。そして、さらに表面の添着物を長期に均一に保持する方法として、当該添着物をアルカリ金属水酸化物又は金属酸化物とすることを提案した(特許文献3)。 As a method for detecting a trace amount of fluorine-containing compound gas on the order of several ppm, the applicant applies a contact reaction with a heated solid metal to convert the gas into a gas that is easy to detect, and the gas is detected by gas detection using electrolysis. A method for detecting a fluorine-containing compound gas, which is characterized by detecting by the output of a gas detector or a tape-type gas detector, has been disclosed (Patent Document 1). Further, as a method for obtaining the required reaction rate even when the reaction temperature is further lowered, a method using the solid metal in which an alkali metal fluoride is impregnated on the surface has been proposed (Patent Document 2). Then, as a method of uniformly holding the adhering material on the surface for a long period of time, it has been proposed to use the adhering material as an alkali metal hydroxide or a metal oxide (Patent Document 3).

特許3375072号公報Japanese Patent No. 3375072 特許3640601号公報Japanese Patent No. 3460601 特開2003−139760号公報Japanese Unexamined Patent Publication No. 2003-139760

しかしながら、フッ素含有化合物ガスの検出方法において、固体金属にアルカリ金属フッ化物等を添着した当該固体薬剤を用いた場合、反応温度を下げても必要な反応速度を得ることができたものの、400℃程度の高温加熱を要する(特許文献2、3)。そのため、加熱装置が大きくなり、加熱装置の材質もこの温度に耐久性のあるものに限定されてくる。また、消費電力も多くなることからランニングコストも増加する。本発明はこの様な点に着目してなされたもので、反応を起こさせるための加熱温度を低下させても微量のフッ素含有化合物ガスを検出できる方法を提供することを目的とする。 However, in the method for detecting a fluorine-containing compound gas, when the solid drug in which an alkali metal fluoride or the like is impregnated with a solid metal is used, the required reaction rate can be obtained even if the reaction temperature is lowered, but the temperature is 400 ° C. High temperature heating is required (Patent Documents 2 and 3). Therefore, the heating device becomes large, and the material of the heating device is also limited to those that can withstand this temperature. In addition, the running cost also increases because the power consumption increases. The present invention has been made focusing on such a point, and an object of the present invention is to provide a method capable of detecting a trace amount of a fluorine-containing compound gas even when the heating temperature for causing a reaction is lowered.

本発明者は、上述の問題について鋭意検討を重ねた結果、フッ素含有化合物ガスを固体金属ではなく固体金属酸化物と反応させることにより、微量のフッ素含有化合物ガスを検出するための反応を起こさせるための加熱温度を低下させることを見出した。さらに当該反応において、金属酸化物表面にアルカリ金属フッ化物またはアルカリ金属酸化物を添着することが有効であることを見出し、本発明に到達した。 As a result of diligent studies on the above-mentioned problems, the present inventor causes a reaction for detecting a trace amount of fluorine-containing compound gas by reacting the fluorine-containing compound gas with a solid metal oxide instead of a solid metal. It has been found that the heating temperature for the compound is lowered. Furthermore, they have found that it is effective to impregnate an alkali metal fluoride or an alkali metal oxide on the surface of the metal oxide in the reaction, and have reached the present invention.

すなわち本発明は、フッ素含有化合物ガスと固体金属酸化物とを、100〜800℃の温度範囲で接触反応させ、生成したガスを検出することを特徴とするフッ素含有化合物ガスの検出方法を提供する。 That is, the present invention provides a method for detecting a fluorine-containing compound gas, which comprises contacting a fluorine-containing compound gas and a solid metal oxide in a temperature range of 100 to 800 ° C. to detect the generated gas. ..

本発明は、従来に比べて低い加熱温度でも、微量のフッ素含有化合物ガスの検出が可能な方法を提供することができる。 The present invention can provide a method capable of detecting a trace amount of a fluorine-containing compound gas even at a heating temperature lower than that of the prior art.

フッ素含有化合物ガスの検出確認のための実験装置の概略図である。It is the schematic of the experimental apparatus for the detection confirmation of a fluorine-containing compound gas.

以下、本発明を詳細に説明する。
本発明のフッ素含有化合物ガスの検出方法では、固体金属酸化物または、これにアルカリ金属酸化物またはアルカリ金属フッ化物を添着させたものを、フッ素含有化合物ガスを微量含むガスに100〜800℃の温度範囲で接触反応させる工程と、前記反応により生成したガスを検出する工程とを含むことを特徴とする。
Hereinafter, the present invention will be described in detail.
In the method for detecting a fluorine-containing compound gas of the present invention, a solid metal oxide or a substance in which an alkali metal oxide or an alkali metal fluoride is impregnated therein is mixed with a gas containing a trace amount of the fluorine-containing compound gas at 100 to 800 ° C. It is characterized by including a step of making a contact reaction in a temperature range and a step of detecting a gas generated by the reaction.

検出の対象とするフッ素含有化合物ガスとは、クロロフルオロカーボン、パーフルオロカーボン、ハイドロフロロカーボン、ハイドロクロロフルオロカーボン、パーフルオロコンパウンズ等であり、特に、C、C、C、C、C、CF、CHF、CH、CHF、CClF、CCl、CClF、CCl、CHClF、CHCl、CHBr、CHCl、CBr、CBrF、CHBr、CHBrCl、CBrF、CHBrF、CHBrF、CBrClF、CCl、CBrF、CClF、CCl、CCl、CBrF、CBr、CBr、CBrClF、NFである。本発明の検出方法で対象とするガスについて、微量とは、フッ素含有化合物ガスが数千体積ppm以下のガス濃度であり、特に1ppb以上1000ppm以下の濃度範囲のガスである。特に、Cを検知の対象とする場合、暴露許容濃度が2体積ppmであるため、0.01体積ppm以上20体積ppm以下の濃度範囲で良好に検知できることが好ましく、0.1体積ppm以上10体積ppm以下の濃度範囲で良好に検知できることがより好ましい。 The fluorine-containing compound gas to be detected is chlorofluorocarbon, perfluorocarbon, hydrofluorocarbon, hydrochlorofluorocarbon, perfluorocompound, etc., and in particular, C 5 F 8 , C 4 F 8 , C 4 F 6 , C 2 F 6 , C 3 F 8 , CF 4 , C 5 HF 7 , CH 2 F 2 , CHF 3 , CCl 3 F, CCl 2 F 2 , CCl F 3 , CCl 4 , CHClF 2 , CH 3 Cl, CH 3 Br, CHCl 3, CBr 2 F 2, CBrF 3, CH 2 Br 2, CH 2 BrCl, CBr 3 F, CHBr 2 F, CHBrF 2, CBrClF 2, C 2 H 3 Cl, C 2 BrF 5, C 2 ClF 5 , C 2 Cl 2 F 4 , C 2 Cl 3 F 3 , C 2 BrF 4 , C 2 Br 2 F 4 , C 2 H 2 Br 2 F 4 , C 2 Br 2 ClF 3 , NF 3 . Regarding the gas targeted by the detection method of the present invention, the trace amount is a gas having a concentration of fluorine-containing compound gas of several thousand volume ppm or less, and particularly a gas having a concentration range of 1 ppb or more and 1000 ppm or less. In particular, when C 5 F 8 is the target of detection, since the permissible exposure concentration is 2 volume ppm, it is preferable that it can be detected well in the concentration range of 0.01 volume ppm or more and 20 volume ppm or less, and 0.1 volume. It is more preferable that it can be detected well in the concentration range of ppm or more and 10 volumes by ppm or less.

本発明では、上述したフッ素含有化合物ガスと、固体金属酸化物とを加熱状態下で接触反応させ、よりガス検知しやすいガスである、SiF、WF等のガスに変換する。固体金属酸化物の表面には、アルカリ金属フッ化物やアルカリ金属水酸化物が添着されていてもよい。 In the present invention, the above-mentioned fluorine-containing compound gas and a solid metal oxide are contact-reacted under a heated state to be converted into a gas such as SiF 4 or WF 6 , which is a gas that is easier to detect. The surface of the solid metal oxide may be impregnated with alkali metal fluoride or alkali metal hydroxide.

本発明で用いる固体金属酸化物は、シリコン酸化物とタングステン酸化物からなる群から選ばれる少なくとも一つであり、シリコン酸化物の例としてはSiO、タングステン酸化物の例としてはWOを挙げることができる。また添着物としては、アルカリ金属フッ化物はフッ化ナトリウム又はフッ化カリウム等であり、アルカリ金属水酸化物は水酸化ナトリウム又は水酸化カリウム等である。これらを添着することで、より低い温度で固体金属酸化物がフッ素含有化合物ガスと反応する。 The solid metal oxide used in the present invention is at least one selected from the group consisting of silicon oxide and tungsten oxide. SiO 2 is an example of the silicon oxide, and WO 3 is an example of the tungsten oxide. be able to. As the adhering material, the alkali metal fluoride is sodium fluoride or potassium fluoride or the like, and the alkali metal hydroxide is sodium hydroxide or potassium hydroxide or the like. By impregnating them, the solid metal oxide reacts with the fluorine-containing compound gas at a lower temperature.

本発明において、当該固体金属酸化物の外形は球状又は破砕状である。その表面状態は特に限定されないが、表面積の大きい多孔質のものや粗面化されたものが望ましい。固体金属酸化物の純度は特に限定されないが、90質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。 In the present invention, the outer shape of the solid metal oxide is spherical or crushed. The surface state is not particularly limited, but a porous one having a large surface area or a roughened one is desirable. The purity of the solid metal oxide is not particularly limited, but is preferably 90% by mass or more, more preferably 98% by mass or more, and further preferably 99% by mass or more.

当該固体金属酸化物の大きさは、目開き9.5mmの篩を通過し、目開き0.5mmの篩を通過しなかったものである。目開き9.5mmの篩を通過しない大きなものは、充填スペースが大きくなり、大量の検出対象ガスを必要とすることや当該ガスとの接触面積の減少により反応が不十分になるといった問題が生じるため適していない。また、目開き0.5mmの篩を通過したものは、被測定ガスの経路を封鎖し流れを阻害するため適していない。 The size of the solid metal oxide is such that it has passed through a sieve having a mesh size of 9.5 mm and has not passed through a sieve having a mesh size of 0.5 mm. Larger ones that do not pass through a sieve with a mesh size of 9.5 mm have problems such as a large filling space, a large amount of gas to be detected, and a decrease in the contact area with the gas, resulting in insufficient reaction. Therefore it is not suitable. Further, the one that has passed through a sieve having an opening of 0.5 mm is not suitable because it blocks the path of the gas to be measured and obstructs the flow.

フッ素含有化合物ガスにCガスを用い、酸素存在下において280±50℃で固体金属酸化物であるSiOに接触させた場合、(1)式のような検知しやすい被測定ガスであるSiFが得られる。同様の反応は100〜800℃の温度範囲で生じると考えられる。
+2SiO+3O→2SiF+5CO (1)
Using C 5 F 8 gas in the fluorine-containing compound gas, at 280 ± 50 ° C. In the presence of oxygen when contacted with SiO 2 is a solid metal oxide, (1) if the detected easily measured gas, such as type A certain SiF 4 is obtained. Similar reactions are believed to occur in the temperature range of 100-800 ° C.
C 5 F 8 + 2SiO 2 + 3O 2 → 2SiF 4 + 5CO 2 (1)

添着物として、アルカリ金属水酸化物を用いる場合、アルカリ金属水酸化物であるNaOH、KOH等は、フッ素含有化合物ガスとの反応により種々な金属フッ化物を作る。例えば、当該フッ素含有化合物ガスにCガスを用い、当該アルカリ金属酸化物にNaOHを用いた場合、酸素の存在下において300±50℃で(2)式のような反応が得られる。
+8NaOH+3O→8NaF+4HO+5CO (2)
ここで生成されたNaFは、当該固体金属酸化物にSiOを用いた場合、水分の存在下において、300±50℃で(3)式に示したようにSiFが生成される。
4NaF+SiO+2HO→SiF+4NaOH (3)
When an alkali metal hydroxide is used as an adjunct, the alkali metal hydroxides such as NaOH and KOH form various metal fluorides by reacting with a fluorine-containing compound gas. For example, using the C 5 F 8 gas in the fluorine-containing compound gas, the use of NaOH in the alkali metal oxides, at 300 ± 50 ° C. in the presence of oxygen (2) reactions such as is obtained.
C 5 F 8 + 8 NaOH + 3O 2 → 8NaF + 4H 2 O + 5CO 2 (2)
In the NaF produced here, when SiO 2 is used as the solid metal oxide, SiF 4 is produced at 300 ± 50 ° C. as shown in the equation (3) in the presence of water.
4NaF + SiO 2 + 2H 2 O → SiF 4 + 4NaOH (3)

添着物として、アルカリ金属フッ化物を用いる場合、あらかじめ処理を要する。例えば、アルカリ金属フッ化物にNaFを用い、当該固体金属酸化物にSiOを用いた場合、水分及び酸素の存在下において300±50℃で(3)式に示したようにSiFが生成される。SiFの生成とともにNaFがNaOHに置換され、これが完了するまで、あらかじめSiFを別途系外に排出する必要があるが、置換後においては、フッ素含有化合物ガスの検出について(2)から(3)式と同様な反応メカニズムとなる。以上の通り、Cガスを処理するには、固体金属酸化物を200〜500℃、好ましくは250〜400℃、より好ましくは300〜380℃に加熱することが好ましい。 When alkali metal fluoride is used as an adjunct, treatment is required in advance. For example, when NaF is used as the alkali metal fluoride and SiO 2 is used as the solid metal oxide, SiF 4 is produced at 300 ± 50 ° C. as shown in the formula (3) in the presence of water and oxygen. To. NaF is replaced with NaOH with the formation of SiF 4 , and it is necessary to separately discharge SiF 4 to the outside of the system until this is completed. After the replacement, detection of fluorine-containing compound gas is performed from (2) to (3). ) The reaction mechanism is the same as the equation. As described above, in processing the C 5 F 8 gas, a solid metal oxide 200 to 500 ° C., preferably 250 to 400 ° C., it is preferably heated and more preferably to 300 to 380 ° C..

図1は、本発明方法によるフッ素含有化合物ガスを検出確認するための実験装置の概略図を示す。サンプルガス充填容器1には大気中に検出対象となる微量のフッ素含有化合物を含んだガスが充填されている。充填筒2には固体金属酸化物や固体金属、またはこれにアルカリ金属フッ化物やアルカリ金属水酸化物を添着したものが充填され、この充填筒内にサンプルガス充填容器内のガスを毎分500cm3程度導入し、当該充填物と接触させる。充填筒2は、加熱ヒータ3により加熱し、充填筒内部の充填物を加熱する。ただし、加熱温度はガスの流れにより温度低下が起きるため、フッ素含有化合物ガスの検出を確認するためには、上述の反応温度より高い温度が必要となる。充填筒2の出口からは、電気分解を使用したガス検知器4やテープ式のガス検知器5に導入され、これらガス検知器により、検出に必要な電気出力が得られる。 FIG. 1 shows a schematic view of an experimental device for detecting and confirming a fluorine-containing compound gas according to the method of the present invention. The sample gas filling container 1 is filled with a gas containing a trace amount of fluorine-containing compound to be detected in the atmosphere. The filling cylinder 2 is filled with a solid metal oxide, a solid metal, or an alkali metal fluoride or an alkali metal hydroxide impregnated therein, and the gas in the sample gas filling container is filled in the filling cylinder at 500 cm / min. Introduce about 3 and bring it into contact with the filling. The filling cylinder 2 is heated by the heating heater 3 to heat the filling inside the filling cylinder. However, since the heating temperature drops due to the flow of gas, a temperature higher than the above-mentioned reaction temperature is required to confirm the detection of the fluorine-containing compound gas. From the outlet of the filling cylinder 2, the gas detector 4 using electrolysis and the tape type gas detector 5 are introduced, and these gas detectors obtain the electric output required for detection.

電気分解を利用したガス検知器4では、電極上でSiF、WF等のガスを電気分解し、そのとき発生する電気出力によりフッ素含有化合物ガスを検出できる。さらに、ガス検知器の別の方式であるテープ式のガス検知器5では、発色剤を含浸させたニトロセルロース等の材質で作られた通気性のあるテープにSiF、WF等のガスを通過させ、反応により形成される発色からの反射光を電気出力に変換し、フッ素含有化合物ガスを検出する。 In the gas detector 4 using electrolysis, gas such as SiF 4 and WF 6 can be electrolyzed on the electrode, and the fluorine-containing compound gas can be detected by the electric output generated at that time. Further, in the tape type gas detector 5, which is another type of gas detector, gas such as SiF 4 and WF 6 is applied to a breathable tape made of a material such as nitrocellulose impregnated with a color former. It is passed and the reflected light from the color developed by the reaction is converted into an electric output, and the fluorine-containing compound gas is detected.

以下、実施例により具体的に説明するが、かかる実施例に限定されるものではない。また、実施例と比較例を表1、2にまとめた。 Hereinafter, description will be made in detail with reference to Examples, but the present invention is not limited to such Examples. In addition, Examples and Comparative Examples are summarized in Tables 1 and 2.

[実施例1]
検出対象ガスとしてC58=10体積ppmの大気を用い、固体金属酸化物に球状である多孔質のSiOを用いた。当該固体金属酸化物の大きさは、目開き2.0mmの篩を通過し、目開き1.0mmの篩を通過しなかったものである。これらを充填筒に充填し350℃に加熱した。
検出対象ガスを導入後、表1のように固体金属酸化物との反応で生成したガスの成分により電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認された(表1中に○で示した)。
[Example 1]
Atmosphere of C 5 F 8 = 10 volume ppm was used as the gas to be detected, and spherical porous SiO 2 was used as the solid metal oxide. The size of the solid metal oxide is such that it has passed through a sieve having a mesh size of 2.0 mm and has not passed through a sieve having a mesh size of 1.0 mm. These were filled in a filling cylinder and heated to 350 ° C.
After introducing the gas to be detected, detection was confirmed by the gas detector using electrolysis and the tape type gas detector by the component of the gas generated by the reaction with the solid metal oxide as shown in Table 1 (Table 1). (Indicated by ○).

[実施例2〜35]
実施例1と同様な方法で、検出対象ガスを種々変えて測定を実施した。検出対象ガスの濃度は、いずれも10体積ppmの大気とした。検出対象ガス別による測定結果は表1のように検出対象ガスの種類を変えても電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認された。
[Examples 2-35]
The measurement was carried out by changing the detection target gas in the same manner as in Example 1. The concentration of the detection target gas was 10 volumes ppm in the atmosphere. As shown in Table 1, the measurement results for each detection target gas were confirmed to be detected by the gas detector using electrolysis and the tape type gas detector even if the type of the detection target gas was changed.

[実施例36]
実施例1と同様な方法で、金属固体酸化物にSiOでなく、球状である多孔質のWOを用い測定を実施した。その結果、表1のように金属酸化物の種類を変えても電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認された。
[Example 36]
The measurement was carried out by using a spherical porous WO 3 instead of SiO 2 as the metal solid oxide in the same manner as in Example 1. As a result, even if the type of metal oxide was changed as shown in Table 1, detection was confirmed by the gas detector using electrolysis and the tape type gas detector.

[実施例37〜40]
実施例1と同様な方法で、当該固体金属酸化物表面に添着物としてはアルカリ金属フッ化物であるNaF、KF、アルカリ金属水酸化物であるNaOH、KOHを用い、該SiOに重量割合で1000ppmになるように添着させ、測定を実施した。充填筒加熱温度は330℃とした。当該添着物別による測定結果は表1のように電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認された。
[Examples 37-40]
In the same manner as in Example 1, alkali metal fluorides NaOH and KF and alkali metal hydroxides NaOH and KOH were used as adhering substances on the surface of the solid metal oxide, and the SiO 2 was added by weight. The measurement was carried out by adhering to 1000 ppm. The filling cylinder heating temperature was 330 ° C. As shown in Table 1, the measurement results by the attachments were confirmed by the gas detector using electrolysis and the tape type gas detector.

[比較例1]
実施例1と同様な方法で、固体金属酸化物であるSiOでなく、固体金属であるSiを用いた。当該固体金属の大きさは、目開き2.0mmの篩を通過し、目開き1.0mmの篩を通過しなかったものである。これらを充填筒に充填し、実施例1と同様に350℃に加熱した。
検出対象ガスを導入後、表2のように固体金属との反応で生成したガスの成分により電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認されなかった(表2中に×で示した)。
[Comparative Example 1]
In the same manner as in Example 1, Si, which is a solid metal, was used instead of SiO 2 , which is a solid metal oxide. The size of the solid metal is such that it has passed through a sieve having a mesh size of 2.0 mm and has not passed through a sieve having a mesh size of 1.0 mm. These were filled in a filling cylinder and heated to 350 ° C. in the same manner as in Example 1.
After the introduction of the gas to be detected, detection was not confirmed in the gas detector using electrolysis and the tape type gas detector due to the components of the gas generated by the reaction with the solid metal as shown in Table 2 (in Table 2). (Indicated by x).

[比較例2〜3]
比較例1と同様な方法で、検出対象ガスをC、CHFとして測定を実施した。検出対象ガスの濃度は、いずれも10体積ppmの大気とした。充填筒の加熱温度は、いずれも実施例3および7と同様に350℃とした。検出対象ガス別による測定結果は表1のように検出対象ガスの種類を変えても電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認されなかった。
[Comparative Examples 2-3]
The measurement was carried out using the same method as in Comparative Example 1 with the detection target gases being C 4 F 6 and C 5 HF 7 . The concentration of the detection target gas was 10 volumes ppm in the atmosphere. The heating temperature of the filling cylinder was 350 ° C. as in Examples 3 and 7. As shown in Table 1, the measurement results for each detection target gas were not confirmed by the gas detector using electrolysis and the tape type gas detector even if the type of the detection target gas was changed.

[比較例4]
比較例1と同様な方法で、固体金属であるSiでなく、Wを用いた。当該固体金属の大きさは、目開き2.0mmの篩を通過し、目開き1.0mmの篩を通過しなかったものである。これらを充填筒に充填し、実施例35と同様に350℃に加熱した。
検出対象ガスを導入後、表1のように固体金属との反応で生成したガスの成分により電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認されなかった(表2中に×で示した)。
[Comparative Example 4]
In the same manner as in Comparative Example 1, W was used instead of Si, which is a solid metal. The size of the solid metal is such that it has passed through a sieve having a mesh size of 2.0 mm and has not passed through a sieve having a mesh size of 1.0 mm. These were filled in a filling cylinder and heated to 350 ° C. in the same manner as in Example 35.
After the introduction of the gas to be detected, detection was not confirmed in the gas detector using electrolysis and the tape type gas detector due to the components of the gas generated by the reaction with the solid metal as shown in Table 1 (in Table 2). (Indicated by x).

[比較例5〜6]
比較例1と同様な方法で、当該固体金属表面に添着物としてはアルカリ金属フッ化物であるNaF、アルカリ金属水酸化物であるNaOHを用い、該Siに重量割合で1000ppmになるように添着させ、測定を実施した。充填筒加熱温度は実施例37〜40と同様に330℃とした。当該添着物別による測定結果は表1のように電気分解を利用したガス検知器とテープ式のガス検知器において検出が確認されなかった。
[Comparative Examples 5 to 6]
In the same manner as in Comparative Example 1, NaF, which is an alkali metal fluoride, and NaOH, which is an alkali metal hydroxide, are used as adhering substances on the surface of the solid metal, and the Si is impregnated so as to have a weight ratio of 1000 ppm. , The measurement was carried out. The filling cylinder heating temperature was set to 330 ° C. as in Examples 37 to 40. As shown in Table 1, the measurement results for each of the attachments were not confirmed by the gas detector using electrolysis and the tape type gas detector.

Figure 0006777852
Figure 0006777852

Figure 0006777852
Figure 0006777852

実施例1と比較例1を比較すると、同一のフッ素含有化合物ガスの検出において、当該ガスと反応する充填筒内の固体金属を固体金属酸化物とすることで、当該ガスの検出に必要な当該充填筒の加熱温度を低くすることができた。これは当該ガスまたは当該ガスから生成したガスが、固体金属より固体金属酸化物との反応速度が高く、加熱温度を低くできたものと考えられる。
以上詳述したように、本発明の方法によれば、フッ素含有化合物ガスの検出方法において、フッ素含有化合物ガスを微量含むガスを加熱した固体金属酸化物と接触反応させ、生成したガスを検出することにより、低い加熱温度で検出することができる。
Comparing Example 1 and Comparative Example 1, in the detection of the same fluorine-containing compound gas, the solid metal in the filling cylinder that reacts with the gas is a solid metal oxide, which is necessary for the detection of the gas. The heating temperature of the filling cylinder could be lowered. It is considered that this is because the gas or the gas generated from the gas has a higher reaction rate with the solid metal oxide than the solid metal, and the heating temperature can be lowered.
As described in detail above, according to the method of the present invention, in the method for detecting a fluorine-containing compound gas, a gas containing a trace amount of the fluorine-containing compound gas is contact-reacted with a heated solid metal oxide to detect the generated gas. Therefore, it can be detected at a low heating temperature.

本発明により、例えば、半導体素子製造工程において使用されるフッ素含有化合物ガスが、装置から漏出した場合や、排ガス処理装置の出口ガスに混入した場合に、微量でも検知することができ、フッ素含有化合物ガスの作業員への暴露や大気中への放出を防ぐことができる。 According to the present invention, for example, when a fluorine-containing compound gas used in a semiconductor device manufacturing process leaks from an apparatus or is mixed with an outlet gas of an exhaust gas treatment apparatus, even a trace amount of the fluorine-containing compound gas can be detected. It is possible to prevent the exposure of gas to workers and the release into the atmosphere.

1・・・サンプルガス(フッ素含有化合物ガス)充填容器
2・・・充填筒
3・・・充填筒加熱ヒータ
4・・・電気分解を使用したガス検知器
5・・・テープ式のガス検知器
1 ... Sample gas (fluorine-containing compound gas) filling container 2 ... Filling cylinder 3 ... Filling cylinder Heater 4 ... Gas detector using electrolysis 5 ... Tape type gas detector

Claims (8)

フッ素含有化合物ガスと固体金属酸化物とを、100〜800℃の温度範囲で接触反応させ、生成したガスを検出することを特徴とし、
前記フッ素含有化合物ガスが、C 、C 、C 、C 、C 、CF 、C HF 、CH 、CHF 、CCl F、CCl 、CClF 、CHClF 、CBr 、CBrF 、CBr F、CHBr F、CHBrF 、CBrClF 、C BrF 、C ClF 、C Cl 、C Cl 、C BrF 、C Br 、C Br 、C Br ClF 、NF からなる群から選ばれる一つ以上であり、
前記固体金属酸化物がシリコン酸化物及びタングステン酸化物からなる群から選ばれる少なくとも一つであり、
前記フッ素含有ガスの濃度が、1体積ppb以上1000体積ppm以下の濃度範囲であるフッ素含有化合物ガスの検出方法。
It is characterized in that a fluorine-containing compound gas and a solid metal oxide are contact-reacted in a temperature range of 100 to 800 ° C., and the generated gas is detected .
The fluorine-containing compound gas is C 5 F 8 , C 4 F 8 , C 4 F 6 , C 2 F 6 , C 3 F 8 , CF 4 , C 5 HF 7 , CH 2 F 2 , CHF 3 , CCl 3 F, CCl 2 F 2 , CClF 3 , CHClF 2 , CBr 2 F 2 , CBrF 3 , CBr 3 F, CHBr 2 F, CHBrF 2 , CBrClF 2 , C 2 BrF 5 , C 2 ClF 5 , C 2 Cl 2 F One or more selected from the group consisting of 4 , C 2 Cl 3 F 3 , C 2 BrF 4 , C 2 Br 2 F 4 , C 2 H 2 Br 2 F 4 , C 2 Br 2 ClF 3 , and NF 3 . ,
The solid metal oxide is at least one selected from the group consisting of silicon oxide and tungsten oxide.
A method for detecting a fluorine-containing compound gas in which the concentration of the fluorine-containing gas is in the concentration range of 1 volume ppb or more and 1000 volume ppm or less .
前記シリコン酸化物がSiOであり、前記タングステン酸化物がWOであることを特徴とする請求項に記載のフッ素含有化合物ガスの検出方法。 The method for detecting a fluorine-containing compound gas according to claim 1 , wherein the silicon oxide is SiO 2 and the tungsten oxide is WO 3 . 前記固体金属酸化物表面に、アルカリ金属フッ化物及びアルカリ金属水酸化物からなる群より選ばれる少なくとも一つを添着させることを特徴とする請求項1又は2に記載のフッ素含有化合物ガスの検出方法。 The method for detecting a fluorine-containing compound gas according to claim 1 or 2 , wherein at least one selected from the group consisting of alkali metal fluoride and alkali metal hydroxide is impregnated on the surface of the solid metal oxide. .. 前記アルカリ金属フッ化物が、NaF及びKFからなる群より選ばれる少なくとも一つであることを特徴とする請求項に記載のフッ素含有化合物ガスの検出方法。 The method for detecting a fluorine-containing compound gas according to claim 3 , wherein the alkali metal fluoride is at least one selected from the group consisting of NaF and KF. 前記アルカリ金属水酸化物が、NaOH及びKOHからなる群より選ばれる少なくとも一つであることを特徴とする請求項に記載のフッ素含有化合物ガスの検出方法。 The method for detecting a fluorine-containing compound gas according to claim 3 , wherein the alkali metal hydroxide is at least one selected from the group consisting of NaOH and KOH. 前記温度範囲が、200〜500℃であることを特徴とする請求項1〜のいずれか1項に記載のフッ素含有化合物ガスの検出方法。 The method for detecting a fluorine-containing compound gas according to any one of claims 1 to 5 , wherein the temperature range is 200 to 500 ° C. 前記固体金属酸化物を含む充填物を充填した筒内に、前記フッ素含有化合物ガスを流通させることを特徴とする請求項1〜6のいずれか1項に記載のフッ素含有化合物ガスの検出方法。The method for detecting a fluorine-containing compound gas according to any one of claims 1 to 6, wherein the fluorine-containing compound gas is circulated in a cylinder filled with a filler containing a solid metal oxide. 前記フッ素含有化合物ガスがCThe fluorine-containing compound gas is C 5 F 8 であり、And
前記固体金属酸化物がシリコン酸化物であり、The solid metal oxide is a silicon oxide,
前記フッ素含有化合物ガスの濃度が、0.01体積ppm以上20体積ppm以下の濃度範囲であることを特徴とする請求項1〜7のいずれか1項に記載のフッ素含有化合物ガスの検出方法。The method for detecting a fluorine-containing compound gas according to any one of claims 1 to 7, wherein the concentration of the fluorine-containing compound gas is in a concentration range of 0.01 volume ppm or more and 20 volume ppm or less.
JP2016184095A 2016-09-21 2016-09-21 Fluorine-containing compound gas detection method Active JP6777852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016184095A JP6777852B2 (en) 2016-09-21 2016-09-21 Fluorine-containing compound gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184095A JP6777852B2 (en) 2016-09-21 2016-09-21 Fluorine-containing compound gas detection method

Publications (2)

Publication Number Publication Date
JP2018048888A JP2018048888A (en) 2018-03-29
JP6777852B2 true JP6777852B2 (en) 2020-10-28

Family

ID=61766276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184095A Active JP6777852B2 (en) 2016-09-21 2016-09-21 Fluorine-containing compound gas detection method

Country Status (1)

Country Link
JP (1) JP6777852B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146861A (en) * 1989-10-31 1991-06-21 Shimadzu Corp Method for measuring fluorocarbon
JP3358130B2 (en) * 1992-04-30 2002-12-16 沖電気工業株式会社 Gas pyrolysis method
GB9400657D0 (en) * 1994-01-14 1994-03-09 Boc Group Plc Treatment of gas mixtures
JP3463863B2 (en) * 1999-02-26 2003-11-05 理研計器株式会社 Octa-fluoro-cyclo-pentene detector
JP3640601B2 (en) * 2000-07-11 2005-04-20 セントラル硝子株式会社 Method for detecting fluorine-containing compound gas
JP2003139760A (en) * 2001-11-05 2003-05-14 Central Glass Co Ltd Method of detecting fluorine-containing compound gas
JP5435976B2 (en) * 2009-02-10 2014-03-05 ステラケミファ株式会社 Method for producing fluorine compound

Also Published As

Publication number Publication date
JP2018048888A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
EP1732669B1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
US6110436A (en) Process for removing ozone-depleting and/or climate-active fluorinated compounds from a gas stream and application of the process
CN1668562A (en) Methods for preparing ethers, ether compositions, fluoroether fire extinguishing systems, mixtures and methods
EP3337778B1 (en) Methods for removing acidic impurities from halogenated propenes
TW542746B (en) Disposition method of waste gas containing fluorine-containing compound
JP6777852B2 (en) Fluorine-containing compound gas detection method
JP4887327B2 (en) Fluorine compound decomposition treatment system
JP3249986B2 (en) CFC decomposition treatment method and equipment
JP4698201B2 (en) Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
JP5471313B2 (en) Methods for removing chlorine trifluoride
JP2000157837A (en) Treating agent for halogenating gas, its manufacture and method for making harmless using the same
JP2002022725A (en) Fluorine-containing compound gas detection method
JP5132489B2 (en) Fluoride gas decomposition treatment method, decomposition treatment agent, and decomposition treatment apparatus
Cheng et al. Catalytic coupling of CH4 with CHF3 for the synthesis of VDF over LaOF catalyst
JP3216868B2 (en) Decomposition method of halide gas
JPH0716582B2 (en) Method for removing gaseous acidic halogen compounds
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
RU2245317C2 (en) Method for purifying octafluoropropane
JP7209995B2 (en) Method for producing fluorine compound
JP6908845B2 (en) Manufacturing method of gas generator for detecting fluorine-containing compound gas
JP2006305410A (en) Method for decomposing hardly decomposable chlorofluocarbon gas
JP5074439B2 (en) Halogen gas treating agent, method for producing the same, and detoxification method using the same
JP2013086088A (en) Detoxifying method of gas including halide particle
JP6470899B2 (en) Method for dehalogenation of halogen-containing compounds
JP2005098713A (en) Apparatus and method for measuring mercury concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6777852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250