JP6776509B2 - Photoelectric converter - Google Patents

Photoelectric converter Download PDF

Info

Publication number
JP6776509B2
JP6776509B2 JP2015110245A JP2015110245A JP6776509B2 JP 6776509 B2 JP6776509 B2 JP 6776509B2 JP 2015110245 A JP2015110245 A JP 2015110245A JP 2015110245 A JP2015110245 A JP 2015110245A JP 6776509 B2 JP6776509 B2 JP 6776509B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
condensing
conversion element
light
condensing type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015110245A
Other languages
Japanese (ja)
Other versions
JP2016225454A (en
Inventor
廣田 正樹
正樹 廣田
慎一 飯尾
慎一 飯尾
最実 太田
最実 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015110245A priority Critical patent/JP6776509B2/en
Publication of JP2016225454A publication Critical patent/JP2016225454A/en
Application granted granted Critical
Publication of JP6776509B2 publication Critical patent/JP6776509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Description

本発明は、光電変換装置に関する。 The present invention relates to a photoelectric conversion device.

特許文献1に記載の従来技術では、より多くの発電量を得るために、集光レンズを用いると共に、非集光型のシリコン太陽電池の上面に、集光型の多接合型太陽電池を積層して光電変換素子を構成することを提案している。 In the prior art described in Patent Document 1, a condensing lens is used in order to obtain a larger amount of power generation, and a condensing multi-junction solar cell is laminated on the upper surface of a non-condensing silicon solar cell. It is proposed to construct a photoelectric conversion element.

特開2009−147077号公報Japanese Unexamined Patent Publication No. 2009-147077

集光レンズを用いると、非常に高い光強度となるため、光電変換素子の温度上昇に伴う変換効率の低下が懸念される。
本発明の課題は、集光による光電変換素子の温度上昇を抑制することである。
When a condenser lens is used, the light intensity becomes extremely high, so that there is a concern that the conversion efficiency may decrease as the temperature of the photoelectric conversion element rises.
An object of the present invention is to suppress a temperature rise of a photoelectric conversion element due to light collection.

本発明の一態様に係る光電変換装置は、通過する光を収束させる集光部材と、光が収束される側で集光部材に対向し、受光によって発電する光電変換部材と、を備える。光電変換部材は、面直角方向に積層された複数の光電変換素子を備え、集光部材から最も遠い層の光電変換素子が、集光部材の焦点位置にあるように配置される。 The photoelectric conversion device according to one aspect of the present invention includes a condensing member that converges the passing light, and a photoelectric conversion member that faces the condensing member on the side where the light is converged and generates electricity by receiving light. The photoelectric conversion member includes a plurality of photoelectric conversion elements stacked in the direction perpendicular to the plane, and the photoelectric conversion element in the layer farthest from the light collecting member is arranged so as to be at the focal position of the light collecting member.

本発明によれば、集光部材の焦点位置にある光電変換素子は、最も温度上昇を招きやすいが、集光部材に近い光電変換素子が光を吸収して、焦点位置にある光電変換素子に入る光を弱めることができる。したがって、焦点位置にある光電変換素子の温度上昇を抑制することができる。 According to the present invention, the photoelectric conversion element at the focal position of the condensing member is most likely to cause a temperature rise, but the photoelectric conversion element close to the condensing member absorbs light to form a photoelectric conversion element at the focal position. You can weaken the incoming light. Therefore, it is possible to suppress the temperature rise of the photoelectric conversion element at the focal position.

光電変換装置の構成図である。It is a block diagram of the photoelectric conversion device. 集光比と変換効率の関係を示すグラフである。It is a graph which shows the relationship between the light collection ratio and conversion efficiency. 比較例となる光電変換装置の構成図である。It is a block diagram of the photoelectric conversion apparatus as a comparative example. 第2実施形態を示す光電変換部材の構成図である。It is a block diagram of the photoelectric conversion member which shows 2nd Embodiment. 非集光型の光電変換素子の他の配置例を示す図である。It is a figure which shows the other arrangement example of the non-condensing type photoelectric conversion element. 第3実施形態を示す光電変換部材の構成図である。It is a block diagram of the photoelectric conversion member which shows 3rd Embodiment. 集光型の光電変換素子の他の配置例を示す図である。It is a figure which shows the other arrangement example of the light-collecting type photoelectric conversion element. 第4実施形態を示す光電変換部材の構成図である。It is a block diagram of the photoelectric conversion member which shows 4th Embodiment. 各光電変換素子の他の配置例を示す図である。It is a figure which shows the other arrangement example of each photoelectric conversion element.

以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that each drawing is a schematic one and may differ from the actual one. In addition, the following embodiments exemplify devices and methods for embodying the technical idea of the present invention, and do not specify the configuration to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

《第1実施形態》
《構成》
図1は、光電変換装置の構成図である。
図中の(a)は、光電変換装置の断面図であり、図中の(b)は、光電変換装置の平面図である。
光電変換装置11は、集光部材12と、光電変換部材13と、ヒートシンク16と、を備える。
集光部材12は、例えばレンズやミラー等からなり、通過する光を収束させて、単位面積当たりの光強度(集光率:concentration ratio)を高める。ここでは、レンズを用いた場合を示し、軸直角方向に沿って複数設けている。なお、通過する光は、点線で示している。
<< First Embodiment >>
"Constitution"
FIG. 1 is a configuration diagram of a photoelectric conversion device.
(A) in the figure is a cross-sectional view of a photoelectric conversion device, and (b) in the figure is a plan view of the photoelectric conversion device.
The photoelectric conversion device 11 includes a light collecting member 12, a photoelectric conversion member 13, and a heat sink 16.
The condensing member 12 is composed of, for example, a lens or a mirror, and converges the passing light to increase the light intensity per unit area (concentration ratio). Here, a case where a lens is used is shown, and a plurality of lenses are provided along the direction perpendicular to the axis. The passing light is indicated by a dotted line.

光電変換部材13は、光が収束される側で集光部材12に対向し、受光によって発電する。光電変換部材13は、面直角方向に積層された二つの光電変換素子15及び16を備え、集光部材12から最も遠い層の光電変換素子15が、集光部材12の焦点位置にあるように配置される。光電変換素子15及び16としては、例えば太陽電池、フォトダイオード、窒化物半導体などが知られる。ここで、集光部材12から最も遠い層に配置されるのは、集光型の光電変換素子14である。また、集光型の光電変換素子14の上面に(集光部材12の側に)積層されるのは、非集光型の光電変換素子15である。これら光電変換素子15及び16は、夫々、図示しない電極を介して電気的に接続されている。 The photoelectric conversion member 13 faces the condensing member 12 on the side where the light is converged, and generates electricity by receiving light. The photoelectric conversion member 13 includes two photoelectric conversion elements 15 and 16 stacked in the direction perpendicular to the plane, so that the photoelectric conversion element 15 in the layer farthest from the light collection member 12 is at the focal position of the light collection member 12. Be placed. Examples of the photoelectric conversion elements 15 and 16 include solar cells, photodiodes, and nitride semiconductors. Here, the light-collecting type photoelectric conversion element 14 is arranged in the layer farthest from the light-collecting member 12. Further, it is the non-condensing type photoelectric conversion element 15 that is laminated (on the side of the condensing member 12) on the upper surface of the condensing type photoelectric conversion element 14. The photoelectric conversion elements 15 and 16 are electrically connected to each other via electrodes (not shown).

集光型と非集光型との主な違いは、電極の太さである。集光型の光電変換素子14は、電流密度が高くなるため、非集光型の光電変換素子15よりも、電極を太くすることにより、発電効率を高めている。その他の違いは、集光型の光電変換素子14は、非集光型の光電変換素子15よりも、放熱しやすい構造にされている。逆に、非集光型の光電変換素子15とは、一般的な光電変換素子のことである。すなわち、集光型と区別するために、便宜上、非集光型と称されている。このように、集光型は非集光型よりも発電効率を高めるために、各種工夫がなされたものに過ぎず、発電の原理や構造が全く異なるものではない。 The main difference between the condensing type and the non-condensing type is the thickness of the electrodes. Since the condensing type photoelectric conversion element 14 has a high current density, the power generation efficiency is improved by making the electrode thicker than that of the non-condensing type photoelectric conversion element 15. The other difference is that the condensing type photoelectric conversion element 14 has a structure that easily dissipates heat as compared with the non-condensing type photoelectric conversion element 15. On the contrary, the non-condensing photoelectric conversion element 15 is a general photoelectric conversion element. That is, in order to distinguish it from the condensing type, it is called a non-condensing type for convenience. As described above, the condensing type is merely devised in order to improve the power generation efficiency as compared with the non-condensing type, and the principle and structure of power generation are not completely different.

集光型の光電変換素子14は、その発電層17が集光部材12の焦点位置になるように配置され、非集光型の光電変換素子15は、この集光型の光電変換素子14の上面に積層される。すなわち、非集光型の光電変換素子15は、集光型の光電変換素子14よりも集光部材12に近くなる。したがって、非集光型の光電変換素子15の発電層18に対する光の照射領域は、集光型の光電変換素子14の発電層17に対する光の照射領域よりも広くなる。
ヒートシンク16は、光電変換部材13における集光部材12とは反対側に設けられ、光電変換部材13を冷却する。すなわち、集光部材12の焦点位置にある集光型の光電変換素子14は最も温度上昇を招きやすいので、この集光型の光電変換素子14の下面にヒートシンク16を設けている。
The condensing type photoelectric conversion element 14 is arranged so that the power generation layer 17 is at the focal position of the condensing member 12, and the non-condensing type photoelectric conversion element 15 is the condensing type photoelectric conversion element 14. It is laminated on the upper surface. That is, the non-condensing type photoelectric conversion element 15 is closer to the condensing member 12 than the condensing type photoelectric conversion element 14. Therefore, the light irradiation region of the non-condensing photoelectric conversion element 15 on the power generation layer 18 is wider than the light irradiation region of the power generation layer 17 of the condensing photoelectric conversion element 14.
The heat sink 16 is provided on the side of the photoelectric conversion member 13 opposite to the light collecting member 12, and cools the photoelectric conversion member 13. That is, since the condensing type photoelectric conversion element 14 at the focal position of the condensing member 12 is most likely to cause a temperature rise, a heat sink 16 is provided on the lower surface of the condensing type photoelectric conversion element 14.

《作用》
次に、第1実施形態の作用について説明する。
単位面積当たりの入射光強度、つまり集光比(concentration ratio)を高めることにより、光電変換効率(Conversion efficiency)を高めることができる。シャープ技報第93号、2005年12月(pp.50、 図1)に示されているように、例えばSi太陽電池の場合、非集光時での変換効率が約19%であるのに対して、40倍集光時には21%に向上する。これはpn接合の逆方向電流が集光比によって変化しないのに対して、出力電流が集光比の上昇と共に増加していくためである。
《Action》
Next, the operation of the first embodiment will be described.
By increasing the incident light intensity per unit area, that is, the concentration ratio, the photoelectric conversion efficiency can be increased. As shown in Sharp Technical Report No. 93, December 2005 (pp.50, Fig. 1), for example, in the case of a Si solar cell, the conversion efficiency at the time of non-condensing is about 19%. On the other hand, it improves to 21% at the time of focusing 40 times. This is because the reverse current of the pn junction does not change depending on the focusing ratio, whereas the output current increases as the focusing ratio increases.

しかしながら、さらに集光比をアップしていくと、Si太陽電池の温度が上昇し、逆方向電流が増加するため、変換効率が頭打ちになり、そして減少していくことが知られている。
図2は、集光比と変換効率の関係を示すグラフである。
例えばSi太陽電池の場合、集光比を400倍に設定すると、変換効率が15%まで低下する。この現象はレーザやLEDなどから発せられた人工光に対しても同様である。したがって、光電変換素子の変換効率が低下しない程度に、適宜、集光比を設定することが重要になる。
However, it is known that when the light collection ratio is further increased, the temperature of the Si solar cell rises and the reverse current increases, so that the conversion efficiency reaches a plateau and then decreases.
FIG. 2 is a graph showing the relationship between the light collection ratio and the conversion efficiency.
For example, in the case of a Si solar cell, if the light collection ratio is set to 400 times, the conversion efficiency is reduced to 15%. This phenomenon is the same for artificial light emitted from a laser, LED, or the like. Therefore, it is important to appropriately set the focusing ratio so that the conversion efficiency of the photoelectric conversion element does not decrease.

図3は、比較例となる光電変換装置の構成図である。
図中の(a)は、比較例となる光電変換装置の断面図であり、図中の(b)は、比較例となる光電変換装置の平面図である。
ここでは、光電変換部材13を集光型の光電変換素子14だけで構成し、その発電層17が集光部材12の焦点位置になるように配置している。すなわち、集光部材12で集光された光が、集光型の光電変換素子14に直接照射される。この場合、集光比を400倍に設定すると、変換効率が15%まで低下する。
FIG. 3 is a configuration diagram of a photoelectric conversion device as a comparative example.
(A) in the figure is a cross-sectional view of a photoelectric conversion device as a comparative example, and (b) in the figure is a plan view of a photoelectric conversion device as a comparative example.
Here, the photoelectric conversion member 13 is composed of only the condensing type photoelectric conversion element 14, and the power generation layer 17 is arranged so as to be the focal position of the condensing member 12. That is, the light collected by the condensing member 12 is directly applied to the condensing type photoelectric conversion element 14. In this case, if the light collection ratio is set to 400 times, the conversion efficiency is reduced to 15%.

これに対して、第1実施形態では、集光型の光電変換素子14の上面に非集光型の光電変換素子15を積層すると共に、集光型の光電変換素子14が、集光部材12の焦点位置になるように配置している。これにより、集光部材12で集光される光は、先ず非集光型の光電変換素子15で一部が吸収され、残りが集光型の光電変換素子14へと透過してゆく。前述したように、集光型の光電変換素子14は、最も温度上昇を招きやすいが、非集光型の光電変換素子15が光を吸収することにより、集光型の光電変換素子14に照射される光の強度を弱めることができる。したがって、焦点位置にある集光型の光電変換素子14の温度上昇を抑制することができる。 On the other hand, in the first embodiment, the non-condensing photoelectric conversion element 15 is laminated on the upper surface of the condensing photoelectric conversion element 14, and the condensing photoelectric conversion element 14 is the condensing member 12. It is arranged so that it is in the focal position of. As a result, part of the light collected by the condensing member 12 is first absorbed by the non-condensing photoelectric conversion element 15, and the rest is transmitted to the condensing photoelectric conversion element 14. As described above, the condensing type photoelectric conversion element 14 is most likely to cause a temperature rise, but the non-condensing type photoelectric conversion element 15 irradiates the condensing type photoelectric conversion element 14 by absorbing light. The intensity of the light produced can be reduced. Therefore, it is possible to suppress the temperature rise of the condensing type photoelectric conversion element 14 at the focal position.

ここで、集光型における発電層17の厚みを、比較例における発電層17の厚みの80%とし、非集光型における発電層18の厚みを、比較例における発電層17の厚みの20%とする。すなわち、集光型における発電層17の厚みと、非集光型における発電層18の厚みの合計を、比較例における発電層17の厚みと同じにする。非集光型の光電変換素子15には、集光比の低い光が入射されるが、ここでは約6倍の集光比とする。この程度の集光比であれば効率の低下はなく、発電層18の膜厚を減少した分を考慮すると約4%の効率が得られる。 Here, the thickness of the power generation layer 17 in the condensing type is 80% of the thickness of the power generation layer 17 in the comparative example, and the thickness of the power generation layer 18 in the non-condensing type is 20% of the thickness of the power generation layer 17 in the comparative example. And. That is, the total thickness of the power generation layer 17 in the condensing type and the thickness of the power generation layer 18 in the non-condensing type is made the same as the thickness of the power generation layer 17 in the comparative example. Light having a low focusing ratio is incident on the non-condensing photoelectric conversion element 15, but here, the focusing ratio is about 6 times. If the light collection ratio is about this level, the efficiency does not decrease, and the efficiency of about 4% can be obtained in consideration of the reduced film thickness of the power generation layer 18.

非集光型を透過した光は、入射前に比べて弱くなり、約50倍の集光比になる。したがって、集光型においても効率低下を招くことなく発電ができ、発電層17の膜厚を減少した分を考慮すると約16.8%の変換効率が得られる。したがって、集光型と非集光型の変換効率を加算すると約21%となり、400倍の集光比となる集光部材12を使用した場合でも、40倍の集光比とほぼ同程度の変換効率を達成することができる。しかも単純に40倍の集光比となる集光部材12を使用するよりも、多くの出力電流が得られる。このように、温度上昇による変換効率の低下を抑えたまま、高効率、高出力の光電変換を行なうことができる。 The light transmitted through the non-condensing type is weaker than that before the incident, and the focusing ratio is about 50 times. Therefore, even in the condensing type, power can be generated without causing a decrease in efficiency, and a conversion efficiency of about 16.8% can be obtained in consideration of the reduced film thickness of the power generation layer 17. Therefore, the sum of the conversion efficiencies of the condensing type and the non-condensing type is about 21%, which is almost the same as the condensing ratio of 40 times even when the condensing member 12 having a condensing ratio of 400 times is used. Conversion efficiency can be achieved. Moreover, a larger output current can be obtained than simply using the light collecting member 12 having a light collecting ratio of 40 times. In this way, high-efficiency, high-output photoelectric conversion can be performed while suppressing a decrease in conversion efficiency due to a temperature rise.

《変形例》
第1実施形態では、集光部材12の焦点位置に配置される光電変換素子14を集光型とし、この集光型の光電変換素子14に積層する光電変換素子15を非集光型としたが、これに限定されるものではない。すなわち、集光部材12の焦点位置に配置される光電変換素子14を非集光型にしたり、光電変換素子14に積層する光電変換素子15を集光型にしたりしてもよい。要は、集光部材12の焦点位置に配置される光電変換素子14は、最も温度上昇を招きやすいが、集光部材12に近い光電変換素子15が光を吸収して、焦点位置にある光電変換素子14に入る光を弱めることができればよい。
第1実施形態では、光電変換部材13を、光電変換素子14と光電変換素子15との二層構造としたが、これに限定されるものではなく、三層以上の構造としてもよい。
<< Modification example >>
In the first embodiment, the photoelectric conversion element 14 arranged at the focal position of the condensing member 12 is a condensing type, and the photoelectric conversion element 15 laminated on the condensing type photoelectric conversion element 14 is a non-condensing type. However, it is not limited to this. That is, the photoelectric conversion element 14 arranged at the focal position of the light collecting member 12 may be a non-condensing type, or the photoelectric conversion element 15 laminated on the photoelectric conversion element 14 may be a light collecting type. In short, the photoelectric conversion element 14 arranged at the focal position of the condensing member 12 is most likely to cause a temperature rise, but the photoelectric conversion element 15 close to the condensing member 12 absorbs light and the photoelectric conversion element 15 is located at the focal position. It suffices if the light entering the conversion element 14 can be weakened.
In the first embodiment, the photoelectric conversion member 13 has a two-layer structure of the photoelectric conversion element 14 and the photoelectric conversion element 15, but the structure is not limited to this, and a structure of three or more layers may be used.

《対応関係》
集光部材12が「集光部材」に対応する。集光型の光電変換素子14が「集光型の光電変換素子」に対応する。非集光型の光電変換素子15が「非集光型の光電変換素子」に対応する。ヒートシンク16が「冷却部材」に対応する。
《Correspondence》
The light collecting member 12 corresponds to the "light collecting member". The condensing type photoelectric conversion element 14 corresponds to the "condensing type photoelectric conversion element". The non-condensing photoelectric conversion element 15 corresponds to the “non-condensing photoelectric conversion element”. The heat sink 16 corresponds to the "cooling member".

《効果》
次に、第1実施形態における主要部の効果を記す。
(1)第1実施形態に係る光電変換装置は、通過する光を収束させる集光部材12と、光が収束される側で集光部材12に対向し、受光によって発電する光電変換部材13と、を備える。光電変換部材13は、面直角方向に積層された複数の光電変換素子を備え、集光部材12から最も遠い層の光電変換素子14が、集光部材12の焦点位置にあるように配置される。
このように、集光部材12から最も遠い層の光電変換素子14が、集光部材12の焦点位置にあるように配置すると、集光部材12の焦点位置にある光電変換素子14は、最も温度上昇を招きやすい。しかしながら、集光部材12に近い光電変換素子15が光を吸収して、焦点位置にある光電変換素子14に入る光を弱めることができる。したがって、焦点位置にある光電変換素子14の温度上昇を抑制することができる。
"effect"
Next, the effect of the main part in the first embodiment will be described.
(1) The photoelectric conversion device according to the first embodiment includes a light collecting member 12 that converges the passing light, and a photoelectric conversion member 13 that faces the light collecting member 12 on the side where the light is converged and generates electricity by receiving light. , Equipped with. The photoelectric conversion member 13 includes a plurality of photoelectric conversion elements stacked in the direction perpendicular to the plane, and the photoelectric conversion element 14 in the layer farthest from the light collecting member 12 is arranged so as to be at the focal position of the light collecting member 12. ..
In this way, when the photoelectric conversion element 14 in the layer farthest from the condensing member 12 is arranged so as to be at the focal position of the condensing member 12, the photoelectric conversion element 14 at the focal position of the condensing member 12 has the highest temperature. It is easy to invite a rise. However, the photoelectric conversion element 15 close to the condensing member 12 can absorb the light and weaken the light entering the photoelectric conversion element 14 at the focal position. Therefore, it is possible to suppress the temperature rise of the photoelectric conversion element 14 at the focal position.

(2)第1実施形態に係る光電変換装置は、集光部材12の焦点位置に配置される集光型の光電変換素子14と、集光型の光電変換素子14における集光部材12の側に積層される非集光型の光電変換素子15と、を備える。
このように、集光部材12の焦点位置に集光型の光電変換素子14を配置することで、この集光型の光電変換素子14により効率よく発電することができる。また、集光型の光電変換素子14に非集光型の光電変換素子15を積層することで、集光比の弱い光を受けて発電を行ない、集光型の光電変換素子14に入る光を弱めさせることができる。
(2) The photoelectric conversion device according to the first embodiment is the side of the condensing type photoelectric conversion element 14 arranged at the focal position of the condensing member 12 and the condensing member 12 in the condensing type photoelectric conversion element 14. A non-condensing photoelectric conversion element 15 laminated to the above.
By arranging the condensing type photoelectric conversion element 14 at the focal position of the condensing member 12 in this way, the condensing type photoelectric conversion element 14 can generate electricity efficiently. Further, by stacking the non-condensing photoelectric conversion element 15 on the condensing photoelectric conversion element 14, light that receives light having a weak condensing ratio to generate electricity and enters the condensing photoelectric conversion element 14. Can be weakened.

(3)第1実施形態に係る光電変換装置は、光電変換部材13における集光部材12とは反対側に設けられ、光電変換部材13を冷却するヒートシンク16を備える。
このように、光電変換部材13における集光部材12とは反対側にヒートシンクを設けることで、最も温度上昇を招きやすい集光型の光電変換素子14を直接的に効率よく冷却することができる。
(3) The photoelectric conversion device according to the first embodiment is provided on the side of the photoelectric conversion member 13 opposite to the light collecting member 12, and includes a heat sink 16 for cooling the photoelectric conversion member 13.
In this way, by providing the heat sink on the side of the photoelectric conversion member 13 opposite to the condensing member 12, the condensing type photoelectric conversion element 14 which is most likely to cause a temperature rise can be directly and efficiently cooled.

《第2実施形態》
《構成》
第2実施形態は、非集光型の光電変換素子15を面方向に沿って離散的に配置したものである。
ここでは、非集光型の光電変換素子15を面方向に沿って複数設け、夫々、面方向に離間した状態で集光部材12に対向するように配置したことを除いては、前述した第1実施形態と同様であるため、共通する部分については、詳細な説明を省略する。
<< Second Embodiment >>
"Constitution"
In the second embodiment, the non-condensing photoelectric conversion element 15 is discretely arranged along the plane direction.
Here, except that a plurality of non-condensing photoelectric conversion elements 15 are provided along the surface direction and arranged so as to face the condensing member 12 in a state of being separated from each other in the surface direction, the above-mentioned first Since it is the same as that of the first embodiment, detailed description of common parts will be omitted.

図4は、第2実施形態を示す光電変換部材の構成図である。
図中の(a)は、光電変換装置の断面図であり、図中の(b)は、非集光型の光電変換素子15をストライプ状に配列した光電変換装置の平面図である。
集光部材12が、例えば円柱上の側面を切り出したようなシンドリカルレンズである場合、図中の(b)に示すように、非集光型の光電変換素子15をシンドリカルレンズに対向させてストライプ配列にする。
FIG. 4 is a configuration diagram of a photoelectric conversion member showing the second embodiment.
(A) in the figure is a cross-sectional view of the photoelectric conversion device, and (b) in the figure is a plan view of the photoelectric conversion device in which non-condensing photoelectric conversion elements 15 are arranged in a stripe shape.
When the condensing member 12 is, for example, a syntactic lens with a side surface cut out on a cylinder, as shown in (b) in the figure, the non-condensing photoelectric conversion element 15 is opposed to the syndical lens. Make a striped arrangement.

すなわち、非集光型の光電変換素子15同士の間に、隙間21を形成することにより、集光型の光電変換素子14の上面を部分的に露出させる。非集光型の光電変換素子15における面方向の大きさ、又は発電層18における面方向の大きさは、集光部材12によって集光される光の照射領域に応じて決定される。すなわち、非集光型の光電変換素子15又はその発電層18における面方向の最小面積は、集光された光の照射領域以上に設定される。一方、非集光型の光電変換素子15における光の照射領域外は、集光されていない光しか入らず、高効率の発電が行なえないため、そこに隙間21を形成する。 That is, by forming a gap 21 between the non-condensing photoelectric conversion elements 15, the upper surface of the condensing photoelectric conversion element 14 is partially exposed. The size of the non-condensing photoelectric conversion element 15 in the surface direction or the size of the power generation layer 18 in the surface direction is determined according to the irradiation region of the light collected by the condensing member 12. That is, the minimum area in the plane direction of the non-condensing photoelectric conversion element 15 or the power generation layer 18 thereof is set to be equal to or larger than the irradiation region of the condensed light. On the other hand, outside the light irradiation region of the non-condensing photoelectric conversion element 15, only uncondensed light enters, and high-efficiency power generation cannot be performed. Therefore, a gap 21 is formed there.

図5は、非集光型の光電変換素子の他の配置例を示す図である。
図中の(c)は、非集光型の光電変換素子15を千鳥配列した光電変換装置の平面図であり、図中の(d)は、非集光型の光電変換素子15を正方配列した光電変換装置の平面図である。
集光部材12が、円形のレンズである場合、レンズ同士の隙間を最も小さくするために千鳥配列にすることがある。このように集光部材12が千鳥配列されているときには、図中の(c)に示すように、各集光部材12に対向させて非集光型の光電変換素子15を千鳥配列にする。また、集光部材12が正方配列されているときには、図中の(d)に示すように、各集光部材12に対向させて非集光型の光電変換素子15を正方配列にする。
FIG. 5 is a diagram showing another arrangement example of the non-condensing photoelectric conversion element.
(C) in the figure is a plan view of a photoelectric conversion device in which non-condensing photoelectric conversion elements 15 are staggered, and (d) in the figure is a square array of non-condensing photoelectric conversion elements 15. It is a top view of the photoelectric conversion device.
When the condensing member 12 is a circular lens, it may be arranged in a staggered arrangement in order to minimize the gap between the lenses. When the condensing members 12 are arranged in a staggered manner in this way, as shown in (c) in the drawing, the non-condensing photoelectric conversion elements 15 are arranged in a staggered arrangement so as to face each condensing member 12. When the condensing members 12 are arranged in a square matrix, the non-condensing type photoelectric conversion elements 15 are arranged in a square arrangement so as to face each condensing member 12 as shown in (d) in the drawing.

《作用》
次に、第2実施形態の作用について説明する。
非集光型の光電変換素子15を面方向に沿って離散的に配置する、つまり面方向に離間した状態で集光部材12に対向するように配置する。これにより、非集光型の光電変換素子15同士の間に、隙間21を形成し、集光型の光電変換素子14の上面を部分的に露出させることができる。このように、集光型の光電変換素子14の上面を部分的に露出させることで、温度上昇しやすい集光型の光電変換素子14の放熱が促され、冷却効果を高めることができる。したがって、その分、ヒートシンク16を小型化すると、省スペース化や軽量化、さらにはコストダウンを実現できる。
《Action》
Next, the operation of the second embodiment will be described.
The non-condensing photoelectric conversion elements 15 are arranged discretely along the surface direction, that is, arranged so as to face the condensing member 12 in a state of being separated from each other in the surface direction. As a result, a gap 21 can be formed between the non-condensing photoelectric conversion elements 15 to partially expose the upper surface of the condensing photoelectric conversion element 14. By partially exposing the upper surface of the condensing type photoelectric conversion element 14 in this way, heat dissipation of the condensing type photoelectric conversion element 14 whose temperature tends to rise is promoted, and the cooling effect can be enhanced. Therefore, if the heat sink 16 is made smaller by that amount, space saving, weight reduction, and cost reduction can be realized.

また、非集光型の光電変換素子15又はその発電層18における面方向の最小面積は、集光された光の照射領域以上に設定する。これにより、集光された光を、非集光型の光電変換素子15で洩れなく受光することができる。一方、非集光型の光電変換素子15における光の照射領域外は、集光部材12同士の間を通過する光、つまり集光されていない光しか入らず、高効率の発電が行なえないため、そこに隙間21を形成する。このように、高効率の発電が行なえない部位については、非集光型の光電変換素子15を部分的に除去し、軽量化やコストダウンを優先することにより、費用対効果を高めることができる。 Further, the minimum area in the plane direction of the non-condensing photoelectric conversion element 15 or the power generation layer 18 thereof is set to be equal to or larger than the irradiation region of the condensed light. As a result, the focused light can be received by the non-condensing photoelectric conversion element 15 without leakage. On the other hand, outside the light irradiation region of the non-condensing photoelectric conversion element 15, only the light passing between the condensing members 12, that is, the uncondensed light enters, and high-efficiency power generation cannot be performed. , A gap 21 is formed there. In this way, cost effectiveness can be improved by partially removing the non-condensing photoelectric conversion element 15 and giving priority to weight reduction and cost reduction in the portion where high-efficiency power generation cannot be performed. ..

また、非集光型の光電変換素子15を、図4の(b)に示すようにストライプ配列にしたり、図5の(d)に示すように正方配列にしたりすると、製造性に優れる。一方、非集光型の光電変換素子15を、図5の(c)に示すように千鳥配列にすると、集光部材12同士の隙間を最小限に抑制することができるので、面方向のスペースを最大限に活かし発電能力を高めることができる。
第2実施形態において、前述した第1実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
Further, if the non-condensing photoelectric conversion element 15 has a striped arrangement as shown in FIG. 4B or a square arrangement as shown in FIG. 5D, the manufacturability is excellent. On the other hand, if the non-condensing photoelectric conversion elements 15 are arranged in a staggered arrangement as shown in FIG. 5 (c), the gap between the condensing members 12 can be minimized, so that the space in the plane direction can be suppressed. Can be maximized to increase power generation capacity.
In the second embodiment, the same effects can be obtained with respect to the parts common to the first embodiment described above, and detailed description thereof will be omitted.

《効果》
次に、第2実施形態における主要部の効果を記す。
(1)第2実施形態に係る光電変換装置は、集光部材12を軸直角方向に沿って複数設ける。また、非集光型の光電変換素子15を面方向に沿って複数設け、夫々、面方向に離間した状態で集光部材12に対向するように配置される。
このように、非集光型の光電変換素子15同士を離間させて配置することで、集光型の光電変換素子14を部分的に露出させることができる。これにより、温度上昇しやすい集光型の光電変換素子14の放熱が促され、冷却効果を高めることができる。
"effect"
Next, the effect of the main part in the second embodiment will be described.
(1) In the photoelectric conversion device according to the second embodiment, a plurality of light collecting members 12 are provided along the direction perpendicular to the axis. Further, a plurality of non-condensing photoelectric conversion elements 15 are provided along the surface direction, and are arranged so as to face the condensing member 12 in a state of being separated from each other in the surface direction.
By arranging the non-condensing photoelectric conversion elements 15 apart from each other in this way, the condensing photoelectric conversion element 14 can be partially exposed. As a result, heat dissipation of the condensing type photoelectric conversion element 14 whose temperature tends to rise is promoted, and the cooling effect can be enhanced.

(2)第2実施形態に係る光電変換装置は、非集光型の光電変換素子15における面方向の大きさが、集光部材12によって収束される光の照射領域に応じて決定される。
このように、非集光型の光電変換素子15における面方向の大きさを、光の照射領域に応じて決定することで、集光された光を非集光型の光電変換素子15で洩れなく受光することができる。
(2) In the photoelectric conversion device according to the second embodiment, the size of the non-condensing photoelectric conversion element 15 in the plane direction is determined according to the light irradiation region converged by the condensing member 12.
In this way, by determining the size of the non-condensing photoelectric conversion element 15 in the plane direction according to the light irradiation region, the condensed light is leaked by the non-condensing photoelectric conversion element 15. Can receive light without.

《第3実施形態》
《構成》
第3実施形態は、集光型の光電変換素子14を面方向に沿って離散的に配置したものである。
ここでは、集光型の光電変換素子14を面方向に沿って複数設け、夫々、面方向に離間した状態で集光部材12に対向するように配置したことを除いては、前述した第1実施形態と同様であるため、共通する部分については、詳細な説明を省略する。
<< Third Embodiment >>
"Constitution"
In the third embodiment, the condensing type photoelectric conversion elements 14 are arranged discretely along the plane direction.
Here, except that a plurality of condensing type photoelectric conversion elements 14 are provided along the plane direction and are arranged so as to face the condensing member 12 in a state of being separated from each other in the plane direction, the first described above is performed. Since it is the same as that of the embodiment, detailed description of common parts will be omitted.

図6は、第3実施形態を示す光電変換部材の構成図である。
図中の(a)は、光電変換装置の断面図であり、図中の(b)は、集光型の光電変換素子14をストライプ状に配列した光電変換装置の平面図である。
集光部材12が、例えば円柱上の側面を切り出したようなシンドリカルレンズである場合、図中の(b)に示すように、集光型の光電変換素子14をシンドリカルレンズに対向させてストライプ配列にする。
FIG. 6 is a block diagram of a photoelectric conversion member showing a third embodiment.
(A) in the figure is a cross-sectional view of the photoelectric conversion device, and (b) in the figure is a plan view of the photoelectric conversion device in which the condensing type photoelectric conversion elements 14 are arranged in a stripe shape.
When the condensing member 12 is, for example, a syntactic lens with a side surface cut out on a cylinder, as shown in (b) in the drawing, the condensing type photoelectric conversion element 14 is opposed to the syndical lens. Make a striped arrangement.

すなわち、集光型の光電変換素子14同士の間に、隙間31を形成することにより、光電変換部材13の内部に、厳密には非集光型の光電変換素子15とヒートシンク16との間に、通気可能な空洞を形成する。集光型の光電変換素子14における面方向の大きさ、又は発電層17における面方向の大きさは、集光部材12によって集光される光の照射領域に応じて決定される。すなわち、集光型の光電変換素子14又はその発電層17における面方向の最小面積は、集光された光の照射領域以上に設定される。一方、集光型の光電変換素子14における光の照射領域外は、集光部材12同士の間を通過する光、つまり集光されていない光はほぼ届かず発電が行なえないため、そこに隙間31を形成する。 That is, by forming a gap 31 between the condensing type photoelectric conversion elements 14, strictly speaking, between the non-condensing type photoelectric conversion element 15 and the heat sink 16 inside the photoelectric conversion member 13. , Form a breathable cavity. The size of the light condensing type photoelectric conversion element 14 in the surface direction or the size of the power generation layer 17 in the surface direction is determined according to the irradiation region of the light collected by the condensing member 12. That is, the minimum area in the plane direction of the condensing type photoelectric conversion element 14 or the power generation layer 17 thereof is set to be equal to or larger than the irradiation region of the condensing light. On the other hand, outside the light irradiation region of the condensing type photoelectric conversion element 14, the light passing between the condensing members 12, that is, the uncondensed light hardly reaches and power generation cannot be performed, so that there is a gap there. 31 is formed.

図7は、集光型の光電変換素子の他の配置例を示す図である。
図中の(c)は、集光型の光電変換素子14を千鳥配列した光電変換装置の平面図であり、図中の(d)は、集光型の光電変換素子14を正方配列した光電変換装置の平面図である。
集光部材12が、円形のレンズである場合、レンズ同士の隙間を最も小さくするために千鳥配列にすることがある。このように集光部材12が千鳥配列されているときには、図中の(c)に示すように、各集光部材12に対向させて集光型の光電変換素子14を千鳥配列にする。また、集光部材12が正方配列されているときには、図中の(d)に示すように、各集光部材12に対向させて集光型の光電変換素子14を正方配列にする。
FIG. 7 is a diagram showing another arrangement example of the condensing type photoelectric conversion element.
(C) in the figure is a plan view of a photoelectric conversion device in which the condensing type photoelectric conversion elements 14 are staggered, and (d) in the figure is a photoelectric in which the condensing type photoelectric conversion elements 14 are squarely arranged. It is a top view of the conversion device.
When the condensing member 12 is a circular lens, it may be arranged in a staggered arrangement in order to minimize the gap between the lenses. When the condensing members 12 are arranged in a staggered manner in this way, as shown in (c) in the drawing, the condensing type photoelectric conversion elements 14 are arranged in a staggered arrangement so as to face each condensing member 12. When the condensing members 12 are arranged in a square matrix, as shown in (d) in the drawing, the condensing type photoelectric conversion elements 14 are arranged in a square arrangement so as to face each condensing member 12.

《作用》
次に、第3実施形態の作用について説明する。
集光型の光電変換素子14を面方向に沿って離散的に配置する、つまり面方向に離間した状態で集光部材12に対向するように配置する。これにより、集光型の光電変換素子14同士の間に、隙間31を形成し、非集光型の光電変換素子15とヒートシンク16との間に通気可能な空洞を形成する。このように、非集光型の光電変換素子15とヒートシンク16との間に通気可能な空洞を形成することで、温度上昇しやすい集光型の光電変換素子14の放熱が促され、冷却効果を高めることができる。したがって、その分、ヒートシンク16を小型化すると、省スペース化や軽量化、さらにはコストダウンを実現できる。
《Action》
Next, the operation of the third embodiment will be described.
The condensing type photoelectric conversion elements 14 are arranged discretely along the surface direction, that is, arranged so as to face the condensing member 12 in a state of being separated from each other in the surface direction. As a result, a gap 31 is formed between the condensing type photoelectric conversion elements 14, and a ventilable cavity is formed between the non-condensing type photoelectric conversion element 15 and the heat sink 16. In this way, by forming a ventilable cavity between the non-condensing photoelectric conversion element 15 and the heat sink 16, heat dissipation of the condensing photoelectric conversion element 14 whose temperature tends to rise is promoted, and a cooling effect is achieved. Can be enhanced. Therefore, if the heat sink 16 is made smaller by that amount, space saving, weight reduction, and cost reduction can be realized.

また、集光型の光電変換素子14又はその発電層17における面方向の最小面積は、集光された光の照射領域以上に設定する。これにより、集光された光を、集光型の光電変換素子14で洩れなく受光することができる。一方、集光型の光電変換素子14における光の照射領域外は、集光部材12同士の間を通過する光、つまり集光されていない光はほぼ届かず発電が行なえないため、そこに隙間31を形成する。このように、発電が行なえない部位については、集光型の光電変換素子14を部分的に除去し、軽量化やコストダウンを優先することにより、費用対効果を高めることができる。 Further, the minimum area in the surface direction of the condensing type photoelectric conversion element 14 or the power generation layer 17 thereof is set to be equal to or larger than the irradiation region of the condensed light. As a result, the condensed light can be received by the condensing type photoelectric conversion element 14 without omission. On the other hand, outside the light irradiation region of the condensing type photoelectric conversion element 14, the light passing between the condensing members 12, that is, the uncondensed light hardly reaches and power generation cannot be performed, so that there is a gap there. 31 is formed. As described above, the cost effectiveness can be improved by partially removing the condensing type photoelectric conversion element 14 in the portion where power generation cannot be performed and giving priority to weight reduction and cost reduction.

また、集光型の光電変換素子14を、図6の(b)に示すようにストライプ配列にしたり、図7の(d)に示すように正方配列にしたりすると、製造性に優れる。一方、集光型の光電変換素子14を、図7の(c)に示すように千鳥配列にすると、集光部材12同士の隙間を最小限に抑制することができるので、面方向のスペースを最大限に活かし発電能力を高めることができる。
第3実施形態において、前述した第1実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
Further, when the condensing type photoelectric conversion element 14 is arranged in a stripe arrangement as shown in FIG. 6B or in a square arrangement as shown in FIG. 7D, the manufacturability is excellent. On the other hand, if the condensing type photoelectric conversion elements 14 are arranged in a staggered arrangement as shown in FIG. 7 (c), the gap between the condensing members 12 can be minimized, so that the space in the plane direction can be reduced. The power generation capacity can be increased by making the best use of it.
In the third embodiment, the same effects can be obtained with respect to the parts common to the first embodiment described above, and detailed description thereof will be omitted.

《効果》
次に、第3実施形態における主要部の効果を記す。
(1)第3実施形態に係る光電変換装置は、集光部材12を軸直角方向に沿って複数設ける。また、集光型の光電変換素子14を面方向に沿って複数設け、夫々、面方向に離間した状態で集光部材12に対向するように配置される。
このように、集光型の光電変換素子14同士を離間させて配置することで、光電変換部材13の内部に通気可能な空洞を形成することができる。これにより、温度上昇しやすい集光型の光電変換素子14の放熱が促され、冷却効果を高めることができる。
"effect"
Next, the effect of the main part in the third embodiment will be described.
(1) In the photoelectric conversion device according to the third embodiment, a plurality of light collecting members 12 are provided along the direction perpendicular to the axis. Further, a plurality of condensing type photoelectric conversion elements 14 are provided along the surface direction, and are arranged so as to face the condensing member 12 in a state of being separated from each other in the surface direction.
By arranging the condensing type photoelectric conversion elements 14 apart from each other in this way, it is possible to form a ventilable cavity inside the photoelectric conversion member 13. As a result, heat dissipation of the condensing type photoelectric conversion element 14 whose temperature tends to rise is promoted, and the cooling effect can be enhanced.

(2)第3実施形態に係る光電変換装置は、集光型の光電変換素子14における面方向の大きさが、集光部材12によって収束される光の照射領域に応じて決定される。
このように、集光型の光電変換素子14における面方向の大きさを、光の照射領域に応じて決定することで、集光された光を集光型の光電変換素子14で洩れなく受光することができる。
(2) In the photoelectric conversion device according to the third embodiment, the size of the condensing type photoelectric conversion element 14 in the plane direction is determined according to the light irradiation region converged by the condensing member 12.
In this way, by determining the size of the condensing type photoelectric conversion element 14 in the plane direction according to the light irradiation region, the condensed light is received by the condensing type photoelectric conversion element 14 without leakage. can do.

《第4実施形態》
《構成》
第4実施形態は、第2実施形態と第3実施形態とを組み合わせたものである。
すなわち、非集光型の光電変換素子15を面方向に沿って複数設け、夫々、面方向に離間した状態で集光部材12に対向するように配置すると共に、集光型の光電変換素子14を面方向に沿って複数設け、夫々、面方向に離間した状態で集光部材12に対向するように配置している。
<< Fourth Embodiment >>
"Constitution"
The fourth embodiment is a combination of the second embodiment and the third embodiment.
That is, a plurality of non-condensing photoelectric conversion elements 15 are provided along the plane direction, and are arranged so as to face the condensing member 12 in a state of being separated from each other in the plane direction, and the condensing type photoelectric conversion element 14 is provided. Are provided along the plane direction, and are arranged so as to face the light collecting member 12 in a state of being separated from each other in the plane direction.

図8は、第4実施形態を示す光電変換部材の構成図である。
図中の(a)は、光電変換装置の断面図であり、図中の(b)は、非集光型の光電変換素子15、及び集光型の光電変換素子14をストライプ状に配列した光電変換装置の平面図である。
集光部材12が、例えば円柱上の側面を切り出したようなシンドリカルレンズである場合、図中の(b)に示すように、非集光型の光電変換素子15、及び集光型の光電変換素子14をシンドリカルレンズに対向させてストライプ配列にする。
FIG. 8 is a block diagram of a photoelectric conversion member showing a fourth embodiment.
(A) in the figure is a cross-sectional view of a photoelectric conversion device, and (b) in the figure is a stripe-like arrangement of a non-condensing photoelectric conversion element 15 and a condensing photoelectric conversion element 14. It is a top view of the photoelectric conversion device.
When the condensing member 12 is, for example, a syndical lens having a side surface cut out on a cylinder, as shown in (b) in the figure, the non-condensing photoelectric conversion element 15 and the condensing photoelectric The conversion element 14 is opposed to the cylindrical lens to form a striped arrangement.

すなわち、非集光型の光電変換素子15同士の間に、隙間21を形成すると共に、集光型の光電変換素子14同士の間にも、隙間31を形成することにより、ヒートシンク16の上面を部分的に露出させる。非集光型の光電変換素子15における面方向の大きさ、及び集光型の光電変換素子14における面方向の大きさは、夫々、集光部材12によって集光される光の照射領域に応じて決定される。したがって、非集光型の光電変換素子15同士の隙間21よりも、集光型の光電変換素子14同士の隙間31の方が広くなる。 That is, the upper surface of the heat sink 16 is formed by forming a gap 21 between the non-condensing photoelectric conversion elements 15 and forming a gap 31 between the condensing photoelectric conversion elements 14. Partially exposed. The size of the non-condensing photoelectric conversion element 15 in the surface direction and the size of the condensing type photoelectric conversion element 14 in the surface direction depend on the irradiation region of the light collected by the condensing member 12, respectively. Will be decided. Therefore, the gap 31 between the light-condensing photoelectric conversion elements 14 is wider than the gap 21 between the non-condensing photoelectric conversion elements 15.

図9は、各光電変換素子の他の配置例を示す図である。
図中の(c)は、非集光型の光電変換素子15、及び集光型の光電変換素子14を千鳥配列した光電変換装置の平面図であり、図中の(d)は、非集光型の光電変換素子15、及び集光型の光電変換素子14を正方配列した光電変換装置の平面図である。
集光部材12が、円形のレンズである場合、レンズ同士の隙間を最も小さくするために千鳥配列にすることがある。このように集光部材12が千鳥配列されているときには、図中の(c)に示すように、各集光部材12に対向させて非集光型の光電変換素子15、及び集光型の光電変換素子14を千鳥配列にする。また、集光部材12が正方配列されているときには、図中の(d)に示すように、各集光部材12に対向させて非集光型の光電変換素子15、及び集光型の光電変換素子14を正方配列にする。
第4実施形態においては、前述した第2実施形態及び第3実施形態と同様の作用効果が得られるものとし、詳細な説明は省略する。
FIG. 9 is a diagram showing another arrangement example of each photoelectric conversion element.
(C) in the figure is a plan view of a photoelectric conversion device in which a non-condensing photoelectric conversion element 15 and a condensing photoelectric conversion element 14 are arranged in a staggered manner, and (d) in the figure is a non-collection. It is a top view of the photoelectric conversion apparatus which squarely arranged the optical type photoelectric conversion element 15 and the condensing type photoelectric conversion element 14.
When the condensing member 12 is a circular lens, it may be arranged in a staggered arrangement in order to minimize the gap between the lenses. When the condensing members 12 are staggered in this way, as shown in (c) in the figure, the non-condensing photoelectric conversion element 15 and the condensing type are opposed to each condensing member 12. The photoelectric conversion elements 14 are arranged in a staggered arrangement. Further, when the condensing members 12 are arranged in a square matrix, as shown in (d) in the figure, the non-condensing photoelectric conversion element 15 and the condensing type photoelectric are opposed to each condensing member 12. The conversion elements 14 are arranged in a square matrix.
In the fourth embodiment, it is assumed that the same effects as those in the second and third embodiments described above can be obtained, and detailed description thereof will be omitted.

以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。また、各実施形態は、任意に組み合わせて採用することができる。 Although the above description has been made with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art. In addition, each embodiment can be adopted in any combination.

11 光電変換装置
12 集光部材
13 光電変換部材
14 光電変換素子
15 光電変換素子
16 ヒートシンク
17 発電層
18 発電層
21 隙間
31 隙間
11 Photoelectric conversion device 12 Condensing member 13 Photoelectric conversion member 14 Photoelectric conversion element 15 Photoelectric conversion element 16 Heat sink 17 Power generation layer 18 Power generation layer 21 Gap 31 Gap

Claims (6)

通過する光を収束させる集光部材と、
光が収束される側で前記集光部材に対向し、受光によって発電する光電変換部材と、を備え、
前記光電変換部材は、
面直角方向に積層された複数の光電変換素子を備え、これら複数の光電変換素子のうち、前記集光部材から最も遠い一の光電変換素子が、前記集光部材の焦点位置にあるように配置され、前記集光部材から最も遠い一の光電変換素子の前記集光部材側の面に積層される他の光電変換素子が、集光された光の一部を吸収し、残りを前記集光部材から最も遠い一の光電変換素子へと透過させてゆく位置に配置され
前記一の光電変換素子は、非集光型の光電変換素子よりも電極の太い集光型の光電変換素子であり、前記他の光電変換素子は、前記非集光型の光電変換素子であることを特徴とする光電変換装置。
A condensing member that converges the passing light,
A photoelectric conversion member that faces the condensing member on the side where light is converged and generates electricity by receiving light is provided.
The photoelectric conversion member is
A plurality of photoelectric conversion elements laminated in the direction perpendicular to the plane are provided, and among these plurality of photoelectric conversion elements, one photoelectric conversion element farthest from the light collecting member is arranged so as to be at the focal position of the light collecting member. Then, another photoelectric conversion element laminated on the surface of the one photoelectric conversion element farthest from the condensing member on the condensing member side absorbs a part of the condensed light, and the rest is condensing. It is placed at a position that allows light to pass through to the one photoelectric conversion element farthest from the member .
The one photoelectric conversion element is a condensing type photoelectric conversion element having a thicker electrode than the non-condensing photoelectric conversion element, and the other photoelectric conversion element is the non-condensing photoelectric conversion element. A photoelectric conversion device characterized by this.
前記集光部材は、軸直角方向に沿って複数設けられ、
前記光電変換部材は、
前記非集光型の光電変換素子が面方向に沿って複数設けられ、夫々、面方向に離間した状態で前記集光部材に対向するように配置されることを特徴とする請求項に記載の光電変換装置。
A plurality of the light collecting members are provided along the direction perpendicular to the axis.
The photoelectric conversion member is
The non-condensing type photoelectric conversion element is provided with a plurality along the surface direction, respectively, according to claim 1, characterized in that it is arranged so as to face the condensing member in a state spaced in the plane direction Photoelectric conversion device.
前記光電変換部材は、
前記非集光型の光電変換素子における面方向の大きさが、前記集光部材によって収束される光の照射領域に応じて決定されることを特徴とする請求項に記載の光電変換装置。
The photoelectric conversion member is
The photoelectric conversion device according to claim 2 , wherein the size of the non-condensing photoelectric conversion element in the plane direction is determined according to an irradiation region of light converged by the condensing member.
前記集光部材は、軸直角方向に沿って複数設けられ、
前記光電変換部材は、
前記集光型の光電変換素子が面方向に沿って複数設けられ、夫々、面方向に離間した状態で前記集光部材に対するように配置されることを特徴とする請求項1〜3の何れか一項に記載の光電変換装置。
A plurality of the light collecting members are provided along the direction perpendicular to the axis.
The photoelectric conversion member is
Any of claims 1 to 3 , wherein a plurality of the condensing type photoelectric conversion elements are provided along the plane direction, and the light condensing type photoelectric conversion elements are arranged so as to be relative to the condensing member in a state of being separated from each other in the plane direction. The photoelectric conversion device according to one item.
前記光電変換部材は、
前記集光型の光電変換素子における面方向の大きさが、前記集光部材によって収束される光の照射領域に応じて決定されることを特徴とする請求項に記載の光電変換装置。
The photoelectric conversion member is
The photoelectric conversion device according to claim 4 , wherein the size of the condensing type photoelectric conversion element in the plane direction is determined according to an irradiation region of light converged by the condensing member.
前記光電変換部材における前記集光部材とは反対側に設けられ、前記光電変換部材を冷却する冷却部材を備えることを特徴とする請求項1〜の何れか一項に記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 5 , wherein the photoelectric conversion member is provided on a side opposite to the light collecting member and includes a cooling member for cooling the photoelectric conversion member.
JP2015110245A 2015-05-29 2015-05-29 Photoelectric converter Active JP6776509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110245A JP6776509B2 (en) 2015-05-29 2015-05-29 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015110245A JP6776509B2 (en) 2015-05-29 2015-05-29 Photoelectric converter

Publications (2)

Publication Number Publication Date
JP2016225454A JP2016225454A (en) 2016-12-28
JP6776509B2 true JP6776509B2 (en) 2020-10-28

Family

ID=57746617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110245A Active JP6776509B2 (en) 2015-05-29 2015-05-29 Photoelectric converter

Country Status (1)

Country Link
JP (1) JP6776509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250829B1 (en) * 2019-05-30 2021-05-12 (주)디에코에너지 Manufacturing of hybrid photoboltaic cell module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188238A (en) * 1978-07-03 1980-02-12 Owens-Illinois, Inc. Generation of electrical energy from sunlight, and apparatus
JPS55125680A (en) * 1979-03-20 1980-09-27 Yoshihiro Hamakawa Photovoltaic element
JP2006064203A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Solar battery module
JP4841199B2 (en) * 2005-08-09 2011-12-21 シャープ株式会社 Concentrating solar power generation module
KR101643021B1 (en) * 2009-06-05 2016-07-26 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Semiconductor substrate, photoelectric conversion device, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device
JP2011233649A (en) * 2010-04-26 2011-11-17 Sumitomo Electric Ind Ltd Solar cell module, photovoltaic power generator and photovoltaic power generation system
CN103168368A (en) * 2011-04-27 2013-06-19 松下电器产业株式会社 Method for generating power using solar battery
JP5404979B1 (en) * 2012-04-12 2014-02-05 パナソニック株式会社 Solar cell and method of generating electric power using solar cell
EP2827382B1 (en) * 2012-05-28 2019-04-17 Panasonic Intellectual Property Management Co., Ltd. Solar cell and method for manufacturing same

Also Published As

Publication number Publication date
JP2016225454A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5811846B2 (en) Solar power plant
JP2003258291A (en) Light condensing photovoltaic power generator
JPWO2009125722A1 (en) Concentrating optical member and concentrating solar power generation module
JP5818813B2 (en) Multi-point cooling system for solar concentrator
JP2013537004A (en) Multi-band concentrator / energy conversion module
JP6776509B2 (en) Photoelectric converter
US20080185031A1 (en) Focused type solar plate assembly having heat-dissipating module
US5098482A (en) Vertical junction solar cell
JP2009224105A (en) Dye-sensitized solar cell
KR101168569B1 (en) Co-generating system using high efficiency concentrating photovoltaics system
JP2008140990A (en) Photoelectric converter device
KR100997547B1 (en) Concentrative photovoltaic generating apparatus
JP5463594B2 (en) Laser selective emitter manufacturing equipment for solar cells
KR100466257B1 (en) Condensing lens and apparatus for solar photovoltaic generator
JP6670991B2 (en) Solar cell
JP6694072B2 (en) Photovoltaic device
Liu et al. A Single Spectral Optical Path Design of the Thermophotovoltaic System for Improving Irradiance Intensity and Uniformity
JP2013214650A (en) Solar cell module
KR101187707B1 (en) solar photovoltaic generation module
KR20110128527A (en) Solar cell exposing side surface to sunlight
US20160284912A1 (en) Photovoltaic cell
KR101327211B1 (en) High-concentrated photovoltaic module
JP2012186266A (en) Photoelectric conversion device
JP2016181679A (en) Solar cell
KR100991986B1 (en) Solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R151 Written notification of patent or utility model registration

Ref document number: 6776509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151