JP6670991B2 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP6670991B2
JP6670991B2 JP2016002210A JP2016002210A JP6670991B2 JP 6670991 B2 JP6670991 B2 JP 6670991B2 JP 2016002210 A JP2016002210 A JP 2016002210A JP 2016002210 A JP2016002210 A JP 2016002210A JP 6670991 B2 JP6670991 B2 JP 6670991B2
Authority
JP
Japan
Prior art keywords
lens
photoelectric conversion
light
conversion element
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016002210A
Other languages
Japanese (ja)
Other versions
JP2016181678A5 (en
JP2016181678A (en
Inventor
市橋 宏基
宏基 市橋
中川 徹
徹 中川
林 伸彦
伸彦 林
紀雄 桐田
紀雄 桐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US15/070,546 priority Critical patent/US20160284912A1/en
Publication of JP2016181678A publication Critical patent/JP2016181678A/en
Publication of JP2016181678A5 publication Critical patent/JP2016181678A5/ja
Application granted granted Critical
Publication of JP6670991B2 publication Critical patent/JP6670991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Description

本開示は、太陽光発電に用いられる太陽電池に関する。   The present disclosure relates to a solar cell used for photovoltaic power generation.

特許文献1は、集光レンズと太陽電池とを一体化させる一体構造の光学部材を設けた集光型太陽電池を開示する。これにより、太陽電池を構成する素子に太陽光を無駄なく集光させて、出力の向上を図っている。   Patent Document 1 discloses a concentrating solar cell provided with an optical member having an integral structure for integrating a converging lens and a solar cell. As a result, the sunlight is concentrated on the elements constituting the solar cell without waste, and the output is improved.

国際公開第2012/160994号International Publication No. 2012/160994

本開示は、光の利用効率を向上させた太陽電池を提供する。   The present disclosure provides a solar cell with improved light use efficiency.

本開示にかかる太陽電池は、集光作用を持つ受光レンズと、受光レンズの出射面側に配置される導光部材と、導光部材の出射面と当接して配設される透光性の基板と、導光部材と対向する位置に配設され、基板から出射された光が入射する光電変換素子と、を備える。そして、導光部材の入射面は、凸面で構成される。   A solar cell according to the present disclosure has a light-receiving lens having a light-condensing action, a light-guiding member disposed on the light-emitting surface side of the light-receiving lens, and a light-transmitting member disposed in contact with the light-emitting member. The substrate includes a substrate and a photoelectric conversion element that is provided at a position facing the light guide member and receives light emitted from the substrate. And the incident surface of a light guide member is comprised by a convex surface.

本開示の太陽電池は、光の利用効率を向上させることができる。   The solar cell according to the present disclosure can improve light use efficiency.

本実施の形態にかかる太陽電池の構成を示す概略断面図Schematic sectional view showing the configuration of the solar cell according to the present embodiment 同実施の形態にかかる太陽電池に入射する太陽光の光路を説明する断面図Sectional drawing explaining the optical path of the sunlight which injects into the solar cell concerning the embodiment. 同実施の形態にかかる導光部材に入射する短波長光線と長波長光線の光路を示す断面図Sectional drawing which shows the optical path of the short wavelength light and the long wavelength light which inject into the light guide member concerning the embodiment. 導光部のみからなる導光部材に入射する短波長光線と長波長光線の光路を示す断面図Sectional drawing which shows the optical path of a short wavelength light ray and a long wavelength light ray which enter a light guide member consisting only of a light guide part 同実施の形態にかかる光電変換素子の光電変換波長帯域と焦点距離の関係を示すグラフ4 is a graph showing a relationship between a photoelectric conversion wavelength band and a focal length of the photoelectric conversion element according to the embodiment.

以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。   Hereinafter, embodiments will be described in detail with reference to the drawings. However, an unnecessary detailed description may be omitted. For example, a detailed description of a well-known item or a redundant description of substantially the same configuration may be omitted. This is to prevent the following description from being unnecessarily redundant and to facilitate understanding by those skilled in the art.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。   The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the claimed subject matter.

(実施の形態)
[1.構成]
[1−1.全体構成]
以下、本実施の形態における太陽電池100の全体構成について、図1を用いて説明する。
(Embodiment)
[1. Constitution]
[1-1. overall structure]
Hereinafter, the entire configuration of solar cell 100 in the present embodiment will be described with reference to FIG.

図1は、本実施の形態にかかる太陽電池の構成を示す概略断面図である。   FIG. 1 is a schematic sectional view showing the configuration of the solar cell according to the present embodiment.

図1に示すように、本実施の形態の太陽電池100は、主として、受光レンズアレイ110と、導光部材120と、透光性を有するガラス基板130と、光電変換素子140などで構成される。   As shown in FIG. 1, solar cell 100 of the present embodiment mainly includes light receiving lens array 110, light guide member 120, glass substrate 130 having translucency, photoelectric conversion element 140, and the like. .

受光レンズアレイ110は、複数の受光レンズ110aをアレイ状に配置して構成される。受光レンズ110aは、例えば凸面形状の入射面110bと、出射面110cと、を有する。受光レンズアレイ110に入射した太陽光などの光は、それぞれの受光レンズ110aのレンズ面により集光される。   The light receiving lens array 110 is configured by arranging a plurality of light receiving lenses 110a in an array. The light receiving lens 110a has, for example, a convex incident surface 110b and an exit surface 110c. Light such as sunlight that has entered the light receiving lens array 110 is collected by the lens surfaces of the respective light receiving lenses 110a.

なお、本開示の太陽電池100は、受光レンズアレイ110の入射面110b側に太陽光追尾装置(図示せず)を有してもよい。これにより、太陽電池100は、太陽の位置にかかわらず、常に受光レンズ110aの光軸Lに対して、略平行(平行を含む)に太陽光を受光レンズ110aに入射させることができる。その結果、高い変換効率を維持できる。   In addition, the solar cell 100 of the present disclosure may include a sunlight tracking device (not shown) on the incident surface 110b side of the light receiving lens array 110. Thereby, the solar cell 100 can always make sunlight enter the light receiving lens 110a substantially parallel (including parallel) to the optical axis L of the light receiving lens 110a regardless of the position of the sun. As a result, high conversion efficiency can be maintained.

本実施の形態の受光レンズ110aは、例えばアクリル樹脂で形成された正のパワーを有するレンズで構成される。なお、受光レンズ110aの材料はアクリル樹脂には限られず、その他の樹脂材料やガラスなどでもよい。   The light receiving lens 110a of the present embodiment is configured by a lens having a positive power, formed of, for example, an acrylic resin. The material of the light receiving lens 110a is not limited to acrylic resin, but may be another resin material, glass, or the like.

導光部材120は、入射面121aが凸面で構成される凸レンズ121と、導光部122を備える。導光部材120は、受光レンズ110aの出射面110c側の所定位置に配置される。このとき、アレイ状に配列された受光レンズ110aに対応して、導光部材120もアレイ状に複数配置される。なお、凸レンズ121は、導光部材120の凸部として例示される。   The light guide member 120 includes a convex lens 121 whose entrance surface 121 a is formed as a convex surface, and a light guide unit 122. The light guide member 120 is arranged at a predetermined position on the light exit surface 110c side of the light receiving lens 110a. At this time, a plurality of light guide members 120 are also arranged in an array corresponding to the light receiving lenses 110a arranged in an array. In addition, the convex lens 121 is exemplified as a convex portion of the light guide member 120.

そして、受光レンズ110aの出射面110cから出射した出射光は、導光部材120の凸部を構成する凸レンズ121に入射する。入射した光は、凸面形状を有する凸レンズ121で集光されて導光部122に入射する。なお、本開示の導光部材120は、凸レンズ121と導光部122を別体で構成した例で示すが、一体で構成してもよい。   Then, the outgoing light emitted from the outgoing surface 110c of the light receiving lens 110a enters the convex lens 121 forming the convex portion of the light guide member 120. The incident light is condensed by a convex lens 121 having a convex shape and is incident on the light guide 122. Although the light guide member 120 of the present disclosure is described as an example in which the convex lens 121 and the light guide unit 122 are formed separately, they may be formed integrally.

ガラス基板130には、ガラス基板130を挟んで導光部材120と光電変換素子140とが対向する位置に配設されている。なお、ガラス基板130は、基板の一例として示される。そのため、基板は、ガラスに限られず、太陽光に対して高い透光性を有していればよい。例えば、アクリルなどの樹脂で構成してもよい。   On the glass substrate 130, the light guide member 120 and the photoelectric conversion element 140 are provided at positions facing each other with the glass substrate 130 interposed therebetween. Note that the glass substrate 130 is shown as an example of the substrate. Therefore, the substrate is not limited to glass and may have high light-transmitting properties with respect to sunlight. For example, you may comprise with resin, such as acrylic.

光電変換素子140は、太陽光を吸収する1以上の光吸収材料から構成される。詳細には、光電変換素子140は、吸収波長帯が異なる複数種類のpn接合が積層された多接合型の構造を備える。本実施の形態では、例えば、InGaP、GaAs、GaInAsNなどの3層からなる多接合太陽電池セルを用い、波長400nmから波長1300nmの範囲の光を電気エネルギーに変換する。つまり、本実施の形態の光電変換素子140は、波長400nmから波長1300nmまでの光電変換波長帯域を有する。光電変換素子140は、ガラス基板130を挟んで導光部材120と対向する位置に配置される。   The photoelectric conversion element 140 is made of one or more light absorbing materials that absorb sunlight. Specifically, the photoelectric conversion element 140 has a multi-junction structure in which a plurality of types of pn junctions having different absorption wavelength bands are stacked. In this embodiment, for example, a multi-junction solar cell having three layers such as InGaP, GaAs, and GaInAsN is used to convert light in a wavelength range of 400 nm to 1300 nm into electric energy. That is, the photoelectric conversion element 140 of this embodiment has a photoelectric conversion wavelength band from a wavelength of 400 nm to a wavelength of 1300 nm. The photoelectric conversion element 140 is arranged at a position facing the light guide member 120 with the glass substrate 130 interposed therebetween.

太陽電池100は、ガラス基板130の出射面130b側に、さらに、撥水膜150、異方性導電膜(Anisotropic Conductive Film)160、配線基板170、放熱板180などを有する。   The solar cell 100 further includes a water-repellent film 150, an anisotropic conductive film (Anisotropic Conductive Film) 160, a wiring substrate 170, a heat sink 180, and the like on the emission surface 130b side of the glass substrate 130.

つぎに、本実施の形態における太陽電池100の動作について、説明する。   Next, the operation of solar cell 100 in the present embodiment will be described.

太陽光は、受光レンズ110aなどを介して、光電変換素子140上に集光される。受光レンズ110a、導光部材120および光電変換素子140は、それぞれ対で構成され、複数の対がアレイ状に配列される。   The sunlight is collected on the photoelectric conversion element 140 via the light receiving lens 110a and the like. The light receiving lens 110a, the light guide member 120, and the photoelectric conversion element 140 are each configured as a pair, and a plurality of pairs are arranged in an array.

なお、受光レンズ110aの光軸Lの方向から見た受光面の形状は、矩形、円形、正六角形などの多角形など様々な形状が考えられる。しかし、単位面積当りの発電量が重要な集光型太陽電池の場合、アレイ状で隙間なく配列できる矩形や多角形などの形状が好ましい。   The shape of the light receiving surface of the light receiving lens 110a viewed from the direction of the optical axis L may be various shapes such as a rectangle, a circle, and a polygon such as a regular hexagon. However, in the case of a concentrating solar cell in which the amount of power generation per unit area is important, a shape such as a rectangle or polygon that can be arranged in an array without any gap is preferable.

受光レンズ110aの入射面110bは、例えば非球面形状で形成される。非球面形状は、収差による集光スポットサイズの増大を低減するように決定される。これにより、受光レンズ110aの収差による太陽電池100の発電効率の低下を抑制できる。   The incident surface 110b of the light receiving lens 110a is formed, for example, in an aspherical shape. The aspherical shape is determined so as to reduce the increase in the size of the focused spot due to aberration. Thus, it is possible to suppress a decrease in the power generation efficiency of the solar cell 100 due to aberration of the light receiving lens 110a.

光電変換素子140は、上述したように、光電変換波長帯域の太陽光の光エネルギーを電気エネルギーに変換する。光電変換素子140で変換された電気エネルギーは、異方性導電膜160を介して、配線基板170から取り出される。異方性導電膜160は、面方向に絶縁性を保持し、厚み方向に導電性を持つ。これにより、光電変換素子140の電極と配線基板170の配線を電気的に接続する。また、太陽電池100は、太陽光を集光して変換するため、温度が上昇しやすい。そこで、放熱板180を設けて、太陽電池100を適切な動作温度に保っている。   As described above, the photoelectric conversion element 140 converts light energy of sunlight in a photoelectric conversion wavelength band into electric energy. The electric energy converted by the photoelectric conversion element 140 is extracted from the wiring substrate 170 through the anisotropic conductive film 160. The anisotropic conductive film 160 maintains insulation in the plane direction and has conductivity in the thickness direction. Thus, the electrodes of the photoelectric conversion element 140 and the wiring of the wiring board 170 are electrically connected. In addition, since the solar cell 100 collects and converts sunlight, the temperature tends to increase. Therefore, a heat sink 180 is provided to keep the solar cell 100 at an appropriate operating temperature.

以上のように、本実施の形態の太陽電池100が構成されている。   As described above, solar cell 100 of the present embodiment is configured.

以下に、光電変換素子140のガラス基板130への接着方法について、説明する。   Hereinafter, a method for bonding the photoelectric conversion element 140 to the glass substrate 130 will be described.

まず、ガラス基板130の出射面130bに、例えば(2−パーフルオロオクチル)エチルトリメトキシシランなどの撥水膜150を塗布する。その後、撥水膜150が塗布された面の所定の位置に、例えば波長450nmの光を照射する。撥水膜150は、光が照射されると親水性に変化する材料で形成されている。これにより、ガラス基板130の出射面130bに塗布された撥水膜150は、光が照射されたスポット状の領域のみが親水性に変化する。なお、上記所定の位置とは、ガラス基板130の入射面130a側に配設される導光部材120の導光部122の出射面122bと対向する位置である。また、説明は省略するが、導光部材120のガラス基板130への接着も、上記光電変換素子140と同様の接着方法で形成される。   First, a water-repellent film 150 such as, for example, (2-perfluorooctyl) ethyltrimethoxysilane is applied to the emission surface 130b of the glass substrate 130. Thereafter, a predetermined position on the surface on which the water-repellent film 150 has been applied is irradiated with, for example, light having a wavelength of 450 nm. The water-repellent film 150 is formed of a material that becomes hydrophilic when irradiated with light. As a result, in the water-repellent film 150 applied to the emission surface 130b of the glass substrate 130, only the spot-shaped region irradiated with light changes to hydrophilic. Note that the predetermined position is a position facing the emission surface 122b of the light guide unit 122 of the light guide member 120 disposed on the incident surface 130a side of the glass substrate 130. Although not described, the light guide member 120 is bonded to the glass substrate 130 by the same bonding method as that of the photoelectric conversion element 140.

つぎに、上記状態で、例えばシリコーンなどの透明接着剤を、ガラス基板130の出射面130bの撥水膜150上に塗布する。このとき、塗布された透明接着剤は、撥水膜150のうち、親水性に変化した領域に集まる。   Next, in the above state, a transparent adhesive such as silicone is applied on the water-repellent film 150 on the emission surface 130b of the glass substrate 130. At this time, the applied transparent adhesive gathers in the region of the water-repellent film 150 that has changed to hydrophilic.

つぎに、光電変換素子140を透明接着剤上に配置して接着固定する。これにより、光電変換素子140は、導光部材120と、ガラス基板130を挟んで対向する所定の位置に配置される。   Next, the photoelectric conversion element 140 is disposed on the transparent adhesive and fixed by adhesion. Thereby, the photoelectric conversion element 140 is disposed at a predetermined position facing the light guide member 120 with the glass substrate 130 interposed therebetween.

[1−2.受光レンズ]
以下、受光レンズ110aについて、図2を用いて説明する。
[1-2. Light receiving lens]
Hereinafter, the light receiving lens 110a will be described with reference to FIG.

図2は、本実施の形態に係る太陽電池に入射する太陽光の光路を説明する断面図である。   FIG. 2 is a cross-sectional view illustrating an optical path of sunlight incident on the solar cell according to the present embodiment.

一般に、太陽電池100で、太陽光のような略平行光200(平行光200を含む)を垂直方向から受光する場合、受光レンズ110aの出射面110cのパワーよりも入射面110bのパワーを大きくした方が収差特性は良好になる。   Generally, when the solar cell 100 receives substantially parallel light 200 (including parallel light 200) such as sunlight from the vertical direction, the power of the incident surface 110b is set to be larger than the power of the output surface 110c of the light receiving lens 110a. The better the aberration characteristics are.

しかしながら、受光レンズ110aのパワーを大きくすると、受光レンズ110aの厚みが増大する。この場合、厚みの増大を抑制するために、受光レンズ110aの入射面110bを構成する凸面をフレネル形状にする構成が、公知技術として知られている。しかし、受光レンズ110aの入射面110b側をフレネル形状にすると、フレネルレンズの切り欠き面によって、光線のケラレが生じる。その結果、光電変換素子140に到達する光線がロスし、変換される光エネルギーが低下する。   However, when the power of the light receiving lens 110a is increased, the thickness of the light receiving lens 110a increases. In this case, a configuration in which the convex surface forming the incident surface 110b of the light receiving lens 110a has a Fresnel shape in order to suppress an increase in thickness is known as a known technique. However, when the incident surface 110b side of the light receiving lens 110a has a Fresnel shape, vignetting of light rays occurs due to the cutout surface of the Fresnel lens. As a result, the light beam that reaches the photoelectric conversion element 140 is lost, and the converted light energy is reduced.

そこで、本実施の形態の受光レンズ110aは、図2に示すように、入射面110bを正のパワーを持つ非球面の凸面形状、出射面110cを正のパワーを持つフレネル形状で構成する。このとき、出射面110cを、切り欠き面の高さが一定な平面基板のフレネル形状としている。これにより、受光レンズ110aの厚さ(肉厚)を薄くしている。   Therefore, in the light receiving lens 110a of the present embodiment, as shown in FIG. 2, the incident surface 110b is formed as an aspherical convex surface having a positive power, and the output surface 110c is formed as a Fresnel shape having a positive power. At this time, the emission surface 110c has a Fresnel shape of a flat substrate with a constant height of the cutout surface. Thus, the thickness (wall thickness) of the light receiving lens 110a is reduced.

また、本実施の形態の受光レンズ110aは、出射面110cの正のパワーを、入射面110bの正のパワーよりも大きくしている。これにより、受光レンズ110aの薄型化が図れる。   In the light receiving lens 110a of the present embodiment, the positive power of the light exit surface 110c is set to be larger than the positive power of the light incident surface 110b. Thus, the thickness of the light receiving lens 110a can be reduced.

具体的には、受光レンズ110aのパワー(1/焦点距離)は、図3に示すように、軸上色収差に起因する波長毎の焦点の位置が、以下のようになるように設定している。   Specifically, as shown in FIG. 3, the power (1 / focal length) of the light receiving lens 110a is set such that the position of the focal point for each wavelength caused by the axial chromatic aberration is as follows. .

図3は、同実施の形態にかかる導光部材に入射する短波長光線と長波長光線の光路を示す断面図である。なお、図3は、光電変換素子140の光電変換波長帯域に対応する、短波長光線200aが波長400nm、中波長光線200cが波長510nm、長波長光線200bが波長1300nmの場合を例に図示している。   FIG. 3 is a sectional view showing an optical path of a short wavelength light and a long wavelength light incident on the light guide member according to the embodiment. FIG. 3 illustrates a case where the short wavelength light 200a has a wavelength of 400 nm, the middle wavelength light 200c has a wavelength of 510 nm, and the long wavelength light 200b has a wavelength of 1300 nm, which corresponds to the photoelectric conversion wavelength band of the photoelectric conversion element 140. I have.

すなわち、図3に示す短波長光線200aの場合、受光レンズ110aの出射光における波長400nmの光の焦点位置FP400(Focal Point)を、導光部材120の凸レンズ121の頂点121cよりも受光レンズ110a側の位置に設定している。一方、図3の長波長光線200bに示すように、波長1300nmの光の焦点位置FP1300Rは、導光部材120の導光部122が配置される位置内に設定している。つまり、光軸L上において、短波長光線200aの焦点位置FP400と、長波長光線200bの焦点位置FP1300Rとの間に、導光部材120の凸部を構成する凸レンズ121が配置されるように設定している。   That is, in the case of the short-wavelength light beam 200a shown in FIG. 3, the focal position FP400 (Focal Point) of the light having a wavelength of 400 nm in the light emitted from the light receiving lens 110a is closer to the light receiving lens 110a than the vertex 121c of the convex lens 121 of the light guide member 120. Is set to the position. On the other hand, as shown in the long-wavelength light beam 200b in FIG. 3, the focal position FP1300R of the light having the wavelength of 1300 nm is set in a position where the light guide 122 of the light guide member 120 is arranged. That is, on the optical axis L, between the focal position FP400 of the short wavelength light beam 200a and the focal position FP1300R of the long wavelength light beam 200b, the convex lens 121 constituting the convex portion of the light guide member 120 is set. doing.

さらに、後述するように、図3に示す中波長光線200cの場合、受光レンズ110aの出射光における波長510nmの光の焦点位置FP510を、導光部材120の導光部122の入射面122a、または近傍の位置に設定している。   Further, as described later, in the case of the medium wavelength light beam 200c shown in FIG. 3, the focal position FP510 of the light having a wavelength of 510 nm in the light emitted from the light receiving lens 110a is set to the incident surface 122a of the light guide unit 122 of the light guide member 120, or It is set to a nearby position.

ここで、受光レンズ110aに入射する波長に対する焦点距離の関係について、図5を用いて説明する。   Here, the relationship between the wavelength incident on the light receiving lens 110a and the focal length will be described with reference to FIG.

図5は、光電変換素子140の光電変換波長帯域である波長400nmから波長1300nmまでの光が入射した際の受光レンズ110aの焦点距離の変化量を示すグラフである。横軸は受光レンズ110aに入射する光の波長を、縦軸は入射した光の受光レンズ110aの焦点位置までの距離を相対的に示す。なお、焦点距離は、受光レンズ110aの形状やパワーなどの設計要因により変化するため、一義的に決まらないので相対的に示している。   FIG. 5 is a graph showing the amount of change in the focal length of the light receiving lens 110a when light having a wavelength of 400 nm to 1300 nm, which is the photoelectric conversion wavelength band of the photoelectric conversion element 140, enters. The horizontal axis indicates the wavelength of light incident on the light receiving lens 110a, and the vertical axis indicates the distance of the incident light to the focal position of the light receiving lens 110a. Since the focal length varies depending on design factors such as the shape and power of the light receiving lens 110a, it is not determined uniquely and is shown relatively.

このとき、図5に示すように、波長400nmの光が入射した際の受光レンズ110aの焦点距離から、波長1300nmの光が入射した際の受光レンズ110aの焦点距離までの距離の中間点に位置する光の波長(焦点距離の変化量の中心値における波長)は、510nmに相当する。   At this time, as shown in FIG. 5, the position is located at an intermediate point of the distance from the focal length of the light receiving lens 110a when the light having the wavelength of 400 nm is incident to the focal length of the light receiving lens 110a when the light having the wavelength of 1300 nm is incident. The wavelength of the emitted light (wavelength at the central value of the amount of change in the focal length) corresponds to 510 nm.

そこで、本実施の形態では、図3に示すように、中波長光線200cである波長510nmの光が入射した際の受光レンズ110aの焦点位置FP510が、導光部122の入射面122aまたはその近傍に位置するように、導光部122を配置する。つまり、波長400nmの光の焦点位置FP400から導光部122の入射面122aの位置までの距離と、導光部122の入射面122aの位置から波長1300nmの光の焦点位置FP1300Rまでの距離が、ほぼ等しくなるように、導光部122を配置する。そして、各波長に対して、上記焦点距離を有する受光レンズ110aを設計する。これにより、受光レンズ110aの軸上色収差による短波長、長波長側での光電変換素子上における集光スポットサイズの増大を抑制する。その結果、受光レンズ110aから光電変換素子140に到達する太陽光の受光波長全域での光量ロスを抑制できる。さらに、光電変換素子140の光電変換波長帯域の光を、ロス無く光電変換素子140に入射させることができる。その結果、光の利用効率の高い太陽電池100が得られる。   Therefore, in the present embodiment, as shown in FIG. 3, the focal position FP510 of the light receiving lens 110a when the light having the wavelength of 510 nm, which is the medium-wavelength light beam 200c, is incident on the incident surface 122a of the light guide 122 or in the vicinity thereof. The light guide section 122 is arranged so as to be located at the position. That is, the distance from the focal position FP400 of the light having the wavelength of 400 nm to the position of the incident surface 122a of the light guide 122 and the distance from the position of the incident surface 122a of the light guide 122 to the focal position FP1300R of the light having the wavelength of 1300 nm are: The light guides 122 are arranged so as to be substantially equal. Then, a light receiving lens 110a having the above focal length is designed for each wavelength. This suppresses an increase in the size of the condensed spot on the photoelectric conversion element on the short wavelength and long wavelength side due to axial chromatic aberration of the light receiving lens 110a. As a result, it is possible to suppress the light amount loss in the entire light receiving wavelength range of sunlight reaching the photoelectric conversion element 140 from the light receiving lens 110a. Further, light in the photoelectric conversion wavelength band of the photoelectric conversion element 140 can be made incident on the photoelectric conversion element 140 without loss. As a result, a solar cell 100 with high light use efficiency is obtained.

本実施の形態の受光レンズ110aによれば、光電変換素子140の受光波長域における短波長端と長波長端とその近傍の波長域での収差を良好に抑制できる。さらに、入射面110bのパワーを抑えることにより、受光レンズ110aの厚みの増大を抑えることができる。その結果、太陽電池100の小型化および軽量化を実現できる。   According to the light receiving lens 110a of the present embodiment, aberrations in the short wavelength end, the long wavelength end, and the wavelength region near the short wavelength end and the long wavelength end of the photoelectric conversion element 140 can be favorably suppressed. Further, by suppressing the power of the incident surface 110b, an increase in the thickness of the light receiving lens 110a can be suppressed. As a result, the size and weight of the solar cell 100 can be reduced.

また、受光レンズ110aの入射面110bを凸面とすることにより、入射する太陽光のケラレを防止して有効に集光できる。さらに、受光レンズ110aの出射面110cをフレネル形状とすることにより、入射光に対する焦点距離をさらに短くできる。その結果、太陽電池100を小型化できる。   Further, by making the incident surface 110b of the light receiving lens 110a a convex surface, vignetting of incident sunlight can be prevented and light can be effectively collected. Further, by forming the exit surface 110c of the light receiving lens 110a in a Fresnel shape, the focal length for incident light can be further reduced. As a result, the size of the solar cell 100 can be reduced.

[1−3.導光部材]
以下に、導光部材120について、図3を参照しながら、説明する。
[1-3. Light guide member]
Hereinafter, the light guide member 120 will be described with reference to FIG.

図3に示すように、本実施の形態の導光部材120は、基板を構成するガラス基板130を挟んで光電変換素子140と対向するように配置される。導光部材120は、ガラス基板130の出射面130b側に配置され、光電変換素子140は、ガラス基板130の入射面130a側に接着して配置される。   As shown in FIG. 3, light guide member 120 of the present embodiment is arranged to face photoelectric conversion element 140 with glass substrate 130 constituting the substrate interposed therebetween. The light guide member 120 is arranged on the emission surface 130b side of the glass substrate 130, and the photoelectric conversion element 140 is adhered and arranged on the incident surface 130a side of the glass substrate 130.

導光部材120は、凸部を構成する凸レンズ121と、導光部122を有する。凸レンズ121の出射面121bと導光部122の入射面122aとは、密着して形成される。凸レンズ121は、入射面121aが正のパワーを備える凸面形状を有し、出射面121bは平面形状を有する。そして、凸レンズ121は、入射面121aに入射し、出射面121bから放射される出射光を、導光部122へ導く。   The light guide member 120 has a convex lens 121 forming a convex portion and a light guide portion 122. The exit surface 121b of the convex lens 121 and the entrance surface 122a of the light guide 122 are formed in close contact. In the convex lens 121, the entrance surface 121a has a convex shape having a positive power, and the exit surface 121b has a planar shape. Then, the convex lens 121 guides outgoing light incident on the incident surface 121 a and emitted from the outgoing surface 121 b to the light guide unit 122.

導光部122は、例えばロッドインテグレータなどで構成される。導光部122の光軸Lに平行な断面(以下、縦断面と呼ぶ)の形状は、入射面122a側から出射面122b側にかけてテーパ形状で形成される。これにより、導光部122に入射する光を、効果的に光電変換素子140に照射できる。   The light guide unit 122 includes, for example, a rod integrator. The shape of a cross section (hereinafter, referred to as a vertical cross section) parallel to the optical axis L of the light guide portion 122 is formed in a tapered shape from the incident surface 122a side to the emission surface 122b side. Thereby, the light incident on the light guide unit 122 can be effectively applied to the photoelectric conversion element 140.

このとき、凸レンズ121の出射面121bの面積(最大断面積に相当)は、導光部122の入射面122aの面積(最大断面積に相当)と同じである。これにより、凸レンズ121に入射する光を、確実に、導光部122の入射面122aに入射させることができる。   At this time, the area (corresponding to the maximum cross-sectional area) of the exit surface 121b of the convex lens 121 is the same as the area (corresponding to the maximum cross-sectional area) of the incident surface 122a of the light guide 122. Thereby, the light incident on the convex lens 121 can be surely incident on the incident surface 122a of the light guide 122.

また、凸レンズ121と導光部122の光軸Lに垂直(直交)な断面(以下、横断面と呼ぶ)の形状は、受光レンズ110aの形状に合わせて、例えば正方形で形成される。さらに、導光部122は、入射面122aの面積が、出射面122bの面積よりも大きくなるように形成される。つまり、導光部122の入射面122aから出射面122bに沿った縦断面形状は、テーパ状で形成される。なお、導光部122は、図3に示すように、横断面の面積が漸減するような形状に限定されない。導光部122の入射面122aが出射面122bよりも面積が大きいという条件を満たせば、その他の形状であってもよい。例えば、導光部122の縦断面形状は、入射面122aから出射面122bに沿った線が放物線のような曲線で形成されていてもよい。   The shape of a cross section perpendicular to (perpendicular to) the optical axis L of the convex lens 121 and the light guide 122 (hereinafter, referred to as a cross section) is formed, for example, in a square shape in accordance with the shape of the light receiving lens 110a. Further, the light guide 122 is formed such that the area of the incident surface 122a is larger than the area of the emission surface 122b. That is, the vertical cross-sectional shape from the incident surface 122a to the emission surface 122b of the light guide 122 is tapered. In addition, as shown in FIG. 3, the light guide 122 is not limited to a shape in which the area of the cross section gradually decreases. Other shapes may be used as long as the condition that the incident surface 122a of the light guide 122 is larger than the exit surface 122b is satisfied. For example, the vertical cross-sectional shape of the light guide 122 may be such that a line extending from the entrance surface 122a to the exit surface 122b is formed as a curve like a parabola.

以下に、本実施の形態の太陽電池100において、受光レンズ110aで集光された太陽光の光路について、図3および図4を用いて説明する。   Hereinafter, in solar cell 100 of the present embodiment, an optical path of sunlight collected by light receiving lens 110a will be described with reference to FIGS.

図4は、導光部のみからなる導光部材に入射する短波長光線と長波長光線の光路を示す断面図である。なお、図4は、本実施の形態の凸部を有する導光部材の光路と比較するための図である。つまり、図4は、導光部122のみで構成される導光部材120を用いた場合において、図3と同じ寸法関係で配置したときの太陽光の光路を示している。   FIG. 4 is a cross-sectional view showing an optical path of a short-wavelength light beam and a long-wavelength light beam incident on a light guide member including only a light guide section. FIG. 4 is a diagram for comparison with an optical path of a light guide member having a convex portion according to the present embodiment. That is, FIG. 4 illustrates the optical path of sunlight when the light guide member 120 including only the light guide unit 122 is used and arranged in the same dimensional relationship as in FIG. 3.

まず、上述したように、図3および図4に示す短波長光線200aは、受光レンズ110aで集光された後の波長400nmの太陽光の光路を示す。また、長波長光線200bは、受光レンズ110aで集光された後の波長1300nmの太陽光の光路を示す。   First, as described above, the short-wavelength light beam 200a illustrated in FIGS. 3 and 4 indicates the optical path of sunlight having a wavelength of 400 nm after being collected by the light receiving lens 110a. The long-wavelength light beam 200b indicates an optical path of sunlight having a wavelength of 1300 nm after being collected by the light receiving lens 110a.

つまり、図3に示すように、受光レンズ110aで集光された短波長光線200aは、受光レンズ110aの軸上色収差により、凸レンズ121の入射面121aの頂点121cより手前(受光レンズ110a側)の光軸L上の焦点位置FP400に集光する。焦点位置FP400に集光後の短波長光線200aは、発散しながら集光作用を有する凸レンズ121の入射面121aから入射し、透過する。そのとき、短波長光線200aは、導光部材120の凸レンズ121で発散角が抑制されながら、導光部122に入射する。導光部122に入射した短波長光線200aは、導光部122のテーパ状の側面122cで全反射しながら、ガラス基板130の入射面130aから入射する。ガラス基板130に入射した短波長光線200aは、ガラス基板130の出射面130bから光電変換素子140に入射する。このとき、受光レンズ110a、導光部材120やガラス基板130は、短波長光線200aが光電変換素子140の全面に確実に入射するように、所定の位置に配置されている。これにより、光電変換素子140は、短波長光線200aを効率よく、電気エネルギーに変換できる。   That is, as shown in FIG. 3, the short-wavelength light beam 200a condensed by the light receiving lens 110a is closer to the light receiving lens 110a than the vertex 121c of the incident surface 121a of the convex lens 121 due to the axial chromatic aberration of the light receiving lens 110a. The light is focused on the focal point FP400 on the optical axis L. The short-wavelength light beam 200a condensed at the focal position FP400 is incident on the incident surface 121a of the convex lens 121 having a condensing function while diverging, and is transmitted. At this time, the short-wavelength light beam 200 a enters the light guide unit 122 while the divergence angle is suppressed by the convex lens 121 of the light guide member 120. The short-wavelength light beam 200a incident on the light guide 122 enters from the incident surface 130a of the glass substrate 130 while being totally reflected by the tapered side surface 122c of the light guide 122. The short-wavelength light beam 200a that has entered the glass substrate 130 enters the photoelectric conversion element 140 from the emission surface 130b of the glass substrate 130. At this time, the light receiving lens 110 a, the light guide member 120, and the glass substrate 130 are arranged at predetermined positions so that the short-wavelength light beam 200 a reliably enters the entire surface of the photoelectric conversion element 140. Thereby, the photoelectric conversion element 140 can efficiently convert the short-wavelength light beam 200a into electric energy.

また、図3に示す長波長光線200bは、導光部材120の凸レンズ121で焦点位置が調整されて、導光部122に入射する。導光部122に入射した長波長光線200bは、光軸L上の焦点位置FP1300Rに集光される。焦点位置FP1300Rに集光後の長波長光線200bは、発散しながら、ガラス基板130の入射面130aから入射する。ガラス基板130に入射した長波長光線200bは、ガラス基板130の出射面130bから光電変換素子140の全面に入射する。つまり、長波長光線200bは、凸レンズ121により焦点位置FP1300Rに調整されて、発散角が、光電変換素子140の全面と一致するように照射される。これにより、光電変換素子140は、長波長光線200bを効率よく、電気エネルギーに変換できる。   The long-wavelength light beam 200 b illustrated in FIG. 3 is incident on the light guide unit 122 after the focal position is adjusted by the convex lens 121 of the light guide member 120. The long-wavelength light beam 200b that has entered the light guide unit 122 is condensed at a focal position FP1300R on the optical axis L. The long-wavelength light beam 200b after being condensed at the focal position FP1300R enters from the incident surface 130a of the glass substrate 130 while diverging. The long-wavelength light 200b incident on the glass substrate 130 is incident on the entire surface of the photoelectric conversion element 140 from the emission surface 130b of the glass substrate 130. That is, the long-wavelength light beam 200b is adjusted by the convex lens 121 to the focal position FP1300R, and is emitted such that the divergence angle coincides with the entire surface of the photoelectric conversion element 140. Thereby, the photoelectric conversion element 140 can efficiently convert the long-wavelength light beam 200b into electric energy.

一方、図4に示すように、導光部材120に凸レンズ121がない場合、受光レンズ110aから出射された短波長光線200aは、光軸L上の焦点位置FP400に集光する。なお、図4の焦点位置FP400は、寸法関係を同じに配置しているため、図3の焦点位置FP400と同じ位置となる。   On the other hand, as shown in FIG. 4, when the light guide member 120 does not have the convex lens 121, the short-wavelength light beam 200a emitted from the light receiving lens 110a is focused on the focal position FP400 on the optical axis L. Note that the focal position FP400 in FIG. 4 is arranged in the same dimensional relationship, and thus has the same position as the focal position FP400 in FIG.

そして、焦点位置FP400に集光した光は、発散しながら、直接、導光部122の入射面122aから入射する。導光部122に入射した短波長光線200aは、導光部122の側面122cで全反射しながら、ガラス基板130を通過して、光電変換素子140に入射する。この場合、図4に示すように、短波長光線200aの一部は、光電変換素子140に入射することができない。そのため、導光部材120に凸レンズ121がない場合、太陽電池100の光の利用効率が、低下する。   Then, the light condensed at the focal position FP400 is directly incident from the incident surface 122a of the light guide unit 122 while diverging. The short-wavelength light beam 200a incident on the light guide unit 122 passes through the glass substrate 130 and is incident on the photoelectric conversion element 140 while being totally reflected on the side surface 122c of the light guide unit 122. In this case, as shown in FIG. 4, a part of the short-wavelength light beam 200a cannot enter the photoelectric conversion element 140. Therefore, when the light guide member 120 does not include the convex lens 121, the light use efficiency of the solar cell 100 decreases.

また、図4に示す長波長光線200bは、直接、導光部122の入射面122aから入射する。導光部122に入射した長波長光線200bは、光軸L上の受光レンズ110aの焦点位置FP1300に集光される。このとき、焦点位置FP1300は、図3に示す焦点位置FP1300Rより、光電変換素子140側になる。そのため、焦点位置FP1300に集光後の長波長光線200bは、発散しながら、ガラス基板130を通過して、光電変換素子140の一部の面に入射する。このとき、光が照射されない光電変換素子140の一部の抵抗が上昇する。そのため、光電変換素子140の変換効率が低下する。   In addition, the long-wavelength light beam 200b illustrated in FIG. 4 is directly incident from the incident surface 122a of the light guide unit 122. The long-wavelength light beam 200b incident on the light guide 122 is focused on the focal position FP1300 of the light receiving lens 110a on the optical axis L. At this time, the focal position FP1300 is closer to the photoelectric conversion element 140 than the focal position FP1300R shown in FIG. Therefore, the long-wavelength light beam 200b collected at the focal position FP1300 diverges, passes through the glass substrate 130, and is incident on a part of the surface of the photoelectric conversion element 140. At this time, the resistance of a part of the photoelectric conversion element 140 not irradiated with light increases. Therefore, the conversion efficiency of the photoelectric conversion element 140 decreases.

なお、図4の構成の場合、受光レンズ110aの配置位置や、パワーを大きくして光電変換素子140に適切に光を入射させることができる。しかし、この場合、太陽電池100が大型化する。   In the case of the configuration shown in FIG. 4, the light can be appropriately incident on the photoelectric conversion element 140 by increasing the arrangement position and the power of the light receiving lens 110 a. However, in this case, the size of the solar cell 100 increases.

つまり、本実施の形態の導光部材120は、凸レンズ121と導光部122で構成される。そして、凸レンズ121の出射面121bを、導光部122の入射面122aに密着して配置する。これにより、光電変換素子140に光電変換波長帯域の光を効果的に、光電変換素子140の全面に照射できる。その結果、光の利用効率が低下することなく、小型・薄型で、高効率な太陽電池100を実現できる。   That is, the light guide member 120 according to the present embodiment includes the convex lens 121 and the light guide 122. Then, the emission surface 121b of the convex lens 121 is arranged in close contact with the incidence surface 122a of the light guide 122. Accordingly, the photoelectric conversion element 140 can be effectively irradiated with light in the photoelectric conversion wavelength band on the entire surface of the photoelectric conversion element 140. As a result, a small, thin, and highly efficient solar cell 100 can be realized without lowering the light use efficiency.

[2.効果]
以上のように、本実施の形態の太陽電池100は、集光作用を持つ受光レンズ110aと、受光レンズ110aの出射面110c側に配置される導光部材120と、導光部材120の出射面122bと当接して配置されるガラス基板130と、導光部材120と対向する位置に配設され、ガラス基板130から出射された光が入射する光電変換素子140を備える。導光部材120の入射面121aは、凸面で構成される。
[2. effect]
As described above, solar cell 100 of the present embodiment includes light-receiving lens 110a having a light-condensing action, light-guiding member 120 disposed on light-emitting surface 110c side of light-receiving lens 110a, and light-emitting surface of light-guiding member 120. A glass substrate 130 is provided in contact with the light guide member 122 b, and a photoelectric conversion element 140 is provided at a position facing the light guide member 120 and receives light emitted from the glass substrate 130. The incident surface 121a of the light guide member 120 is configured as a convex surface.

これにより、入射する光電変換波長帯域の太陽光を、光電変換素子140の全面に導くことができる。その結果、光の利用効率を向上することができる。   Thereby, the incident sunlight of the photoelectric conversion wavelength band can be guided to the entire surface of the photoelectric conversion element 140. As a result, light use efficiency can be improved.

(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the embodiments have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like are made. Further, it is also possible to form a new embodiment by combining the components described in the above embodiment.

そこで、以下に、他の実施の形態を例示する。   Therefore, another embodiment will be exemplified below.

つまり、本実施の形態では、凸レンズ121の出射面121bの面積が、導光部122の入射面122aの面積と等しい構成を例に説明したが、これに限られない。例えば、凸レンズ121の出射面121bの面積を、導光部122の入射面122aの面積より小さくしてもよい。   That is, in the present embodiment, the configuration in which the area of the exit surface 121b of the convex lens 121 is equal to the area of the incident surface 122a of the light guide 122 is described as an example, but the present invention is not limited to this. For example, the area of the exit surface 121b of the convex lens 121 may be smaller than the area of the entrance surface 122a of the light guide 122.

具体的には、太陽光追尾装置を設けて、太陽光を常に垂直に近い状態で入射させる太陽電池100構成の場合、常に、太陽を光軸L上に配置できる。そのため、受光レンズ110aによる集光により、凸レンズ121に入射する光束の断面積を、常に導光部122の入射面122aの面積よりも小さくできる。これにより、凸レンズ121の出射面121bの面積を、導光部122の入射面122aの面積よりも小さくできる。   Specifically, in the case of a solar cell 100 configuration in which a solar tracking device is provided and the solar light is always incident in a nearly vertical state, the sun can always be arranged on the optical axis L. Therefore, the cross-sectional area of the light beam incident on the convex lens 121 can always be made smaller than the area of the incident surface 122a of the light guide unit 122 by the light condensing by the light receiving lens 110a. Thereby, the area of the exit surface 121b of the convex lens 121 can be made smaller than the area of the entrance surface 122a of the light guide 122.

また、本実施の形態では、導光部材120を、別体で凸レンズ121と導光部122を構成した例で説明したが、これに限られない。例えば、凸レンズ121と導光部122を一体で形成して導光部材120としてもよい。これにより、一体化するステップ、例えば接着などのステップを省いて、効率的に導光部材120を得ることができる。   In the present embodiment, the light guide member 120 has been described as an example in which the convex lens 121 and the light guide unit 122 are configured separately, but the present invention is not limited to this. For example, the light guide member 120 may be formed by integrally forming the convex lens 121 and the light guide section 122. Accordingly, the light guide member 120 can be efficiently obtained without the step of integrating, for example, the step of bonding or the like.

なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。   It should be noted that the above-described embodiments are intended to exemplify the technology according to the present disclosure, and thus various changes, substitutions, additions, omissions, and the like can be made within the scope of the claims or the equivalents thereof.

本開示は、太陽光発電に用いられる集光型の太陽電池などに適用可能である。   The present disclosure is applicable to a concentrating solar cell used for photovoltaic power generation.

100 太陽電池
110 受光レンズアレイ
110a 受光レンズ
110b,121a,122a,130a 入射面
110c,121b,122b,130b 出射面
120 導光部材
121 凸レンズ(凸部)
121c 頂点
122 導光部
122c 側面
130 ラス基板(基板)
140 電変換素子
150 水膜
160 方性導電膜
170 線基板
180 熱板
200 平行光(平行光)
200a 波長光線
200b 波長光線
200c 波長光線
FP400,FP510,FP1300,FP1300R 点位置
L 軸
REFERENCE SIGNS LIST 100 solar cell 110 light receiving lens array 110 a light receiving lens 110 b, 121 a, 122 a, 130 a incident surface 110 c, 121 b, 122 b, 130 b emission surface 120 light guide member 121 convex lens (convex portion)
121c Vertex 122 Light guide 122c Side 130 Lath substrate (substrate)
140 Electric conversion element 150 Water film 160 Anisotropic conductive film 170 Wire substrate 180 Hot plate 200 Parallel light (parallel light)
200a Wavelength light 200b Wavelength light 200c Wavelength light FP400, FP510, FP1300, FP1300R Point position L axis

Claims (10)

樹脂材料からなる第1のレンズと、
前記第1のレンズから出射された光を受光する第2のレンズと、
複数のpn接合で積層される多接合型の光電変換素子と、
前記第2のレンズと前記光電変換素子とが対向する位置に接着され、透光性を有する基板と、
を備え、
前記第1のレンズは、複数がアレイ状に一体形成されており、
前記第2のレンズおよび前記光電変換素子は、前記第1のレンズと一対一対応で複数有し、
前記第2のレンズは、前記第1のレンズから受光する側は凸形状であり、
前記第1のレンズおよび前記第2のレンズは、前記光電変換素子に対して、前記光電変換素子の光電変換波長帯域の光を集光する位置に基づいて配置され、
前記第1のレンズは、集光する光の波長が短いほど前記光電変換素子よりも前記第2のレンズ側に近い位置に焦点位置を有する特性をもった凸形状である、太陽電池。
A first lens made of a resin material,
A second lens for receiving light emitted from the first lens;
A multi-junction photoelectric conversion element stacked with a plurality of pn junctions;
A substrate having a light-transmitting property, which is bonded to a position where the second lens and the photoelectric conversion element face each other;
With
A plurality of the first lenses are integrally formed in an array,
The second lens and the photoelectric conversion element have a plurality of one-to-one correspondence with the first lens,
The second lens has a convex shape on the side receiving light from the first lens,
The first lens and the second lens are disposed with respect to the photoelectric conversion element based on a position of condensing light in a photoelectric conversion wavelength band of the photoelectric conversion element,
The solar cell , wherein the first lens has a convex shape having a characteristic that the shorter the wavelength of condensed light, the closer the focal point to the second lens than the photoelectric conversion element .
前記光電変換素子の光電変換波長帯域の短波長端における前記第1のレンズの焦点位置は、前記第2のレンズよりも前記第1のレンズ側に位置する、
請求項1に記載の太陽電池。
A focal position of the first lens at a short wavelength end of a photoelectric conversion wavelength band of the photoelectric conversion element is located closer to the first lens than the second lens.
The solar cell according to claim 1.
前記光電変換素子の光電変換波長帯域の長波長端における前記第1のレンズの焦点位置は、前記第2のレンズよりも前記光電変換素子側に位置する、
請求項1または2に記載の太陽電池。
The focal position of the first lens at the long wavelength end of the photoelectric conversion wavelength band of the photoelectric conversion element is located closer to the photoelectric conversion element than the second lens.
The solar cell according to claim 1.
前記第2のレンズは、前記光電変換素子の光電変換波長帯域の短波長端における前記第1のレンズの焦点位置と、長波長端における前記第1のレンズの焦点位置との間に配置される、
請求項1から請求項3のいずれか1項に記載の太陽電池。
The second lens is disposed between a focal position of the first lens at a short wavelength end of a photoelectric conversion wavelength band of the photoelectric conversion element and a focal position of the first lens at a long wavelength end. ,
The solar cell according to any one of claims 1 to 3.
前記光電変換素子の光電変換波長帯域の内、前記第1のレンズの焦点距離の変化量の中心値における波長の焦点位置は、前記第2のレンズの入射面上に位置する、
請求項1から請求項3のいずれか1項に記載の太陽電池。
In the photoelectric conversion wavelength band of the photoelectric conversion element, a focal position of a wavelength at a central value of a change amount of a focal length of the first lens is located on an incident surface of the second lens.
The solar cell according to any one of claims 1 to 3.
前記第2のレンズの出射面側に導光部をさらに備える、
請求項1から5のいずれか1項に記載の太陽電池。
Further comprising a light guide on the exit surface side of the second lens;
The solar cell according to claim 1.
前記第2のレンズは、光軸に垂直な断面における最大断面積が、前記導光部の最大断面積以下である、
請求項6に記載の太陽電池。
In the second lens, a maximum cross-sectional area in a cross section perpendicular to an optical axis is equal to or less than a maximum cross-sectional area of the light guide unit.
A solar cell according to claim 6.
前記導光部は、光軸に平行な断面形状が、光の入射側から出射側にかけてテーパ形状である、
請求項6または請求項7のいずれか1項に記載の太陽電池。
The light guide section has a cross-sectional shape parallel to the optical axis, a tapered shape from the light incident side to the light output side,
The solar cell according to claim 6.
樹脂材料からなる前記基板をさらに備え、
複数の前記発電光電素子は、基板上に形成される、
請求項1から8のいずれか1項に記載の太陽電池。
Further comprising the substrate made of a resin material,
The plurality of power generation photoelectric elements are formed on a substrate,
The solar cell according to claim 1.
第1のレンズと、
前記第1のレンズから出射された光を受光する第2のレンズと、
pn接合で積層される多接合型であり、前記第2のレンズによって集光された光を受光する光電変換素子と、
前記第2のレンズと前記光電変換素子とが対向する位置に接着され、透光性を有する基板と、
を備え、
前記第2のレンズは、前記第1のレンズから出射された光を受光する側は凸形状であり、
前記第1のレンズおよび前記第2のレンズは、前記光電変換素子に対して、前記光電変換素子の光電変換波長帯域の光を集光する位置に基づいて配置され、
前記第1のレンズは、集光する光の波長が短いほど前記光電変換素子よりも前記第2のレンズ側に近い位置に焦点位置を有する特性をもった凸形状である、太陽電池。
A first lens;
A second lens for receiving light emitted from the first lens;
a multi-junction type photoelectric conversion element that receives light condensed by the second lens;
A substrate having a light-transmitting property, which is bonded to a position where the second lens and the photoelectric conversion element face each other;
With
The second lens has a convex shape on a side that receives light emitted from the first lens,
The first lens and the second lens are disposed with respect to the photoelectric conversion element based on a position of condensing light in a photoelectric conversion wavelength band of the photoelectric conversion element,
The solar cell , wherein the first lens has a convex shape having a characteristic that the shorter the wavelength of condensed light, the closer the focal point to the second lens than the photoelectric conversion element .
JP2016002210A 2015-03-23 2016-01-08 Solar cell Expired - Fee Related JP6670991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/070,546 US20160284912A1 (en) 2015-03-23 2016-03-15 Photovoltaic cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059014 2015-03-23
JP2015059014 2015-03-23

Publications (3)

Publication Number Publication Date
JP2016181678A JP2016181678A (en) 2016-10-13
JP2016181678A5 JP2016181678A5 (en) 2019-02-14
JP6670991B2 true JP6670991B2 (en) 2020-03-25

Family

ID=57131207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002210A Expired - Fee Related JP6670991B2 (en) 2015-03-23 2016-01-08 Solar cell

Country Status (1)

Country Link
JP (1) JP6670991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129773A1 (en) * 2018-12-20 2020-06-25 住友電気工業株式会社 Light-condensing solar power generation unit, light-condensing solar power generation module, light-condensing solar power generation panel, light-condensing solar power generation device, and method for manufacturing light-condensing solar power generation unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289898A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2009529791A (en) * 2006-03-08 2009-08-20 ライト プレスクリプションズ イノベーターズ エルエルシー Solar concentrator
JP5342326B2 (en) * 2009-05-28 2013-11-13 株式会社クラレ Fresnel lens sheet, manufacturing method thereof, manufacturing method of stamper used therefor, and solar power generation apparatus including Fresnel lens sheet
US20120227796A1 (en) * 2011-03-09 2012-09-13 Greenvolts, Inc. Optics within a concentrated photovoltaic receiver containing a cpv cell
EP2660874B1 (en) * 2011-05-20 2016-09-14 Panasonic Intellectual Property Management Co., Ltd. Multi-junction compound solar cell, multi-junction compound solar battery, and method for manufacturing same
JP2013172104A (en) * 2012-02-22 2013-09-02 Sharp Corp Light condensing type photovoltaic power generation module and manufacturing method of the same
JP2014010251A (en) * 2012-06-28 2014-01-20 Sharp Corp Secondary lens, solar-cell mounting body, condensing type photovoltaic power generation system and condensing type photovoltaic power generation module

Also Published As

Publication number Publication date
JP2016181678A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2009125722A1 (en) Optical member for light concentration and concentrator photovoltaic module
AU2006227140B2 (en) Multi-junction solar cells with an aplanatic imaging system
KR101791130B1 (en) Solar cell module
US20130068300A1 (en) Luminescent solar concentrator system
KR100933213B1 (en) Concentration lens for solar power generation
US9813017B2 (en) Adiabatic secondary optics for solar concentrators used in concentrated photovoltaic systems
US20100282316A1 (en) Solar Cell Concentrator Structure Including A Plurality of Glass Concentrator Elements With A Notch Design
JP6670991B2 (en) Solar cell
CN101894875B (en) A kind of high-efficiency concentrating solar photoelectric converter
KR20110123922A (en) Solar concentrator
US20110259421A1 (en) Photovoltaic module having concentrator
US20120180847A1 (en) Method for improving solar energy condensation efficiency in solar energy condensation electric power facility
US20160284912A1 (en) Photovoltaic cell
JP2016181679A (en) Solar cell
KR101429106B1 (en) Solar cell with microlens array for condensing lights into the cell
KR101534756B1 (en) Thin film type solar cell, method of fabricating the same and method of increasing efficiency of a thin film type solar cell
US20150287842A1 (en) Photovoltaic system including light trapping filtered optical module
KR101718796B1 (en) Solar cell using photon conversion and method for manufacturing the same
US20160284911A1 (en) Photovoltaic cell
KR101217247B1 (en) condensing type solar cell
KR101327211B1 (en) High-concentrated photovoltaic module
AU2008351529A1 (en) Photovoltaic concentration module and device
JP2016181678A5 (en)
KR20230073504A (en) Light collect cell for Solar battery
WO2019208716A1 (en) Concentrator solar cell module

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R151 Written notification of patent or utility model registration

Ref document number: 6670991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees