JP6775537B2 - 自動車運行に対応して運転者プロファイリングをするためのシステムおよび方法 - Google Patents

自動車運行に対応して運転者プロファイリングをするためのシステムおよび方法 Download PDF

Info

Publication number
JP6775537B2
JP6775537B2 JP2018014659A JP2018014659A JP6775537B2 JP 6775537 B2 JP6775537 B2 JP 6775537B2 JP 2018014659 A JP2018014659 A JP 2018014659A JP 2018014659 A JP2018014659 A JP 2018014659A JP 6775537 B2 JP6775537 B2 JP 6775537B2
Authority
JP
Japan
Prior art keywords
feature
features
data
driver
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018014659A
Other languages
English (en)
Other versions
JP2018136934A (ja
Inventor
アリジット・チャウドゥリー
アヴィク・ゴース
タパス・チャクラヴァーティ
Original Assignee
タタ・コンサルタンシー・サーヴィシズ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タタ・コンサルタンシー・サーヴィシズ・リミテッド filed Critical タタ・コンサルタンシー・サーヴィシズ・リミテッド
Publication of JP2018136934A publication Critical patent/JP2018136934A/ja
Application granted granted Critical
Publication of JP6775537B2 publication Critical patent/JP6775537B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

関係出願の相互参照と優先権
本出願は、2017年2月23日に出願されたインド特許出願(発明の名称:自動車運行に対応して運転者プロファイリングをするためのシステムおよび方法)、出願番号第201721006435号の優先権を主張する。前記出願の全内容が参照により本明細書に組み込まれている。
本出願の実施形態は、一般に運転者プロファイルの特定に関し、より詳細には、自動車運行に関連するGPSデータを使用する運転者プロファイリングをするためのシステムおよび方法に関する。
インテリジェント輸送システムは、交通管理と輸送ネットワークの便利な使用とに関連する新規なサービスを提供する高度なアプリケーションとして考えられている。様々な用途の中で、運転行動分析によって運転安全を保証するアプリケーションが広く注目されている。運転安全は、運転者の正常および異常運転行動と直接的に関連しており、運転者の運転行動を検出するための多くのシステムが開発され、広く使用されている。これらのシステムは、通常、運転者の頭の動き、運転者の心拍の変化、ステアリング・ホイールの移動軌道、運転者の眼球運動などの運転者の生理学的信号の検出を含む。
しかしながら、従来の運転者の運転行動検出システムは、一定の制限がある。前記システムは、センサデータを収集するための複数のセンサに依存しており、これらのセンサデータは運転行動を検出するために利用することができる。そのようなセンサの例には、加速度計センサ、ジャイロセンサ、車速捕捉センサ、位置捕捉センサ、気象捕捉センサなどが含まれるが、これらに限定されない。従来のシステムは、運転者行動検出およびプロファイリングのための多数のセンサに依存しているため、計算処理を集中させ且つ時間を要してプロセス運転者をプロファイリングする。
以下は、実施形態の基本的な理解を提供するために、本開示に係るいくつかの実施形態の簡略化された概要を提示する。この概要は、実施形態についての外延的な概要ではない。それらは、実施形態の重要点/重要な要素を特定すること、または実施形態の範囲を示すことを意図するものではない。その唯一の目的は、以下に示すより詳細な説明の前置きとして、いくつかの実施形態を簡略化した形で提示することである。
上記の観点から、本明細書の実施形態は、自動車運行に対応して運転者プロファイリングをするための方法およびシステムを提供する。一態様では、自動車運行に対応してプロファイリングするためのプロセッサ実行方法が提供される。前記方法は、運行中に捕捉されたGPSデータに基づき、第1のハードウェア・プロセッサおよび第2のハードウェア・プロセッサを介して、複数の特徴を選択的に計算するステップを含む。前記選択的に計算するステップは、計算装置において前記複数の特徴から第1の特徴の組を計算し、クラウドサーバにおいて前記複数の特徴から第2の特徴の組を計算するステップを含む。前記第1の特徴の組と前記第2の特徴の組とは、計算複雑度レベルが異なる。前記複数の特徴は、前記運行に関連する前記GPSデータから計算された複数の属性についての統計データを含む。さらに、前記方法は、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記クラウドサーバに関連付けられたリポジトリにおいて、前記運行に対応する前記複数の特徴を格納するステップを含み、前記リポジトリは、複数の完了した運行のついての運転者プロファイルの組に関連する以前に計算された特徴データをさらに含む。さらに、前記方法は、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記複数の特徴と前記以前に計算された特徴データとの比較に基づいて、前記運行に対応する運転者プロファイルを、前記運転者プロファイルの組の中から特定するステップを含む。
他の態様では、自動車運行に対応して運転者プロファイリングをするためのシステムが提供される。前記システムは、計算装置に関連付けられた第1のメモリと、命令を格納するためのクラウドサーバに関連付けられた第2のメモリと、前記第1のメモリに結合された第1のハードウェア・プロセッサと、前記第2のメモリに結合された第2のハードウェア・プロセッサと備え、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサは、前記命令によって、運行中に捕捉されたGPSデータに基づき、複数の特徴を選択的に計算する動作であって、前記選択的に計算する動作は、前記計算装置において前記複数の特徴から第1の特徴の組を計算し、前記クラウドサーバにおいて前記複数の特徴から第2の特徴の組を計算する動作を含む、動作をするように構成されている。前記第1の特徴の組と前記第2の特徴の組とは、計算複雑度レベルが異なり、前記複数の特徴は、前記運行に関連する前記GPSデータから計算された複数の属性についての統計データを含む。さらに、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサは、前記命令によって、前記クラウドサーバに関連付けられたリポジトリにおいて前記運行に対応する前記複数の特徴を格納する動作をする。前記リポジトリは、複数の完了した運行のついての運転者プロファイルの組に関連する以前に計算された特徴データをさらに含む。さらに、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサは、前記命令によって、前記複数の特徴と前記以前に計算された特徴データとの比較に基づいて、前記運行に対応する運転者プロファイルを、前記運転者プロファイルの組の中から特定する動作をするように構成されている。
さらに他の態様では、自動車運行に対応して運転者プロファイリングをするための方法を実行するためのコンピュータプログラムを有する非一時的コンピュータ可読媒体が提供される。前記方法は、運行中に捕捉されたGPSデータに基づき、第1のハードウェア・プロセッサおよび第2のハードウェア・プロセッサを介して複数の特徴を選択的に計算するステップを含む。前記選択的に計算するステップは、計算装置において前記複数の特徴から第1の特徴の組を計算し、クラウドサーバにおいて前記複数の特徴から第2の特徴の組を計算するステップを含む。前記第1の特徴の組と前記第2の特徴の組とは、計算複雑度レベルが異なる。前記複数の特徴は、前記運行に関連する前記GPSデータから計算された複数の属性についての統計データを含む。さらに、前記方法は、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記クラウドサーバに関連付けられたリポジトリにおいて、前記運行に対応する前記複数の特徴を格納するステップを含み、前記リポジトリは、複数の完了した運行のついての運転者プロファイルの組に関連する以前に計算された特徴データをさらに含む。さらに、前記方法は、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記複数の特徴と前記以前に計算された特徴データとの比較に基づいて、前記運行に対応する運転者プロファイルを、前記運転者プロファイルの組の中から特定するステップを含む。
詳細な説明が添付図面を参照して示される。図面において、参照番号の最も左の桁は、最初に現れる図の参照番号を特定する。類似の特徴およびモジュールを示すために、図面全体にわたって同じ参照番号が使用されている。
本願の主題の実施形態に係る、自動車運行に対応して運転者プロファイリングをするためのシステムのネットワーク実施形態を示す。 一実施形態に係る、自動車運行に対応して運転手プロファイリングをするためのシステムのブロック図を示す。 例示的な実施形態に係る、自動車運行に対応して運転者プロファイリングをするための方法の流れ図を示す。 例示的な実施形態に係る、自動車運行に対応して運転者プロファイリングをするための方法の流れ図を示す。 例示的な実施形態に係る、運転者プロファイルの特定の一例を示す。
本明細書のブロック図は、本願の主題の原理を具体化する例示的なシステムおよび装置の概念図を表す、と当業者は理解されるべきである。同様に、任意のフローチャート、流れ図等は、そのようなコンピュータまたはプロセッサが明示的に示されているか否かに関わらず、コンピュータ可読媒体に実質的に表され、コンピュータまたはプロセッサによって実行される様々なプロセスを表す。
現在のインテリジェントな輸送システムは、自動車の性能最適化のために埋め込みセンサおよび計算手段を備えている。自動車のより良い性能およびメンテナンスのためには、運転者を特定することと、前記運転者の性質的な傾向、即ち特有の運転スタイル、とを特定することが重要である。高度な運転手支援システムでは、運転者を特定することが重要である。従来、少数の専用センサを使用することによって運転者を特定することが達成されている。運転者特定のための従来の手法では、センサのリストから収集されたデータについての機械学習を利用する。このようなセンサの例としては、ブレーキペダル・ポジションセンサ、ハンドル角センサ、横方向加速度センサ、ヨーレート、ギヤシフトレバー、車速、推定ギヤセンサ、軸角速度センサ、アクセルペダル・センサ、エンジンRPMセンサ(OBD II)、燃料消費率、スロットル位置、旋回角度センサ等を含む。
上述のセンサは、センサデータを取得し、該センサデータに基づいて運転者を識別するように自動車内に組み込まれている。しかしながら、前記センサは、自動車の外部に存在するため、前記センサは追加のコストを生じさせる。さらに、複数のセンサを配置することにより、自動車の運転およびメンテナンスのオーバーヘッドが増大する。また、センサをインストールして通信すると、追加のオーバーヘッドが発生する。従来のシステムは、それらに関連する付加的な物流コストを有し、その結果、その高速かつ大規模な展開が制限される。
他の代替的な従来のシステムは、運転者の生体識別を含む。しかしながら、上述した従来の運転者識別システムのいずれも、直接的なプライバシー違反のために実行可能な解決手段とはみなされない。加えて、前記従来のシステムは、運転者/ユーザによって故意に無効にされ得る。さらに、運転者の独特な運転スタイルを識別するために、運転者の識別が必要ではないこともある。例えば、現在のシステムは、ある人の運転スタイルから逸脱したことが特に特定されたときを判断する。しかしながら、前記判断は、運転者の典型的な運転スタイルを特定することには役立たない。
上記問題に鑑みて、上述された欠点および技術的限界を効果的に克服することができる運転者の運転行動を生成するために、運転行動分析のための有効な解決手段を提供することができるシステムおよび方法が必要とされている。さらに、移動車両の複数のパラメータを検出するセンサを必要最小限の数として運転スコアを効率的に算出することができるシステムおよび方法が必要とされている。
開示された実施形態は、記録されたGPSデータ(すなわち、自動車が動いているとき、または自動車の走行中にGPSセンサから収集されたデータ)のみを利用し、前記GPSデータを処理して複数の運転者プロファイルから1つの運転者プロファイルを識別することによって、上述の課題を克服する。ここで、「運転者プロファイル」とは、運転者の運転行動に対応して取得される各種のパラメータをいう。一実施形態では、複数の運転者プロファイルは、自動車に関連付けられ得る運転者についての運転行動を含む。例えば、個人の自動車または家族の自動車について、自動車には3つから4つの運転者プロフィールが関連付けられ得る。しかし、商業用自動車については、多くの運転者が異なる時間に特定の自動車を運転する可能性があるため、10から15個の運転者プロファイルが前記自動車に関連付けられ得る。
さらに、本実施形態は、計算上効率的なシステムを達成するために、データの計算/処理がリモートサーバと自動車に搭載された計算装置との間で分割されるような計算方法を開示する。
本明細書の実施形態およびその様々な特徴およびその有利な詳細は、添付の図面に示され、以下の説明において詳述される非限定的な実施形態を参照してより完全に説明される。本明細書で使用される実施例は、本明細書の実施形態が実施され得る方法の理解を容易にし、さらに当業者が本明細書の実施形態を実施することを可能にすることのみを意図している。したがって、実施例は、本明細書の実施形態の範囲を限定するものとして解釈されるべきではない。
方法およびシステムは、本明細書に記載された特定の実施形態に限定されない。さらに、本方法およびシステムは、本明細書に記載された他のモジュールおよび方法とは独立して別個に実施されることができる。各デバイス要素/モジュールおよび方法は、他の要素/モジュールおよび他の方法と組み合わせて使用することができる。
運転者プロファイリングをするためのシステムおよび方法が実施される態様は、図1から5に関連付けて詳細に説明されている。説明された運転者プロファイリングをするための方法およびシステムの態様は、任意の数の異なるシステム、ユーティリティ環境、および/または構成で実施され得るが、本実施形態は以下の例示的なシステムに関して説明される。
図1を参照すると、本願の主題の実施形態に係る、自動車運行について運転者プロファイリングをするためのシステム102のネットワーク実施形態100が示されている。種々の実施形態において、システム102は、自動車の運転者、例えば、運行に対応する自動車110a、110bの運転者の運転者プロファイルおよび/または運転行動を識別することを容易にする。ここで、「運行」という用語は、目的地に到着するために、開始時刻から停止時刻までの連続的な運行を示すこととしてもよい。
本明細書では、システム102は、主として、運行中に捕捉されたGPSデータに基づいて運転者プロファイルを識別する。GPSデータは、一次データ、派生データ、および一次データおよび派生データの複数の派生物などの複数の属性を含むことができる。一次データは、GPSデータを使用して直接捕捉することができるデータを含むことができる。例えば、プライマリデータには、運行に関連する速度、加速度、および経路が含まれ得る。導出されたデータは、横方向加速度、角速度、および運行のジャーク(jerk)エネルギーに関連するデータを含むことができる。「ジャーク」という用語は、自動車の加速の変化率を示すこととしてもよい。「ジャークエネルギー」という用語は、1秒の時間窓でのジャーク信号のエネルギーを意味することとしてもよい。ジャークエネルギーは、その時間あたりにおける5つの連続したジャークの二乗の和によって計算し得る。一次データおよび派生データからの複数の派生物は、一次派生物または一次および/または派生データの差、二次派生物または一次および/または派生データの差などを含むことができる。
ここで、本願の主題は、システム102が自動車運行についての運転者プロファイリングをするために実施されることを考慮して説明されているが、システム102は特定の機械または環境に限定されないことが理解される。システム102は、様々な領域のためだけでなく、高い計算負荷および複雑さを伴うデータについて利用され得る。一実施形態では、システム102は、クラウドサーバ、例えば、クラウドサーバ108と自動車に搭載可能なGPSロギングデバイスとの間に分散させることができる。例えば、システム102aはクラウドサーバ内に具現化され、システム102bはオンボードGPSロギングデバイスにインストールされ得る。システム102aおよびシステム102bは、まとめてシステム102と呼ぶことができる。
システム102は、ラップトップ・コンピュータ、デスクトップ・コンピュータ、ノートブック、ワークステーション、メインフレーム・コンピュータ、サーバ、ネットワークサーバなどの様々なコンピューティングシステムに実装することができる。システム102aは、1つまたは複数のGPSロギングデバイスおよび/または機械106a、106bなどのような複数の装置からGPSデータを受信することができ、以下、総称してGPSデバイス104と呼ぶ。GPSデバイス104の例には、GPSトラッカ、ポータブル・コンピュータ、パーソナル・デジタル・アシスタント、ハンドヘルド・デバイス、ワークステーション、デバイスを具現化するGPSセンサ、GPSデータを格納するための機械に備えられた記憶デバイスなどが含まれる。GPSデバイス104は、ネットワーク106を介してシステム102に通信可能に接続されている。
一実施形態では、ネットワーク106は、無線ネットワーク、有線ネットワーク、またはそれらの組み合わせであってもよい。ネットワーク106は、イントラネット、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、インターネットなどのような異なるタイプのネットワークのうちの1つとして実装されることができる。ネットワーク106は、専用ネットワークであってもよく、共有ネットワークであってもよい。共有ネットワークは、相互に通信する、HTTP(Hypertext Transfer Protocol)、TCP/IP(Transmission Control Protocol /インターネットプロトコル)、WAP(Wireless Application Protocol)などの様々なプロトコルを使用する様々なタイプのネットワークの集合体を表す。さらに、ネットワーク106は、ルータ、ブリッジ、サーバ、コンピューティングデバイス、ストレージデバイスなどを含む様々なネットワークデバイスを含むことができる。
GPSデバイス104は、ネットワーク106を介してシステム102にGPSデータを送信することができる。システム102は、運転者プロファイリングをするための自動車運行に関連するGPSデータを分析する。一実施形態では、GPSデータは、運行の完了時にシステム102に送信されてもよい。あるいは、GPSデータは、所定の期間が経過したときにシステム102に送信されてもよい。例えば、運行中において1時間ごとにGPSデータをシステム102に送ることとしてもよい。運転者プロファイリングをするためのシステム102の例示的な実装は、図2を参照してさらに説明される。
図2は、本願開示の一実施形態に係る、運転者プロファイリングをするためのシステム200のブロック図を示す。システム200は、プロセッサ202a、202bのような1つ以上のハードウェア・プロセッサと、メモリ204a、204bなどの1つまたは複数のメモリと、ユーザインタフェース206a、206bなどのユーザインタフェースと、ネットワークインタフェースユニット208a、208bなどのネットワークインタフェースユニットとを備えるか、さもなければ、これらと通信する。一実施形態では、プロセッサ202a、メモリ204a、ユーザインタフェース206a、およびネットワークインタフェースユニット208aは、例えばシステムバス210aまたは類似機構のシステムバスによって結合されてもよい。
ここで、ハードウェア・プロセッサ202a、メモリ204a、UI206a、ネットワークインターフェース208a、およびシステムバス210aは、GPSデバイス、例えば(図1の)GPSデバイス104内に具体化されてもよく、したがって、ハードウェア・プロセッサ202a、メモリ204a、UI206aおよびネットワークインターフェース208aは、まとめてGPSシステム212またはシステム212と呼ぶことができる。また、GPSシステム212は、計算デバイスに組み込まれているので、「GPSシステム212」、「システム212」および「計算デバイス212」は、本明細書において交換可能に使用されることができる。
ハードウェア・プロセッサ202b、メモリ204b、およびUI206bは、クラウドサーバ、例えば(図1の)クラウドサーバ108において具体化され得る。一実施形態では、プロセッサ202b、メモリ204b、ユーザインタフェース206b、およびネットワークインタフェースユニット208bは、システムバス210bまたは類似の機構などのシステムバスによって結合されてもよい。ここで、ハードウェア・プロセッサ202b、メモリ204b、ユーザインタフェース206b、ネットワークインタフェースユニット208b、システムバス210bは、クラウドサーバ上に実装されているため、ハードウェア・プロセッサ202b、メモリ204b、ユーザインタフェース206b、ネットワークインタフェースユニット208bおよびシステムバス210bは、まとめてクラウドサーバ250またはシステム250と呼ぶことができる。GPSシステム212とクラウドサーバシステム250とは、通信ネットワーク、たとえば通信ネットワーク295を介して通信することができる。通信ネットワーク295は、ネットワーク106(図1)の一例である。
ハードウェア・プロセッサ202aおよび/または202bは、1つまたは複数のマイクロプロセッサ、マイクロコンピュータ、マイクロコントローラ、デジタル信号プロセッサ、中央処理装置、状態機械、論理回路、および/または動作命令に基づいて信号を操作する任意の装置として実装することができる。他の機能において、ハードウェア・プロセッサ202aおよび/または202bは、メモリ204aおよび/または204にそれぞれ格納されたコンピュータ可読命令をフェッチして実行するように構成されている。
プロセッサ202a/202bは、とりわけ、通信に関連するオーディオおよびロジック機能を実装する回路を含むことができる。例えば、プロセッサ202aおよび/または202bは、1つまたは複数のデジタル信号プロセッサ(DSP)、1つまたは複数のマイクロプロセッサ、1つまたは複数の専用コンピュータチップ、1つまたは複数のフィールドプログラマブルゲート(FPGA)、1つまたは複数の特定用途向け集積回路(ASIC)、1つまたは複数のコンピュータ、様々なアナログ/デジタル変換器、デジタル/アナログ変換器、および/または他のサポート回路を含む。したがって、プロセッサ202aおよび/または202bは、メッセージおよび/またはデータまたは情報を符号化する機能も含むことができる。プロセッサ202aおよび/または202bは、とりわけ、クロック、算術論理装置(ALU)、およびプロセッサ202aおよび/または202bの動作をサポートするように構成された論理ゲートを含むことができる。さらに、プロセッサ202aおよび/または202bは、メモリ204aおよび/または204bに記憶されることができ、あるいはプロセッサ202aおよび/または202bでアクセス可能な、1つまたは複数のソフトウェアプログラムを実行する機能を含むことができる。
I/Oインタフェース206aおよび/または206bは、様々なソフトウェアおよびハードウェアインターフェース、例えばウェブインターフェース、グラフィカルユーザーインターフェースなどを含むことができる。さらに、I/Oインタフェース206aおよび/または206bは、それぞれ、システム212および250が、ウェブサーバおよび外部データサーバ(図示せず)のような他のコンピューティングデバイスと相互に通信することを可能にすることができる。I/Oインタフェース206aおよび/または206bは、例えばLAN、ケーブルなどの有線ネットワーク、およびWLAN、セルラまたは衛星などの無線ネットワークを含む広範囲のネットワークおよびプロトコルタイプについて複数の通信をアシストすることができる。 I/Oインタフェース206aおよび/または206bは、複数のデバイスを互いにまたは別のサーバに接続するための1つまたは複数のポートを含むことができる。
メモリ204aおよび/または204bは、例えば、スタティックランダムアクセスメモリ(SRAM)およびダイナミックランダムアクセスメモリ(DRAM)などの揮発性メモリ、および/または、リードオンリメモリ(ROM)、消去可能プログラマブルROM、フラッシュメモリ、ハードディスク、光ディスク、磁気テープなどの不揮発性メモリ、を含む当該技術分野で知られている任意のコンピュータ可読媒体を含むことができる。
一実施形態では、メモリ204aは、複数のモジュール220と、1つまたは複数のモジュールによって処理、受信、および生成されたデータを格納するリポジトリ230とを含む。モジュール220は、特定のタスクを実行するか、または特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含むことができる。一実施態様では、モジュール220は、GPSデータロギングモジュール222、クエリモジュール224、第1の特徴計算モジュール226、および他のモジュール228を含むことができる。また、モジュール220は、システム212のアプリケーションおよび機能を補うプログラムまたはコード化された命令を含むことができる。
リポジトリ230は、とりわけ、システムデータベース232および他のデータ234を含む。他のデータ234は、他のモジュール210内の1つまたは複数のモジュールの実行結果として生成されたデータを含むことができる。さらに、レポジトリ230は、記録されたGPSデータ236と、システム212で計算された第1の特徴の組236とを含むように構成される。GPSデータ236および第1の特徴の組236は、本明細書においてさらに説明される。
一実施形態では、メモリ204bは、複数のモジュール260と、1つまたは複数のモジュールによって処理、受信、および生成されたデータを格納するリポジトリ280とを含む。モジュール260は、特定のタスクを実行するか、または特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含むことができる。一実施態様では、モジュール260は、特徴ランキングモジュール262、GPSデータ受信モジュール264、照会モジュール266、第2の特徴計算モジュール268、運転者プロファイル識別モジュール270、および他のモジュール272を含むことができる。他のモジュール272は、システム250のアプリケーションおよび機能を補うプログラムまたはコード化された命令を含むことができる。
リポジトリ280は、とりわけ、システムデータベース282および他のデータ284を含む。他のデータ284は、他のモジュール260内の1つまたは複数のモジュールの実行結果として生成されたデータを含むことができる。さらに、リポジトリ280は、以前の運行に関連するGPSデータ286、運行のGPSデータ288、システム250で計算された第2の組の特徴292、およびクラスタデータ294を含むように構成されている。GPSデータ286、GPSデータ288、第2の組の特徴292、およびクラスタデータ294は、本明細書においてさらに説明される。
メモリ204aおよび/または204bは、例えば、揮発性メモリおよび/または不揮発性メモリを含むことができる。揮発性メモリの例としては、揮発性ランダムアクセスメモリ(RAM)が挙げられるが、これに限定されない。不揮発性メモリは、電気的に消去可能なプログラマブルリードオンリメモリ(EEPROM)、フラッシュメモリ、ハードドライブなどを追加的にまたは代替的に備えていてもよい。揮発性メモリのいくつかの例には、ランダムアクセスメモリ、ダイナミックランダムアクセスメモリ、スタティックランダムアクセスメモリなどが含まれるが、これらに限定されない。不揮発性メモリのいくつかの例には、ハードディスク、磁気テープ、光ディスク、プログラマブルリードオンリメモリ、消去可能プログラマブルリードオンリメモリ、電気的消去可能プログラマブルリードオンリメモリ、フラッシュメモリなどが含まれるが、これらに限定されない。メモリ204aおよび/または204bは、システム210および250が様々な例示的実施形態に従って様々な機能を実行することを可能にするための情報、データ、アプリケーション、命令などを格納するように構成されてもよい。これに加えて、またはこれに替えて、メモリ202は、プロセッサ202aおよび/または202bによって実行されると、システム210および250が様々な実施形態で説明されるように動作する命令を格納するように構成されてもよい。
本明細書では、例えば、メモリとコンピュータプログラムコードとは、例えばプロセッサなどのハードウェア・プロセッサによって、それぞれのシステムに本明細書で説明される様々な機能を実行させるように構成されている。例えば、メモリ、例えばメモリ204aとコンピュータプログラムコードとは、例えばプロセッサ202aなどのハードウェア・プロセッサによって、システム212に本明細書で説明される様々な機能を実行させるように構成されている。また、メモリ、例えばメモリ204bとコンピュータプログラムコードとは、例えばプロセッサ202bなどのハードウェア・プロセッサによって、システム250に本明細書で説明される様々な機能を実行させるように構成されている。
システム212は、ネットワークインタフェースユニット208aを介してGPSデータを取得する。例示的な実施形態では、システム212は、GPSデータを取得するためのGPS受信機を含むことができる。他の実施形態では、システム212は、通信デバイス、例えば、GPSデータを取得するために利用され得るスマートフォン、に組み込まれてもよい。一実施形態では、通信デバイスは、GPSデータを取得するためのITアプリケーションをホストするように集合的に構成され得るハードウェアおよびソフトウェアを含むことができる。一実施形態では、システム212は、取得されたGPSデータを記録する。例えば、システム212のGPSデータ記録モジュール222は、GPSデータ236を記録する。あるいは、GPSデータは、システム212のメモリ204aに記録され得る。
一実施形態では、システム212は、運行の開始イベントの検出時にGPSデータの取得を開始させ、このデータ取得を運行の終了まで続けさせる。一実施形態では、GPS速度が前記速度の所定の閾値以上である場合、システム212が自動車スタート事象を検出することとしてもよい。例示的な実施形態では、GPS速度の所定の閾値は3m/sとしてもよい。追加的または代替的に、システム212は、GPSデータを記録するための有効な運行として、所定値の運行期間を超える期間の運行を考慮することができる。例えば、20秒未満であると判定された運行は廃棄され、有効な運行とはみなされない。一実施形態では、システム212は、システム212に関連する自動車を示す識別子に基づいて取得されたGPSデータにタグを付けるようにされる。
GPSデバイスは、通信ネットワーク295を介してシステム250にGPSデータを通信する。一実施形態では、システム250は、クラウドサーバ、例えばクラウドサーバ108(図1)内で実施されるか、またはクラウドサーバと通信することができる。一実施形態では、通信ネットワークは、ネットワーク106(図1)の一例であってもよい。一実施形態では、システム212は、運行の完了時にGPSデータをシステム250に通信する。あるいは、GPSデータは、所定時間が経過するとシステム250に送信されてもよい。例えば、運行中に1時間毎にGPSデータをシステム250に送信することとしてもよい。他の実施形態では、GPSデータが、GPSデータをシステム250に通信するためのより短い時間に関連付けられ、GPSデータについて所定期間の終了および運行の完了を判断されることとしてもよい。
システム250は、運行についてGPSデータ288をリポジトリ280に格納させる。例えば、GPSデータ288は、運行に関連する緯度、経度、方位、高度、タイムスタンプ、速度を含むことができる。一実施形態では、複数の運行の場合、複数の運行についてのGPSデータ288が、前回の運行終了事象とその後の自動車の運行開始事象との間の時間間隔に基づいて分離されてもよい。例示的な実施形態では、前記時間間隔は約3分である。さらに、レポジトリ280は、自動車の以前に完了した運行に関連するGPSデータ286を格納させられる。ここで、一つの自動車に対応する以前の完全な運行は、前記自動車に関連する複数の運転者によって完了された運行を指す。例えば、個人の自動車または家族の自動車の場合、自動車には3つから4つの運転者プロファイルが関連付けられていてもよい。しかし、商業用自動車については、これらの多くの運転者が異なる時間にその特定の自動車を運転している可能性があるため、10から15の運転者プロファイルが自動車に関連付けられてもよい。
システム212およびシステム250は、運行についてのGPSデータに基づいて運行に関連する複数の特徴を選択的に計算する。一実施形態では、システム212およびシステム250のそれぞれは、運行に関連する複数の特徴を計算するための計算モジュール、例えば第1の計算モジュール226および第2の計算モジュール268をそれぞれ含むことができる。一実施形態では、システム250は、計算上複雑な特徴計算を実行すると同時に、システム212は、比較的計算量の少ない複雑な特徴計算を実行する。一実施形態では、複数の特徴の計算複雑度レベルがシステム250で決定される。一実施形態では、システム250は、計算複雑度レベルの順に複数の特徴に順位付けをする。前記順位付けに基づいて、前記複数の特徴は、特徴の第1の組が第2の組の計算複雑度レベルと比較して相対的に低い計算複雑度レベルに関連付けられるように、特徴の第1の組および特徴の第2の組に分類されてもよい。一実施形態では、システム250は、複数の特徴の計算複雑度レベルを決定する特徴ランキングモジュール262を含む。一実施形態では、メモリ204bは、GPSデータから特徴を計算するためのルーチンおよび/またはアルゴリズムおよび/またはモデルを有する特徴構成データ290を含むことができる。さらに、特徴構成データ290は、複数の特徴がその計算複雑度レベルの順にソートされたソート済み特徴リストを含む。第2の組の特徴を計算することに加えて、システム250は、派生データと、一次データと、一次データおよび派生データの複数の派生物とを計算する。
一実施形態では、GPSデータに関連する特徴の計算は、GPSデータの複数の属性に関する統計データの計算を含む。上記のように、複数の属性は、運行に関連する速度、加速度、経路などの主要データを含む。ジャークデータ、横方向加速度、角速度、および運行に関連するジャークエネルギーなどの派生データ、主要データおよび派生データの複数の派生物を含む。一実施形態では、統計データは、GPSデータの複数の属性に関連付けられた複数の統計的パラメータを含む。例えば、複数の統計的パラメータは、平均、中央値、歪度、尖度、標準偏差、最高値、最低値、97.5百分位数、Q3、Q1、および2.5百分位数を含む。ここで、複数の属性の統計データは、運行についてのGPSデータに関連付けられた複数の特徴を形成する。特徴のいくつかの例には、速度の中央値、横方向加速度の第1の差のQ1、ジャークエネルギーの第2の差の尖度、ジャークエネルギーの第2の差の2.5百分位数などが含まれ得るが、これらに限定されない。
上記のように、システム212およびシステム250は、前記特徴に割り当てられた順位に基づいて複数の特徴を選択的に計算し、前記順位が前記特徴の計算複雑度に基づいて割り当てられる。複雑な計算をサポートすることができるインフラストラクチャとシステムとが関連付けられることで、より高い計算複雑性に関連する特徴がシステム250において計算される。逆に、システム212のインフラストラクチャ能力が複雑な計算をサポートしない可能性があり、この場合、より複雑さの少ない計算がシステム212で実行される。
第1の特徴の組の中から特徴を選択的に計算するために、システム212は、システム212を具現化するGPSデバイスの1つ以上の動作特性が動作特性の所定の範囲内にあるかどうかを判断する。GPSデバイスの1つまたは複数の動作特性は、RAM使用量、バッテリ充電残量、GPSデバイス・アクティブ使用状況などを含むことができる。所定の範囲内にある動作特性の例は、現在のRAM使用率<50%、バッテリ残量>40%、デバイスがアクティブに使用(すなわち、通話中、ビデオ視聴中、スマートフォン用のゲーム中)されていないなどとすることができる。上記の動作特性およびその所定範囲は、例示目的のために提供されており、本開示を限定するものとして解釈されないことに留意されたい。代替の実施形態では、動作特性および所定範囲は、アプリケーションおよびGPSデバイスごとに変化し得る。
動作特性が所定の範囲内にあると判断されたとき、システム212は、システム250に問い合わせを行い、前記機能がシステム250で計算されたか否かを判断する。例えば、システム212は、「この特徴は既に計算されているか」というような疑問を解決することができる。ある実施形態では、システム250は、システム250への問い合わせについて、特徴がシステム250で計算されたか否かを判断する機能状態照会モジュール266を含む。一実施形態では、システム212における任意の特徴の計算に先立って、システム212は、特徴がシステム250によって既に計算されているか否かを判断するために特徴状態照会モジュール266に照会し、特徴がシステム250で計算されていないという判断に応じて、システム212は前記特徴を計算する。あるいは、前記特徴が既にシステム250で計算されていると判定された場合、システム212は、計算のために次の特徴を考慮することができ、それによりシステム212の計算過負荷を軽減することを容易にすることができる。追加的または代替的に、システム212は、第1および第2の派生物が特徴抽出のために使用される場合にのみ、一次データおよび派生データのそれぞれの第1および第2の派生物を計算する。逆に、システム250は、計算の開始時にすべての第1および第2の派生物を計算する。システム212および250による前記特徴の前記選択的計算は、RAMおよび記憶装置の使用を低減することを容易にし、それによって電池の動作を向上させる。
さらに、特徴状態照会モジュール266は、システム212で計算された第1の特徴の組の値を格納するように構成されている。特徴状態照会モジュール266は、通信ネットワーク295を介して運行名またはID、特徴名および値のペアなどの情報を受信し、指定された運行に対応する前記情報をリポジトリ280に格納させる。
システム250は、運行に関連する複数の特徴を事前に計算された特徴データと比較し、該比較に従って、前記運行に対応する一組の運転者プロファイルの中から一つの運転者プロファイルを特定する。一実施形態では、システムは、運行に関連する運転者プロファイルを特定するための運転者プロファイル識別モジュール270を含む。運転者プロファイル識別モジュール270は、運行について計算された特徴と以前に完了した運行に関連する事前計算された特徴データとを利用するスコアリング機構を利用する。プロファイル識別モジュール270は、自動車に関連する複数の運転者プロファイルについての前記スコアを計算し、最大スコアを有する運転者プロファイルをその運行に対応する運転者プロファイルとして特定する。複数の運転者プロファイルへのスコアの割り当てと、そこからの最高のスコアに関連する運転者プロファイルの選択について、以下に詳細に説明する。
システム250は、先ず、運転者プロファイルの組に関連付けられた以前に計算された特徴の中から、特徴の値に基づいて第1群の組に複数の特徴をクラスタリングすることによって、運転者プロファイリングを実行する。本明細書では、複数の特徴の各特徴は、特徴の値に基づいて、第1群の組の中から1つ以上の第1群にクラスタ化することができることに留意されたい。複数の特徴における一つの特徴に対応する第1群の組の各第1群は、前記特徴に基づいて最高値および最低値によって表される。例えば、第1群の組における一つの第1群は、「a」と「b」との間の値を有する特徴を含むことができ、次いで、第1群は、値のペア(a、b)として表すことができる。値のペアの最高値と最低値との差が前記第1群の距離を規定する。例えば、上記の例では、クラスタの距離は(b-a)である。一実施形態では、第1群の組は、クラスタデータ294としてリポジトリ280に格納されてもよい。
運転者のすべての特徴から、各特徴を1つ以上の群にクラスタ化することができる。このようなクラスタリングは、特定の運転者のために各特徴に対して実行される。一実施形態では、プロファイル識別モジュール270は、現在の運行についての複数の特徴を、前記特徴の値に基づいて第2群の集合にクラスタリングする。複数の特徴における各特徴は、前記特徴の値に基づいて1つ以上の第2群にクラスタ化される。複数の特徴における一つの特徴に対応する第2群の組の各第2群は、前記特徴に基づいて最高値と最低値とに関連付けられる。最高値と最低値との差が前記第2群の距離を規定する。
プロファイル識別モジュール270は、さらなる処理および運転者プロファイリングをするための最適なデータセットを得るために、第1群の組および第2群の組から異常値を切り捨てる。一例として、プロファイル識別モジュール270は、第1の特徴の組および第2の特徴の組の最低値の5%および最高値の5%を含むことができるデータ全体の10%を切り捨てることができる。異常値の切り捨ては、さらなる計算のためのデータの最適化のために実行されるが、代替の実施形態では、第1群の組および第2群の組を含むデータセットを、さらなる分析および処理に直接利用することができる。
プロファイル特定モジュール270は、第1群の距離と第2群の距離とに基づいて、1つ以上の第2群と1つ以上の第1群との間の相対的な変化を取得する。プロファイル識別モジュール270は、複数の特徴における各特徴の相対距離と相対距離の閾値との比較に基づいて、複数の特徴の中から関連する特徴の組を取得する。
例として、xは運転者プロファイルの特徴(異常値の切り捨て後)の値を示す。運転者プロファイルについて、特徴「x」に対して「m」群があるとする。「m」群は、考慮される運転者プロファイルの第2群の組である。
特徴のすべての値が考慮されるとき、特徴「x」に対して「n」個の群があるとする。これは、n個の群が第2群の組(すなわち、複数の運転者プロファイル用)であることを意味する。
ここでm、n>=1である。
第2群の組は、特定の運転者プロファイルに依存しないグローバルクラスタであり、複数の運転者プロファイルに対して同一であることが理解されよう。上記のように、群は順序付けされたペア(a、b);b>aで表される。ここで、「a」はその群内の特徴の最低値であり、「b」はその群内の特徴の最高値である。したがって、各運転者プロファイルに対してこのような順序付けされたペアがm個存在し、複数の運転者プロファイルの特徴に対してそのような順序付けされたペアが「n個」存在する。すべての運転者についてのデータが各運転者のものを含むので、そのような群のm個はn個の群に含まれることになる。
運転者プロファイルを特定するために、1つ以上の第2群と1つ以上の第1群との間の相対的な変動が、前記クラスタの距離に基づいて決定される。例えば、i番目の群(i=1:m)のクラスタ変動は、以下のように決定されてもよい。i番目の群を(ai、bi)とすると、群の長さは(bi−ai)と規定できる。前記群は、特徴xのj番目のグローバルクラスタに属することとしてもよい。J=1:nとすると、j番目の群を(Aj、Bj)とする。次に、i番目の第1群の相対的変動は、
RVi = (bi − ai) / (Bj − Aj)
M=(3.5, 4.1) および n=(4.3, 4.5) なので
RV=(4.5−4.3) / (3.5−5)
RViの合計は、1=1:nに対してbt RVx = sum(RVi)と表すことができる。
システム250は、第1群の組の値に関して、複数の運転者プロファイル(すなわち、第2群の組)のそれぞれについての相対的な変動の値を取得すると共に、複数の運転者プロファイルのそれぞれに関連する特徴を決定する。例えば、RVx>0.6である特徴xに対して、その特徴は破棄され得る。したがって、RVx=<0.6の値を有する特徴は、特定の運転者プロファイルについての関連する特徴を選択するために考慮され得る。
関連特徴の組についての各関連特徴について、システム250は、関連特徴について所定範囲にある関連特徴の特徴値を有する運転者プロファイルの組を取得する。次いで、システム250は、関連スコアに基づいて、運行に対応する運転者プロファイルを、運転者プロファイルの組の中から特定する。
例示的な実施形態では、システム250は、複数の運転者プロファイルにおける各運転者プロファイルに対応する特徴リストを構築することができ、特徴リストは、運転者プロファイルに対応する関連特徴のリストを含む。例えば、運転者プロファイルDについて、k個の関連特徴が存在し得る。これらのうち、l個の特徴値が所定の範囲内にある場合、運転者Dの関連スコアはl / kであり得る。システム250は、複数の運転者プロファイルの関連スコアを計算する。システムは、複数の運転者プロファイルから、関連スコアに基づいて運行に関連付けられた運転者プロファイルとして運転者プロファイルを特定することができる。例えば、最大関連スコアに関連付けられた運転者プロファイルは、運行中に自動車を運転している運転者の運転者プロファイルとして特定されてもよい。一実施形態では、システム250は、運行に対応する特定運転者プロファイル、運転者プロファイルに対応する特徴サブセット、および運転者プロファイルに対応する運行について計算された関連スコアをリポジトリ280に格納させる。
ここで、運行に対応する特定運転者プロファイル、関連スコアおよび特徴サブセットなどの情報を格納する利点は、リポジトリ280において前記情報が更新され、次の運行が分析されるときにアクセスまたは考慮され得ることである。従って、開示されたシステムは、自動車運行に関連する各入力データによって動的に調整される。一実施形態では、リポジトリに格納された情報を利用して、さらなる分析/APIを構成し、結果を公開することができる。前記結果は、運転者行動分類および運行レベル異常検出に対して、API呼び出しおよびウェブベースのインタフェースを使用してアクセスすることができる。開示された実施形態に基づく運転者プロファイル特定の一例について図5を参照してさらに説明する。
図3は、本開示に係る運転者プロファイリングをするための方法300の流れ図を示す。方法300は、コンピュータ実行可能命令の一般的な環境において説明することができる。一般に、コンピュータ実行可能命令は、特定の機能を実行し、または特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造、プロシージャ、モジュール、関数などを含むことができる。方法300は、通信ネットワークを介してリンクされた遠隔処理装置によって機能が実行される分散コンピューティング環境において実施することもできる。方法300が記述されている順序は、限定として解釈されることを意図するものではなく、任意の数の記述された方法ブロックを任意の順序で組み合わせて、方法300または代替方法を実現することができる。さらに、方法300は、任意の適切なハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせで実施することができる。一実施形態では、流れ図に示される方法300は、システム、例えば、図2のシステム212および250によって実行されてもよい。
ステップ302において、方法300は、運行中に捕捉されたGPSデータに基づいて、複数の特徴を選択的に計算する処理を含む。ここでは、選択的に計算することは、計算装置において複数の特徴から第1の特徴の組を計算することと、クラウドサーバにおいて複数の特徴から第2の特徴の組とを計算することとを含む。第1の組と第2の組の特徴は、その計算複雑度レベルが異なる。複数の特徴は、運行に関連するGPSデータの複数の属性についての統計データを含む。
ステップ304において、方法300は、クラウドサーバの特徴データベースに運行に対応する複数の特徴を格納することを含み、特徴データベースは、複数の完了した運行についての運転者プロファイルの組に関連付けられた事前計算された特徴データをさらに含む。
ステップ306において、方法300は、複数の特徴と事前計算された特徴データとの比較に基づいて、一組の運転者プロファイルの中から、運行に対応する運転者プロファイルを特定するステップを含む。運行に対応する運転者プロファイルを特定するための詳細な方法は、図4を参照してさらに説明される。
図4は、本開示に係る運転者プロファイリングをするための運行に対応する運転者プロファイルを特定する方法400の流れ図を示す。方法400は、コンピュータ実行可能命令の一般的な環境において説明することができる。一般に、コンピュータ実行可能命令は、特定の機能を実行し、または特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造、プロシージャ、モジュール、関数などを含むことができる。方法400は、通信ネットワークを介してリンクされた遠隔処理装置によって機能が実行される分散コンピューティング環境において実施されてもよい。方法400が記載される順序は、限定として解釈されることを意図するものではなく、任意の数の記載された方法ブロックを、方法400を実施するために任意の順序で組み合わせることができる。さらに、方法400は、任意の適切なハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせで実施することができる。一実施形態では、流れ図に示される方法400は、システム、例えば、図2のシステム212および250によって実行されてもよい。
ステップ402において、方法400は、複数の運転者プロファイルに関連する以前に計算された特徴データにおける複数の特徴を第1群の組にクラスタリングする処理を含む。複数の特徴における各特徴は、前記特徴の値に基づいて複数の第1群の中から1つ以上の第1群にクラスタリングされる。複数の第1群における各第1群は、前記特徴に基づく最高値と最低値に関連付けられた複数の特徴における一つの特徴に対応し、最高値と最低値との差が前記第1群の距離を規定する。
運転者のすべての特徴から、各特徴を1つ以上の群にクラスタ化することができる。このようなクラスタリングは、特定の運転者についての各特徴に対して実行される。ステップ404において、方法400は、運転者プロファイルに関連する複数の特徴を第2群の組にクラスタリングする処理を含む。複数の特徴における各特徴は、前記特徴の値に基づいて1つ以上の第2群にクラスタリングされる。第2群の組における各第2群は、前記特徴に基づいて最高値と最低値に関連付けられた複数の特徴における一つの特徴に対応する。最高値と最低値との差は前記第2群の距離を規定する。一実施形態では、さらなる処理および運転者プロファイリングをするための最適なデータセットを得るために、第1群の組および第2群の組から異常値を切り捨てることができる。
ステップ406において、方法400は、第1群の距離と第2群の距離とに基づいて、1つ以上の第2群と1つ以上の第1群との間の相対的な変動を取得する処理を含む。ステップ408において、方法400は、複数の運転者プロファイルにおける各運転者プロファイルに対応して、複数の特徴における各特徴の相対距離の比較に基づいて複数の特徴の中から関連特徴の組を取得する処理を含む。ステップ410において、方法400は、関連特徴の組における各関連特徴について、所定範囲内の関連特徴の特徴値を有する一組の運転者プロファイルを取得する処理を含む。ステップ412において、方法400は、関連特徴について対応する所定範囲内にある関連特徴の対応する特徴値の決定に基づいて、運転者プロファイルの組における各運転者プロファイルについて関連スコアを計算する処理を含む。ステップ414において、方法400は、関連スコアに基づいて、運行に対応する運転者プロファイルの組の中から運転者プロファイルを特定する処理を含む。
図5は、例示的な実施形態に係る運転者プロファイルを特定する例を示す。ここで、運転者プロファイリングをするために、一組の運転者が考慮される。運転者の各々は対応する運転者プロファイルに関連付けられ、運転者の組についての運転者プロファイルはリポジトリ、例えば図2のリポジトリ280に格納される。前記運転手によって行われた様々な運行に対して、混合行列が得られる。当分野において既に理解されているように、機械学習の分野、特に統計的分類の問題において、誤差行列としても知られる混同行列は、アルゴリズムの性能の視覚化を可能にする特定のテーブル・レイアウトとなっている(教師なし学習では、これは通常マッチング行列と呼ばれる)。行列の各列は予測クラスのインスタンスを表し、各行は実際のクラスのインスタンスを表す(またはその逆)。前記混同行列510,520,530,540の例が、図5を参照して例示される。
運転者プロファイリングシステムによって得られた混同行列を観察すると、混同行列510において、行列位置21(これは、行2、列1のセルを意味する)12(これは、行1、列2のセルを意味する)は両方とも「1」であり(すなわち同一)、これにより、開示されたシステムが、類似の運転行動を有すると判断され得る運転者プロファイルについての類似の相関を検出することができることを示す。また、混同行列520,530,540についても、非対角値の大部分がゼロであり、それにより、開示されたシステムが、独特な運転者プロファイルに対応する運転パターンまたは特性を判断することについて高性能であることを示す。
本明細書で開示される様々な実施形態は、自動車運行に対応する運転手プロファイリングをするための方法およびシステムを提供する。ここで、実施形態は、GPSデータから特徴を計算するためにクラウドベースのインフラストラクチャを利用して、特定の運行中に自動車を運転している運転者を特定することを開示する。実施形態は、処理および運転者検出のためにGPSデータに主に依存する(および様々な他のセンサの必要性を排除する)ので、従来のシステムと比較して大きなコスト上の利点が達成される。開示された実施形態の他の重要な効果は、(1)移動車両の任意の向きに配置することができるGPSロガーのような計算装置、および(2)計算上複雑な計算の大部分について実行するクラウドサーバ、によって上記計算が選択的に実行されることであり、それによって、ダイナミックメモリとRAMの使用を可能にする。さらに、選択的な計算は、GPSロガーのような計算装置の計算負荷を軽減することを容易にする。加えて、実施形態は、統計的アプローチおよび特徴効率の評価を使用するGPSデータからの系統的特徴抽出アプローチを開示し、それにより、図5を参照して説明したように、運転者の運転スタイルを特徴付ける高性能なメカニズムを提供する。
上記の説明は、当業者が本実施形態を製造し且つ使用することを可能にするように本明細書の主題を説明している。本実施形態の主題の範囲は、特許請求の範囲によって定義され、当業者が考え得る他の変形を含むことができる。そのような他の変形は、特許請求の範囲の字句通りのものとは異ならない類似の要素を有する場合、またはそれらが特許請求の範囲の字句通りのものとの実質的に異ならない要素を有する場合、特許請求の範囲内にあるものとする。
本明細書の実施形態は、ハードウェアおよびソフトウェア要素を含むことができる。ソフトウェアで実施される実施形態には、ファームウェア、常駐ソフトウェア、マイクロコードなどが含まれるが、これに限定されない。本明細書に記載された様々なモジュールによって実行される機能は、他のモジュールまたは他のモジュールの組み合わせで実施することができる。この説明のために、コンピュータ使用可能またはコンピュータ可読媒体は、命令実行システム、装置、またはデバイスによって使用されるプログラムを含む、格納する、通信する、伝搬する、または移送することができる任意の装置であり得る。
特定の実施形態および実施形態の上記の説明は、現在の知識を適用することによって、一般的な概念から逸脱することなく、そのような特定の実施形態を様々な用途に容易に変更および/または適合させることができる。したがって、そのような適応および変更は、開示された実施形態の均等物の意味および範囲内で理解されるべきであり、それらを包含することが意図される。本明細書で使用される表現または用語は、説明のためであって限定のためではないことを理解されたい。したがって、本明細書における実施形態は、好ましい実施形態に関して記載されているが、当業者は、本明細書の実施形態が、本明細書に記載された実施形態の精神および範囲内において変更を加えて実施できることを認識するであろう。
上記の説明は、様々な実施形態を参照して提示されている。本出願に関連する当業者は、記載された構造および方法の改変および変更が、原理、精神および範囲から有意に逸脱することなく実施され得ることを理解するであろう。
100 ネットワーク実施形態
102 システム
102a システム
102b システム
104a GPSデバイス
104b GPSデバイス
106 ネットワーク
108 クラウドサーバ
110a 自動車
110b 自動車

Claims (13)

  1. 自動車運行に対応して運転者プロファイリングをするためのプロセッサにより実行される方法であって、
    運行中に捕捉されたグローバル・ポジショニング・システム(GPS)データに基づき、第1のハードウェア・プロセッサおよび第2のハードウェア・プロセッサを介して複数の特徴を選択的に計算するステップであって、前記選択的に計算するステップは、計算装置において前記複数の特徴から第1の特徴の組を計算し、クラウドサーバにおいて前記複数の特徴から第2の特徴の組を計算し、計算複雑度レベルの順で前記複数の特徴に割り当てられる順位を計算するステップを含み、前記第1の特徴の組が前記第2の特徴の組の計算複雑度レベルと比較して相対的に低い計算複雑度レベルに関連付けられるように、前記複数の特徴は、前記第1の特徴の組および前記第2の特徴の組に分類され、前記複数の特徴の前記計算複雑度レベルは、特徴ランキングモジュールによって決定され、前記複数の特徴は、前記運行に関連するGPSデータから計算された複数の属性についての統計データを含み、前記複数の属性は、運行中に捕捉された一次データと、前記運行に関連付けられた派生データと前記一次データおよび前記派生データの複数の派生物とを含み、前記派生データは、横方向加速度、角速度、および運行のジャークエネルギーに関連するデータを含み、前記一次データは、前記運行に関連付けられた速度、加速度および経路を含む、ステップと、
    前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記クラウドサーバに関連付けられたリポジトリにおいて、前記運行に対応する前記複数の特徴を格納するステップであって、前記リポジトリは、複数の完了した運行のついての運転者プロファイルの組に関連する以前に計算された特徴データをさらに含む、ステップと、
    前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記複数の特徴と前記以前に計算された特徴データとの比較に基づいて、前記運行に対応する運転者プロファイルを、前記運転者プロファイルの組の中から特定するステップとを含む、方法。
  2. 前記計算装置に関連付けられたリポジトリに前記第1の特徴の組を格納するステップをさらに含む、請求項1に記載の方法。
  3. 前記計算装置において前記第1の特徴の組を選択的に計算するステップは、
    前記計算装置の1つ以上の動作特性が前記動作特性の所定範囲内にあるか否かを判断するステップと、
    前記動作特性が前記所定範囲内にあると判断された場合、前記第1の特徴の組における各特徴について前記クラウドサーバに問い合わせて、前記特徴が前記クラウドサーバにおいて計算されたか否かを判断するステップと、
    前記特徴が前記クラウドサーバにおいて計算されていないと判断された場合、前記計算装置において前記特徴を計算するステップとをさらに含む、請求項2に記載の方法。
  4. 前記クラウドサーバにおいて前記派生データと前記一次データおよび前記派生データの前記複数の派生物とを計算するステップをさらに含み、派生データは、ジャークデータと、横方向加速度と、角速度と、前記運行に関連するジャークエネルギーとを含む、請求項1に記載の方法。
  5. 前記複数の運転者プロファイルに関連する前記以前に計算された特徴データにおける前記複数の特徴を、第1群の組にクラスタリングするステップであって、前記複数の特徴における各特徴は、前記特徴の値に基づいて前記複数の第1群の中の1つ以上の第1群にクラスタリングされ、前記複数の特徴における前記特徴に対応する前記複数の第1群における各第1群は、前記特徴に基づいて最高値と最低値に関連付けられ、前記最高値と前記最低値との差が前記第1群の距離を規定する、ステップと、
    運転者プロファイルに関連する前記複数の特徴を第2群の組にクラスタリングするステップであって、前記複数の特徴における各特徴は、前記特徴の値に基づいて1つ以上の第2群にクラスタリングされ、前記複数の特徴における一つの特徴に対応する前記第2群の組における各第2群は、前記特徴に基づいて最高値と最低値とに関連付けられ、前記最高値と前記最低値との差が前記第2群の距離を規定する、ステップと、
    前記第1群の前記距離と前記第2群の前記距離とのうちの1つ以上に基づいて、前記1つ以上の第2群と前記1つ以上の第1群との間の相対的な変動を取得するステップと、
    前記複数の運転者プロファイルにおける各運転者プロファイルに対応して、前記複数の特徴における各特徴の相対距離と相対距離の閾値との比較に基づいて前記複数の特徴の中から関連特徴の組を取得するステップと、
    前記関連特徴の組における各関連特徴に対して、所定範囲内の前記関連特徴の特徴値を有する運転者プロファイルの組を取得するステップと、
    前記関連特徴について対応する所定範囲内にある前記関連特徴の対応する特徴値の決定に基づいて、前記運転者プロファイルの組における各運転者プロファイルについての関連スコアを計算するステップと、
    前記関連スコアに基づいて、運行に対応する運転者プロファイルの組の中から前記運転者プロファイルを特定するステップとさらに含む、請求項1に記載の方法。
  6. 1つ以上の第2群と1つ以上の第1群との間の相対的な変動を取得する前に、前記第1群の組および前記第2群の組から異常値を切り捨てるステップをさらに含む、請求項5に記載の方法。
  7. 前記クラウドサーバの前記リポジトリに、前記運行に対応する前記運転者プロファイルと前記運転者プロファイルに対応する特徴サブセットとを格納するステップをさらに含む、請求項6に記載の方法。
  8. 自動車運行に対応して運転者プロファイリングをするためのシステムであって、
    計算装置に関連付けられた第1のメモリと、命令を格納するためのクラウドサーバに関連付けられた第2のメモリと、
    前記第1のメモリに結合された第1のハードウェア・プロセッサと、前記第2のメモリに結合された第2のハードウェア・プロセッサと
    を備え、
    前記第1および第2のハードウェア・プロセッサは、前記命令によって、
    運行中に捕捉されたGPSデータに基づき、複数の特徴を選択的に計算する動作であって、前記選択的に計算する動作は、前記計算装置において前記複数の特徴から第1の特徴の組を計算し、前記クラウドサーバにおいて前記複数の特徴から第2の特徴の組を計算し、計算複雑度レベルの順で前記複数の特徴に割り当てられる順位を計算する動作を含み、前記第1の特徴の組が前記第2の特徴の組の計算複雑度レベルと比較して相対的に低い計算複雑度レベルに関連付けられるように、前記複数の特徴は、前記第1の特徴の組および前記第2の特徴の組に分類され、前記複数の特徴の前記計算複雑度レベルは、特徴ランキングモジュールによって決定され、前記複数の特徴は、前記運行に関連する前記GPSデータから計算された複数の属性についての統計データを含み、前記複数の属性は、運行中に捕捉された一次データと、前記運行に関連付けられた派生データと前記一次データおよび前記派生データの複数の派生物とを含み、前記派生データは、横方向加速度、角速度、および運行のジャークエネルギーに関連するデータを含む、動作と、
    前記クラウドサーバに関連付けられたリポジトリにおいて前記運行に対応する前記複数の特徴を格納する動作であって、前記リポジトリは、複数の完了した運行のついての運転者プロファイルの組に関連する以前に計算された特徴データをさらに含む、動作と、
    前記複数の特徴と前記以前に計算された特徴データとの比較に基づいて、前記運行に対応する運転者プロファイルを、前記運転者プロファイルの組の中から特定する動作とを行うように構成されている、システム。
  9. 前記計算装置において前記第1の特徴の組を選択的に計算する動作は、前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサが、前記命令によって、
    前記計算装置の1つ以上の動作特性が前記動作特性の所定範囲内にあるか否かを判断する動作と、
    前記動作特性が前記所定範囲内にあると判断された場合、前記第1の特徴の組における各特徴について前記クラウドサーバに問い合わせて、前記特徴が前記クラウドサーバにおいて計算されたか否かを判断する動作と、
    前記特徴が前記クラウドサーバにおいて計算されていないと判断された場合、前記計算装置において前記特徴を計算する動作とを行うように構成されている、請求項8に記載のシステム。
  10. 前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサが、前記命令によって、
    前記クラウドサーバにおいて前記派生データと前記一次データおよび前記派生データの前記複数の派生物とを計算するように構成されており、派生データは、ジャークデータと、横方向加速度と、角速度と、前記運行に関連するジャークエネルギーとを含む、請求項8に記載のシステム。
  11. 前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサが、前記命令によって、
    前記複数の運転者プロファイルに関連する前記以前に計算された特徴データにおける前記複数の特徴を、第1群の組にクラスタリングする動作であって、前記複数の特徴における各特徴は、前記特徴の値に基づいて前記第1群の組の中の1つ以上の第1群にクラスタリングされ、前記複数の特徴における一つの特徴に対応する前記第1群の組における各第1群は、前記特徴に基づいて最高値と最低値に関連付けられ、前記最高値と前記最低値との差が前記第1群の距離を規定する、動作と、
    運転者プロファイルに関連する前記複数の特徴を第2群の組にクラスタリングする動作であって、前記複数の特徴における各特徴は、前記特徴の値に基づいて1つ以上の第2群にクラスタリングされ、前記複数の特徴における一つの特徴に対応する前記第2群の組における各第2群は、前記特徴に基づいて最高値と最低値とに関連付けられ、前記最高値と前記最低値との差が前記第2群の距離を規定する、動作と、
    前記第1群の前記距離と前記第2群の前記距離とのうちの1つ以上に基づいて、前記1つ以上の第2群と前記1つ以上の第1群との間の相対的な変動を取得する動作と、
    前記複数の運転者プロファイルにおける各運転者プロファイルに対応して、前記複数の特徴における各特徴の相対距離と相対距離の閾値との比較に基づいて前記複数の特徴の中から関連特徴の組を取得する動作と、
    前記関連特徴の組における各関連特徴に対して、所定範囲内の前記関連特徴の特徴値を有する運転者プロファイルの組を取得する動作と、
    前記関連特徴について対応する所定範囲内にある前記関連特徴の対応する特徴値の決定に基づいて、前記運転者プロファイルの組における各運転者プロファイルについての関連スコアを計算する動作と、
    前記関連スコアに基づいて、運行に対応する運転者プロファイルの組の中から前記運転者プロファイルを特定する動作とを行うように構成されている、請求項8に記載のシステム。
  12. 前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサが、前記命令によって、1つ以上の第2群と1つ以上の第1群との間の相対的な変動を取得する前に、前記第1群の組および前記第2群の組から異常値を切り捨てる動作するように構成されている、請求項11に記載のシステム。
  13. 自動車運行に対応して運転者プロファイリングをするための方法を実行するためのコンピュータプログラムを有する非一時的コンピュータ可読媒体であって、前記方法は、
    運行中に捕捉されたGPSデータに基づき、第1のハードウェア・プロセッサおよび第2のハードウェア・プロセッサを介して複数の特徴を選択的に計算するステップであって、前記選択的に計算するステップは、計算装置において前記複数の特徴から第1の特徴の組を計算し、クラウドサーバにおいて前記複数の特徴から第2の特徴の組を計算し、計算複雑度レベルの順で前記複数の特徴に割り当てられる順位を計算するステップを含み、前記第1の特徴の組が前記第2の特徴の組の計算複雑度レベルと比較して相対的に低い計算複雑度レベルに関連付けられるように、前記複数の特徴は、前記第1の特徴の組および前記第2の特徴の組に分類され、前記複数の特徴の前記計算複雑度レベルは、特徴ランキングモジュールによって決定され、前記複数の特徴は、前記運行に関連する前記GPSデータから計算された複数の属性についての統計データを含み、前記複数の属性は、運行中に捕捉された一次データと、前記運行に関連付けられた派生データと前記一次データおよび前記派生データの複数の派生物とを含み、前記派生データは、横方向加速度、角速度、および運行のジャークエネルギーに関連するデータを含み、前記一次データは、前記運行に関連付けられた速度、加速度および経路を含む、ステップと、
    前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記クラウドサーバに関連付けられたリポジトリにおいて、前記運行に対応する前記複数の特徴を格納するステップであって、前記リポジトリは、複数の完了した運行のついての運転者プロファイルの組に関連する以前に計算された特徴データをさらに含む、ステップと、
    前記第1のハードウェア・プロセッサおよび前記第2のハードウェア・プロセッサを介して、前記複数の特徴と前記以前に計算された特徴データとの比較に基づいて、前記運行に対応する運転者プロファイルを、前記運転者プロファイルの組の中から特定するステップとを含む、非一時的コンピュータ可読媒体。
JP2018014659A 2017-02-23 2018-01-31 自動車運行に対応して運転者プロファイリングをするためのシステムおよび方法 Active JP6775537B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201721006435 2017-02-23
IN201721006435 2017-02-23

Publications (2)

Publication Number Publication Date
JP2018136934A JP2018136934A (ja) 2018-08-30
JP6775537B2 true JP6775537B2 (ja) 2020-10-28

Family

ID=61022143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014659A Active JP6775537B2 (ja) 2017-02-23 2018-01-31 自動車運行に対応して運転者プロファイリングをするためのシステムおよび方法

Country Status (4)

Country Link
US (1) US10960893B2 (ja)
EP (1) EP3367062B1 (ja)
JP (1) JP6775537B2 (ja)
AU (1) AU2018200557A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947911B1 (ko) * 2017-08-02 2019-02-13 재단법인 다차원 스마트 아이티 융합시스템 연구단 비표준 pid 획득 장치, 시스템 및 그 방법
US11180154B2 (en) * 2017-10-17 2021-11-23 The Regents Of The University Of Michigan Fingerprinting drivers based on vehicle turns
CN111971218A (zh) * 2018-04-23 2020-11-20 哈曼智联技术股份有限公司 驾驶员轮廓分析和识别
KR102570295B1 (ko) * 2018-12-07 2023-08-25 현대자동차주식회사 차량 및 그 제어 방법
US11281801B2 (en) * 2019-01-02 2022-03-22 International Business Machines Corporation Decentralized privacy-preserving clinical data evaluation
CN109910902B (zh) * 2019-02-28 2020-09-29 苏州工业园区职业技术学院 一种根据驾驶员驾驶习性的汽车智能驾驶系统
ES2964119T3 (es) * 2019-07-22 2024-04-04 Signify Holding Bv Procedimiento y dispositivo para realizar una operación en base a los datos de señales del sensor
US11599947B1 (en) 2019-08-28 2023-03-07 State Farm Mutual Automobile Insurance Company Systems and methods for generating mobility insurance products using ride-sharing telematics data
CN113033651A (zh) * 2021-03-22 2021-06-25 上海仙塔智能科技有限公司 一种提高驾驶安全性的方法和装置
CN113044046B (zh) * 2021-04-09 2022-09-06 联合汽车电子有限公司 驾驶员风格识别方法、系统、电子设备及可读存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8140358B1 (en) * 1996-01-29 2012-03-20 Progressive Casualty Insurance Company Vehicle monitoring system
JP2001063400A (ja) * 1999-08-25 2001-03-13 Honda Motor Co Ltd ドライバー認証装置
MX2007014997A (es) * 2005-06-01 2008-04-22 Innosurance Inc Recoleccion y analisis de datos de operacion de vehiculo de motor.
IT1398073B1 (it) * 2010-02-19 2013-02-07 Teleparking S R L Sistema e metodo di stima dello stile di guida di un autoveicolo
JP5182336B2 (ja) * 2010-08-02 2013-04-17 株式会社デンソー 運転特性特定装置および経路探索装置
US20130006674A1 (en) * 2011-06-29 2013-01-03 State Farm Insurance Systems and Methods Using a Mobile Device to Collect Data for Insurance Premiums
US8996234B1 (en) * 2011-10-11 2015-03-31 Lytx, Inc. Driver performance determination based on geolocation
EP2906439A4 (en) * 2012-10-10 2016-07-27 Automatic Labs Inc SYSTEM AND METHOD FOR EVALUATING TRAVEL PATHS
US9766625B2 (en) * 2014-07-25 2017-09-19 Here Global B.V. Personalized driving of autonomously driven vehicles
US10204528B2 (en) * 2015-08-05 2019-02-12 Uber Technologies, Inc. Augmenting transport services using driver profiling
US20160357262A1 (en) * 2015-06-05 2016-12-08 Arafat M.A. ANSARI Smart vehicle
US9836056B2 (en) * 2015-06-05 2017-12-05 Bao Tran Smart vehicle
US9711050B2 (en) * 2015-06-05 2017-07-18 Bao Tran Smart vehicle
US9842437B2 (en) * 2015-06-29 2017-12-12 Allstate Insurance Company Automatically identifying drivers

Also Published As

Publication number Publication date
US10960893B2 (en) 2021-03-30
EP3367062B1 (en) 2020-11-18
EP3367062A1 (en) 2018-08-29
JP2018136934A (ja) 2018-08-30
US20180237026A1 (en) 2018-08-23
AU2018200557A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6775537B2 (ja) 自動車運行に対応して運転者プロファイリングをするためのシステムおよび方法
US20160260322A1 (en) Detecting Road Condition Changes from Probe Data
CN109935077A (zh) 用于为自动驾驶车辆构建车辆与云端实时交通地图的系统
CN110325935A (zh) 用于自动驾驶车辆的路径规划的基于驾驶场景的车道引导线
CN111833600B (zh) 通行时间预测方法、装置及数据处理设备
CN109287122A (zh) 基于自动驾驶车辆的控制反馈更新地图的方法和系统
US10054945B2 (en) Method for determining command delays of autonomous vehicles
CN110378483A (zh) 部署在模拟平台上的用于训练机器学习模型的系统和方法
CN108027243A (zh) 用于操作自动驾驶车辆的控制误差校正规划方法
CN109429518A (zh) 基于地图图像的自动驾驶交通预测
US10990837B1 (en) Systems and methods for utilizing machine learning and feature selection to classify driving behavior
CN108891417A (zh) 用于操作自动驾驶车辆的方法及数据处理系统
US9959508B2 (en) Systems and methods for providing information for predicting desired information and taking actions related to user needs in a mobile device
US11408739B2 (en) Location correction utilizing vehicle communication networks
US10909377B2 (en) Tracking objects with multiple cues
JP2022511093A (ja) デバイスメッセージフレームワーク
WO2013192584A1 (en) Automatically reexecuting a query
Chen et al. Efficient traffic speed forecasting based on massive heterogenous historical data
CN109033966A (zh) 绕路检测模型训练方法和装置,以及绕路检测方法和装置
WO2023201938A1 (zh) 缺失轨迹填补方法及系统
GB2601384A (en) Secure safety-critical system log
US20230314153A1 (en) Processing System Having A Machine Learning Engine For Providing A Common Trip Format (CTF) Output
Kumar et al. Changing the world of autonomous vehicles using cloud and big data
CN111480165A (zh) 在考虑对象的特征结构的情况下创建用于车辆的基于特征的定位地图的方法
Han et al. Traffic information service model considering personal driving trajectories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6775537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250