JP6775432B2 - Vacuum transfer module and substrate processing equipment - Google Patents

Vacuum transfer module and substrate processing equipment Download PDF

Info

Publication number
JP6775432B2
JP6775432B2 JP2017010133A JP2017010133A JP6775432B2 JP 6775432 B2 JP6775432 B2 JP 6775432B2 JP 2017010133 A JP2017010133 A JP 2017010133A JP 2017010133 A JP2017010133 A JP 2017010133A JP 6775432 B2 JP6775432 B2 JP 6775432B2
Authority
JP
Japan
Prior art keywords
processing chamber
processing
chamber
transport
angle formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017010133A
Other languages
Japanese (ja)
Other versions
JP2018120905A (en
Inventor
靖之 林
靖之 林
剛史 向
剛史 向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPP Technologies Co Ltd
Original Assignee
SPP Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPP Technologies Co Ltd filed Critical SPP Technologies Co Ltd
Priority to JP2017010133A priority Critical patent/JP6775432B2/en
Publication of JP2018120905A publication Critical patent/JP2018120905A/en
Application granted granted Critical
Publication of JP6775432B2 publication Critical patent/JP6775432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、メンテナンス性に優れた真空搬送モジュール及び基板処理装置に関する。 The present invention relates to a vacuum transfer module and a substrate processing apparatus having excellent maintainability.

従来、基板(ウェハ)に対して行われる物理蒸着(PVD)、化学蒸着(CVD)、エッチングなどの所定の処理は、真空に保持された処理室(プロセスチャンバ)の内部で行われることが一般的である。このような基板処理を行う装置として、処理の効率化の観点、及び、酸化やコンタミネーションなどを抑制する観点から、真空に保持されている搬送室を中心にその周りに複数の処理室を配置し、当該搬送室に設けられている搬送機構(搬送ロボット)により各処理室に基板を搬入及び搬出可能としたマルチチャンバ方式の装置(クラスターツール)が知られている。 Conventionally, predetermined processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching performed on a substrate (wafer) are generally performed inside a processing chamber (process chamber) held in a vacuum. Is targeted. As a device for performing such substrate processing, a plurality of processing chambers are arranged around a transport chamber held in a vacuum from the viewpoint of improving processing efficiency and suppressing oxidation and contamination. However, there is known a multi-chamber type device (cluster tool) capable of loading and unloading a substrate into each processing chamber by a transport mechanism (transport robot) provided in the transport chamber.

例えば、特許文献1に開示される基板処理装置(真空処理システム1)は、図4の平面図に示すように、真空下で基板処理を行う複数の処理室(CVD処理チャンバ12,13,14,15)と、搬送室(搬送室11)とを備えている。前記搬送室11は平面視形状が正六角形であり、6つの側面は互いに等しい角度(搬送室11の平面視形状が正六角形であるため60°)をなして隣接している。当該搬送室11の6つの側面のうち、4つの側面に4つの処理室12,13,14,15がゲートバルブGを介して接続されている。処理室12,13,14,15が接続されている搬送室11の1つの側面当たり1つの処理室が接続されている。当該処理室接続面同士がなす角度は等しいので、隣り合う処理室間の間隔も等しい。 For example, the substrate processing apparatus (vacuum processing system 1) disclosed in Patent Document 1 has a plurality of processing chambers (CVD processing chambers 12, 13, 14) that perform substrate processing under vacuum, as shown in the plan view of FIG. , 15) and a transport chamber (transport chamber 11). The transport chamber 11 has a regular hexagonal shape in a plan view, and the six side surfaces are adjacent to each other at the same angle (60 ° because the plan view shape of the transport chamber 11 is a regular hexagon). Of the six side surfaces of the transport chamber 11, four processing chambers 12, 13, 14, and 15 are connected to the four side surfaces via a gate valve G. One processing chamber is connected per side surface of the transport chamber 11 to which the processing chambers 12, 13, 14 and 15 are connected. Since the angles formed by the processing chamber connecting surfaces are equal, the distance between adjacent processing chambers is also equal.

ところで、このような基板処理装置のメンテナンス作業として、例えば、搬送室、搬送機構及び処理室の部品並びに計測機器、ゲートバルブの弁体やOリングなどを定期的に交換・補修する作業などが挙げられる。これらのメンテナンス作業は、搬送室や処理室の近くで行われるため、隣り合う処理室間の間隔が狭いと、作業者が交換・補修作業を行い難い。その結果、メンテナンス作業の効率が悪くなり、メンテナンス性に劣るものとなる。一般的に、基板処理装置は高いスループットが求められることから、処理室の設置台数を多くすることが求められる。しかしながら、従来の基板処理装置は、処理室間の間隔が等しいため、処理室の設置台数を増やすにつれ、必然的に隣り合う処理室間の間隔が狭くなり、メンテナンス性に劣るものとならざるを得ないという問題点がある。 By the way, as maintenance work of such a substrate processing apparatus, for example, work of regularly replacing and repairing a transfer chamber, a transfer mechanism, parts of the processing chamber, measuring instruments, a valve body of a gate valve, an O-ring, and the like can be mentioned. Be done. Since these maintenance operations are performed near the transport room and the processing room, it is difficult for the operator to perform the replacement / repair work if the distance between the adjacent processing rooms is narrow. As a result, the efficiency of the maintenance work becomes poor, and the maintainability becomes inferior. In general, since a substrate processing apparatus is required to have a high throughput, it is required to increase the number of processing rooms installed. However, in the conventional substrate processing apparatus, since the intervals between the processing chambers are equal, as the number of processing chambers installed increases, the intervals between adjacent processing chambers inevitably become narrower, and the maintainability must be inferior. There is a problem that it cannot be obtained.

特許文献2には、搬送室のある1つの側面に処理室を接続しないことにより空いた領域をメンテナンス領域とすることが開示されている。このようにすれば、広いメンテナンス領域を確保することはできるものの、処理室を接続せずにメンテナンス領域を設けることは、処理室の設置台数を減らさざるを得ず、高いスループットを犠牲にすることになるという問題点がある。 Patent Document 2 discloses that a region vacated by not connecting a processing chamber to one side surface of a transport chamber is used as a maintenance region. In this way, a large maintenance area can be secured, but providing a maintenance area without connecting the processing rooms has no choice but to reduce the number of processing rooms installed, and sacrifices high throughput. There is a problem that it becomes.

特許第5208948号公報Japanese Patent No. 5208948 特開2011−233788号公報Japanese Unexamined Patent Publication No. 2011-23788

本発明は、かかる問題点を解決するためになされたものであり、高いスループットを維持したまま、メンテナンス作業を効率良く行うことが可能であり、メンテナンス性に優れた真空搬送モジュール及び基板処理装置を提供することを課題とする。 The present invention has been made to solve such a problem, and it is possible to efficiently perform maintenance work while maintaining high throughput, and to provide a vacuum transfer module and a substrate processing apparatus having excellent maintainability. The challenge is to provide.

前記課題を解決するため、本発明は、平面視形状が凸m角形(mは4以上の整数)である搬送室と、前記搬送室に配置され、基板を搬送する搬送機構とを備え、前記搬送室のm個の側面のうち、少なくともこの順に隣接する第1側面、第2側面及び第3側面は、前記搬送機構によって搬送される基板が処理される第1処理室、第2処理室及び第3処理室にそれぞれ接続可能であって、前記搬送室の平面視中心と接続された前記第1処理室の平面視中心とを結ぶ直線、前記搬送室の平面視中心と接続された前記第2処理室の平面視中心とを結ぶ直線、及び、前記搬送室の平面視中心と接続された前記第3処理室の平面視中心とを結ぶ直線に対して、それぞれ略直交し、前記第1側面と前記第2側面とが成す角度と、前記第2側面と前記第3側面とが成す角度とは異なっていることを特徴とする真空搬送モジュールを提供する。 In order to solve the above problems, the present invention includes a transport chamber having a convex m-square shape (m is an integer of 4 or more) in a plan view, and a transport mechanism arranged in the transport chamber to transport the substrate. Of the m side surfaces of the transport chamber, at least the first side surface, the second side surface, and the third side surface adjacent to each other in this order are the first treatment chamber, the second treatment chamber, and the second treatment chamber in which the substrate transported by the transfer mechanism is processed. A straight line connecting the plan view center of the transport chamber and the plan view center of the first processing chamber connected to the third processing chamber, and the plan view center connected to the transport chamber. 2 The first straight line connecting the center of the processing chamber in the plan view and the straight line connecting the center of the transport chamber in the plan view and the center of the third processing chamber connected in the plane view of the third processing chamber are substantially orthogonal to each other. Provided is a vacuum transfer module characterized in that the angle formed by the side surface and the second side surface is different from the angle formed by the second side surface and the third side surface.

本発明の真空搬送モジュールにおいて、搬送室のm個の側面のうち、第1処理室、第2処理室及び第3処理室にそれぞれ接続可能であって、この順に隣接する3つの側面が複数組存在する場合は、当該複数組のうち少なくとも1組の3つの側面が第1側面、第2側面及び第3側面であり、前記第1側面、前記第2側面及び前記第3側面が、前記搬送室の平面視中心と接続された前記第1処理室の平面視中心とを結ぶ直線、前記搬送室の平面視中心と接続された前記第2処理室の平面視中心とを結ぶ直線、及び、前記搬送室の平面視中心と接続された前記第3処理室の平面視中心とを結ぶ直線に対して、それぞれ略直交し、前記第1側面と前記第2側面とが成す角度と、前記第2側面と前記第3側面とが成す角度とが異なっているという関係を満たす。
例えば、前記搬送室のm個の側面のうち、側面A、側面B、側面C及び側面Dの4個の側面がこの順に隣接し、4個の側面A、側面B、側面C及び側面Dが処理室に接続可能である場合、
(1)側面A、側面B及び側面C、
(2)側面B、側面C及び側面D
の2組のうち少なくとも1組の3つの側面を第1側面、第2側面、第3側面と称し、当該第1側面、第2側面、第3側面が前記関係を満たしていればよい。前記搬送室のm個の側面のうち、5個以上の側面が隣接し、当該5個以上の側面が処理室に接続可能である場合も、同様であり、少なくとも1組の第1側面、第2側面、第3側面について、前記関係を満たしていればよい。
In the vacuum transfer module of the present invention, among the m side surfaces of the transfer chamber, a plurality of sets of three side surfaces that can be connected to the first processing chamber, the second processing chamber, and the third processing chamber, respectively, and are adjacent to each other in this order. If present, at least one of the plurality of sets of three sides is the first side surface, the second side surface, and the third side surface, and the first side surface, the second side surface, and the third side surface are the transport. A straight line connecting the plan view center of the chamber and the plan view center of the first processing chamber, a straight line connecting the plan view center of the transport chamber and the plan view center of the second processing chamber, and The angle formed by the first side surface and the second side surface, which are substantially orthogonal to the straight line connecting the plan view center of the transport chamber and the plan view center of the third processing chamber, and the first side surface. It satisfies the relationship that the angles formed by the two side surfaces and the third side surface are different.
For example, of the m side surfaces of the transport chamber, the four side surfaces A, the side surface B, the side surface C and the side surface D are adjacent to each other in this order, and the four side surfaces A, the side surface B, the side surface C and the side surface D are adjacent to each other. If you can connect to the processing room
(1) Side A, Side B and Side C,
(2) Side surface B, side surface C and side surface D
Of the two sets, at least one set of three sides is referred to as a first side surface, a second side surface, and a third side surface, and the first side surface, the second side surface, and the third side surface may satisfy the above relationship. The same applies when five or more side surfaces of the m side surfaces of the transport chamber are adjacent to each other and the five or more side surfaces can be connected to the processing chamber, and at least one set of the first side surfaces and the first side surface is the same. It is sufficient that the above-mentioned relationship is satisfied for the two side surfaces and the third side surface.

ここで、「搬送室の平面視中心」とは、基板を搬送する搬送機構の旋回中心のことをいう。以下、「搬送室の平面視中心」のことを単に「搬送室の中心」ともいうことがある。
また、「処理室の平面視中心」とは、処理室の内部に設けられ、処理対象の基板を載置する、平面視円形状の載置台の平面視中心のことをいう。以下、「処理室の平面視中心」を単に「処理室の中心」ともいうことがある。
Here, the "center of plan view of the transport chamber" means the turning center of the transport mechanism that transports the substrate. Hereinafter, the "center of the transport chamber in a plan view" may be simply referred to as the "center of the transport chamber".
Further, the "center of plan view of the processing chamber" means the center of plan view of a circular mounting table provided inside the processing chamber on which the substrate to be processed is placed. Hereinafter, the "center of the processing chamber in a plan view" may be simply referred to as the "center of the processing chamber".

前記第1側面と前記第2側面とが成す角度α12と、前記第2側面と前記第3側面とが成す角度α23とが異なっているということは、α23がα12よりも大きい、又は、α23がα12よりも小さい。
例えば、図1に示すように、α23がα12よりも小さい場合、前記搬送室11の中心Oと接続された前記第1処理室P1の中心Rとを結ぶ直線ORと、前記搬送室の中心Oと接続された前記第2処理室P2の中心Rとを結ぶ直線ORとが成す角度β12は、前記直線ORと、前記搬送室11の中心Oと接続された前記第3処理室P3の中心Rとを結ぶ直線ORとが成す角度β23よりも小さい。この場合、第2処理室P2と第3処理室P3との間隔は、第1処理室P1と第2処理室P2との間隔よりも大きくなる。
このように、第2側面と第3側面とが成す角度を第1側面と第2側面とが成す角度よりも小さくすることにより、第2処理室と第3処理室との間隔を大きくし、第1処理室と第2処理室との間隔を小さくすることができる。
The difference between the angle α 12 formed by the first side surface and the second side surface and the angle α 23 formed by the second side surface and the third side surface means that α 23 is larger than α 12 . Alternatively, α 23 is smaller than α 12 .
For example, as shown in FIG. 1, when α 23 is smaller than α 12, a straight line OR 1 connecting the center O of the transport chamber 11 and the center R 1 of the first processing chamber P1 connected to the center O and the transport The angle β 12 formed by the straight line OR 2 connecting the center R 2 of the second processing chamber P2 connected to the center O of the chamber is the straight line OR 2 connected to the center O of the transport chamber 11. It is smaller than the angle β 23 formed by the straight line OR 3 connecting the center R 3 of the third processing chamber P 3 . In this case, the distance between the second processing chamber P2 and the third processing chamber P3 is larger than the distance between the first processing chamber P1 and the second processing chamber P2.
In this way, by making the angle formed by the second side surface and the third side surface smaller than the angle formed by the first side surface and the second side surface, the distance between the second processing chamber and the third processing chamber is increased. The distance between the first processing chamber and the second processing chamber can be reduced.

逆に、α23がα12よりも大きい場合、即ち、第2側面と第3側面とが成す角度が、第1側面と第2側面とが成す角度よりも大きい場合、第1処理室P1と第2処理室P2との間隔は、第2処理室P2と第3処理室P3との間隔よりも大きくなる。
このように、第2側面と第3側面とが成す角度を第1側面と第2側面とが成す角度よりも大きくすることにより、第1処理室と第2処理室との間隔を大きくし、第2処理室と第3処理室との間隔を小さくすることができる。
On the contrary, when α 23 is larger than α 12 , that is, when the angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface, the first processing chamber P1 and The distance between the second processing chamber P2 and the second processing chamber P2 is larger than the distance between the second processing chamber P2 and the third processing chamber P3.
In this way, by making the angle formed by the second side surface and the third side surface larger than the angle formed by the first side surface and the second side surface, the distance between the first processing chamber and the second processing chamber is increased. The distance between the second processing chamber and the third processing chamber can be reduced.

したがって、本発明によれば、隣り合う処理室間の間隔を大きくした広い領域をメンテナンス領域とし、当該メンテナンス領域でメンテナンス作業を行うことにより、従来のように隣り合う処理室間の間隔が等しい場合に比べて、より広いメンテナンス領域でメンテナンス作業を行うことができる。その結果、メンテナンス作業を効率的に行うことが可能であり、メンテナンス性に優れた真空搬送モジュールを提供することが可能である。
ここで、メンテナンス領域とは、基板処理装置のメンテナンス作業を行うための領域のことを意味し、装置の部品及び計測機器の交換、補修などが行われる領域である。メンテナンス作業としては、例えば、搬送室、搬送機構及び処理室の部品並びに計測機器、ゲートバルブGの弁体やOリングなどを定期的に交換・補修する作業などが挙げられる。
Therefore, according to the present invention, a wide area in which the distance between adjacent processing chambers is increased is set as a maintenance area, and by performing maintenance work in the maintenance area, the distance between adjacent treatment rooms is equal as in the conventional case. Compared to, maintenance work can be performed in a wider maintenance area. As a result, it is possible to efficiently perform maintenance work, and it is possible to provide a vacuum transfer module having excellent maintainability.
Here, the maintenance area means an area for performing maintenance work on the substrate processing apparatus, and is an area in which parts of the apparatus and measuring instruments are replaced or repaired. Examples of the maintenance work include the work of periodically replacing and repairing parts of the transport chamber, the transport mechanism and the processing chamber, measuring instruments, the valve body of the gate valve G, the O-ring, and the like.

なお、図1では、搬送室11の第1側面L1、第2側面L2、第3側面L3を平面視時計回りの順に称しているが、平面視反時計回りの順に第1側面L1、第2側面L2、第3側面L3と称しても同様である。 In FIG. 1, the first side surface L1, the second side surface L2, and the third side surface L3 of the transport chamber 11 are referred to in the order of the plan view counterclockwise direction, but the first side surface L1 and the second side surface L1 and the second side surface L3 The same applies to the side surface L2 and the third side surface L3.

本発明においては、隣接する2つの側面である前記第1側面と前記第2側面が成す角度α12と、同様に隣接する2つの側面である前記第2側面と前記第3側面とが成す角度α23とは異なっているため、α12及びα23のうち、何れか一方の成す角度が正m角形の場合の角度よりも大きく、何れか他方の成す角度が正m角形の場合の角度よりも小さい。したがって、α12及びα23としては、何れか一方が180°×(m−2)/mよりも大きく、何れか他方が180°×(m−2)/mよりも小さい場合を例示できる。 In the present invention, the angle α 12 formed by the first side surface and the second side surface, which are two adjacent side surfaces, and the angle formed by the second side surface and the third side surface, which are similarly adjacent two side surfaces. since different from the alpha 23, of the alpha 12 and alpha 23, either one of the angle is greater than the angle in the case of a positive m square, than the angle of the case or the other of the angle of the positive m square Is also small. Therefore, as α 12 and α 23 , a case where one of them is larger than 180 ° × (m-2) / m and the other is smaller than 180 ° × (m-2) / m can be exemplified.

また、前記課題を解決するため、本発明は、前記真空搬送モジュールと、前記真空搬送モジュールに接続されている処理モジュールとを備え、前記処理モジュールは、前記第1側面に接続されている前記第1処理室、前記第2側面に接続されている前記第2処理室、及び、前記第3側面に接続されている前記第3処理室と、前記第1処理室、前記第2処理室及び前記第3処理室に処理ガスを供給する処理ガス供給機構と、前記第1処理室、前記第2処理室及び前記第3処理室の内部を排気する排気機構とを具備することを特徴とする基板処理装置としても提供される。 Further, in order to solve the above-mentioned problems, the present invention includes the vacuum transfer module and a processing module connected to the vacuum transfer module, and the processing module is connected to the first side surface. 1 processing chamber, the 2nd processing chamber connected to the 2nd side surface, the 3rd processing chamber connected to the 3rd side surface, the 1st processing chamber, the 2nd processing chamber and the said A substrate including a processing gas supply mechanism for supplying processing gas to a third processing chamber, and an exhaust mechanism for exhausting the inside of the first processing chamber, the second processing chamber, and the third processing chamber. It is also provided as a processing device.

本発明の基板処理装置によれば、前述したように、隣り合う処理室間の間隔を広くした領域をメンテナンス領域とし、当該メンテナンス領域でメンテナンス作業を行うことにより、従来のように隣り合う処理室間の間隔が等しい場合に比べて、より広い領域でメンテナンス作業を行うことができる。その結果、本発明の基板処理装置は、メンテナンス作業を効率的に行うことが可能であり、メンテナンス性に優れる。 According to the substrate processing apparatus of the present invention, as described above, an area in which the distance between adjacent processing rooms is widened is set as a maintenance area, and by performing maintenance work in the maintenance area, adjacent processing rooms are conventionally used. Maintenance work can be performed in a wider area than when the intervals between them are equal. As a result, the substrate processing apparatus of the present invention can efficiently perform maintenance work and is excellent in maintainability.

本発明の基板処理装置は、好ましくは、前記第1処理室、前記第2処理室及び前記第3処理室が、それぞれ独立した処理室である。ここで、前記独立した処理室とは、当該処理室において基板処理を行う際に他の処理室と連通しておらず、他の処理室の処理条件(例えば、温度、圧力、処理ガスの種類など)の影響を受けないことを意味する。かかる好ましい構成により、処理室毎に独立して温度、圧力、処理ガスの種類などの設定及び制御を行うことが可能であるため、複数の処理室のそれぞれが他の処理室の処理条件の影響を受けずに、品質が安定した基板の処理が可能である。また、複数の処理室毎に異なる処理を行うことが可能であるため、基板処理の自由度が高まるという利点がある。 In the substrate processing apparatus of the present invention, preferably, the first processing chamber, the second processing chamber, and the third processing chamber are independent processing chambers. Here, the independent processing chamber does not communicate with other processing chambers when the substrate is processed in the processing chamber, and the processing conditions (for example, temperature, pressure, type of processing gas) of the other processing chamber are used. Etc.) means not affected. With such a preferable configuration, it is possible to independently set and control the temperature, pressure, type of processing gas, etc. for each processing chamber, so that each of the plurality of processing chambers is affected by the processing conditions of the other processing chambers. It is possible to process a substrate with stable quality without suffering from the problem. Further, since it is possible to perform different processing for each of a plurality of processing chambers, there is an advantage that the degree of freedom in substrate processing is increased.

好ましくは、前記処理モジュールが、更に、前記搬送室に対して移動可能である処理室架台を具備し、前記第1側面と前記第2側面とが成す角度が、前記第2側面と前記第3側面とが成す角度よりも大きいときは、前記処理室架台が前記第1処理室と前記第2処理室とを搭載しており、前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも大きいときは、前記処理室架台が前記第2処理室と前記第3処理室とを搭載している。
前記好ましい構成によれば、隣り合う処理室間の間隔が小さい2つの処理室が1つの処理室架台に搭載されていることにより、基板処理装置全体の処理室架台の数を減らすことができるため、基板処理装置の製造コストを下げることが可能である。そして、隣り合う処理室間の間隔を大きくした広い領域をメンテナンス領域とし、当該広いメンテナンス領域でメンテナンス作業を行うことにより、メンテナンス作業を効率的に行うことが可能となり、メンテナンス性に優れる。
Preferably, the processing module further includes a processing chamber pedestal that is movable with respect to the transport chamber, and the angle formed by the first side surface and the second side surface is the second side surface and the third side surface. When the angle formed by the side surface is larger than the angle formed by the side surface, the processing chamber mount mounts the first processing chamber and the second processing chamber, and the angle formed by the second side surface and the third side surface is the said. When the angle formed by the first side surface and the second side surface is larger than the angle formed by the first side surface, the processing chamber pedestal mounts the second processing chamber and the third processing chamber.
According to the preferred configuration, since two processing chambers having a small distance between adjacent processing chambers are mounted on one processing chamber pedestal, the number of processing chamber pedestals of the entire substrate processing apparatus can be reduced. , It is possible to reduce the manufacturing cost of the substrate processing apparatus. Then, a wide area where the distance between adjacent processing rooms is increased is set as a maintenance area, and by performing the maintenance work in the wide maintenance area, the maintenance work can be efficiently performed and the maintainability is excellent.

好ましくは、前記排気機構が真空ポンプを有し、前記処理室架台に搭載されている前記第1処理室及び前記第2処理室の内部、又は、前記処理室架台に搭載されている前記第2処理室及び前記第3処理室の内部が、1つの前記真空ポンプで排気される。
かかる好ましい構成によれば、真空ポンプの設置台数を削減することができるため、必要なユーティリティー(例えば、電気、冷却水など)の接続の手間が省け、接続箇所の数を削減することができる。
Preferably, the exhaust mechanism has a vacuum pump, and the inside of the first processing chamber and the second processing chamber mounted on the processing chamber pedestal, or the second mounted on the processing chamber pedestal. The inside of the processing chamber and the third processing chamber is exhausted by one of the vacuum pumps.
According to such a preferable configuration, since the number of installed vacuum pumps can be reduced, it is possible to save the trouble of connecting necessary utilities (for example, electricity, cooling water, etc.) and reduce the number of connection points.

好ましくは、前記処理室架台に搭載されている前記第1処理室及び前記第2処理室、又は、前記処理室架台に搭載されている前記第2処理室及び前記第3処理室において、同一種類の処理が行われる。
1つの処理室架台に搭載されている処理室毎に異なる種類の処理が行われる場合、処理室毎に異なる処理ガス供給機構を設ける必要がある。しかし、本発明の前記好ましい構成によれば、同一種類の処理が行われる場合、1つの処理室架台に搭載されている2つの処理室に同一の処理ガス供給機構を設けることができるため、必要なユーティリティーの接続の手間が省け、基板処理装置の製造コストを削減することが可能である。
Preferably, the same type is used in the first processing chamber and the second processing chamber mounted on the processing chamber pedestal, or in the second processing chamber and the third processing chamber mounted on the processing chamber pedestal. Is processed.
When different types of treatment are performed for each treatment chamber mounted on one treatment chamber pedestal, it is necessary to provide a different treatment gas supply mechanism for each treatment chamber. However, according to the preferred configuration of the present invention, when the same type of processing is performed, the same processing gas supply mechanism can be provided in two processing chambers mounted on one processing chamber pedestal, which is necessary. It is possible to reduce the manufacturing cost of the substrate processing device by eliminating the trouble of connecting various utilities.

好ましくは、前記第1側面と前記第2側面とが成す角度が、前記第2側面と前記第3側面とが成す角度よりも大きいときは、前記第3処理室に対向する側の第2処理室側面と、第2処理室に対向する側の第3処理室側面とに、処理室計測機器が設けられており、前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも大きいときは、前記第2処理室に対向する側の第1処理室側面と、前記第1処理室に対向する側の第2処理室側面とに、処理室計測機器が設けられている。
ここでいう処理室計測機器とは、処理室内部の温度、圧力、発光分析など処理室内部の状態を計測する機器のことをいう。
Preferably, when the angle formed by the first side surface and the second side surface is larger than the angle formed by the second side surface and the third side surface, the second treatment on the side facing the third processing chamber A processing chamber measuring device is provided on the side surface of the chamber and the side surface of the third processing chamber facing the second processing chamber, and the angle formed by the second side surface and the third side surface is the first side surface. When the angle formed by the second side surface is larger than the angle formed by the second side surface, the side surface of the first processing chamber facing the second processing chamber and the side surface of the second processing chamber facing the first processing chamber are formed. Processing room measuring equipment is provided.
The processing chamber measuring device referred to here refers to a device that measures the state inside the processing chamber, such as temperature, pressure, and emission analysis.

前述したように、前記第1側面と前記第2側面とが成す角度が、前記第2側面と前記第3側面とが成す角度よりも大きいときは、第2処理室と第3処理室との間隔は、第1処理室と第2処理室との間隔よりも大きくなるため、処理室間の間隔が大きい第2処理室と第3処理室との間の領域がメンテナンス領域となる。このとき、第2処理室と第3処理室の側面のうち、第3処理室に対向する側の第2処理室の側面、及び、第2処理室に対向する側の第3処理室の側面が、当該メンテナンス領域に面することになる。
また、前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも大きいときは、第1処理室と第2処理室との間隔は、第2処理室と第3処理室との間隔よりも大きくなるため、処理室間の間隔が大きい第1処理室と第2処理室との間の領域がメンテナンス領域となる。このとき、前記第1処理室と前記第2処理室の側面のうち、第2処理室に対向する側の第1処理室の側面、及び、第2処理室に対向する側の第1処理室の側面が、当該メンテナンス領域に面することになる。
前記好ましい構成によれば、当該メンテナンス領域に面する処理室の側面に処理室計測機器が設けられているため、広いメンテナンス領域から処理室計測機器のメンテナンス作業(例えば、定期的な較正、消耗品の交換など)を行うため、メンテナンス作業を効率的に行うことが可能となり、メンテナンス性に優れる。
As described above, when the angle formed by the first side surface and the second side surface is larger than the angle formed by the second side surface and the third side surface, the second processing chamber and the third processing chamber are used. Since the interval is larger than the interval between the first processing chamber and the second processing chamber, the area between the second processing chamber and the third processing chamber where the interval between the processing chambers is large becomes the maintenance area. At this time, of the sides of the second treatment chamber and the third treatment chamber, the side surface of the second treatment chamber on the side facing the third treatment chamber and the side surface of the third treatment chamber on the side facing the second treatment chamber. However, it faces the maintenance area.
Further, when the angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface, the distance between the first processing chamber and the second processing chamber is set. Since the distance between the second treatment chamber and the third treatment chamber is larger than the distance between the second treatment chamber and the third treatment chamber, the area between the first treatment chamber and the second treatment chamber where the distance between the treatment chambers is large becomes the maintenance area. At this time, of the side surfaces of the first processing chamber and the second processing chamber, the side surface of the first processing chamber on the side facing the second processing chamber and the first processing chamber on the side facing the second processing chamber. Side of will face the maintenance area.
According to the preferred configuration, since the processing room measuring device is provided on the side surface of the processing room facing the maintenance area, maintenance work of the processing room measuring device (for example, periodic calibration, consumables) can be performed from a wide maintenance area. It is possible to carry out maintenance work efficiently and it is excellent in maintainability.

本発明の真空搬送モジュール及び基板処理装置によれば、隣り合う処理室間の間隔を大きくした領域をメンテナンス領域とし、当該メンテナンス領域でメンテナンス作業を行うことにより、従来のように隣り合う処理室間の間隔が等しい場合に比べて、より広い領域でメンテナンス作業を行うことができる。したがって、本発明によれば、メンテナンス作業を効率よく行うことが可能であり、メンテナンス性に優れた真空搬送モジュール及び基板処理装置を提供することができる。 According to the vacuum transfer module and the substrate processing apparatus of the present invention, an area where the distance between adjacent processing rooms is increased is set as a maintenance area, and by performing maintenance work in the maintenance area, the adjacent processing rooms are separated from each other as in the conventional case. Maintenance work can be performed in a wider area than when the intervals are equal. Therefore, according to the present invention, it is possible to efficiently perform maintenance work, and it is possible to provide a vacuum transfer module and a substrate processing apparatus having excellent maintainability.

本発明の第1実施形態に係る基板処理装置の概略平面図。The schematic plan view of the substrate processing apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る基板処理装置の概略平面図。The schematic plan view of the substrate processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る基板処理装置の概略平面図。The schematic plan view of the substrate processing apparatus which concerns on 3rd Embodiment of this invention. 従来の基板処理装置の概略平面図。Schematic plan view of a conventional substrate processing apparatus.

以下、本発明の各実施形態について、適宜図面を参照しつつ説明する。
なお、説明の便宜上、各図に示す各部品の寸法や縮尺比は、実際のものとは異なる場合がある。
Hereinafter, each embodiment of the present invention will be described with reference to the drawings as appropriate.
For convenience of explanation, the dimensions and scale ratio of each part shown in each figure may differ from the actual ones.

<第1実施形態>
最初に、本発明の第1実施形態に係る基板処理装置100全体の構成について説明する。
図1は、本発明の第1実施形態に係る基板処理装置100の概略平面図である。
図1に示すように、本実施形態に係る基板処理装置100は、真空搬送モジュール1と、前記真空搬送モジュール1に接続されている処理モジュール2とを備える。
本発明の真空搬送モジュール1は、処理前の基板を処理室3に搬入し、処理が終了した処理済み基板を処理室3から搬出する機能を有するものである。本実施形態の真空搬送モジュール1は、図1に示すように、平面視形状が凸m角形(mは4以上の整数)である搬送室11と、前記搬送室11に配置され、基板を搬送する搬送機構12とを備える。
処理モジュール2は、基板に処理を施す機能を有するものである。なお、本発明において、「処理」とは、基板に施す処理であれば、特に限定されず、例えば、CVD(化学蒸着)、PVD(物理蒸着)、エッチング、アッシング、基板加熱・冷却などの処理の種類が挙げられる。
<First Embodiment>
First, the configuration of the entire substrate processing apparatus 100 according to the first embodiment of the present invention will be described.
FIG. 1 is a schematic plan view of the substrate processing apparatus 100 according to the first embodiment of the present invention.
As shown in FIG. 1, the substrate processing apparatus 100 according to the present embodiment includes a vacuum transfer module 1 and a processing module 2 connected to the vacuum transfer module 1.
The vacuum transfer module 1 of the present invention has a function of carrying the substrate before processing into the processing chamber 3 and carrying out the processed substrate after processing from the processing chamber 3. As shown in FIG. 1, the vacuum transfer module 1 of the present embodiment is arranged in a transfer chamber 11 having a convex m-square shape (m is an integer of 4 or more) in a plan view and the transfer chamber 11 to convey a substrate. The transport mechanism 12 is provided.
The processing module 2 has a function of processing the substrate. In the present invention, the "treatment" is not particularly limited as long as it is a treatment applied to the substrate, and for example, a treatment such as CVD (chemical vapor deposition), PVD (physical vapor deposition), etching, ashing, and substrate heating / cooling. Types are listed.

[真空搬送モジュール]
まず、本実施形態の真空搬送モジュール1について説明する。
真空搬送モジュール1が備える搬送室11の平面視形状は、凸m角形である。なお、本発明において、凸m角形とは、辺の数がmであって、内角が全て180°未満である多角形のことを意味する。ここで、内角とは、多角形の2つの辺が作る2つの角のうち、多角形の内部にある方の角をいう。また、凸m角形とは、頂点がm個あり、対角線が全て多角形の内部を通る多角形ということもできる。もっとも、本発明における「凸m角形」は、m角形の角が若干面取りされているなど、本発明の技術分野において許容される範囲の形状をも含む概念である。
本実施形態にあっては、図1に示すように、搬送室11の平面視形状は、m=8である場合の凸m角形、つまり凸八角形である。
本発明において、搬送室11の平面視形状は凸m角形であるので、搬送室11の立体的形状は、当該凸m角形を底面とする柱体、いわゆる角柱である。
mの下限は、4である。また、mの上限は特に限定されないが、mが大きくなるほど、搬送室11の平面視形状が円に近づき、搬送室11の側面の幅が短くなる結果、処理室に搬送可能な基板サイズを小さくせざるを得ない。また、mが大きくなるほど、搬送室11の側面の幅を所望の基板サイズ以上とするためには、搬送室のサイズを大きくせざるを得ず、その結果、搬送機構12の基板搬送距離は長くなる。かかる観点から、mの上限は、例えば、20であり、好ましくは、12であり、より好ましくは、10である。
[Vacuum transfer module]
First, the vacuum transfer module 1 of the present embodiment will be described.
The plan view shape of the transport chamber 11 included in the vacuum transport module 1 is a convex m-square shape. In the present invention, the convex m-side polygon means a polygon having m on the sides and all internal angles of less than 180 °. Here, the internal angle means the angle inside the polygon among the two angles formed by the two sides of the polygon. Further, a convex m-sided polygon can be said to be a polygon having m vertices and all diagonal lines passing through the inside of the polygon. However, the "convex m-sided polygon" in the present invention is a concept including a shape within a range permitted in the technical field of the present invention, such as the corners of the m-sided polygon being slightly chamfered.
In the present embodiment, as shown in FIG. 1, the plan view shape of the transport chamber 11 is a convex m-square shape when m = 8, that is, a convex octagonal shape.
In the present invention, since the plan view shape of the transport chamber 11 is a convex m-side polygon, the three-dimensional shape of the transport chamber 11 is a pillar body having the convex m-square shape as a bottom surface, a so-called prism.
The lower limit of m is 4. Further, the upper limit of m is not particularly limited, but as m becomes larger, the plan view shape of the transport chamber 11 becomes closer to a circle, and the width of the side surface of the transport chamber 11 becomes shorter. I have no choice but to do it. Further, as m becomes larger, in order to make the width of the side surface of the transport chamber 11 larger than the desired substrate size, the size of the transport chamber must be increased, and as a result, the substrate transport distance of the transport mechanism 12 becomes longer. Become. From this point of view, the upper limit of m is, for example, 20, preferably 12, and more preferably 10.

本実施形態の真空搬送モジュール1において、搬送室11の外(例えば、ロードロック室9など)から搬送室11へと搬送機構12により基板を搬入し、搬入した基板を搬送機構12により処理室3へ搬出すると共に、処理室3で処理が終了した処理済み基板を処理室3から搬送室11へと搬送機構12により搬入し、搬入した処理済み基板を搬送機構12により搬送室11の外(例えば、ロードロック室9など)へと搬出する。
搬送室11は、基板を処理室3に搬入し、処理室3から搬出するための室である。処理室3は通常真空条件下にあり、搬送室11と処理室3とを連通して基板を搬出入するため、搬送室11も通常処理室3の真空度と同程度の真空条件下にある。
搬送機構12としては、例えば、旋回中心を中心として伸縮・旋回可能なシングルアームの2軸極座標型(r軸、θ軸)真空ロボットが用いられる。なお、搬送機構12は、ダブルアームの2軸極座標型(r軸、θ軸)真空ロボットでもよい。
In the vacuum transfer module 1 of the present embodiment, the substrate is carried from the outside of the transfer chamber 11 (for example, the load lock chamber 9 or the like) to the transfer chamber 11 by the transfer mechanism 12, and the carried-in substrate is carried into the processing chamber 3 by the transfer mechanism 12. The processed substrate that has been processed in the processing chamber 3 is carried out from the processing chamber 3 to the transport chamber 11 by the transport mechanism 12, and the processed substrate that has been carried in is carried out of the transport chamber 11 by the transport mechanism 12 (for example,). , Road lock room 9 etc.).
The transport chamber 11 is a chamber for carrying the substrate into the processing chamber 3 and carrying it out of the processing chamber 3. Since the processing chamber 3 is normally under a vacuum condition and the substrate is carried in and out by communicating the transfer chamber 11 and the processing chamber 3, the transfer chamber 11 is also under a vacuum condition similar to the degree of vacuum of the normal processing chamber 3. ..
As the transport mechanism 12, for example, a single-arm biaxial polar coordinate type (r-axis, θ-axis) vacuum robot that can expand and contract and rotate around the center of rotation is used. The transport mechanism 12 may be a double-armed 2-axis polar coordinate type (r-axis, θ-axis) vacuum robot.

搬送室11は、平面視形状が凸八角形であるから、8個の側面を有する。搬送室11は、図1に示すように、当該8個の側面のうち、6個の側面L1、L2、L3、L4、L5及びL6において、処理モジュール2が具備する処理室3と、ゲートバルブGを介して接続可能である。
搬送室11は、8個の側面のうち、少なくともこの順に隣接する第1側面と、第2側面と、第3側面とを有する。当該第1側面、第2側面及び第3側面は、第1処理室、第2処理室及び第3処理室とそれぞれ接続可能である。
Since the transport chamber 11 has a convex octagonal shape in a plan view, it has eight side surfaces. As shown in FIG. 1, the transport chamber 11 has a processing chamber 3 provided by the processing module 2 and a gate valve on six side surfaces L1, L2, L3, L4, L5 and L6 out of the eight side surfaces. It can be connected via G.
The transport chamber 11 has at least a first side surface, a second side surface, and a third side surface which are adjacent to each other in this order among the eight side surfaces. The first side surface, the second side surface and the third side surface can be connected to the first processing room, the second processing room and the third processing room, respectively.

搬送室11は、図1に示すように、8個の側面のうち、6個の側面L1、L2、L3、L4、L5及びL6が、この順に隣接し、処理室3と接続可能であり、
(a)側面L1が第1側面、側面L2が第2側面、側面L3が第3側面である場合と、
(b)側面L2が第1側面、側面L3が第2側面、側面L4が第3側面である場合と、
(c)側面L3が第1側面、側面L4が第2側面、側面L5が第3側面である場合と、
(d)側面L4が第1側面、側面L5が第2側面、側面L6が第3側面である場合と
がある。
As shown in FIG. 1, in the transport chamber 11, six side surfaces L1, L2, L3, L4, L5 and L6 of the eight side surfaces are adjacent to each other in this order and can be connected to the processing chamber 3.
(A) When the side surface L1 is the first side surface, the side surface L2 is the second side surface, and the side surface L3 is the third side surface.
(B) When the side surface L2 is the first side surface, the side surface L3 is the second side surface, and the side surface L4 is the third side surface.
(C) When the side surface L3 is the first side surface, the side surface L4 is the second side surface, and the side surface L5 is the third side surface.
(D) The side surface L4 may be the first side surface, the side surface L5 may be the second side surface, and the side surface L6 may be the third side surface.

搬送室11においては、図1に示すように、前記(a)〜(d)のそれぞれの第1側面、第2側面及び第3側面は、搬送室11の中心Oと接続された第1処理室の中心Rとを結ぶ直線、搬送室11の中心Oと接続された第2処理室の中心Rとを結ぶ直線、及び、搬送室11の中心Oと接続された第3処理室の中心Rとを結ぶ直線に対して、それぞれ略直交している。ここで、第1側面に接続された処理室3を第1処理室、第2側面に接続された処理室3を第2処理室、第3側面に接続された処理室3を第3処理室という。 In the transport chamber 11, as shown in FIG. 1, the first side surface, the second side surface, and the third side surface of each of the above (a) to (d) are the first process connected to the center O of the transport chamber 11. A straight line connecting the center R of the chamber, a straight line connecting the center O of the transport chamber 11 and the center R of the second processing chamber, and the center R of the third processing chamber connected to the center O of the transport chamber 11. They are almost orthogonal to the straight line connecting with. Here, the processing chamber 3 connected to the first side surface is the first processing chamber, the processing chamber 3 connected to the second side surface is the second processing chamber, and the processing chamber 3 connected to the third side surface is the third processing chamber. That is.

搬送室11における第1側面、第2側面、第3側面は、第1処理室、第2処理室及び第3処理室にそれぞれ接続可能であるから、真空搬送モジュール1を備える基板処理装置100は、第1側面、第2側面及び第3側面に第1処理室、第2処理室及び第3処理室がそれぞれ接続されている形態を含むのはもちろんのこと、少なくとも何れか1つの側面に、処理室3が接続されていない形態をも含む。 Since the first side surface, the second side surface, and the third side surface of the transfer chamber 11 can be connected to the first processing chamber, the second processing chamber, and the third processing chamber, respectively, the substrate processing apparatus 100 including the vacuum transfer module 1 is Of course, the first side surface, the second side surface, and the third side surface include a form in which the first processing chamber, the second processing chamber, and the third processing chamber are connected to each other, and at least one side surface thereof. It also includes a form in which the processing chamber 3 is not connected.

ここで、搬送室11と、処理室3に「接続可能である」とは、搬送室11と処理室3とを気密状態を保って連通させて、基板を搬送することが可能であることをいう。
また、「側面について、搬送室の平面視中心と接続された処理室の平面視中心とを結ぶ直線と略直交する」ことは、搬送室11に処理室3が接続された場合、当該搬送室11の側面(例えば、第1側面)が、搬送室11の中心Oと処理室3(例えば、第1処理室)の中心R(例えば、R)とを結ぶ直線OR(例えば、OR)に対して、略直交することを意味する。
Here, "connectable" to the transport chamber 11 and the processing chamber 3 means that the transport chamber 11 and the processing chamber 3 can be communicated with each other in an airtight state to transport the substrate. Say.
Further, "the side surface is substantially orthogonal to the straight line connecting the plan view center of the transport chamber and the plan view center of the connected processing chamber" means that when the processing chamber 3 is connected to the transport chamber 11, the transport chamber is concerned. A straight line OR (for example, OR 1 ) in which a side surface (for example, the first side surface) of 11 connects the center O of the transport chamber 11 and the center R (for example, R 1 ) of the processing chamber 3 (for example, the first processing chamber). It means that they are substantially orthogonal to each other.

本発明において、「略直交」とは、直交する場合を含むのは勿論、本発明の技術分野において許容される誤差εをも含む概念である。例えば、当該搬送室11の側面L1と、搬送室11の中心Oと処理室3(P1)の中心Rとを結ぶ直線ORとが成す角度が90°である場合、それらは直交している。
また、例えば、当該搬送室11の側面L1と、搬送室11の中心Oと処理室3(P1)の中心Rとを結ぶ直線ORとが成す角度が90°±ε(例えば、εは0°を超え5°以下、好ましくは、εは0°を超え2°以下)である場合、それらは略直交している。前記角度は、ゲートバルブGのシール性や基板搬送可能なゲート幅に応じて、90°±εの範囲内で決定することもできる。
In the present invention, "substantially orthogonal" is a concept including not only the case of orthogonality but also the error ε permitted in the technical field of the present invention. For example, the side surface L1 of the conveying chamber 11, when the angle which the straight line OR 1 forms connecting the center R 1 of the center O and the processing chamber 3 of the transfer chamber 11 (P1) is 90 °, they are orthogonal There is.
Further, for example, the side L1 of the transfer chamber 11, the center R 1 and the angle which the straight line OR 1 forms connecting the 90 ° ± epsilon center O and the processing chamber 3 of the transfer chamber 11 (P1) (for example, epsilon is If it is greater than 0 ° and less than 5 °, preferably ε is greater than 0 ° and less than 2 °), they are substantially orthogonal. The angle can also be determined within the range of 90 ° ± ε depending on the sealing property of the gate valve G and the gate width capable of transporting the substrate.

本実施形態における搬送室11の平面視中心Oは、図1に示すように、搬送機構12の旋回中心と一致している。 As shown in FIG. 1, the plan view center O of the transport chamber 11 in the present embodiment coincides with the turning center of the transport mechanism 12.

搬送室11の側面L1が第1側面、搬送室11の側面L2が第2側面、搬送室11の側面L3が第3側面である場合(即ち、前記(a)の場合)、第1側面L1に接続された第1処理室をP1、第2側面L2に接続された第2処理室をP2、第3側面L3に接続された第3処理室をP3と称し、第1処理室P1の中心をR、第2処理室P2の中心をR、第3処理室P3の中心をRと称することにする。本実施形態において、搬送室11の中心Oと第1処理室P1の中心Rとを結ぶ直線ORは、第1側面L1に対して略直交している。同様に、搬送室11の中心Oと第2処理室P2の中心Rとを結ぶ直線ORは、第2側面L2に対して略直交し、搬送室11の中心Oと第3処理室P3の中心Rとを結ぶ直線ORは、第3側面L3に対して略直交している。 When the side surface L1 of the transport chamber 11 is the first side surface, the side surface L2 of the transport chamber 11 is the second side surface, and the side surface L3 of the transport chamber 11 is the third side surface (that is, in the case of (a)), the first side surface L1 The first processing chamber connected to the second side surface L2 is referred to as P1, the second processing chamber connected to the second side surface L2 is referred to as P2, and the third processing chamber connected to the third side surface L3 is referred to as P3, which is the center of the first processing chamber P1. Is referred to as R 1 , the center of the second processing chamber P2 is referred to as R 2 , and the center of the third processing chamber P 3 is referred to as R 3 . In the present embodiment, the straight line OR 1 connecting the center R 1 of the center O and the first processing chamber P1 in the conveying chamber 11 is substantially perpendicular to the first side L1. Similarly, the straight line OR 2 connecting the center O of the transport chamber 11 and the center R 2 of the second processing chamber P2 is substantially orthogonal to the second side surface L2, and the center O of the transport chamber 11 and the third processing chamber P3 The straight line OR 3 connecting the center R 3 of the above is substantially orthogonal to the third side surface L3.

真空搬送モジュール1において、第1側面と第2側面とが成す角度と、第2側面と第3側面とが成す角度とは異なっている。つまり、
(i)第2側面と第3側面とが成す角度は、第1側面と第2側面とが成す角度よりも大きい、或いは、
(ii)第2側面と第3側面とが成す角度は、第1側面と第2側面とが成す角度よりも小さい、
の何れかである。
In the vacuum transfer module 1, the angle formed by the first side surface and the second side surface is different from the angle formed by the second side surface and the third side surface. In other words
(I) The angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface, or
(Ii) The angle formed by the second side surface and the third side surface is smaller than the angle formed by the first side surface and the second side surface.
Is one of.

図1に示すように、第2側面L2と第3側面L3とが成す角度α23は、第1側面L1と第2側面L2とが成す角度α12よりも小さく、前記(ii)の場合に該当する。このとき、搬送室11の中心Oと接続された第1処理室P1の中心Rとを結ぶ直線ORと、搬送室11の中心Oと接続された第2処理室P2の中心Rとを結ぶ直線ORとが成す角度β12は、前記直線ORと、搬送室11の中心Oと接続された前記第3処理室の中心Rとを結ぶ直線ORとが成す角度とが成す角度β23よりも小さい。 As shown in FIG. 1, the angle α 23 formed by the second side surface L2 and the third side surface L3 is smaller than the angle α 12 formed by the first side surface L1 and the second side surface L2, and in the case of (ii) above. Applicable. At this time, the straight line OR 1 connecting the center O of the transport chamber 11 and the center R 1 of the first processing chamber P1 connected to it, and the center R 2 of the second processing chamber P2 connected to the center O of the transport chamber 11 angle beta 12 in which the straight line OR 2 forms connecting includes said linear OR 2, and the angle between the straight line OR 3 forms connecting the center O and the center R 3 of the third processing chamber connected to the transfer chamber 11 It is smaller than the angle β 23 .

ここで、第1側面L1と直線ORとの交点をT、第2側面L2と直線ORとの交点をT、第3側面L3と直線ORとの交点をTとし、第1側面L1と第2側面L2とが接する平面視交点をS12、第2側面L2と第3側面L3とが接する平面視交点をS23とする。四角形の内角の和は360°であるから、四角形OT12及び四角形OT23の内角の和は360°である。第1側面と直線OR、第2側面と直線OR、及び、第3側面と直線ORとは直交するから、∠OT12、∠OT12、∠OT23及び∠OT23はいずれも90°であるので、
β12=360°−90°×2−α12=180°−α12 (1)
β23=360°−90°×2−α23=180°−α23 (2)
となる。
Here, the intersection of the first side surface L1 and the straight line OR 1 is T 1 , the intersection of the second side surface L2 and the straight line OR 2 is T 2 , and the intersection of the third side surface L3 and the straight line OR 3 is T 3 . Let S 12 be the plane viewing intersection where the first side surface L1 and the second side surface L2 are in contact, and S 23 be the plane viewing intersection where the second side surface L2 and the third side surface L3 are in contact. Since the sum of the internal angles of the quadrangle is 360 °, the sum of the internal angles of the quadrangle OT 1 S 12 T 2 and the quadrangle OT 2 S 23 T 3 is 360 °. Since the first side surface and the straight line OR 1 , the second side surface and the straight line OR 2 , and the third side surface and the straight line OR 3 are orthogonal to each other, ∠OT 1 S 12 , ∠OT 2 S 12 , ∠OT 2 S 23 and ∠ Since both OT 3 S 23 are 90 °,
β 12 = 360 ° -90 ° x 2-α 12 = 180 ° -α 12 (1)
β 23 = 360 ° -90 ° x 2-α 23 = 180 ° -α 23 (2)
Will be.

前述したように、第2側面L2と第3側面L3とが成す角度α23は、第1側面L1と第2側面L2とが成す角度α12よりも小さいので、式(1)と式(2)より、直線ORと直線ORとが成す角度β12は、直線ORと直線ORとが成す角度β23よりも小さいことが導かれる。つまり、第1側面L1と第2側面L2とが成す角度α12と、第2側面L2と第3側面L3とが成す角度α23との大小関係と、直線ORと直線ORとが成す角度β12は、直線ORと直線ORとが成す角度β23との大小関係は、逆になる。 As described above, the angle α 23 formed by the second side surface L2 and the third side surface L3 is smaller than the angle α 12 formed by the first side surface L1 and the second side surface L2, and therefore the equations (1) and (2) ), It is derived that the angle β 12 formed by the straight line OR 1 and the straight line OR 2 is smaller than the angle β 23 formed by the straight line OR 2 and the straight line OR 3 . That is, the magnitude relationship between the angle α 12 formed by the first side surface L1 and the second side surface L2 and the angle α 23 formed by the second side surface L2 and the third side surface L3, and the straight line OR 1 and the straight line OR 2 are formed. The magnitude relationship between the angle β 12 and the angle β 23 formed by the straight line OR 2 and the straight line OR 3 is opposite.

直線ORと直線ORとが成す角度β12は、直線ORと直線ORとが成す角度β23よりも小さいので、第2処理室P2と第3処理室P3との間隔は、第1処理室P1と第2処理室P2との間隔よりも大きくなる。つまり、第1側面L1と第2側面L2とが成す角度α12と、第2側面L2と第3側面L3とが成す角度α23とが異なっていることにより、第1処理室P1と第2処理室P2との間隔と、第2処理室P2と第3処理室P3との間隔とは異なり、何れか一方が大きく、何れか他方が小さい。
ここで、ある処理室と別の処理室との「間隔」とは、それぞれの接続された処理室の中心を結ぶ直線の距離のことをいう。例えば、処理室P1と処理室P2との間隔は、接続された処理室P1の中心Rと、接続された処理室P2の中心Rとを結ぶ直線の距離であり、処理室P2と処理室P3との間隔は、接続された処理室P2の中心Rと、接続された処理室P3の中心Rとを結ぶ直線の距離である。他の処理室についても同様である。
Since the angle β 12 formed by the straight line OR 1 and the straight line OR 2 is smaller than the angle β 23 formed by the straight line OR 2 and the straight line OR 3 , the distance between the second processing chamber P2 and the third processing chamber P3 is the first. It is larger than the distance between the 1 processing chamber P1 and the 2nd processing chamber P2. That is, the angle α 12 formed by the first side surface L1 and the second side surface L2 and the angle α 23 formed by the second side surface L2 and the third side surface L3 are different, so that the first processing chamber P1 and the second surface are different. The distance between the processing chamber P2 and the distance between the second processing chamber P2 and the third processing chamber P3 is different, and one of them is large and the other is small.
Here, the "distance" between one processing chamber and another processing chamber means the distance of a straight line connecting the centers of the connected processing chambers. For example, the interval between the processing chamber P1 and the processing chamber P2 is the center R 1 of the connected processing chamber P1, a distance of a straight line connecting the center R 2 of the connected processing chamber P2, a processing chamber P2 processing distance between the chamber P3 is provided with a center R 2 of the connected processing chamber P2, a distance of a straight line connecting the center R 3 of the connected processing chamber P3. The same applies to other processing rooms.

第2処理室P2と第3処理室P3との間隔は、第1処理室P1と第2処理室P2との間隔よりも大きい。即ち、従来のように搬送室の平面視形状が正多角形の場合、即ち、搬送室の隣り合う側面同士が成す角度が全て等しい場合に比べて、隣り合う処理室間の間隔を大きくすることができる。そのため、第2処理室P2と第3処理室P3との間の領域(第2処理室P2と第3処理室P3の側面間の領域)は、従来と比べて広くなる。従来と比べて広くなった当該第2処理室P2と第3処理室P3との間の領域をメンテナンス領域Mとする。図1に、本実施形態のメンテナンス領域Mを無数のドットで示す。 The distance between the second processing chamber P2 and the third processing chamber P3 is larger than the distance between the first processing chamber P1 and the second processing chamber P2. That is, the distance between adjacent processing chambers should be increased as compared with the case where the plan view shape of the transport chamber is a regular polygon as in the conventional case, that is, the angles formed by the adjacent side surfaces of the transport chamber are all equal. Can be done. Therefore, the area between the second processing chamber P2 and the third processing chamber P3 (the region between the side surfaces of the second processing chamber P2 and the third processing chamber P3) is wider than before. The area between the second processing chamber P2 and the third processing chamber P3, which is wider than the conventional one, is designated as the maintenance area M. FIG. 1 shows the maintenance area M of this embodiment with innumerable dots.

ここまで、前記(a)の場合、即ち第1側面がL1、第2側面がL2、第3側面がL3の場合について説明したが、他の前記(b)〜(d)の場合も同様である。
前記(b)の場合、即ち、第1側面がL2、第2側面がL3、第3側面がL4である場合、図1に示すように、第2側面L3と第3側面L4とが成す角度α34は、第1側面L2と第2側面L3とが成す角度α23よりも大きい。したがって、搬送室11の中心Oと接続された第1処理室P2の中心Rとを結ぶ直線ORと、搬送室11の中心Oと接続された第2処理室P3の中心Rとを結ぶ直線ORとが成す角度β23は、前記直線ORと、前記搬送室11の中心Oと接続された前記第3処理室P4の中心Rとを結ぶ直線ORとが成す角度β34よりも大きい。したがって、第1処理室P2と第2処理室P3との間隔は、第2処理室P3と第3処理室P4との間隔よりも大きくなる。図1からも判るように、第2処理室P2と第3処理室P3との間隔は従来に比べて大きいため、第2処理室P2と第3処理室P3との間の領域も従来より広くなる。従来と比べて広くなった当該第2処理室P2と第3処理室P3との間の領域をメンテナンス領域Mとする。この場合のメンテナンス領域Mは、前記(a)の場合と同じになる。
Up to this point, the case of (a), that is, the case where the first side surface is L1, the second side surface is L2, and the third side surface is L3 has been described, but the same applies to the other cases (b) to (d). is there.
In the case of (b), that is, when the first side surface is L2, the second side surface is L3, and the third side surface is L4, the angle formed by the second side surface L3 and the third side surface L4 is as shown in FIG. α 34 is larger than the angle α 23 formed by the first side surface L2 and the second side surface L3. Therefore, the straight line OR 2 connecting the center O of the transport chamber 11 and the center R 2 of the first processing chamber P2 connected to the center O of the transport chamber 11 and the center R 3 of the second processing chamber P3 connected to the center O of the transport chamber 11 are connected. angle beta 23 formed between the straight line OR 3 connecting the, the linearly OR 3, the angle formed by the straight line OR 4 connecting the center R 3 of the center O and connected to said third processing chamber P4 of the transfer chamber 11 beta Greater than 34 . Therefore, the distance between the first processing chamber P2 and the second processing chamber P3 is larger than the distance between the second processing chamber P3 and the third processing chamber P4. As can be seen from FIG. 1, since the distance between the second processing chamber P2 and the third processing chamber P3 is larger than that in the conventional case, the area between the second processing chamber P2 and the third processing chamber P3 is also wider than before. Become. The area between the second processing chamber P2 and the third processing chamber P3, which is wider than the conventional one, is designated as the maintenance area M. The maintenance area M in this case is the same as in the case of (a) above.

続いて、前記(c)の場合、即ち、第1側面がL3、第2側面がL4、第3側面がL5である場合、第2側面L4と第3側面L5とが成す角度α45は、第1側面L3と第2側面L4とが成す角度α34よりも小さい。したがって、前記(a)の場合と同様に、第2処理室P4と第3処理室P5との間隔は、第1処理室P3と第2処理室P4との間隔よりも大きくなる。第2処理室P4と第3処理室P5との間隔は従来に比べて大きいため、第2処理室P4と第3処理室P5との間の領域は従来より広くなる。従来と比べて広くなった当該第2処理室P4と第3処理室P5との間の領域をメンテナンス領域Mとする。 Subsequently, in the case of the above (c), that is, when the first side surface is L3, the second side surface is L4, and the third side surface is L5, the angle α 45 formed by the second side surface L4 and the third side surface L5 is determined. It is smaller than the angle α 34 formed by the first side surface L3 and the second side surface L4. Therefore, as in the case of (a) above, the distance between the second processing chamber P4 and the third processing chamber P5 is larger than the distance between the first processing chamber P3 and the second processing chamber P4. Since the distance between the second processing chamber P4 and the third processing chamber P5 is larger than that of the conventional one, the area between the second processing chamber P4 and the third processing chamber P5 is wider than the conventional one. The area between the second processing chamber P4 and the third processing chamber P5, which is wider than the conventional one, is designated as the maintenance area M.

前記(d)の場合、即ち、第1側面がL4、第2側面がL5、第3側面がL6である場合も同様である。この場合、第2側面L5と第3側面L6とが成す角度α56は、第1側面L4と第2側面L5とが成す角度α45よりも大きい。したがって、前記(b)の場合と同様に、第1処理室P4と第2処理室P5との間隔は、第2処理室P5と第3処理室P6との間隔よりも大きくなる。第1処理室P4と第2処理室P5との間隔は従来に比べて大きいため、第1処理室P4と第2処理室P5との間の領域は従来より広くなる。従来と比べて広くなった当該第1処理室P4と第2処理室P5との間の領域をメンテナンス領域Mとする。この場合のメンテナンス領域Mは、前記(c)の場合と同じになる。 The same applies to the case of (d), that is, when the first side surface is L4, the second side surface is L5, and the third side surface is L6. In this case, the angle α 56 formed by the second side surface L5 and the third side surface L6 is larger than the angle α 45 formed by the first side surface L4 and the second side surface L5. Therefore, as in the case of (b) above, the distance between the first processing chamber P4 and the second processing chamber P5 is larger than the distance between the second processing chamber P5 and the third processing chamber P6. Since the distance between the first processing chamber P4 and the second processing chamber P5 is larger than that of the conventional one, the area between the first processing chamber P4 and the second processing chamber P5 is wider than the conventional one. The area between the first processing chamber P4 and the second processing chamber P5, which is wider than the conventional one, is designated as the maintenance area M. The maintenance area M in this case is the same as in the case of (c) above.

このように、搬送室11の中心Oと接続された第1処理室の中心とを結ぶ直線、搬送室11の中心Oと接続された第2処理室の中心とを結ぶ直線、及び、搬送室11の中心Oと接続された第3処理室の中心とを結ぶ直線に対して、それぞれ略直交し、前記第1側面と前記第2側面とが成す角度と、前記第2側面と前記第3側面とが成す角度とが異なっていることにより、本実施形態の真空搬送モジュール1に処理室3を接続した場合、隣り合う処理室3間の間隔を、大きくすることができる。その結果、隣り合う処理室3間の間隔を大きくした広い領域をメンテナンス領域Mとし、当該メンテナンス領域Mでメンテナンス作業を行うことにより、従来のように隣り合う処理室間の間隔が等しい場合に比べて、より広いメンテナンス領域でメンテナンス作業を行うことができる。その結果、メンテナンス作業を効率的に行うことが可能であり、メンテナンス性に優れた真空搬送モジュール1を提供することが可能である。 As described above, the straight line connecting the center O of the transport chamber 11 and the center of the first processing chamber connected, the straight line connecting the center O of the transport chamber 11 and the center of the second processing chamber connected, and the transport chamber. The angle formed by the first side surface and the second side surface, and the second side surface and the third side surface are substantially orthogonal to the straight line connecting the center O of 11 and the center of the third processing chamber connected to the center O. When the processing chamber 3 is connected to the vacuum transfer module 1 of the present embodiment because the angle formed by the side surface is different, the distance between the adjacent processing chambers 3 can be increased. As a result, a wide area in which the distance between the adjacent processing chambers 3 is increased is designated as the maintenance area M, and by performing the maintenance work in the maintenance area M, the distance between the adjacent processing rooms is equal as in the conventional case. Therefore, maintenance work can be performed in a wider maintenance area. As a result, it is possible to efficiently perform maintenance work, and it is possible to provide a vacuum transfer module 1 having excellent maintainability.

搬送室11の隣接する2つの側面である第1側面と第2側面が成す角度と、同様に隣接する2つの側面である第2側面と第3側面とが成す角度とは異なっているため、何れか一方の成す角度が正m角形の場合の角度よりも大きく、何れか他方の成す角度が正m角形の場合の角度よりも小さい。したがって、第1側面と第2側面が成す角度及び第2側面と第3側面とが成す角度のうち、何れか一方が180°×(m−2)/mよりも大きく、何れか他方が180°×(m−2)/mよりも小さい。 Since the angle formed by the first side surface and the second side surface, which are two adjacent side surfaces of the transport chamber 11, is different from the angle formed by the second side surface and the third side surface, which are also two adjacent side surfaces. The angle formed by either one is larger than the angle formed by the regular m-square, and the angle formed by the other is smaller than the angle formed by the regular m-square. Therefore, of the angle formed by the first side surface and the second side surface and the angle formed by the second side surface and the third side surface, one of them is larger than 180 ° × (m-2) / m and the other is 180. Less than ° × (m-2) / m.

本実施形態においては、m=8であるから、隣接する2つの側面である第1側面と第2側面が成す角度と、同様に隣接する2つの側面である第2側面と第3側面とが成す角度の何れか一方が、180°×(8−2)/8=135°よりも大きく、何れか他方が180°×(8−2)/8=135°より小さい。本実施形態にあっては、隣接する2つの側面である第1側面と第2側面が成す角度α12、α34及びα56は146°であるため、135°よりも大きく、隣接する2つの側面である第2側面と第3側面とが成す角度α23及びα45は124°であるため、135°よりも小さい。 In the present embodiment, since m = 8, the angle formed by the first side surface and the second side surface, which are two adjacent side surfaces, and the second side surface and the third side surface, which are similarly adjacent two side surfaces, are formed. One of the angles formed is larger than 180 ° × (8-2) / 8 = 135 °, and the other is smaller than 180 ° × (8-2) / 8 = 135 °. In the present embodiment, the angles α 12 , α 34, and α 56 formed by the first side surface and the second side surface, which are two adjacent sides, are 146 °, which is larger than 135 ° and are adjacent to each other. The angles α 23 and α 45 formed by the second side surface and the third side surface, which are the side surfaces, are 124 °, which is smaller than 135 °.

[処理モジュール]
続いて、処理モジュール2について説明する。
処理モジュール2は、図1に示すように、処理室3(P1〜P6)と、処理室3に処理ガスを供給する処理ガス供給機構5と、前記処理室3の内部を排気する排気機構6とを具備する。
処理室3は、基板に処理を施すための室である。処理室3では、大気が遮断され、且つ、処理に応じた真空雰囲気を保持することができる。
処理ガス供給機構5は、処理室3に処理ガスを供給するための機能を有する機構である。即ち、処理ガスは、ガスボンベから、処理ガス供給機構5により、処理室3へと供給される。処理ガス供給機構5は、例えば、配管、バルブ、気化器、流量計、圧力計などを有する。
また、排気機構6は、処理室3の内部のガスを処理室3の外部へと排気するための機能を有する機構であり、例えば、処理室3の内部を排気して真空状態にする真空ポンプ、配管、バルブなどを有する。
[Processing module]
Subsequently, the processing module 2 will be described.
As shown in FIG. 1, the processing module 2 includes a processing chamber 3 (P1 to P6), a processing gas supply mechanism 5 for supplying the processing gas to the processing chamber 3, and an exhaust mechanism 6 for exhausting the inside of the processing chamber 3. And.
The processing chamber 3 is a chamber for processing the substrate. In the treatment chamber 3, the atmosphere is blocked and a vacuum atmosphere corresponding to the treatment can be maintained.
The processing gas supply mechanism 5 is a mechanism having a function of supplying the processing gas to the processing chamber 3. That is, the processing gas is supplied from the gas cylinder to the processing chamber 3 by the processing gas supply mechanism 5. The processing gas supply mechanism 5 includes, for example, a pipe, a valve, a vaporizer, a flow meter, a pressure gauge, and the like.
Further, the exhaust mechanism 6 is a mechanism having a function of exhausting the gas inside the processing chamber 3 to the outside of the processing chamber 3, and for example, a vacuum pump that exhausts the inside of the processing chamber 3 to create a vacuum state. , Piping, valves, etc.

処理モジュール2は、第1側面に接続されている第1処理室、第2側面に接続されている第2処理室、及び、第3側面に接続されている第3処理室とを具備する。
具体的には、図1に示すように、
(a)側面L1が第1側面、側面L2が第2側面、側面L3が第3側面である場合、側面L1に接続される処理室P1が第1処理室であり、側面L2に接続される処理室P2が第2処理室であり、側面L3に接続される処理室P3が第3処理室である。
(b)側面L2が第1側面、側面L3が第2側面、側面L4が第3側面である場合、側面L2に接続される処理室P2が第1処理室であり、側面L3に接続される処理室P3が第2処理室であり、側面L4に接続される処理室P4が第3処理室である。
(c)側面L3が第1側面、側面L4が第2側面、側面L5が第3側面である場合、側面L3に接続される処理室P3が第1処理室であり、側面L4に接続される処理室P4が第2処理室であり、側面L5に接続される処理室P5が第3処理室である。
(d)側面L4が第1側面、側面L5が第2側面、側面L6が第3側面である場合、側面L4に接続される処理室P4が第1処理室であり、側面L5に接続される処理室P5が第2処理室であり、側面L6に接続される処理室P6が第3処理室である。
The processing module 2 includes a first processing chamber connected to the first side surface, a second processing chamber connected to the second side surface, and a third processing chamber connected to the third side surface.
Specifically, as shown in FIG.
(A) When the side surface L1 is the first side surface, the side surface L2 is the second side surface, and the side surface L3 is the third side surface, the processing chamber P1 connected to the side surface L1 is the first processing chamber and is connected to the side surface L2. The processing chamber P2 is the second processing chamber, and the processing chamber P3 connected to the side surface L3 is the third processing chamber.
(B) When the side surface L2 is the first side surface, the side surface L3 is the second side surface, and the side surface L4 is the third side surface, the processing chamber P2 connected to the side surface L2 is the first processing chamber and is connected to the side surface L3. The processing chamber P3 is the second processing chamber, and the processing chamber P4 connected to the side surface L4 is the third processing chamber.
(C) When the side surface L3 is the first side surface, the side surface L4 is the second side surface, and the side surface L5 is the third side surface, the processing chamber P3 connected to the side surface L3 is the first processing chamber and is connected to the side surface L4. The processing chamber P4 is the second processing chamber, and the processing chamber P5 connected to the side surface L5 is the third processing chamber.
(D) When the side surface L4 is the first side surface, the side surface L5 is the second side surface, and the side surface L6 is the third side surface, the processing chamber P4 connected to the side surface L4 is the first processing chamber and is connected to the side surface L5. The processing chamber P5 is the second processing chamber, and the processing chamber P6 connected to the side surface L6 is the third processing chamber.

処理室3(P1〜P6)は、当該処理室が接続可能である搬送室11の側面L1〜L6に、搬送室11と処理室3とを仕切るゲートバルブGを介してそれぞれ接続されている。
本実施形態にあっては、図1に示すように、処理室と接続可能な搬送室11の側面の全てに処理室3が接続されている態様を示しているが、処理室と接続可能な搬送室11の側面の一部には処理室3が接続されていない態様も、本発明の範囲に含まれる。
The processing chambers 3 (P1 to P6) are connected to the side surfaces L1 to L6 of the transport chamber 11 to which the treatment chamber can be connected via a gate valve G that separates the transport chamber 11 and the treatment chamber 3.
In the present embodiment, as shown in FIG. 1, the processing chamber 3 is connected to all the side surfaces of the transport chamber 11 that can be connected to the processing chamber, but the processing chamber 3 can be connected to the processing chamber. A mode in which the processing chamber 3 is not connected to a part of the side surface of the transport chamber 11 is also included in the scope of the present invention.

搬送室11の側面のうち、処理室が接続可能な側面以外の側面L7及びL8には、搬送室11に処理前の基板及び処理済みの基板を収納するためのロードロック室9がゲートバルブGを介して設けられている。一方のロードロック室9の内部には、処理前の基板を収納したカセットが設けられており、他方のロードロック室9の内部には、処理済みの基板を収納したカセットが設けられている。なお、側面L7及びL8も処理室に接続可能としていてもよい。 Of the side surfaces of the transport chamber 11, on the side surfaces L7 and L8 other than the side surfaces to which the processing chamber can be connected, a load lock chamber 9 for storing the unprocessed substrate and the processed substrate is provided as a gate valve G in the transport chamber 11. It is provided through. Inside one of the load lock chambers 9, a cassette containing the substrate before processing is provided, and inside the other load lock chamber 9, a cassette containing the processed substrate is provided. The side surfaces L7 and L8 may also be connectable to the processing chamber.

第1処理室、第2処理室及び第3処理室(処理室3(P1〜P6))は、それぞれ独立した処理室である。つまり、第1処理室、第2処理室及び第3処理室は、それぞれの処理室で基板処理を行う際に他の処理室と連通しておらず、他の処理室の処理条件(例えば、温度、圧力、処理ガスの種類など)の影響を受けない。かかる構成により、処理室3毎に独立して温度、圧力、処理ガスの種類などの設定及び制御を行うことが可能であるため、複数の処理室のそれぞれが他の処理室の処理条件の影響を受けずに、品質が安定した基板の処理が可能である。また、複数の処理室毎に異なる種類の処理を行うことが可能であるため、基板処理の自由度が高まるという利点がある。 The first processing chamber, the second processing chamber, and the third processing chamber (processing chambers 3 (P1 to P6)) are independent processing chambers. That is, the first processing chamber, the second processing chamber, and the third processing chamber do not communicate with the other processing chambers when the substrate is processed in each processing chamber, and the processing conditions of the other processing chambers (for example, for example). Not affected by temperature, pressure, type of processing gas, etc.). With this configuration, it is possible to independently set and control the temperature, pressure, type of processing gas, etc. for each processing chamber 3, so that each of the plurality of processing chambers is affected by the processing conditions of the other processing chambers. It is possible to process a substrate with stable quality without suffering from the problem. Further, since it is possible to perform different types of processing in each of a plurality of processing chambers, there is an advantage that the degree of freedom in substrate processing is increased.

処理モジュール2は、搬送室11に対して移動可能である処理室架台7を具備する。前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも小さいときは、前記処理室架台7が前記第1処理室と前記第2処理室とを搭載しており、前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも大きいときは、前記処理室架台7が前記第2処理室と前記第3処理室とを搭載している。本実施形態においては、処理室P1及びP2、処理室P3及びP4、処理室P5及びP6が、それぞれ1つの処理室架台7に搭載されており、各処理室架台7は、搬送室11に近づく方向に、及び、搬送室11から離れる方向に移動させることが可能である。 The processing module 2 includes a processing chamber pedestal 7 that is movable with respect to the transport chamber 11. When the angle formed by the second side surface and the third side surface is smaller than the angle formed by the first side surface and the second side surface, the processing chamber pedestal 7 performs the first processing chamber and the second processing. When the angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface, the processing chamber pedestal 7 is the first. It is equipped with two processing chambers and the third processing chamber. In the present embodiment, the processing chambers P1 and P2, the processing chambers P3 and P4, and the processing chambers P5 and P6 are each mounted on one processing chamber pedestal 7, and each processing chamber pedestal 7 approaches the transport chamber 11. It can be moved in the direction and in the direction away from the transport chamber 11.

隣り合う処理室3間の間隔が小さい2つの処理室3(第1及び第2処理室、又は、第2及び第3処理室)が1つの処理室架台7に搭載されていることにより、基板処理装置100全体の前記処理室架台7の数を減らすことができるため、前記基板処理装置100の製造コストを下げることも可能である。そして、隣り合う処理室間の間隔が大きくした広い領域をメンテナンス領域Mとし、当該広いメンテナンス領域Mでメンテナンス作業を行うことにより、メンテナンス作業を効率的に行うことが可能となる。 By mounting two processing chambers 3 (first and second processing chambers or second and third processing chambers) having a small distance between adjacent processing chambers 3 on one processing chamber pedestal 7, a substrate is provided. Since the number of the processing chamber pedestals 7 in the entire processing device 100 can be reduced, it is also possible to reduce the manufacturing cost of the substrate processing device 100. Then, a wide area where the distance between adjacent processing chambers is large is designated as a maintenance area M, and the maintenance work can be performed efficiently in the wide maintenance area M.

図1に示すように、隣り合う2つの処理室3が搬送室11に対して移動する方向が異なるため、2つの処理室3の何れか一方が、処理室架台7の上で少なくとも移動可能である。2つの処理室3の両方が処理室架台7に固定されている場合、処理室架台7を搬送室11に近づく方向に移動させて、処理室3を真空搬送モジュール1(搬送室11)に接続する際に、2つの処理室3の近づく方向が異なるため、処理室架台7を搬送室11に近づく方向に移動させるだけでは、2つの処理室3と搬送室11との接続が困難である。それに対し、2つの処理室3の両方とも処理室架台7の上で移動可能である場合、処理室3を搬送室11へ接続し易くなるが、接続毎に搬送室11に対する処理室架台7の位置が定まり難くなる。即ち、搬送室11に対する処理室架台7の位置関係の再現性が取り難くなる。本実施形態のように、2つの処理室3の何れか一方が処理室架台7の上で移動可能であれば、処理室架台7に固定されている一方の処理室3を搬送室11に接続することで、自ずと処理室架台7の位置が定まり、搬送室11に対する処理室架台7の位置関係の再現性が取り易くなる。処理室架台7の位置が定まった後に、処理室架台7の上で移動可能な他方の処理室3を搬送室11に接続することも容易である。 As shown in FIG. 1, since the two adjacent processing chambers 3 move in different directions with respect to the transport chamber 11, one of the two processing chambers 3 can at least move on the processing chamber pedestal 7. is there. When both of the two processing chambers 3 are fixed to the processing chamber pedestal 7, the processing chamber pedestal 7 is moved in a direction closer to the transport chamber 11 and the processing chamber 3 is connected to the vacuum transfer module 1 (conveyor chamber 11). Since the approaching directions of the two processing chambers 3 are different, it is difficult to connect the two processing chambers 3 and the transport chamber 11 simply by moving the processing chamber pedestal 7 in the direction approaching the transport chamber 11. On the other hand, when both of the two processing chambers 3 can be moved on the processing chamber pedestal 7, the processing chamber 3 can be easily connected to the transport chamber 11, but the processing chamber pedestal 7 to the transport chamber 11 can be easily connected for each connection. It becomes difficult to determine the position. That is, it becomes difficult to reproduce the positional relationship of the processing chamber pedestal 7 with respect to the transport chamber 11. If either one of the two processing chambers 3 can be moved on the processing chamber pedestal 7 as in the present embodiment, the one processing chamber 3 fixed to the processing chamber pedestal 7 is connected to the transport chamber 11. By doing so, the position of the processing chamber pedestal 7 is naturally determined, and the reproducibility of the positional relationship of the processing chamber pedestal 7 with respect to the transport chamber 11 can be easily obtained. After the position of the processing chamber pedestal 7 is determined, it is easy to connect the other processing chamber 3 movable on the processing chamber pedestal 7 to the transport chamber 11.

排気機構6は真空ポンプを有し、処理室P1及びP2の内部、処理室P3及びP4の内部、並びに、処理室P5及びP6の内部のそれぞれが、1つの真空ポンプで排気される。
各処理室毎に真空ポンプで排気する場合、真空ポンプは6台必要になるが、その場合に比べて、同一の処理室架台7に搭載される処理室P1及びP2の内部、処理室P3及びP4の内部、並びに、処理室P5及びP6の内部のそれぞれを1つの真空ポンプで排気するため、必要なユーティリティーの接続の手間が省け、接続箇所の数を削減することができる。
The exhaust mechanism 6 has a vacuum pump, and the insides of the processing chambers P1 and P2, the insides of the processing chambers P3 and P4, and the insides of the processing chambers P5 and P6 are exhausted by one vacuum pump.
When exhausting with a vacuum pump for each processing chamber, six vacuum pumps are required, but compared to that case, the inside of the processing chambers P1 and P2 mounted on the same processing chamber pedestal 7, the processing chambers P3 and Since the inside of P4 and the insides of the processing chambers P5 and P6 are exhausted by one vacuum pump, it is possible to save the trouble of connecting the necessary utilities and reduce the number of connection points.

図1では、処理ガス供給機構5及び排気機構6は、処理室架台7に搭載されている。しかしながら、処理ガス供給機構5又は排気機構6が処理室架台7に搭載されておらず、別の場所に設けられていてもよい。 In FIG. 1, the processing gas supply mechanism 5 and the exhaust mechanism 6 are mounted on the processing chamber pedestal 7. However, the processing gas supply mechanism 5 or the exhaust mechanism 6 is not mounted on the processing chamber pedestal 7, and may be provided at another location.

各処理室P1〜P6においてそれぞれ異なる種類の処理が行われてもよいし、同一処理室架台7に搭載される処理室P1及びP2、処理室P3及びP4、並びに、処理室P5及びP6のそれぞれにおいて同一種類の処理を行ってもよいし、全ての処理室P1〜P6において同一種類の処理を行ってもよい。 Different types of processing may be performed in the respective processing chambers P1 to P6, or the processing chambers P1 and P2, the processing chambers P3 and P4, and the processing chambers P5 and P6 mounted on the same processing chamber pedestal 7, respectively. The same type of processing may be performed in, or the same type of processing may be performed in all the processing chambers P1 to P6.

1つの処理室架台7に搭載されている処理室3毎に異なる種類の処理が行われる場合、処理室3毎に異なる処理ガス供給機構5を設ける必要がある。換言すれば、処理室P1〜P6毎に異なる処理ガス供給機構5を6つ設ける必要がある。
しかしながら、本実施形態によれば、1つの処理室架台7に搭載されている2つの処理室P1及びP2、処理室P3及びP4、並びに、処理室P5及びP6の3組それぞれに同一の処理ガス供給機構5を設けることができるため、処理ガス供給機構5の数を削減して3つにすることができ、その結果、必要なユーティリティーの接続の手間が省け、基板処理装置100の製造コストを削減することが可能である。
When different types of processing are performed for each processing room 3 mounted on one processing room pedestal 7, it is necessary to provide a different processing gas supply mechanism 5 for each processing room 3. In other words, it is necessary to provide six different processing gas supply mechanisms 5 for each of the processing chambers P1 to P6.
However, according to the present embodiment, the same processing gas is used for each of the two processing chambers P1 and P2, the processing chambers P3 and P4, and the processing chambers P5 and P6 mounted on the one processing chamber pedestal 7. Since the supply mechanism 5 can be provided, the number of the processing gas supply mechanism 5 can be reduced to three, and as a result, the trouble of connecting the necessary utilities can be saved and the manufacturing cost of the substrate processing apparatus 100 can be reduced. It is possible to reduce it.

処理室3には、処理室計測機器8が設けられている。第2側面と第3側面とが成す角度が、第1側面と第2側面とが成す角度よりも小さいときは、第3処理室に対向する側の第2処理室側面と、第2処理室に対向する側の第3処理室側面とに、処理室計測機器8が設けられており、第2側面と第3側面とが成す角度が、第1側面と第2側面とが成す角度よりも大きいときは、第2処理室に対向する側の第1処理室側面と、第1処理室に対向する側の第2処理室側面とに、処理室計測機器8が設けられている。 The processing chamber 3 is provided with a processing chamber measuring device 8. When the angle formed by the second side surface and the third side surface is smaller than the angle formed by the first side surface and the second side surface, the side surface of the second processing chamber facing the third processing chamber and the second processing chamber The processing chamber measuring device 8 is provided on the side surface of the third processing chamber on the side facing the surface, and the angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface. When it is large, the processing chamber measuring device 8 is provided on the side surface of the first processing chamber on the side facing the second processing chamber and the side surface of the second processing chamber on the side facing the first processing chamber.

具体的には、図1に示すように、第2処理室P2に対向する側の第3処理室P3の側面と、第3処理室P3に対向する側の第2処理室P2の側面に処理室計測機器8が設けられており、いずれの処理室計測機器8もメンテナンス領域Mに面する処理室の側面に設けられている。また、第1処理室P4に対向する側の第2処理室P5の側面と、第2処理室P5に対向する側の第1処理室P4の側面にも処理室計測機器8が設けられており、いずれの処理室計測機器8もメンテナンス領域Mに面する処理室の側面に設けられている。
したがって、広いメンテナンス領域Mから処理室計測機器8のメンテナンス作業(例えば、定期的な較正、消耗品の交換など)を行うため、処理室計測機器8のメンテナンス作業を効率的に行うことが可能となり、メンテナンス性に優れる。
Specifically, as shown in FIG. 1, processing is performed on the side surface of the third processing chamber P3 on the side facing the second processing chamber P2 and the side surface of the second processing chamber P2 on the side facing the third processing chamber P3. A chamber measuring device 8 is provided, and each of the processing chamber measuring devices 8 is provided on the side surface of the processing chamber facing the maintenance area M. Further, the processing chamber measuring device 8 is also provided on the side surface of the second processing chamber P5 on the side facing the first processing chamber P4 and the side surface of the first processing chamber P4 on the side facing the second processing chamber P5. Each of the processing chamber measuring devices 8 is provided on the side surface of the processing chamber facing the maintenance area M.
Therefore, since the maintenance work of the processing room measuring device 8 (for example, periodic calibration, replacement of consumables, etc.) is performed from the wide maintenance area M, the maintenance work of the processing room measuring device 8 can be efficiently performed. , Excellent maintainability.

以下、本発明の他の実施形態を説明するが、その説明においては、主として上記実施形態と異なる構成及び効果について説明し、同様の構成などについては、前述した用語及び符号をそのまま援用し、その構成の説明を省略する。 Hereinafter, other embodiments of the present invention will be described, but in the description thereof, configurations and effects different from those of the above-described embodiments will be mainly described, and for similar configurations and the like, the above-mentioned terms and symbols will be used as they are. The description of the configuration will be omitted.

<第2実施形態>
本発明の第2実施形態に係る基板処理装置100の概略平面図を図2に示す。本実施形態における真空搬送モジュール1が備える搬送室11の平面視形状は、m=4である場合の凸m角形、つまり凸四角形である。
図2に示す第2実施形態において、搬送室11の側面L1が第1側面、側面L2が第2側面、側面L3が第3側面である。第1側面L1と第2側面L2が成す角度α12と、第2側面L2と第3側面L3とが成す角度α23とは異なっており、α23はα12よりも大きい。このとき、前述した理由と同じ理由により、第1処理室P1と第2処理室P2との間隔は、第2処理室P2と第3処理室P3との間隔よりも大きくなる。したがって、第1処理室P1と第2処理室P2との間の領域をメンテナンス領域Mとする。
なお、搬送室11の側面L4には、ロードロック室9を接続することが可能である。
<Second Embodiment>
FIG. 2 shows a schematic plan view of the substrate processing apparatus 100 according to the second embodiment of the present invention. The plan view shape of the transport chamber 11 included in the vacuum transport module 1 in the present embodiment is a convex m-square shape, that is, a convex quadrangle when m = 4.
In the second embodiment shown in FIG. 2, the side surface L1 of the transport chamber 11 is the first side surface, the side surface L2 is the second side surface, and the side surface L3 is the third side surface. The angle α 12 formed by the first side surface L1 and the second side surface L2 and the angle α 23 formed by the second side surface L2 and the third side surface L3 are different, and α 23 is larger than α 12 . At this time, for the same reason as described above, the distance between the first processing chamber P1 and the second processing chamber P2 is larger than the distance between the second processing chamber P2 and the third processing chamber P3. Therefore, the area between the first processing room P1 and the second processing room P2 is designated as the maintenance area M.
A load lock chamber 9 can be connected to the side surface L4 of the transport chamber 11.

<第3実施形態>
本発明の第3実施形態に係る基板処理装置100の概略平面図を図3に示す。本実施形態における真空搬送モジュール1が備える搬送室11の平面視形状は、m=9である場合の凸m角形、つまり凸九角形である。
図3に示す第3実施形態においても、搬送室11の第1側面と第2側面とが成す角度と、第2側面と第3側面とが成す角度は異なっている。具体的には、
第2側面L2と第3側面L3とが成す角度α23は、第1側面L1と第2側面L2とが成す角度α12よりも大きく、
第2側面L3と第3側面L4とが成す角度α34は、第1側面L2と第2側面L3とが成す角度α23よりも小さく、
第2側面L4と第3側面L5とが成す角度α45は、第1側面L3と第2側面L4とが成す角度α34よりも大きく、
第2側面L5と第3側面L6とが成す角度α56は、第1側面L4と第2側面L5とが成す角度α45よりも小さく、
第2側面L6と第3側面L7とが成す角度α67は、第1側面L5と第2側面L6とが成す角度α56よりも大きい。
このとき、前述した理由と同じ理由により、処理室P1と処理室P2との間隔、処理室P3と処理室P4との間隔、及び、処理室P5と処理室P6との間隔は、それ以外の隣り合う処理室間の間隔と比べて大きくなる。
したがって、処理室P1と処理室P2との間の領域、処理室P3と処理室P4との間の領域、及び、処理室P5と処理室P6との間の領域をメンテナンス領域Mとする。
なお、搬送室11の側面L8及びL9には、ロードロック室9を接続することが可能である。
<Third Embodiment>
FIG. 3 shows a schematic plan view of the substrate processing apparatus 100 according to the third embodiment of the present invention. The plan-view shape of the transport chamber 11 included in the vacuum transport module 1 in the present embodiment is a convex m-side polygon, that is, a convex nonagon shape when m = 9.
Also in the third embodiment shown in FIG. 3, the angle formed by the first side surface and the second side surface of the transport chamber 11 and the angle formed by the second side surface and the third side surface are different. In particular,
The angle α 23 formed by the second side surface L2 and the third side surface L3 is larger than the angle α 12 formed by the first side surface L1 and the second side surface L2.
The angle α 34 formed by the second side surface L3 and the third side surface L4 is smaller than the angle α 23 formed by the first side surface L2 and the second side surface L3.
The angle α 45 formed by the second side surface L4 and the third side surface L5 is larger than the angle α 34 formed by the first side surface L3 and the second side surface L4.
The angle α 56 formed by the second side surface L5 and the third side surface L6 is smaller than the angle α 45 formed by the first side surface L4 and the second side surface L5.
The angle α 67 formed by the second side surface L6 and the third side surface L7 is larger than the angle α 56 formed by the first side surface L5 and the second side surface L6.
At this time, for the same reason as described above, the distance between the processing room P1 and the processing room P2, the distance between the processing room P3 and the processing room P4, and the distance between the processing room P5 and the processing room P6 are other than that. It is larger than the distance between adjacent processing rooms.
Therefore, the area between the processing chamber P1 and the processing chamber P2, the region between the processing chamber P3 and the processing chamber P4, and the region between the processing chamber P5 and the processing chamber P6 are designated as the maintenance region M.
The load lock chamber 9 can be connected to the side surfaces L8 and L9 of the transport chamber 11.

1 真空搬送モジュール
11 搬送室
12 搬送機構
2 処理モジュール
3 処理室
4 載置台
5 処理ガス供給機構
6 排気機構
7 処理室架台
8 処理室計測機器
9 ロードロック室
100 基板処理装置
M メンテナンス領域
G ゲートバルブ
1 Vacuum transfer module 11 Transfer room 12 Transfer mechanism 2 Processing module 3 Processing room 4 Mounting stand 5 Processing gas supply mechanism 6 Exhaust mechanism 7 Processing room stand 8 Processing room Measuring equipment 9 Load lock room 100 Board processing device M Maintenance area G Gate valve

Claims (8)

平面視形状が凸m角形(mは4以上の整数)である搬送室と、
前記搬送室に配置され、基板を搬送する搬送機構とを備え、
前記搬送室のm個の側面のうち、少なくともこの順に隣接する第1側面、第2側面及び第3側面は、前記搬送機構によって搬送される基板が処理される第1処理室、第2処理室及び第3処理室にそれぞれ接続可能であって、前記搬送室の平面視中心と接続された前記第1処理室の平面視中心とを結ぶ直線、前記搬送室の平面視中心と接続された前記第2処理室の平面視中心とを結ぶ直線、及び、前記搬送室の平面視中心と接続された前記第3処理室の平面視中心とを結ぶ直線に対して、それぞれ略直交し、
前記第1側面と前記第2側面とが成す角度と、前記第2側面と前記第3側面とが成す角度とは異なっている
ことを特徴とする真空搬送モジュール。
A transport chamber whose plan view shape is a convex m-square (m is an integer of 4 or more),
It is provided in the transport chamber and has a transport mechanism for transporting the substrate.
Of the m side surfaces of the transport chamber, at least the first side surface, the second side surface, and the third side surface adjacent to each other in this order are the first treatment chamber and the second treatment chamber in which the substrate transported by the transfer mechanism is processed. And the straight line connecting the plan view center of the first processing chamber connected to the plan view center of the transport chamber, and the plan view center connected to the transport chamber, respectively, which can be connected to the third processing chamber. The straight line connecting the center of the plan view of the second processing chamber and the straight line connecting the center of the plan view of the transport chamber and the center of the plan view of the third processing chamber are substantially orthogonal to each other.
A vacuum transfer module characterized in that the angle formed by the first side surface and the second side surface is different from the angle formed by the second side surface and the third side surface.
前記第1側面と前記第2側面とが成す角度、及び、前記第2側面と前記第3側面とが成す角度のうち、何れか一方が180°×(m−2)/mよりも大きく、何れか他方が180°×(m−2)/mよりも小さい
ことを特徴とする請求項1に記載の真空搬送モジュール。
One of the angle formed by the first side surface and the second side surface and the angle formed by the second side surface and the third side surface is larger than 180 ° × (m-2) / m. The vacuum transfer module according to claim 1, wherein either one is smaller than 180 ° × (m-2) / m.
請求項1又は2に記載の真空搬送モジュールと、
前記真空搬送モジュールに接続されている処理モジュールとを備え、
前記処理モジュールは、
前記第1側面に接続されている前記第1処理室、前記第2側面に接続されている前記第2処理室、及び、前記第3側面に接続されている前記第3処理室と、
前記第1処理室、前記第2処理室及び前記第3処理室に処理ガスを供給する処理ガス供給機構と、
前記第1処理室、前記第2処理室及び前記第3処理室の内部を排気する排気機構と
を具備することを特徴とする基板処理装置。
The vacuum transfer module according to claim 1 or 2.
A processing module connected to the vacuum transfer module is provided.
The processing module
The first processing chamber connected to the first side surface, the second processing chamber connected to the second side surface, and the third processing chamber connected to the third side surface.
A processing gas supply mechanism for supplying processing gas to the first processing chamber, the second processing chamber, and the third processing chamber,
A substrate processing apparatus including the first processing chamber, the second processing chamber, and an exhaust mechanism for exhausting the inside of the third processing chamber.
前記第1処理室、前記第2処理室及び前記第3処理室が、それぞれ独立した処理室であることを特徴とする請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the first processing chamber, the second processing chamber, and the third processing chamber are independent processing chambers. 前記処理モジュールが、更に、前記搬送室に対して移動可能である処理室架台を具備し、
前記第1側面と前記第2側面とが成す角度が、前記第2側面と前記第3側面とが成す角度よりも大きいときは、前記処理室架台が前記第1処理室と前記第2処理室とを搭載しており、
前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも大きいときは、前記処理室架台が前記第2処理室と前記第3処理室とを搭載している
ことを特徴とする請求項3又は4に記載の基板処理装置。
The processing module further comprises a processing chamber pedestal that is movable relative to the transport chamber.
When the angle formed by the first side surface and the second side surface is larger than the angle formed by the second side surface and the third side surface, the processing chamber pedestal is the first processing chamber and the second processing chamber. And is installed,
When the angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface, the processing chamber stand is the second processing chamber and the third processing chamber. The substrate processing apparatus according to claim 3 or 4, wherein the substrate processing apparatus is equipped with the above.
前記排気機構が真空ポンプを有し、
前記処理室架台に搭載されている前記第1処理室及び前記第2処理室の内部、又は、前記処理室架台に搭載されている前記第2処理室及び前記第3処理室の内部が、1つの前記真空ポンプで排気されることを特徴とする請求項5に記載の基板処理装置。
The exhaust mechanism has a vacuum pump
The inside of the first processing chamber and the second processing chamber mounted on the processing chamber pedestal, or the inside of the second processing chamber and the third processing chamber mounted on the processing chamber pedestal is 1. The substrate processing apparatus according to claim 5, wherein the vacuum pump exhausts the gas.
前記処理室架台に搭載されている前記第1処理室及び前記第2処理室、又は、前記処理室架台に搭載されている前記第2処理室及び前記第3処理室において、同一種類の処理が行われることを特徴とする請求項5又は6に記載の基板処理装置。 The same type of processing is performed in the first processing chamber and the second processing chamber mounted on the processing chamber pedestal, or in the second processing chamber and the third processing chamber mounted on the processing chamber pedestal. The substrate processing apparatus according to claim 5 or 6, wherein the substrate processing apparatus is performed. 前記第1側面と前記第2側面とが成す角度が、前記第2側面と前記第3側面とが成す角度よりも大きいときは、前記第3処理室に対向する側の第2処理室側面と、第2処理室に対向する側の第3処理室側面とに、処理室計測機器が設けられており、
前記第2側面と前記第3側面とが成す角度が、前記第1側面と前記第2側面とが成す角度よりも大きいときは、前記第2処理室に対向する側の第1処理室側面と、前記第1処理室に対向する側の第2処理室側面とに、処理室計測機器が設けられている
ことを特徴とする請求項3から7の何れかに記載の基板処理装置。
When the angle formed by the first side surface and the second side surface is larger than the angle formed by the second side surface and the third side surface, the side surface of the second processing chamber facing the third processing chamber , A processing chamber measuring device is provided on the side surface of the third processing chamber on the side facing the second processing chamber.
When the angle formed by the second side surface and the third side surface is larger than the angle formed by the first side surface and the second side surface, the side surface of the first processing chamber facing the second processing chamber The substrate processing apparatus according to any one of claims 3 to 7, wherein a processing chamber measuring device is provided on the side surface of the second processing chamber on the side facing the first processing chamber.
JP2017010133A 2017-01-24 2017-01-24 Vacuum transfer module and substrate processing equipment Active JP6775432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017010133A JP6775432B2 (en) 2017-01-24 2017-01-24 Vacuum transfer module and substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017010133A JP6775432B2 (en) 2017-01-24 2017-01-24 Vacuum transfer module and substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2018120905A JP2018120905A (en) 2018-08-02
JP6775432B2 true JP6775432B2 (en) 2020-10-28

Family

ID=63045303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017010133A Active JP6775432B2 (en) 2017-01-24 2017-01-24 Vacuum transfer module and substrate processing equipment

Country Status (1)

Country Link
JP (1) JP6775432B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846013A (en) * 1994-05-23 1996-02-16 Tokyo Electron Ltd Multichamber treatment system conveyer
JP3335831B2 (en) * 1996-01-29 2002-10-21 株式会社日立製作所 Vacuum processing equipment
US6122566A (en) * 1998-03-03 2000-09-19 Applied Materials Inc. Method and apparatus for sequencing wafers in a multiple chamber, semiconductor wafer processing system
JP2965038B1 (en) * 1998-09-21 1999-10-18 日新電機株式会社 Vacuum processing equipment
JP4227298B2 (en) * 1999-12-02 2009-02-18 ローツェ株式会社 Transfer robot
JP4253107B2 (en) * 2000-08-24 2009-04-08 キヤノンアネルバ株式会社 Substrate processing apparatus and expansion method thereof
JP2004335841A (en) * 2003-05-09 2004-11-25 Tokyo Electron Ltd Prediction system and prediction method for plasma treatment apparatus
JP5025609B2 (en) * 2003-09-04 2012-09-12 株式会社日立ハイテクノロジーズ Vacuum processing equipment
JP2006245365A (en) * 2005-03-04 2006-09-14 Hitachi High-Technologies Corp Vacuum processing apparatus
JP4841183B2 (en) * 2005-06-28 2011-12-21 東京エレクトロン株式会社 Substrate processing apparatus, transfer apparatus, and control method of transfer apparatus
JP5030542B2 (en) * 2006-11-10 2012-09-19 株式会社日立ハイテクノロジーズ Vacuum processing equipment
KR100803559B1 (en) * 2007-05-02 2008-02-15 피에스케이 주식회사 A unit and method for transferring substrates, and an apparatus and method for treating substrates with the unit
US8758514B2 (en) * 2007-03-02 2014-06-24 Asm Japan K.K. Cluster type semiconductor processing apparatus
US20110269314A1 (en) * 2010-04-30 2011-11-03 Applied Materials, Inc. Process chambers having shared resources and methods of use thereof

Also Published As

Publication number Publication date
JP2018120905A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6907166B2 (en) Semiconductor processing tool
US7431813B2 (en) Multi-chambered substrate processing equipment having sealing structure between chambers thereof, and method of assembling such equipment
KR102023794B1 (en) Shared gas panels in plasma processing systems
JP2011124565A (en) System and method for vacuum processing of semiconductor substrate to be processed
US11282737B2 (en) Moving substrate transfer chamber
US20220208575A1 (en) Foreline assembly for quad station process module
TW201801226A (en) Load lock chamber and the cluster tool system using the same
JP4472005B2 (en) Vacuum processing apparatus and vacuum processing method
JP7062019B2 (en) A device for transporting a substrate, a processing device having an accommodating plate adapted to the substrate carrier of such a device, and a method for processing the substrate using the device for transporting the substrate, and a processing system.
KR20220094158A (en) Transfer apparatus
US7923380B2 (en) Substrate processing apparatus and substrate processing method
KR20220103651A (en) Substrate processing apparatus
JP6775432B2 (en) Vacuum transfer module and substrate processing equipment
TW202230584A (en) Substrate processing apparatus
JP5097627B2 (en) Vacuum processing equipment
WO2020196179A1 (en) Film-forming device, film-forming method, and film-forming system
JP4920667B2 (en) Substrate processing equipment
TWI406349B (en) Substrate processing apparatus
KR100896472B1 (en) Multi-chamber system for manufacturing semiconductor device and method for treating substrate
JPH098094A (en) Vacuum treatment equipment
US20020157691A1 (en) Substrate transfer device
KR20080062220A (en) Multi-chamber system for etching equipment for manufacturing semiconductor device
JP6718755B2 (en) Vacuum processing apparatus and operating method thereof
JP7450159B2 (en) Substrate processing equipment
JP2007116014A (en) Substrate treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6775432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250