JPH0846013A - Multichamber treatment system conveyer - Google Patents

Multichamber treatment system conveyer

Info

Publication number
JPH0846013A
JPH0846013A JP12252295A JP12252295A JPH0846013A JP H0846013 A JPH0846013 A JP H0846013A JP 12252295 A JP12252295 A JP 12252295A JP 12252295 A JP12252295 A JP 12252295A JP H0846013 A JPH0846013 A JP H0846013A
Authority
JP
Japan
Prior art keywords
chamber
transfer
chambers
loader
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12252295A
Other languages
Japanese (ja)
Inventor
Teruo Asakawa
輝雄 浅川
Hiroaki Saeki
弘明 佐伯
Yoji Iizuka
洋二 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP12252295A priority Critical patent/JPH0846013A/en
Publication of JPH0846013A publication Critical patent/JPH0846013A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a multichamber treatment system conveyer whose loader chambers and a conveyer arm can be used as common components while a transfer chamber only is replaced when the number of vacuum treatment chambers provided around the vacuum treatment chamber is changed and which is easy to manufacture and easy to assemble. CONSTITUTION:A polygonal transfer chamber 11 with which three vacuum treatment chambers P1-P3 are communicated through gate valves G1, two loader chambers 12 and 13 which are linked with the transfer chamber 11 through gate valves G2 and a conveyer arm 14 which is provided in the transfer chamber 11 so as to be able to rotate and stretch and contract and which transfers wafers W between the loader chambers 12 and 13 and the vacuum treatment chambers P1-P3 are provided. Although the shape and size of the transfer chamber 11 are changed in accordance with the number of the vacuum treatment chambers provided around the transfer chamber 11, the connection parts 11f and 11g between the transfer chamber 11 and the loader chambers 12 and 13 are not changed. The conveyer arm 14 has a minimum revolving radius R which allows the conveyer arm 14 to revolve in the smallest transfer chamber 11 and has a maximum arm stretching length which allows the conveyer arm 14 to convey the wafers W from the largest transfer chamber 11 to the vacuum treatment chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に半導体ウェーハや
LCD基板等の被処理体を処理する複数の真空処理室を
備えたマルチチャンバ処理システムにおける被処理体の
搬送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for transporting an object to be processed in a multi-chamber processing system having a plurality of vacuum processing chambers for mainly processing an object to be processed such as a semiconductor wafer and an LCD substrate.

【0002】[0002]

【従来の技術】近年、例えば半導体デバイスの微細化・
高集積化に伴い、半導体製造プロセスについても種々の
工夫がなされ、例えば半導体ウェーハの真空処理システ
ムにおいては、各種のプロセスの改革・変更に容易に対
処でき、且つ一貫処理により工程の短縮化を図るよう
に、複数の真空処理室を周配する状態に備えたクラスタ
ツールなどと呼ばれているマルチチャンバ処理システム
の開発がなされている。
2. Description of the Related Art In recent years, for example, miniaturization of semiconductor devices
With higher integration, various measures have been taken in the semiconductor manufacturing process. For example, in the vacuum processing system for semiconductor wafers, it is possible to easily deal with the reforms and changes of various processes, and to shorten the process by consistent processing. As described above, a multi-chamber processing system called a cluster tool, which is provided with a state in which a plurality of vacuum processing chambers are arranged, is being developed.

【0003】この種の従来のマルチチャンバ処理システ
ムとしては、各種半導体製造プロセスに応じた所要個数
(想定では例えば最小3個乃至最大6個)の真空処理室
(プロセスチャンバ)を備えると共に、これら各真空処
理室に被処理体を搬入出する搬送系として、一個或いは
2個のローダ室と、各真空処理室及びローダ室が周配す
る状態でそれぞれゲートバルブを介し気密に連通する複
数の接続口を周壁に有した多角形の移載室(トランスフ
ァチャンバ)と、この移載室内に設置された旋回並びに
伸縮動可能な搬送アーム(移載ロボット)とを備えてな
る構成のものが知られている。
A conventional multi-chamber processing system of this type is provided with a required number (for example, a minimum of 3 to a maximum of 6) of vacuum processing chambers (process chambers) corresponding to various semiconductor manufacturing processes, and As a transfer system for loading and unloading an object to be processed into and out of the vacuum processing chamber, one or two loader chambers and a plurality of connection ports that are in air-tight communication with each other through the gate valves in a state where each vacuum processing chamber and the loader chamber are arranged There is known a configuration including a polygonal transfer chamber (transfer chamber) having a peripheral wall with a transfer arm and a transfer arm (transfer robot) installed in the transfer chamber and capable of rotating and expanding / contracting. There is.

【0004】このようなマルチチャンバ処理システムで
は、被処理体として例えば半導体ウェーハ(以下単にウ
ェーハと略記する)を外部搬送装置によりカセット単位
で前記ローダ室内に運び込み、そこでローダ室内を真空
引き或いは不活性ガスとの置換などして外部と隔離して
から、そのローダ室の移載室側のゲートバルブを開き、
搬送アームにより該ローダ室内のカセットからウェーハ
を一枚ずつ移載室内に取り込んで前記所要の真空処理室
内へ順次搬入し、そこで例えば成膜やエッチング等の所
定の処理を行い、その処理済みウェーハは搬送アームに
より移載室内に取り出してローダ室内のカセットに戻
す。
In such a multi-chamber processing system, for example, a semiconductor wafer (hereinafter simply referred to as a wafer) as an object to be processed is carried into the loader chamber in cassette units by an external carrier, and the loader chamber is evacuated or inactivated therein. After separating from the outside by replacing with gas, open the gate valve on the transfer chamber side of the loader chamber,
Wafers are taken one by one from the cassette in the loader chamber into the transfer chamber by the transfer arm and sequentially carried into the required vacuum processing chamber, where predetermined processing such as film formation and etching is performed, and the processed wafers are It is taken out by the transfer arm into the transfer chamber and returned to the cassette in the loader chamber.

【0005】こうしたマルチチャンバ処理システムであ
れば、搬送系であるローダ室と移載室と搬送アームと
が、周配する複数個の真空処理室に対し共用できるの
で、各真空処理室に対し個々にそれぞれ搬送系を備える
旧来の処理装置に比し、構成の簡素化並びに設置スペー
スの縮小化や搬送効率のアップなどが図れて非常に有利
となる。
In such a multi-chamber processing system, the loader chamber, the transfer chamber, and the transfer arm, which are transfer systems, can be shared by a plurality of vacuum processing chambers arranged around each other. In comparison with a conventional processing device that has a transport system, the configuration is simplified, the installation space is reduced, and the transport efficiency is improved, which is very advantageous.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、その従
来のマルチチャンバ処理システムにおいては、ユーザー
側のニーズに応じ各種プロセスごとに所要個数ずつの真
空処理室を選定して用意し、これら真空処理室の個数及
び形状・大きさを基に、これらとのインターフェースを
考慮して適当な形状・寸法(大きさ)の移載室を製作
し、この移載室の周囲に前記各真空処理室をそれぞれゲ
ートバルブを介し気密に連通する状態に組付固定すると
共に、その移載室の周壁端部(ローディング部側)にロ
ーダ室を製作組付し、更にその移載室内に、当該移載室
に適合する搬送アームを、即ち当該移載室内で旋回し得
る最小旋回半径と、当該移載室内より各真空処理室並び
にローダ室内へウェーハを搬入出し得る最大アーム伸長
距離(最大アームリーチ)とを持つ構成とした搬送アー
ムを組付設置して完成している。
However, in the conventional multi-chamber processing system, the required number of vacuum processing chambers are selected and prepared for each process according to the needs of the user. Based on the number, shape, and size, a transfer chamber with an appropriate shape and size (size) is manufactured in consideration of the interface with these, and the vacuum processing chambers are gated around the transfer chamber. It is assembled and fixed in a state where it is in air-tight communication via a valve, and a loader chamber is manufactured and assembled at the peripheral wall end (loading part side) of the transfer chamber, and the transfer chamber is adapted to the transfer chamber. That is, the minimum turning radius that allows the transfer arm to swivel in the transfer chamber, and the maximum arm extension distance (maximum arm lift distance) that allows wafers to be loaded and unloaded from the transfer chamber to and from the vacuum processing chamber and the loader chamber. The transport arm that was configured with a switch) and installed assembling has been completed.

【0007】従って、プロセス変更に伴い真空処理室の
周配個数が各種異なる設定のマルチチャンバ処理システ
ムを構築するには、それに見合った形状・寸法(大き
さ)の移載室を作り直すことは勿論のこと、その移載室
に対し接続可能にローダ室を作り直すと共に、その移載
室に適合した最小旋回半径及び最大アームリーチを持つ
搬送アームを製作して組立てなければならない。つま
り、ユーザーのニーズに応じ各種プロセスごとに、搬送
系である移載室及搬送アーム並びにローダ室を全て作り
直して組立てなければならず、その都度、搬送系の設計
・製作が面倒でコストアップを招いている問題があっ
た。
Therefore, in order to construct a multi-chamber processing system in which the number of distributed vacuum processing chambers varies according to process changes, it is of course necessary to remake a transfer chamber having a shape and size (size) corresponding to the multi-chamber processing system. Therefore, it is necessary to remake the loader chamber so that it can be connected to the transfer chamber, and to manufacture and assemble a transfer arm having a minimum turning radius and a maximum arm reach suitable for the transfer chamber. In other words, it is necessary to reassemble and assemble the transfer chamber, the transfer arm, and the loader room, which are the transfer system, for each process according to the needs of the user, and the design and manufacture of the transfer system is troublesome and the cost is increased each time. There was a problem you were inviting.

【0008】また、こうしてプロセスごとに構築したマ
ルチチャンバ処理システムの使用に際しては、真空処理
室の形状・大きさが異なることから、搬送アームを当該
移載室内で動かして被処理体搬送ルート及び距離をテー
チィングしてプログラム制御部に記憶させる必要があ
り、その作業が面倒で、使用に際する立上がりに多くの
時間が必要となる問題があった。
Further, when the multi-chamber processing system constructed for each process is used, since the shape and size of the vacuum processing chamber are different, the transfer arm is moved in the transfer chamber to transfer the object to be processed and the distance. Has to be stored and stored in the program control section, which is troublesome and requires a lot of time to start up before use.

【0009】本発明は、上記課題を解決するためになさ
れたもので、その目的とするところは、プロセス変更に
伴い真空処理室の周配個数が増減変更されても、搬送系
のうち、移載室のみ形状・大きさを変更するだけで、そ
れ以外のローダ室と搬送アームなどはいずれも共通品で
対処できて、製作・組立が非常に楽でコストダウンが図
れるようになるマルチチャンバ処理システム用搬送装置
を提供することにある。
The present invention has been made in order to solve the above problems, and an object of the present invention is to transfer a transfer system among transfer systems even if the number of vacuum processing chambers arranged is increased or decreased in accordance with a process change. Only by changing the shape and size of the loading chamber, all other loader chambers and transfer arms can be handled by common products, making it extremely easy to manufacture and assemble and reduce costs. An object is to provide a carrier device for a system.

【0010】また、本発明の目的とするところは、プロ
セス変更に伴い真空処理室の周配個数の増減変更に応じ
て移載室の形状・大きさが各種変わっても、その都度搬
送アームの被処理体搬送ルート及び距離をテーチィング
する必要がなく、即座に適確な搬送アームの制御運転が
できるようになるマルチチャンバ処理システム用搬送装
置を提供することにある。
Further, an object of the present invention is that, even if the shape and size of the transfer chamber are variously changed according to the increase and decrease of the number of peripherally arranged vacuum processing chambers due to the process change, the transfer arm of the transfer arm is changed each time. It is an object of the present invention to provide a transfer device for a multi-chamber processing system which enables immediate and appropriate control operation of the transfer arm without the need to teach the transfer route and distance of the object to be processed.

【0011】[0011]

【課題を解決するための手段と作用】請求項1の発明
は、プロセスに対応した複数個の真空処理室が周配する
状態でそれぞれゲートバルブを介し連通せしめられる複
数の接続口を周壁に有した略多角形の移載室と、この移
載室の周壁端部にゲートバルブを介し連通する一個以上
のローダ室と、前記移載室内にて前記ローダ室内から被
処置体を取り込んで前記真空処理室内へ搬入し且つ真空
処理室内の処理済み被処理体を取り出してローダ室内へ
戻す旋回並びに伸縮動可能な搬送アームとを備えてなる
マルチチャンバ処理システム用搬送装置において、前記
移載室はプロセス変更に伴い真空処理室の周配個数の増
減に対応して形状・大きさが変更されるが、それ以外の
ローダ室と搬送アームはいずれも共通品で対応可能に、
該移載室は大小いずれの場合も周壁端部にローダ室に対
する一定した接続部を持ち、且つ前記搬送アームは真空
処理室の最小周配個数に応じた最小形の移載室内で旋回
し得る最小旋回半径と、真空処理室の最大周配個数に応
じた最大形の移載室内より各真空処理室内へ被処理体を
搬入出し得る最大アーム伸長距離を持つ構成とされてい
ることを特徴とする。
The invention according to claim 1 has a plurality of connection ports in the peripheral wall, which are connected to each other through a gate valve in a state in which a plurality of vacuum processing chambers corresponding to a process are circumferentially arranged. The substantially polygonal transfer chamber, one or more loader chambers communicating with the end of the peripheral wall of the transfer chamber via a gate valve, and the treatment chamber is loaded into the transfer chamber from the loader chamber and the vacuum is applied. In a transfer device for a multi-chamber processing system, which is provided with a transfer arm that is carried into a processing chamber, takes out a processed object in a vacuum processing chamber, and returns the processed object to the loader chamber, the transfer chamber is a process. With the change, the shape and size will be changed according to the increase and decrease of the number of peripherals in the vacuum processing chamber, but other loader chambers and transfer arms can be handled by common products,
The transfer chamber has a fixed connection to the loader chamber at the end of the peripheral wall in any case, and the transfer arm can be swung in the transfer chamber of the minimum size according to the minimum number of the vacuum processing chambers. It is characterized by having a minimum turning radius and a maximum arm extension distance capable of loading and unloading the object to be processed into and from each vacuum processing chamber from the largest transfer chamber corresponding to the maximum number of peripherals of the vacuum processing chamber. To do.

【0012】こうした構成のマルチチャンバ処理システ
ム用搬送装置であれば、プロセス変更に伴い真空処理室
の周配個数が増減変更されても、搬送系のうち、移載室
のみ形状・大きさを変更するだけで、それ以外のローダ
室と搬送アームなどはいずれも共通品で対処できて、製
作・組立が非常に楽でコストダウンが図れるようになる
請求項2の発明は、前記請求項1の発明のマルチチャン
バ処理システム用搬送装置において、搬送アームから被
処理体を一旦受取って位置合わせするアライメント機構
を、移載室内の搬送アームの旋回・伸縮動作に対し干渉
しない定位置に設置したことを特徴とする。
With the transfer apparatus for a multi-chamber processing system having such a structure, even if the number of peripherals of the vacuum processing chamber is increased or decreased due to a process change, only the transfer chamber of the transfer system is changed in shape and size. However, the loader chamber and the transfer arm other than the above can be dealt with by a common product, and the manufacturing and assembling can be made very easy and the cost can be reduced. In the transfer apparatus for a multi-chamber processing system of the present invention, an alignment mechanism for once receiving and aligning an object to be processed from the transfer arm is installed at a fixed position that does not interfere with the swinging / expanding operation of the transfer arm in the transfer chamber. Characterize.

【0013】こうした構成のマルチチャンバ処理システ
ム用搬送装置であれば、前述の作用に加え、ローダ室内
から移載室内に搬送アームにより被処置体を取り込んで
真空処理室内へ搬入する途中で、該被処理体をアライメ
ント機構で一旦受取って向きなどの位置合わせが可能と
なる。
In the case of the multi-chamber processing system transfer apparatus having the above-described structure, in addition to the above-described operation, the object to be treated is taken in from the loader chamber to the transfer chamber by the transfer arm and is carried into the vacuum processing chamber. It becomes possible to receive the processing body once by the alignment mechanism and to align the orientation.

【0014】請求項3の発明は、前記請求項2の発明の
マルチチャンバ処理システム用搬送装置において、2個
のローダ室を各々の中心線が搬送アームの旋回軸中心に
向く状態に互いに適当な開き角度を持って並列配置し、
これら両ローダ室と連通する移載室内の搬送アームの最
小旋回半径よりわずかに外側で且つ該両ローダ室の中心
線の相互間位置にアライメント機構を設置したことを特
徴とする。
According to a third aspect of the present invention, in the transfer apparatus for a multi-chamber processing system according to the second aspect of the present invention, the two loader chambers are suitable for each other so that the center lines of the two loader chambers are oriented toward the center of the rotation axis of the transfer arm. Arranged in parallel with an opening angle,
The alignment mechanism is installed at a position slightly outside the minimum turning radius of the transfer arm in the transfer chamber communicating with the loader chambers and at a position between the center lines of the loader chambers.

【0015】こうした構成のマルチチャンバ処理システ
ム用搬送装置であれば、2個のローダ室を備えることか
ら、それら両ローダ室を併用して搬送アームによる被処
理体の搬入出が次々とスムーズにできて高スルートップ
が図れるようになる。また、その2個のローダ室が各々
の中心線を移載室内の搬送アームの旋回軸中心に向く状
態に互いに適当な開き角度を持って並列配置されて、そ
の両ローダ室に対する搬送アームの進退ルート相互間の
空き空間にアライメント機構が配するので、そのアライ
メント機構が搬送アームの動作に邪魔にならないと共
に、移載室の小形化が図れるようになる。
The multi-chamber processing system transfer apparatus having such a structure has two loader chambers, so that both loader chambers can be used in combination to smoothly carry in / out the object to be processed by the transfer arm. It is possible to achieve a high through top. In addition, the two loader chambers are arranged in parallel with each other with an appropriate opening angle with their center lines directed to the center of the swivel axis of the transfer arm in the transfer chamber, and the transfer arms move forward and backward with respect to the loader chambers. Since the alignment mechanism is arranged in the empty space between the routes, the alignment mechanism does not interfere with the operation of the transfer arm and the transfer chamber can be downsized.

【0016】請求項4の発明は、前記請求項1乃至3い
ずれかのマルチチャンバ処理システム用搬送装置におい
て、プロセス変更に伴い真空処理室の周配個数の増減に
対応して大小変更した各種移載室ごとの被処理体搬送ル
ート・距離を予め記憶しておき、そのうちの実際に設置
された移載室の被処理体搬送ルート・距離に合わせて搬
送アームを旋回・伸縮動作せしめる制御手段を備えてい
ることを特徴とする。
According to a fourth aspect of the present invention, in the transfer apparatus for a multi-chamber processing system according to any of the first to third aspects, various types of transfer are changed in size in response to an increase / decrease in the number of vacuum processing chambers arranged along with a process change. A control means is stored in advance for the transfer route / distance of the object to be processed for each mounting chamber, and the transfer arm is swung / extended / contracted according to the transfer route / distance of the object to be processed in the transfer chamber actually installed. It is characterized by having.

【0017】請求項5の発明は、前記請求項1記載のマ
ルチチャンバ処理システム用搬送装置において、移載室
は、その上面にその移載室内を密閉するための蓋を有
し、この蓋は少なくとも2分割され、少なくとも一方が
開閉自在であることを特徴とする。
According to a fifth aspect of the present invention, in the transfer apparatus for a multi-chamber processing system according to the first aspect, the transfer chamber has a lid on its upper surface for sealing the transfer chamber, and this lid is It is characterized by being divided into at least two and at least one of which can be opened and closed.

【0018】こうした構成のマルチチャンバ処理システ
ム用搬送装置であれば、プロセス変更に伴い真空処理室
の周配個数の増減変更に応じて移載室の形状・大きさが
各種変わっても、その都度搬送アームの被処理体搬送ル
ート及び距離をテーチィングする必要がなく、即座に適
確な搬送アームの制御ができるようになる。
With the transfer apparatus for a multi-chamber processing system having such a structure, even if the shape and size of the transfer chamber are variously changed in response to an increase or decrease in the number of peripherally arranged vacuum processing chambers due to a process change, the transfer chamber is changed each time. It is not necessary to teach the transfer route and distance of the object to be transferred of the transfer arm, and it becomes possible to immediately and accurately control the transfer arm.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に従い説明す
る。なお、図1は3個の真空処理室を周配したマルチチ
ャンバ処理システムにおける搬送装置の水平断面図、図
2は図1のX−X線に沿う縦断面図、図3は同搬送装置
に用いた搬送アームの伸縮状態時の平面図、図4は6個
の真空処理室を周配したマルチチャンバ処理システムに
おける搬送装置の水平断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a horizontal sectional view of a transfer device in a multi-chamber processing system in which three vacuum processing chambers are arranged, FIG. 2 is a vertical sectional view taken along line XX of FIG. 1, and FIG. FIG. 4 is a plan view of the transfer arm used when the transfer arm is expanded and contracted, and FIG. 4 is a horizontal cross-sectional view of a transfer device in a multi-chamber processing system in which six vacuum processing chambers are arranged.

【0020】まず、図1乃至図3により、被処理体とし
て例えば半導体ウェーハ(以下単にウエーハと略記す
る)Wに処理を施す3個の真空処理室P1 ,P2 ,P3
を一つの搬送系に周配したマルチチャンバ処理システム
及びこの搬送装置を述べる。それら真空処理室P1 ,P
2 ,P3 は、図1及び図2に示す如く、それぞれ所定の
高さの架台2上に搭載されたプロセスチャンバなどと称
される立方体状の気密処理容器で、内部に被処理体であ
るウェーハWを処理するために載置保持する複数本の昇
降支持ピン3aを持つ載置台(サセプタ)載置台3をそ
れぞれ備えている。
First, referring to FIGS. 1 to 3, three vacuum processing chambers P 1 , P 2 , P 3 for processing, for example, a semiconductor wafer (hereinafter simply referred to as a wafer) W as an object to be processed.
A multi-chamber processing system in which the above are arranged in one transfer system and this transfer device will be described. Those vacuum processing chambers P 1 , P
As shown in FIGS. 1 and 2, reference numerals 2 and P 3 are cubic airtight processing containers called process chambers and the like mounted on a pedestal 2 having a predetermined height, respectively, which are objects to be processed inside. Each table is provided with a mounting table (susceptor) mounting table 3 having a plurality of lifting support pins 3a for mounting and holding the wafer W for processing.

【0021】この3個のうち、2つの真空処理室P1
2 は、ウェーハWに対する所要の処理機能、例えばス
パッタリング、CVD、エッチング、アッシング、酸
化、拡散等のなかからいずれか選択された処理機能を備
えたものであり、残り一つの真空処理室P3 はウェーハ
Wの例えば加熱・冷却等の前後処理を行う予備真空処置
室である。その処理目的のために、各々図示しないが真
空吸引機構やプロセスガス注入機構や加熱・冷却機構等
が装備されている。
Of the three, two vacuum processing chambers P 1 ,
P 2 has a required processing function for the wafer W, for example, a processing function selected from sputtering, CVD, etching, ashing, oxidation, diffusion, etc., and the remaining one vacuum processing chamber P 3 Is a preliminary vacuum treatment chamber for performing pre-processing and post-processing such as heating and cooling of the wafer W. For the purpose of the processing, a vacuum suction mechanism, a process gas injection mechanism, a heating / cooling mechanism, etc., which are not shown, are provided.

【0022】通常、この種のマルチチャンバ処理システ
ムでは、真空処理室の周配個数として、前記3個の真空
処理室P1 ,P2 ,P3 を備えるパターンが最小単位と
想定される。
Generally, in this type of multi-chamber processing system, it is assumed that the minimum unit is a pattern including the three vacuum processing chambers P 1 , P 2 and P 3 as the number of vacuum processing chambers to be distributed.

【0023】この最小パターンのマルチチャンバ処理シ
ステム用の搬送装置は、3個の真空処理室P1 ,P2
3 が三方から囲む周配状態でそれぞれ接続される多角
形の移載室11と、この移載室11の前端側部に接続さ
れた一個以上(図示の実施例では2個)のローダ室1
2,13と、前記移載室11内にて前記ローダ室12,
13内からウェーハWを取り込んで前記真空処理室P
1 ,P2 ,P3 内へ搬入し且つそれら真空処理室内の処
理済みウェーハWを取り出してローダ室12,13内へ
戻す旋回並びに伸縮動可能な搬送アーム14と、この搬
送アーム14からウェーハWを一旦受取って後述する如
く位置合わせを行うアライメント機構15を備えてな
る。
The transfer device for the multi-chamber processing system of this minimum pattern is composed of three vacuum processing chambers P 1 , P 2 ,
Polygonal transfer chambers 11 are respectively connected in a circumferential arrangement in which P 3 is surrounded from three sides, and one or more (two in the illustrated embodiment) loader chambers connected to the front end side of the transfer chamber 11. 1
2, 13 and the loader chamber 12 in the transfer chamber 11,
The wafer W is taken in from inside the vacuum processing chamber P.
A transfer arm 14 capable of swiveling and expanding / contracting, which carries in the wafers 1 , 1 , P 2 and P 3 and takes out the processed wafers W in the vacuum processing chambers and returns them into the loader chambers 12 and 13, and the wafers W from the transfer arms 14. It is provided with an alignment mechanism 15 for once receiving and aligning as described later.

【0024】なお、これら移載室11及びローダ室1
2,13は図2に示す如く固定架台16上に搭載支持さ
れている。また、そのローダ室12,13の前面側には
架台17を介して外部カセット搬送装置18が設けられ
ている。
Incidentally, these transfer chamber 11 and loader chamber 1
2 and 13 are mounted and supported on a fixed mount 16 as shown in FIG. An external cassette carrying device 18 is provided on the front side of the loader chambers 12 and 13 via a mount 17.

【0025】前記移載室11は、真空搬送室(トランス
ファチャンバ)などとも称され、図1及び図2に示す如
く、前述の3個の真空処理室P1 ,P2 ,P3 を左右及
び後側の三方にバランス良く周配して接続可能に、平面
コ字形の周壁部即ち、互いに平行した左右壁部11a,
11bとこれらに直角な後端壁部11cとを有すると共
に、前端側に前記2個(左右一対)のローダ室12,1
3を並列的に接続可能に、前記左右壁部11a,11b
から前側に少し広がるように延出した左右拡開壁部11
d,11eと、更にそれらの前端に連接した互いにV字
状に傾斜角度を持って配する前端壁部11f,11gと
を有する平面多角形である。しかも、この移載室11
は、前述の如く真空処理室の周配個数が最小(3個)の
パターン処理システムに合わせて、設置スペース的に出
来るだけ無駄がないように、後述する他のパターン処理
システムのものよりも最も小形に作られている。
The transfer chamber 11 is also called a vacuum transfer chamber (transfer chamber) or the like. As shown in FIGS. 1 and 2, the three vacuum processing chambers P 1 , P 2 and P 3 are arranged on the left and right sides. Around the rear three sides in a well-balanced manner and connectable, the planar U-shaped peripheral wall portions, that is, the left and right wall portions 11a parallel to each other,
11b and a rear end wall portion 11c perpendicular to them, and the two (left and right pair) loader chambers 12, 1 on the front end side.
The left and right wall portions 11a and 11b can be connected in parallel.
From the left and right expansion wall portion 11 that extends slightly from the front to the front side
It is a planar polygon having d and 11e and front end wall portions 11f and 11g which are connected to their front ends and are arranged in a V-shape with an inclination angle. Moreover, this transfer room 11
As described above, the pattern processing system with the smallest number of vacuum processing chambers (three) is installed in the vacuum processing chamber so that the space is as small as possible and the pattern processing system is the most used than the other pattern processing systems described later. It is made small.

【0026】この移載室11の左右壁部11a,11b
と後端壁部11cとに接続口21がそれぞれ形成され、
この各々の外側に前記真空処理室P1 ,P2 ,P3 がそ
れぞれ個々にゲートバルブG1 を介して内部連通する状
態に設置されている。また、前端壁部11f,11gは
前記2個のローダ室12,13に対する接続部(インタ
ーフェース)で、それぞれに接続口22が形成され、こ
の各々の前側に前記2個(左右一対)のローダ室12,
13が後端側口を個々に接続して各々ゲートバルブG2
を介し内部連通する状態に並設されている。
Left and right wall portions 11a and 11b of the transfer chamber 11
And connection ports 21 are formed in the rear end wall 11c,
The vacuum processing chambers P 1 , P 2 and P 3 are respectively installed on the outside of each of these chambers so as to communicate with each other via a gate valve G 1 . Further, the front end wall portions 11f and 11g are connecting portions (interfaces) to the two loader chambers 12 and 13, respectively, and a connection port 22 is formed in each of them, and the front side of each of the two loader chambers (left and right). 12,
13 connects the rear end side ports individually and gate valves G 2 respectively
Are arranged side by side so as to communicate internally.

【0027】また、この移載室11は通常は図2に示す
如く蓋23が被嵌されて気密容器とされ、内部を所要の
減圧状態に真空保持する真空吸引機構或いは不活性ガス
例えばN2 ガスと置換するガス供給機構(いずれも図示
せず)が装備されている。
The transfer chamber 11 is usually an airtight container with a lid 23 fitted as shown in FIG. 2, and a vacuum suction mechanism or an inert gas such as N 2 gas for holding the inside of the transfer chamber 11 in vacuum at a required reduced pressure state. Is equipped with a gas supply mechanism (none of which is shown).

【0028】更に、この移載室11の底板部には、前記
左右壁部11a,11bと後端壁部11cとからそれぞ
れ等距離にある仮想中心に位置して搬送アーム14の旋
回軸装着穴24が形成され、ここに前記搬送アーム14
の後述する旋回軸28が装着されている。
Further, the bottom plate portion of the transfer chamber 11 is located at virtual centers equidistant from the left and right wall portions 11a and 11b and the rear end wall portion 11c, respectively, and is provided with a swing shaft mounting hole for the transfer arm 14. 24 is formed in which the transfer arm 14 is formed.
The pivot shaft 28 described later is mounted.

【0029】前記2個のローダ室12,13は途中で略
くの字形に屈曲した前後向きの搬送ダクト状のもので、
互いに左右対称形に作られている。そして、これらロー
ダ室12,13の後端側を前述の如く移載室11の接続
部(ローダ室インターフェース)である互いにV字状に
配する前端壁部11f,11gに接合することで、その
両ローダ室12,13が各々の中心線L1 ,L2 を移載
室11内の搬送アーム14の旋回軸中心Oに向く状態
に、互いにハの字状に適当な開き角度θ(例えば45
度)を持って左右対称に並列配置されている。
The two loader chambers 12 and 13 are in the form of transport ducts which are bent in the shape of a dogleg in the middle and are oriented forward and backward.
It is made symmetrical to each other. Then, the rear end sides of the loader chambers 12 and 13 are joined to the front end wall portions 11f and 11g arranged in a V shape, which are the connecting portions (loader chamber interface) of the transfer chamber 11 as described above. With the loader chambers 12 and 13 having their respective center lines L 1 and L 2 oriented toward the center O of the rotation axis of the transfer arm 14 in the transfer chamber 11, an appropriate opening angle θ (for example, 45) is formed in a V shape.
Are arranged side by side symmetrically.

【0030】これで、前記移載室11の周囲に前記3個
の真空処理室P1 ,P2 ,P3 とローダ室12,13と
が搬送アーム14の旋回軸中心Oから真っ直ぐ延出した
放射線上に周配して接続され、それら各々に該搬送アー
ム14によりウェーハWの挿脱移載が可能とされてい
る。
As a result, the three vacuum processing chambers P 1 , P 2 , P 3 and the loader chambers 12, 13 extend straight from the center O of the rotation axis of the transfer arm 14 around the transfer chamber 11. The wafer W is connected by being distributed around the radiation, and the wafer W can be inserted into and removed from each of them by the transfer arm 14.

【0031】その2個のローダ室12,13は、内部略
中央にカセット載置台25をそれぞれ有し、その上に外
部(前側の作業室)からウェーハWを例えば25枚単位
で上下多段式に水平に収納したカセットCごと外部カセ
ット搬送装置18により搬入したり搬出したりできる所
謂カセット搬入室である。なお、そのカセット載置台2
5はローダ室12,13の下部にそれぞれ設けた昇降機
構(エレベータ)26により昇降可能に支持されてい
る。
Each of the two loader chambers 12 and 13 has a cassette mounting table 25 substantially in the center thereof, on which a wafer W from the outside (front working chamber) is, for example, a unit of 25 wafers in a vertical multi-stage manner. This is a so-called cassette carry-in chamber in which the cassette C stored horizontally can be carried in and carried out by the external cassette carrying device 18. In addition, the cassette mounting table 2
5 is supported by an elevating mechanism (elevator) 26 provided at the bottom of the loader chambers 12 and 13 so as to be able to ascend and descend.

【0032】また、この両ローダ室12,13は、カセ
ット搬入口である前端側口部にも外部(前面側作業室)
との間で開閉するように各々ゲートバルブG3 を有し
て、一種のロードロック室の如く気密保持でき、且つ図
示しない真空吸引機構により真空引きしたり或いはガス
供給機構により不活性ガス例えばN2 ガスとの置換など
して外部雰囲気との隔離ができるようになっている。
Further, both loader chambers 12 and 13 are external to the front end side opening portion which is a cassette carry-in port (front side working chamber).
Each of them has a gate valve G 3 for opening and closing, and can be kept airtight like a kind of load lock chamber, and can be evacuated by a vacuum suction mechanism (not shown) or an inert gas such as N 2 by a gas supply mechanism. It can be isolated from the outside atmosphere by replacing it with gas.

【0033】前記搬送アーム14は、一種の移載ロボッ
トで、図2に示す移載室11下部或いは架台16に取り
付け支持した駆動部27から旋回軸28が立設され、こ
の旋回軸28が該移載室11の仮想中心の旋回軸装着穴
24に気密状態にて上方に貫挿され、この旋回軸28の
上端に図3(a)(b)に示す如く一連の多関節アーム
29,30,31を連設すると共に、そのアーム31の
先端にウェーハWを真空吸着などの手段により支持する
略U字形状のハンド部31aを有した構成である。
The transfer arm 14 is a kind of transfer robot, and a swing shaft 28 is erected from a drive unit 27 mounted and supported on the lower part of the transfer chamber 11 or the pedestal 16 shown in FIG. The transfer chamber 11 is pierced upward in a virtual center of the swivel shaft mounting hole 24 in an airtight state, and a series of articulated arms 29, 30 are provided at the upper end of the swivel shaft 28 as shown in FIGS. , 31 are connected in series, and a substantially U-shaped hand portion 31a for supporting the wafer W by means such as vacuum suction is provided at the tip of the arm 31.

【0034】この搬送アーム14は、多関節アーム2
9,30,31が相互に折り畳んだ短縮状態での最小旋
回半径Rが、前述の如く真空処理室の最小周配個数(3
個)に応じた最小形の移載室11の内周半径より僅かに
小さく設定されている。その最小形の移載室11の内周
半径は、図1に想像線で示す如く旋回軸中心Oから周壁
内面までの距離或いは接続口21内奥までの距離のどち
らを選択しても良い。そして、駆動部27の駆動により
旋回軸28を介し多関節アーム29,30,31が先端
ハンド部31a上にウェーハWを保持したまま移載室1
1内で水平に旋回可能であると共に、伸縮動してウェー
ハWを各真空処理室P1 ,P2 ,P3 並びにローダ室1
2,13内に出し入れできるようになっている。
The transfer arm 14 is an articulated arm 2
As described above, the minimum turning radius R in the shortened state in which 9, 30, 31 are folded to each other is the minimum number (3) of the vacuum processing chambers.
It is set to be slightly smaller than the inner radius of the transfer chamber 11 of the smallest shape corresponding to the number of individual pieces. The minimum radius of the transfer chamber 11 may be either the distance from the center O of the turning axis to the inner surface of the peripheral wall or the distance to the inner side of the connection port 21 as shown by an imaginary line in FIG. Then, the multi-joint arms 29, 30, and 31 are driven by the drive unit 27 via the swivel shaft 28 so that the wafer W is held on the tip hand unit 31a while the transfer chamber 1 is being held.
1 can be horizontally swung, and can be expanded and contracted to move the wafer W into the vacuum processing chambers P 1 , P 2 , P 3 and the loader chamber 1
It can be put in and taken out of the inside of 2,3.

【0035】前記アライメント機構15は、移載室11
内にて搬送アーム14から一枚ずつのウェーハWを一旦
受け取って静電吸着手段等により保持する回転台33
と、この回転台33を回転軸34を介し回転する回転駆
動部35並びに昇降せしめる昇降駆動部36と、この回
転台33上に載置したウェーハWの周縁部の回転移動位
置に真下から例えばレーザー光を帯状の平行光線として
照射する発光部37と、この光線を上方で受け且つその
受光面積に応じ電気信号を出力する例えばPINフォト
ダイオード等を用いた受光部38と、この受光部38か
らの電気信号を基に回転台33によりウェーハWを一回
転させた時に該ウェーハWの中心位置とオリエンテーシ
ョンフラット(以下単にオリフラと略称する)の向きを
検出して回転駆動部35を制御する制御部(図示せず)
とを備えてなり、この回転制御によりウェーハWを所定
の向きに位置合わせし搬送アーム14に渡して前述の真
空処理室P1 ,P2 ,P3 内へ適正に搬入セットできる
ようになっている。
The alignment mechanism 15 includes a transfer chamber 11
A turntable 33 that temporarily receives the wafers W one by one from the transfer arm 14 and holds them by electrostatic attraction means or the like.
A rotary drive unit 35 for rotating the rotary table 33 via a rotary shaft 34, and an elevating and lowering drive section 36 for elevating and lowering the rotary table 33; A light emitting unit 37 that irradiates light as a strip-shaped parallel light beam, a light receiving unit 38 that receives the light beam above and outputs an electric signal in accordance with the light receiving area, and a light receiving unit 38 that uses a PIN photodiode, for example. A control unit that controls the rotation drive unit 35 by detecting the center position of the wafer W and the orientation of the orientation flat (hereinafter simply referred to as “orientation flat”) when the wafer W is rotated once by the turntable 33 based on the electric signal. (Not shown)
With this rotation control, the wafer W can be aligned in a predetermined direction and transferred to the transfer arm 14 so that the wafer W can be properly loaded and set in the vacuum processing chambers P 1 , P 2 and P 3 . There is.

【0036】このアライメント機構15は、前述の如く
真空処理室の最小周配個数(3個)に応じた最小形の移
載室11内で、しかも前記搬送アーム14の旋回・伸縮
動作に対し干渉しない定位置に設置されている。即ち、
移載室11内の搬送アーム14の最小旋回半径Rよりわ
ずかに外側で、且つ前述の如く互いに適当な開き角度θ
を持って並列配置する2個のローダ室12,13の各々
の中心線L1 ,L2 の相互中間位置に前記回転軸34を
介して回転台33が設置されている。
As described above, the alignment mechanism 15 interferes with the rotation and expansion / contraction operation of the transfer arm 14 in the transfer chamber 11 of the minimum size corresponding to the minimum number of the vacuum processing chambers (3). Not installed in place. That is,
Slightly outside the minimum turning radius R of the transfer arm 14 in the transfer chamber 11, and as described above, an appropriate opening angle θ.
A rotary table 33 is installed via the rotary shaft 34 at an intermediate position between the center lines L 1 and L 2 of the two loader chambers 12 and 13 arranged in parallel with each other.

【0037】なお、前記左右のローダ室12,13内に
ウェーハWを収納したカセットCを外部からオペレータ
が手作業で挿脱しても良いが、その場合ゲートバルブG
3 の存在などにより多少の危険があるので、ここでは左
右のローダ室12,13の前側に架台17を介し外部カ
セット搬送装置18を設置している。この外部カセット
搬送装置18は、架台17に取付け支持した回転駆動部
40と、これから立設した回転軸41と、この回転軸4
1上端に直角に取付けた回動アーム42と、この先端に
連設したハンドリングアーム43とで構成された一軸構
造のものである。この外部カセット搬送装置18が架台
17上のカセット載置部17aにおいて別途カセット移
載ロボット(図示せず)或いはオペレータからカセット
Cを受け取って左右選択的に回動することで、該カセッ
トCをローダ室12或いは13内のカセット載置台25
上に搬入セットしたり、逆にローダ室12,13内から
処理済みウェーハを収納したカセットWを搬出したりで
きるようになっている。
The operator may manually insert and remove the cassette C containing the wafer W into the left and right loader chambers 12 and 13, but in that case, the gate valve G is used.
Since there is some danger due to the presence of 3 or the like, an external cassette carrying device 18 is installed in front of the left and right loader chambers 12 and 13 via a pedestal 17 here. The external cassette carrying device 18 includes a rotary drive unit 40 mounted and supported on a gantry 17, a rotary shaft 41 erected from the rotary drive unit 40, and the rotary shaft 4
1 has a uniaxial structure composed of a rotating arm 42 mounted at a right angle on the upper end and a handling arm 43 continuously provided at the tip. The external cassette carrying device 18 receives the cassette C separately from the cassette transfer robot (not shown) or the operator at the cassette mounting portion 17a on the pedestal 17 and selectively rotates the cassette C left and right to load the cassette C into the loader. Cassette mounting table 25 in chamber 12 or 13
It can be loaded and set on the upper side, or conversely, the cassette W containing the processed wafers can be unloaded from the loader chambers 12 and 13.

【0038】また、図1中符号45は制御手段としての
制御ユニットを示し、ここには各種動作モードのプログ
ラムを格納したメモリを備えたCPU等の制御装置と、
プログラムの選択や条件設定等を行う操作パネルが設け
られている。
Further, reference numeral 45 in FIG. 1 denotes a control unit as a control means, in which a control device such as a CPU provided with a memory storing programs of various operation modes,
An operation panel for selecting programs and setting conditions is provided.

【0039】このような構成のマルチチャンバ処理シス
テムにおける搬送装置の作用を述べる。被処理体として
のウェーハWを所定枚数収納したカセットCが外部カセ
ット搬送装置18に搭載されると、以下、制御ユニット
45の制御装置により各部が自動制御されながら、まず
その外部カセット搬送装置18が動作して左右のローダ
室12,13のどちらか開いている方に搬入し、そこで
ローダ室内のカセット載置台25が昇降機構26により
上昇して該カセットCを受け取り、外部カセット搬送装
置18は前方に引き返す。
The operation of the transfer device in the multi-chamber processing system having such a configuration will be described. When the cassette C containing a predetermined number of wafers W as the objects to be processed is mounted on the external cassette carrying device 18, the external cassette carrying device 18 will be operated while the respective parts are automatically controlled by the controller of the control unit 45. It is operated to carry it into one of the left and right loader chambers 12, 13 which is open, and the cassette mounting table 25 in the loader chamber is raised by the elevating mechanism 26 to receive the cassette C, and the external cassette carrying device 18 is moved forward. Turn back to.

【0040】こうして例えば図1に示す如くカセットC
を収納した右側のローダ室12は、その前端側口がゲー
トバルブG3 により閉じられて密封状態となり、この状
態で真空吸引機構により真空引き或いはガス供給機構に
より不活性ガス例えばN2 ガスとの置換が行われて、外
部雰囲気との隔離(ロードロック)された後、該ローダ
室13の後端側のG2 が開いて、同様に真空引き或いは
不活性ガスに置換されている移載室11と内部連通す
る。
Thus, for example, the cassette C as shown in FIG.
The loader chamber 12 on the right side, which stores therein, has a front end side closed by a gate valve G 3 and is in a hermetically sealed state. In this state, vacuum suction is performed by a vacuum suction mechanism or replacement with an inert gas such as N 2 gas is performed by a gas supply mechanism. Is performed and is isolated from the external atmosphere (load lock), G 2 on the rear end side of the loader chamber 13 is opened, and similarly, the transfer chamber 11 is evacuated or replaced with an inert gas. Internal communication with.

【0041】この状態で、該ローダ室12内のカセット
Cがカセット載置台25と共に昇降機構26により昇降
する一方、移載室11内の搬送アーム16が旋回・伸長
して該ローダ室12内のカセットC内のウェーハWを一
枚ずつ移載室11内方に取り込み、それをプログラムモ
ードに従って所要の真空処理室P1 ,P2 ,P3 内へ各
々のゲートバルブG1 をその都度開きながら次々と搬入
セットして所定の処理を行う。
In this state, the cassette C in the loader chamber 12 is moved up and down together with the cassette mounting table 25 by the elevating mechanism 26, while the transfer arm 16 in the transfer chamber 11 is swung and extended to move in the loader chamber 12. The wafers W in the cassette C are taken into the transfer chamber 11 one by one , and the gate valves G 1 are opened into the required vacuum processing chambers P 1 , P 2 and P 3 according to the program mode each time. Carry-in and set one after another and perform predetermined processing.

【0042】つまり、例えば、搬送アーム14によりウ
ェーハWを最初に予備真空処理室P3 内に搬入して予備
加熱し、それを移載室11内に戻してアライメント機構
15の回転台33の上昇により受け取らせ、そこで回転
制御にウェーハWの中心並びにオリフラ向きを検出して
所定の向きに位置合わせし、そのまま回転台33の下降
により搬送アーム14に渡して第1の真空処理室P1
2 内に順次搬入セットさせ、成膜或いはエッチング等
の所定の処理を行う。その処理済みウェーハWは搬送ア
ーム14によりローダ室12のカセットC内に戻す。
That is, for example, the wafer W is first loaded into the pre-vacuum processing chamber P 3 by the transfer arm 14 to be preheated, returned to the transfer chamber 11, and the rotary table 33 of the alignment mechanism 15 is raised. Then, the center of the wafer W and orientation of the wafer W are detected by the rotation control, and the wafer is aligned with the orientation in a predetermined direction. Then, the rotary table 33 is descended to transfer it to the transfer arm 14 and the first vacuum processing chamber P 1 ,
The P 2 is sequentially loaded and set, and a predetermined process such as film formation or etching is performed. The processed wafer W is returned to the cassette C in the loader chamber 12 by the transfer arm 14.

【0043】こうしてカセットC内のウェーハWを一枚
ずつ取り込んでは処理して戻し、該カセットC内の全ウ
ェーハWの処理が終了すると、ローダ室12の後端側の
2が閉じてから、その前端側口のゲートバルブG3
開き、そこに外部カセット搬送装置18が移動して来
て、処理済みウェーハを収納したカセットCを外部に取
り出す。
In this way, the wafers W in the cassette C are taken in one by one, processed and returned, and when the processing of all the wafers W in the cassette C is completed, after the G 2 on the rear end side of the loader chamber 12 is closed, The gate valve G 3 at the front end side opening is opened, and the external cassette carrying device 18 is moved to the gate valve G 3 to take out the cassette C containing the processed wafer to the outside.

【0044】また、前述のように右側のローダ室12内
のカセットCからウェーハWを次々と移載室11に取り
込んで真空処理室P1 ,P2 ,P3 で所定の処理を行っ
ている最中に、左側のローダ室13に未処理ウェーハW
を収納した次のカセットCを外部カセット搬送装置18
により搬入し、その左側のローダ室13をロードロック
状態にして待機させる。そして前記右側のローダ室13
からのウェーハWの出し入れ処理終了と同時に、該左側
のローダ室13のゲートバルブG2 を開いて、その中の
次のカセットCからウェーハWを搬送アーム14が移載
室11内方に取り込んで連続処理を行うようになる。
Further, as described above, the wafers W are successively loaded from the cassette C in the loader chamber 12 on the right side into the transfer chamber 11 and are subjected to predetermined processing in the vacuum processing chambers P 1 , P 2 and P 3 . During the process, the unprocessed wafer W is loaded in the left loader chamber 13.
The next cassette C containing the
Then, the loader chamber 13 on the left side is brought into a load lock state and is on standby. And the loader chamber 13 on the right side
Simultaneously with the completion of the processing for loading and unloading the wafer W from and to the left, the gate valve G 2 of the left loader chamber 13 is opened, and the wafer W is taken into the transfer chamber 11 by the transfer arm 14 from the next cassette C in the gate valve G 2. It comes to perform continuous processing.

【0045】次に、図4に示す実施例の6個の真空処理
室P11,P12,P13,P14,P15,P16を周配したマル
チチャンバ処理システム及びこの搬送装置を述べる。な
お、ここでは前述の図1乃至図3に示した実施例と同一
構造作用をなすものは同一符号を付して説明の簡略化を
図ると共に、前記図2及び図3に示す構成は殆ど変わら
ないので改めて図示せずに該図2及び図3を参照するこ
とにする。
Next, a multi-chamber processing system in which the six vacuum processing chambers P 11 , P 12 , P 13 , P 14 , P 15 , P 16 of the embodiment shown in FIG. . It should be noted that, here, components having the same structural effects as those of the embodiments shown in FIGS. 1 to 3 are given the same reference numerals to simplify the description, and the configurations shown in FIGS. 2 and 3 are almost the same. 2 and 3 will be referred to again without being shown.

【0046】まず、前記6個の真空処理室P11〜P
16は、前記実施例同様の架台2上に搭載された立方体状
の気密処理容器で、この6個のうち、4個の真空処理室
11,P12,P13,P14は、ウェーハWに対する所要の
処理機能、例えばスパッタリング、CVD、エッチン
グ、アッシング、酸化、拡散等のなかからいずれか選択
された処理機能を備えたものであり、残り2個の真空処
理室P15,P16はウェーハWの例えば加熱・冷却等の前
後処理を行う予備真空処置室である。
First, the six vacuum processing chambers P 11 to P
Reference numeral 16 denotes a cubic airtight processing container mounted on the pedestal 2 similar to the above-mentioned embodiment. Of these six, four vacuum processing chambers P 11 , P 12 , P 13 , P 14 are wafers W. The other two vacuum processing chambers P 15 and P 16 are equipped with a processing function selected from sputtering, CVD, etching, ashing, oxidation and diffusion. It is a preliminary vacuum treatment chamber for performing pre-processing and post-processing such as heating and cooling of W.

【0047】通常、この種のマルチチャンバ処理システ
ムでは、真空処理室の周配個数として、前記6個の真空
処理室P11〜P16を備えるパターンが最大単位と想定さ
れる。この最大パターンのマルチチャンバ処理システム
用の搬送装置は、該6個の真空処理室P11〜P16が放射
状に周配する状態でそれぞれ接続される多角形の移載室
51を備え、これ以外は前記実施例と同様の左右一対
(2個)のローダ室12,13と、搬送アーム14と、
アライメント機構15を備えてなる。また、図2で示し
たと同様に移載室11A及びローダ室12,13を搭載
支持する固定架台16と、そのローダ室12,13の前
面側に架台17を介して外部カセット搬送装置18が設
けられている。
Generally, in this type of multi-chamber processing system, it is assumed that the maximum unit is the pattern including the six vacuum processing chambers P 11 to P 16 as the number of peripherally arranged vacuum processing chambers. The transfer device for the multi-chamber processing system having the maximum pattern is provided with a polygonal transfer chamber 51 to which the six vacuum processing chambers P 11 to P 16 are respectively connected in a radial arrangement, and other than this. Is a pair of left and right (two) loader chambers 12, 13 similar to the above-mentioned embodiment, a transfer arm 14,
An alignment mechanism 15 is provided. Further, similarly to the case shown in FIG. 2, a fixed mount 16 for mounting and supporting the transfer chamber 11A and the loader chambers 12, 13 and an external cassette transfer device 18 are provided on the front side of the loader chambers 12, 13 via the mount 17. Has been.

【0048】ここで、前記移載室51は、システム全体
の小形化を図るべく、前記6個の真空処理室P11〜P16
と2個のローダ室12,13とが相互に干渉せずに出来
るだけ無駄なく接近した状態で放射状にバランス良く周
配して接続可能とするために、周壁部51a,51b,
51c,51d,51e,51f,51g,51hを持
つ適当外周径の平面略八角形の容器とされている。当然
に、この移載室51は、前述した実施例の真空処理室の
周配個数(3個)のパターン処理システムの場合の移載
室11や、図示しないが真空処理室の周配個数が4個或
いは5個の中間大きさのパターン処理システムの場合の
移載室より最も大形である。
Here, the transfer chamber 51 has the six vacuum processing chambers P 11 to P 16 in order to reduce the size of the entire system.
And the two loader chambers 12 and 13 are connected to each other with peripheral wall portions 51a, 51b, in order to be connected in a radially well-balanced manner in a state in which they are as close to each other as possible without interfering with each other.
It is a substantially octagonal plane container having an appropriate outer diameter and having 51c, 51d, 51e, 51f, 51g, 51h. Naturally, the transfer chamber 51 is the transfer chamber 11 in the case of the pattern processing system having the number of vacuum processing chambers (three) in the above-described embodiment, or the number of vacuum processing chambers (not shown). The size is the largest compared to the transfer chamber in the case of a pattern processing system having four or five intermediate sizes.

【0049】この移載室51の各周壁部51a〜51h
に接続口52がそれぞれ形成され、これら後半側の周壁
部51a,51b,51c,51dの各々の外側に前記
真空処理室P11,P12,P13,P14がそれぞれ個々にゲ
ートバルブG1 を介して内部連通する状態に設置されて
いると共に、それらの前側の左右周壁部51e,51h
に前記予備真空処理室P15,P16がそれぞれ個々にゲー
トバルブG1 ′を介して内部連通する状態に設置されて
いる。
The peripheral wall portions 51a to 51h of the transfer chamber 51.
Connection port 52 are formed respectively, these second half side of the peripheral wall portion 51a, 51b, 51c, the outside of each of 51d vacuum processing chamber P 11, P 12, P 13 , the gate valve G 1 P 14 is each individually And the front left and right peripheral wall portions 51e and 51h of the front side thereof are installed so as to communicate internally with each other.
Further, the preliminary vacuum processing chambers P 15 and P 16 are individually installed so as to be internally communicated with each other through a gate valve G 1 ′.

【0050】更にその前端側の左右周壁部51f,11
gは、前記実施例同様の角度で互いにV字状に配し、そ
れぞれに接続口53が形成されている。つまり、この大
形な八角形の移載室51においても、前端側に前記実施
例と全く同一寸法形態のローダ室接続部(インターフェ
ース)が形成され、この各々の前側に前記実施例と同様
に2個(左右一対)のローダ室12,13が後端側口を
接続してゲートバルブG2 を介し内部連通する状態に並
設されている。即ち、前記実施例と全く同一構造の2個
のローダ室12,13が移載室51に対し前記実施例と
全く同様に各々の中心線L1 ,L2 を移載室51内の搬
送アーム14の後述する旋回軸中心Oに向く状態に、互
いにハの字状に適当な開き角度θ(例えば45度)を持
って左右対称に並列配置されている。
Further, the left and right peripheral wall portions 51f, 11 on the front end side thereof
g are arranged in a V shape with respect to each other at the same angle as in the above-mentioned embodiment, and a connection port 53 is formed in each. That is, also in this large-sized octagonal transfer chamber 51, a loader chamber connecting portion (interface) having exactly the same size and shape as that of the above-mentioned embodiment is formed on the front end side, and the front side of each of them is similar to the above-described embodiment. Two (left and right pair) loader chambers 12, 13 are arranged side by side in a state of connecting the rear end side ports and internally communicating via a gate valve G 2 . That is, the two loader chambers 12 and 13 having exactly the same structure as those of the above-described embodiment have the center lines L 1 and L 2 of the transfer chamber 51 in the same manner as in the above-described embodiment, and the transfer arms in the transfer chamber 51. In the state of being directed to the center O of a turning shaft 14 described later, they are arranged in parallel in a left-right symmetric manner with an appropriate opening angle θ (for example, 45 degrees).

【0051】この移載室51の底板部の八角形の中心位
置に旋回軸装着穴54が形成され、これに前記実施例と
同様に搬送アーム14が旋回軸31を気密状態に貫挿し
て装着されている。
A swivel shaft mounting hole 54 is formed at the center position of the octagon of the bottom plate of the transfer chamber 51, and the swivel shaft 31 is inserted into the swivel shaft 31 through the swivel shaft 31 in the same manner as in the previous embodiment. Has been done.

【0052】これで、前記移載室51の周囲に前記6個
の真空処理室P11〜P16と2個のローダ室12,13と
が搬送アーム14の旋回軸中心Oから真っ直ぐ延出した
放射線上に周配して接続され、それら各々に該搬送アー
ム14によりウェーハWの挿脱移載が可能とされてい
る。
With this, the six vacuum processing chambers P 11 to P 16 and the two loader chambers 12 and 13 extend straight from the center O of the rotation axis of the transfer arm 14 around the transfer chamber 51. The wafer W is connected by being distributed around the radiation, and the wafer W can be inserted into and removed from each of them by the transfer arm 14.

【0053】なお、この移載室51にも通常は図2に示
すような蓋23(形状は異なる)が被嵌されて気密容器
とされ、内部を所要の減圧状態に真空保持する真空吸引
機構或いは不活性ガス例えばN2 ガスと置換するガス供
給機構(いずれも図示せず)が装備されている。
The transfer chamber 51 is usually fitted with a lid 23 (having a different shape) as shown in FIG. 2 to form an airtight container, and a vacuum suction mechanism for holding the inside of the transfer chamber 51 in a vacuum state at a required reduced pressure. Alternatively, it is equipped with a gas supply mechanism (both not shown) for substituting an inert gas such as N2 gas.

【0054】前記搬送アーム14は、前記実施例のもの
と全く同一構造をなす共通品としたことで、この多関節
アーム29,30,31が相互に折り畳んだ短縮状態で
の最小旋回半径Rが、前述の真空処理室の最小周配個数
(3個)に応じた最小形の移載室11の内周半径より僅
かに小さく設定されているので、前記八角形の最大形の
移載室51内においては旋回スペースに余裕があるの
で、その分、図示のように該移載室51の周壁部51
a,51b,51c,51dを肉厚化して、大形移載室
51の真空強度に対する強化が図られている。
Since the transfer arm 14 is a common product having the same structure as that of the above-mentioned embodiment, the minimum turning radius R in the shortened state in which the multi-joint arms 29, 30, 31 are mutually folded. Since it is set to be slightly smaller than the inner peripheral radius of the transfer chamber 11 of the minimum shape corresponding to the minimum number (3 pieces) of the vacuum processing chambers, the transfer chamber 51 of the maximum octagonal shape is formed. Since the swivel space is available inside, the peripheral wall portion 51 of the transfer chamber 51 is correspondingly increased as shown in the figure.
The thicknesses of a, 51b, 51c and 51d are increased to strengthen the large transfer chamber 51 against the vacuum strength.

【0055】また、この搬送アーム14は、多関節アー
ム29,30,31の短縮状態での最小旋回半径Rを前
述のように小さく設定するが、その多関節アーム29,
30,31の最大アーム伸長距離(最大アームリーチ)
Qは、前記最大形の移載室51内より各真空処理室P11
〜P16及び2個のローダ室12,13内へウェーハWを
搬入出するために必要な寸法(旋回軸中心Oから真空処
理室P11のウェーハ載置台2上までの距離)に設定され
ている構成である。
Further, in the transfer arm 14, the minimum turning radius R of the articulated arms 29, 30, 31 in the shortened state is set small as described above.
Maximum arm extension distance of 30, 31 (maximum arm reach)
Q is the vacuum processing chamber P 11 from the inside of the transfer chamber 51 of the largest type.
˜P 16 and the dimensions required for loading / unloading the wafer W into / from the two loader chambers 12 and 13 (the distance from the center O of the turning axis to the wafer mounting table 2 in the vacuum processing chamber P 11 ) It has a structure.

【0056】このために、この搬送アーム14は同一構
造の共通品を使用することで、前記実施例の真空処理室
の周配個数(3個)のパターン処理システムの場合の最
小形の移載室11や、図示しないが真空処理室の周配個
数が4個或いは5個の中間大きさのパターン処理システ
ムの場合の移載室に設置した状態では、最大アーム伸長
距離Qが大き目となって無駄に思われるが、移載室の各
種大きさに応じてその都度アームリーチの異なる移載ア
ームを設計製作する手間を考えると非常に有利である。
しかも、その大き目のアームリーチを持つ搬送アーム1
4を使用することで、前記実施例の小形の移載室11内
にも旋回軸中心Oからローダ室接続部(インターフェー
ス)までの距離を大きく取って、前記アライメント機構
15の設置スペースを十分確保できるようになる。
For this reason, by using a common product having the same structure for the transfer arm 14, the transfer of the minimum shape in the case of the pattern processing system having the number of peripherally arranged vacuum processing chambers (3) in the above-described embodiment. The maximum arm extension distance Q becomes large in the chamber 11 or in the transfer chamber in the case of a pattern processing system having an intermediate size of 4 or 5 vacuum processing chambers (not shown). Although it seems useless, it is very advantageous in consideration of the time and effort of designing and manufacturing transfer arms having different arm reach each time according to various sizes of the transfer chamber.
Moreover, the transfer arm 1 with its large arm reach
4 is used, a large distance is provided from the center O of the swivel axis to the loader chamber connecting portion (interface) even in the small transfer chamber 11 of the above embodiment, and a sufficient installation space for the alignment mechanism 15 is secured. become able to.

【0057】なお、そのアライメント機構15も前記実
施例と全く同様のもので、この回転台33が、移載室5
1内の搬送アーム14の最小旋回半径Rよりわずかに外
側で、且つ前述の如く互いに適当な開き角度θを持って
並列配置する2個のローダ室12,13の各々の中心線
1 ,L2 の相互中間位置に回転軸34を介して設置さ
れている。
The alignment mechanism 15 is also the same as that of the above-mentioned embodiment, and the rotary table 33 is used in the transfer chamber 5.
The center lines L 1 and L of the two loader chambers 12 and 13 which are arranged slightly outside the minimum turning radius R of the transfer arm 14 in 1 and are arranged in parallel with each other with an appropriate opening angle θ as described above. It is installed at an intermediate position between the two via a rotary shaft 34.

【0058】こうした図4に示す実施例のマルチチャン
バ処理システムにおける搬送装置では、詳述しないが基
本的には前記図1乃至図3に示した実施例と同様の作用
が得られる上に、周配する真空処理室P11〜P16の個数
が多いので、ウェーハWに対する処理を多伎に亘り行い
得るようになる。
Although not described in detail, the transfer device in the multi-chamber processing system of the embodiment shown in FIG. 4 basically obtains the same operation as that of the embodiment shown in FIGS. since the number of the vacuum processing chamber P 11 to P 16 to arrange many, so it can perform over processing for the wafer W to Taki.

【0059】ところで、前述の各実施例の如く、本発明
のマルチチャンバ処理システム用搬送装置は、半導体製
造プロセスの変更等に伴い真空処理室の周配個数の増減
に対応して、移載室の形状・大きさが変更されるが、そ
れ以外のローダ室12,13と搬送アーム14並びにア
ライメント機構15等がいずれも共通品で対応可能に構
成されているのが最も特徴とするところである。
By the way, as in each of the above-described embodiments, the transfer apparatus for a multi-chamber processing system of the present invention corresponds to the increase or decrease in the number of the vacuum processing chambers distributed along with the change of the semiconductor manufacturing process, etc. Although the shape and size of the loader chamber are changed, the most characteristic feature is that the other loader chambers 12 and 13, the transfer arm 14, the alignment mechanism 15 and the like are configured as a common product.

【0060】このために、前述したように、大小いずれ
の移載室11,51の場合も周壁端部にローダ室に対す
る一定した接続部(インターフェース;周壁部11f,
11g及び51f,51g)を持って、そのいずれにも
同一構造のローダ室12,13を全く同様に接続配置で
きる。しかも、搬送アーム14は真空処理室の最小周配
個数(3個)に応じた最小形の移載室11内で旋回し得
る最小旋回半径Dと、真空処理室の最大周配個数(6
個)に応じた最大形の移載室51内より各真空処理室内
へ被処理体を搬入出し得る最大アーム伸長距離Qを持つ
構成である。
For this reason, as described above, in both the large and small transfer chambers 11 and 51, the peripheral wall end has a fixed connection portion (interface; peripheral wall portion 11f, to the loader chamber).
11g and 51f, 51g), and the loader chambers 12, 13 of the same structure can be connected and arranged in exactly the same manner in any of them. Moreover, the transfer arm 14 has a minimum turning radius D that allows it to swivel in the transfer chamber 11 of the minimum shape according to the minimum number (3) of the vacuum processing chambers and the maximum number (6) of the vacuum processing chambers.
The maximum arm extension distance Q is such that the object to be processed can be carried in and out of each of the vacuum processing chambers from the transfer chamber 51 of the maximum shape corresponding to the number of individual objects.

【0061】こうした構成を実現する設計手法を以下に
述べると、まず、前提条件として、図5に示す如く、被
処理体としてのウェーハWのサイズ(例えば8インチ)
及びこの8インチ・ウェーハ収納用カセットCの大きさ
を考慮したローダ室12,13の大きさ(間口寸法)a
=300mmと、該ウェーハWを処理する各種真空処理室
1 …の大きさ(間口寸法)b=400mm,c=300
mmと、アライメント機構15の必要設置スペース等を予
め選定すると共に、プロセスに応じた真空処理室の周配
個数の最小(3個)と最大(6個)と、ローダ室の個数
(2個)とを選定する。
A design method for realizing such a structure will be described below. First, as a precondition, as shown in FIG. 5, the size of the wafer W as the object to be processed (for example, 8 inches).
And the size (width dimension) of the loader chambers 12, 13 in consideration of the size of the 8-inch wafer storing cassette C
= 300 mm, and the size (width dimension) of various vacuum processing chambers P 1 ... That process the wafer W b = 400 mm, c = 300
mm, the required installation space for the alignment mechanism 15 and the like are selected in advance, and the minimum (3) and maximum (6) of vacuum processing chambers are arranged according to the process, and the number of loader chambers (2). And are selected.

【0062】そして、第1の段階として、前記最大数の
真空処理室(6個)とローダ室(2個)が相互に干渉し
ない出来るだけ狭い間隔(両側に例えば10mm程度ずつ
余裕の間隔を持たせる)で放射状に同一円周上に周配し
得るような八角形Yを図に描き、この際のアーム旋回軸
中心Oから各搬入出口(インターフェース面)までの距
離(八角形の内接円の半径)Q1 を算出する。
In the first step, the maximum number of vacuum processing chambers (six) and loader chambers (two) do not interfere with each other as closely as possible (for example, there is a margin of about 10 mm on both sides). The octagon Y that can be radially distributed on the same circle is drawn in the figure and the distance from the arm rotation axis center O to each loading / unloading port (interface surface) (octagonal inscribed circle) Radius) Q 1 is calculated.

【0063】つまり、下記の計算式に従って、まず、 2α+2β=180゜ とし、次に各真空処理室とローダ室との各間口寸法(両
側に10mmずつ加えた状態)a′=320mm、b′=4
20mm、c′=320mmとして、 4202 =r2 +r2 −2r2 cos α 3202 =r2 +r2 −2r2 cos β との計算式が成立し、これにより、 α=51゜、β=39゜、r=484 が得られる。これよりアーム旋回軸中心Oからの各搬入
出口(インターフェース面)までの距離(八角形の内接
円の半径)Q1 は、 Q1 =r cos(α/2)=436mmとする。
That is, according to the following calculation formula, first, 2α + 2β = 180 °, and then the dimensions of each frontage between each vacuum processing chamber and the loader chamber (a condition in which 10 mm is added to each side) a ′ = 320 mm, b ′ = Four
With 20 mm and c ′ = 320 mm, the calculation formula of 420 2 = r 2 + r 2 -2r 2 cos α 320 2 = r 2 + r 2 -2r 2 cos β is established, whereby α = 51 °, β = 39 °, r = 484 is obtained. From this, the distance (radius of the octagonal inscribed circle) Q 1 from the arm rotation axis center O to each loading / unloading port (interface surface) is Q 1 = r cos (α / 2) = 436 mm.

【0064】このQ1 を基に更にゲートバルブの装着ス
ペースを考慮して最大形の八角形の移載室51を設計す
ると共に、このQ1 に最も大形な真空処理室内の最大ウ
ェーハ搬送距離Q2 =305mmを加えることにより、搬
送アーム14の最大アーム伸長距離(最大アームリー
チ;最大搬送距離)Q=Q1 +Q2 =741mmを算出す
る。
Based on this Q 1 , the maximum octagonal transfer chamber 51 is designed in consideration of the mounting space of the gate valve, and the maximum wafer transfer distance in the vacuum processing chamber is the largest for this Q 1. By adding Q 2 = 305 mm, the maximum arm extension distance of the transfer arm 14 (maximum arm reach; maximum transfer distance) Q = Q 1 + Q 2 = 741 mm is calculated.

【0065】第2の段階として、最大アーム伸長距離Q
=741mmとを条件とし、多関節アーム構造の搬送アー
ム14を設計し、最小旋回半径Rを求める。この最小旋
回半径Rは255mm程度に小さくすることができる。
As the second step, the maximum arm extension distance Q
= 741 mm, the transfer arm 14 having an articulated arm structure is designed, and the minimum turning radius R is obtained. This minimum turning radius R can be reduced to about 255 mm.

【0066】第3の段階として、前記最大形の移載室5
1の左右2個のローダ室12,13に対するインターフ
ェースの部分だけ全く変更せずに残し、その他の周囲部
分に前記最少数の真空処理室(3個)が搬送アームの旋
回範囲に干渉しない出来るだけ狭い間隔で同一円周上に
周配し得るような四角形Zを図に描き、これにゲートバ
ルブの装着スペースを考慮して、最小形の移載室11を
設計製作する。
As the third stage, the transfer chamber 5 of the largest type is
As much as possible, the interface parts for the left and right two loader chambers 12 and 13 are left unchanged, and the minimum number of vacuum processing chambers (3) in the other peripheral parts do not interfere with the swing range of the transfer arm. A quadrangle Z that can be arranged on the same circumference at a narrow interval is drawn in the figure, and the transfer chamber 11 of the minimum shape is designed and manufactured in consideration of the mounting space of the gate valve.

【0067】なお、第4の段階として、前記アライメン
ト機構15を移載室51内の搬送アーム14の最小旋回
半径Rよりわずかに外側で、且つ互いの開き角度θを持
って並列配置する2個のローダ室12,13の各々の中
心線L1 ,L2 の相互中間位置に設定する。
As a fourth step, the two alignment mechanisms 15 are arranged side by side slightly outside the minimum turning radius R of the transfer arm 14 in the transfer chamber 51 and at an opening angle θ. The loader chambers 12 and 13 are set at intermediate positions between the center lines L 1 and L 2 .

【0068】この際、移載室内で搬送アーム14がウェ
ーハWを左右のローダ室12,13に出し入れする際、
該搬送アーム14が回転軸34や回転台33にぶつかる
ような場合には、それを解消すべく、前記左右のローダ
室12,13の中心線L1 ,L2 の開き角度θと、旋回
軸中心Oから左右のローダ室12,13のインターフェ
ース面部までの距離を拡大するように変更する。この拡
大変更に伴い前記各真空処理室の配置位置を変更する必
要が生じた場合は、もう一度、前記第1の段階から設計
し直す。
At this time, when the transfer arm 14 moves the wafer W into and out of the left and right loader chambers 12 and 13 in the transfer chamber,
When the transfer arm 14 collides with the rotary shaft 34 or the rotary base 33, in order to eliminate it, the opening angles θ of the center lines L 1 and L 2 of the left and right loader chambers 12 and 13 and the turning axis. The distance from the center O to the interface surface portions of the left and right loader chambers 12 and 13 is changed so as to be increased. When it becomes necessary to change the arrangement positions of the vacuum processing chambers due to this enlargement change, the design is performed again from the first stage.

【0069】以上のように設計製作したマルチチャンバ
処理システム用搬送装置であれば、プロセス変更に伴い
真空処理室の周配個数が増減変更されても、搬送系のう
ち、移載室11,51のみ形状・大きさを変更するだけ
で、それ以外のローダ室12,13と搬送アーム14及
びアライメント機構15はいずれも共通品で対処でき
て、製作・組立が非常に楽でコストダウンが図れるよう
になるまた、ローダ室12,13内から移載室11,5
1内に搬送アーム14によりウェーハWを取り込んで真
空処理室内へ搬入する途中で、ウェーハWをアライメン
ト機構15で一旦受取って向きなどの位置合わせが可能
となる。
With the transfer apparatus for the multi-chamber processing system designed and manufactured as described above, even if the number of peripherals of the vacuum processing chamber is increased or decreased due to the process change, the transfer chambers 11, 51 of the transfer system are transferred. Only by changing the shape and size, all the other loader chambers 12, 13 and the transfer arm 14 and the alignment mechanism 15 can be handled as a common product, and the manufacturing and assembling are very easy and the cost can be reduced. In addition, from the loader chambers 12 and 13 to the transfer chambers 11 and 5
While the wafer W is loaded into the chamber 1 by the transfer arm 14 and loaded into the vacuum processing chamber, the wafer W can be temporarily received by the alignment mechanism 15 for alignment such as orientation.

【0070】更に、前述の如く2個のローダ室12,1
3を備えることで、それら両ローダ室12,13を併用
して搬送アーム14によるウェーハWの搬入出が次々と
スムーズにできて高スルートップが図れるようになる。
また、その2個のローダ室12,13が各々の中心線中
心線L1 ,L2 を移載室11,51内の搬送アーム14
の旋回軸中心Oに向く状態に互いに適当な開き角度θを
持って並列配置されて、その両ローダ室121,13に
対する搬送アーム14の進退ルート相互間の空き空間に
アライメント機構15が配するので、そのアライメント
機構15が搬送アーム14の動作に邪魔にならないと共
に、真空処理室の周配個数に応じた各パターンでそれぞ
れ移載室11,51をぎりぎりまで小さくできて各シス
テム全体の小形化が図れるようになる。
Further, as described above, the two loader chambers 12 and 1
By including 3, the loader chambers 12 and 13 can be used together to smoothly carry in / out the wafer W by the transfer arm 14, and a high through top can be achieved.
In addition, the two loader chambers 12 and 13 have their center lines L 1 and L 2 respectively in the transfer arms 14 and 51 in the transfer chambers 11 and 51.
Since the alignment mechanism 15 is arranged in parallel with each other with an appropriate opening angle θ toward the center O of the turning axis, and the empty space between the advancing / retreating routes of the transfer arm 14 with respect to both loader chambers 121 and 13 is arranged. The alignment mechanism 15 does not interfere with the operation of the transfer arm 14, and the transfer chambers 11 and 51 can be made as small as possible in each pattern according to the number of peripherals of the vacuum processing chamber, and the overall size of each system can be reduced. You will be able to plan.

【0071】一方、前述したマルチチャンバ処理システ
ム用搬送装置においては、制御手段としての制御ユニッ
ト47に、各種動作モードのプログラムを格納したメモ
リを備えたCPU等の制御装置と、プログラムの選択や
条件設定等を行う操作パネルを設けたことで、前述の如
くプロセス変更に伴い真空処理室の周配個数の増減に対
応して大小変更した各種移載室11,51ごとの被処理
体搬送ルート・距離を予めメモリに記憶させておくこと
で、そのうちの実際に設置された移載室の被処理体搬送
ルート・距離に合わせて搬送アーム14を旋回・伸縮動
作せしめることができる。従って、プロセス変更に伴い
真空処理室の周配個数の増減変更に応じて移載室の形状
・大きさが各種変わっても、その都度搬送アーム14の
被処理体搬送ルート及び距離をティーチィングする必要
がなく、即座に適確な搬送アームの制御ができるように
なる。
On the other hand, in the above-described multi-chamber processing system transfer apparatus, the control unit 47 as a control means has a control unit such as a CPU having a memory storing programs of various operation modes, and selection and conditions of the program. By providing the operation panel for setting, etc., as described above, the transfer route of the object to be processed for each transfer chamber 11, 51 whose size has been changed according to the increase and decrease in the number of peripherals of the vacuum processing chamber due to the process change. By storing the distance in the memory in advance, the transfer arm 14 can be swung and expanded / contracted in accordance with the transfer route / distance of the object to be processed in the transfer chamber actually installed. Therefore, even if the shape and size of the transfer chamber are variously changed in accordance with the increase or decrease in the number of circumferentially arranged vacuum processing chambers due to the process change, the processing object transfer route and distance of the transfer arm 14 are taught each time. There is no need, and it becomes possible to immediately and accurately control the transfer arm.

【0072】図7及び図8は他の実施例を示し、図1及
び図2に示す実施例と同一構成部分は同一番号を付して
説明を省略する。移載室11の左右壁部11a,11b
の左右拡開壁部11d,11eとの境界部には左右壁部
11aと11bとを連結する梁11hが設けられ、この
梁11hによって移載室11を密閉する蓋23を支持し
ている。
7 and 8 show another embodiment. The same components as those of the embodiment shown in FIGS. 1 and 2 are designated by the same reference numerals and the description thereof will be omitted. Left and right wall portions 11a and 11b of the transfer chamber 11
A beam 11h connecting the left and right wall portions 11a and 11b is provided at the boundary between the left and right widening wall portions 11d and 11e, and the beam 23 h supports the lid 23 that seals the transfer chamber 11.

【0073】蓋23は前後に2分割された分割体23a
と23bとから構成されている。そして、一方の分割体
23aの一端は前記梁11hにヒンジ23dによって枢
支されており、分割体23aはヒンジ23dを支点とし
て上方に開閉自在に構成されている。他方の分割体23
bはねじ等により左右拡開壁部11d,11e及び梁1
1hに開閉可能に取り付けられている。
The lid 23 is a divided body 23a which is divided into two parts, front and rear.
And 23b. One end of the one divided body 23a is pivotally supported by the beam 11h by a hinge 23d, and the divided body 23a is configured to be openable and closable upward with the hinge 23d as a fulcrum. The other divided body 23
b is the left and right expanding wall portions 11d and 11e and the beam 1 by screws or the like.
It is attached so that it can be opened and closed at 1h.

【0074】このように蓋23を2分割することによ
り、一方の分割体23aのみの開閉となり開閉作業が容
易となり、蓋23の上方のスペースが狭い場合でも開閉
できる。また、移載室11の形状が変更になっても、分
割体23bの方は共通品として使用でき、設計変更に容
易に対処できるという効果がある。
By thus dividing the lid 23 into two, only the one divided body 23a is opened and closed, which facilitates the opening and closing work, and can be opened and closed even when the space above the lid 23 is narrow. Further, even if the shape of the transfer chamber 11 is changed, the divided body 23b can be used as a common product, and there is an effect that a design change can be easily dealt with.

【0075】なお、前記実施例では左右一対(2個)の
ローダ室12,13を設けたが、場合によっては1個で
も良く、或いは必要に応じ3個設けても良い。また、前
記実施例では搬送アーム14として被処理体を1個保持
する多関節アームを例示したが、これ以外に例えばフロ
ーグ・レッグ・アームや、図6に示す如く被処理体Wを
2個保持できる多関節アーム14A等を搬送アームとし
てもちいても良い。
Although a pair of left and right (two) loader chambers 12 and 13 are provided in the above embodiment, one may be provided, or three may be provided if necessary. Further, in the above embodiment, a multi-joint arm that holds one object to be processed is illustrated as the transfer arm 14, but other than this, for example, a Frog leg arm or two objects W to be processed as shown in FIG. 6 are held. The possible multi-joint arm 14A or the like may be used as the transfer arm.

【0076】また、前記アライメント機構15はウェー
ハWの位置合わせが不要な真空処理システムの場合には
設置しなくても良い。更に前記実施例では被処理体とし
て半導体ウェーハWを例示したが、これ以外に例えばL
CD基板等を被処理体としても良い。その他、本発明の
要旨を逸脱しない範囲であれば種々変更可能である。
The alignment mechanism 15 need not be installed in the case of a vacuum processing system which does not require the alignment of the wafer W. Further, although the semiconductor wafer W is exemplified as the object to be processed in the above-mentioned embodiment, other than this, for example, L
A CD substrate or the like may be the object to be processed. In addition, various modifications can be made without departing from the scope of the present invention.

【0077】[0077]

【発明の効果】本発明のマルチチャンバ処理システム用
搬送装置は、前述の如く構成したので、プロセス変更に
伴い真空処理室の周配個数が増減変更されても、搬送系
のうち、移載室のみ形状・大きさを変更するだけで、そ
れ以外のローダ室と搬送アームなどはいずれも共通品で
対処できて、製作・組立が非常に楽でコストダウンが図
れる。
Since the transfer apparatus for a multi-chamber processing system of the present invention is configured as described above, even if the number of the vacuum processing chambers arranged is increased or decreased due to a process change, the transfer chamber of the transfer system is changed. Only by changing the shape and size, the other parts such as the loader chamber and the transfer arm can be handled as a common product, which is very easy to manufacture and assemble and the cost can be reduced.

【0078】また、本発明のマルチチャンバ処理システ
ム用搬送装置は、プロセス変更に伴い真空処理室の周配
個数の増減変更に応じて移載室の形状・大きさが各種変
わっても、その都度搬送アームの被処理体搬送ルート及
び距離をテーチィングする必要がなく、即座に適確な搬
送アームの制御運転ができる。
The multi-chamber processing system transfer apparatus of the present invention can change the shape and size of the transfer chamber in accordance with the increase or decrease in the number of the vacuum processing chambers distributed according to the process change. It is not necessary to teach the transfer route and distance of the transfer arm of the transfer arm, and an appropriate control operation of the transfer arm can be performed immediately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す3個の真空処理室を周配
したマルチチャンバ処理システムにおける搬送装置の水
平断面図。
FIG. 1 is a horizontal cross-sectional view of a transfer device in a multi-chamber processing system in which three vacuum processing chambers are circumferentially arranged according to an embodiment of the present invention.

【図2】図1のX−X線に沿う縦断面図。FIG. 2 is a vertical sectional view taken along line XX of FIG.

【図3】(a)は同上搬送装置に用いた搬送アームの伸
長状態時の平面図、(b)は同搬送アームの短縮状態の
平面図。
FIG. 3A is a plan view of the transfer arm used in the transfer device in the extended state, and FIG. 3B is a plan view of the transfer arm in a shortened state.

【図4】本発明の実施例を示す6個の真空処理室を周配
したマルチチャンバ処理システムにおける搬送装置の水
平断面図。
FIG. 4 is a horizontal sectional view of a transfer device in a multi-chamber processing system in which six vacuum processing chambers are circumferentially arranged according to an embodiment of the present invention.

【図5】前記3個の真空処理室を周配したマルチチャン
バ処理システムにおける搬送装置と、6個の真空処理室
を周配したマルチチャンバ処理システムにおける搬送装
置とを得る際の設計手法を示す説明図。
FIG. 5 shows a design method for obtaining a transfer device in a multi-chamber processing system having three vacuum processing chambers arranged therein and a transfer device in a multi-chamber processing system having six vacuum processing chambers arranged therein. Explanatory drawing.

【図6】(a)は被処理体を2個保持できる多関節アー
ムの伸長状態時の平面図、(b)は同多関節アームの短
縮状態の平面図。
FIG. 6A is a plan view of an articulated arm capable of holding two objects to be processed in an extended state, and FIG. 6B is a plan view of the articulated arm in a shortened state.

【図7】本発明の他の実施例を示すマルチチャンバ処理
システムにおける搬送装置の水平断面図。
FIG. 7 is a horizontal sectional view of a transfer device in a multi-chamber processing system showing another embodiment of the present invention.

【図8】図7のY−Y線に沿う縦断面図。8 is a vertical cross-sectional view taken along the line YY of FIG.

【符号の説明】[Explanation of symbols]

1 ,P2 ,P3 ,P11〜P16…真空処理室、G1 ,G
1 ′,G2 ,G3 …ゲートバルブ、11,51…移載
室、11a〜11g,51a〜51h…周壁、11f,
11g,51f,51g…ローダ室接続部、12,13
…ローダ室、21,22,52,53…接続口、14…
搬送アーム、R…最小旋回半径、Q…最大アーム伸長距
離、L1 ,L2 …中心線、θ…開き角度、45…制御手
段、23…蓋、W…被処理体(半導体ウェーハ)。
P 1, P 2, P 3 , P 11 ~P 16 ... vacuum processing chamber, G 1, G
1 ', G 2, G 3 ... gate valves, 11, 51 ... transfer chamber, 11a to 11g, 51a.about.51h ... peripheral wall, 11f,
11g, 51f, 51g ... loader chamber connection part, 12, 13
… Loader room 21, 22, 52, 53… Connection port, 14…
Transfer arm, R ... minimum turning radius, Q ... maximum arm extension distance, L 1, L 2 ... center line, theta ... opening angle, 45 ... control unit, 23 ... lid, W ... workpiece (semiconductor wafer).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/02 Z // B05C 13/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/02 Z // B05C 13/00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プロセスに対応した複数個の真空処理室
が周配する状態でそれぞれゲートバルブを介し連通せし
められる複数の接続口を周壁に有した略多角形の移載室
と、この移載室の周壁端部にゲートバルブを介し連通す
る一個以上のローダ室と、前記移載室内にて前記ローダ
室内から被処置体を取り込んで前記真空処理室内へ搬入
し且つ真空処理室内の処理済み被処理体を取り出してロ
ーダ室内へ戻す旋回並びに伸縮動可能な搬送アームとを
備えてなるマルチチャンバ処理システム用搬送装置にお
いて、 前記移載室はプロセス変更に伴い真空処理室の周配個数
の増減に対応して形状・大きさが変更されるが、それ以
外のローダ室と搬送アームはいずれも共通品で対応可能
に、該移載室は大小いずれの場合も周壁端部にローダ室
に対する一定した接続部を持ち、且つ前記搬送アームは
真空処理室の最小周配個数に応じた最小形の移載室内で
旋回し得る最小旋回半径と、真空処理室の最大周配個数
に応じた最大形の移載室内より各真空処理室内へ被処理
体を搬入出し得る最大アーム伸長距離を持つ構成とされ
ていることを特徴とするマルチチャンバ処理システム用
搬送装置。
1. A transfer chamber of a substantially polygonal shape having a plurality of connection ports on a peripheral wall, which are connected to each other through a gate valve in a state in which a plurality of vacuum processing chambers corresponding to a process are arranged, and the transfer chamber. One or more loader chambers communicating with the end of the peripheral wall of the chamber through a gate valve, and a treatment target is taken from the loader chamber into the transfer chamber and loaded into the vacuum processing chamber, and the processed treatment target in the vacuum processing chamber is transferred. In a transfer device for a multi-chamber processing system, which comprises a transfer arm capable of revolving and retracting a processing object and returning it to the loader chamber, the transfer chamber is configured to increase or decrease the number of vacuum processing chambers distributed along with a process change. Although the shape and size are changed correspondingly, all other loader chambers and transfer arms can be handled by a common product. And the transfer arm has a minimum turning radius capable of turning in the transfer chamber of the smallest shape corresponding to the minimum number of peripherals of the vacuum processing chamber and a maximum shape corresponding to the maximum number of peripherals of the vacuum processing chamber. 2. A transfer device for a multi-chamber processing system having a maximum arm extension distance capable of loading and unloading an object to be processed into and from each of the vacuum processing chambers.
【請求項2】 請求項1記載のマルチチャンバ処理シス
テム用搬送装置において、搬送アームから被処理体を一
旦受取って位置合わせするアライメント機構を、移載室
内の搬送アームの旋回・伸縮動作に対し干渉しない定位
置に設置したことを特徴とするマルチチャンバ処理シス
テム用搬送装置。
2. The transfer apparatus for a multi-chamber processing system according to claim 1, wherein an alignment mechanism for temporarily receiving and aligning an object to be processed from the transfer arm interferes with a swiveling / expanding operation of the transfer arm in the transfer chamber. A transfer device for a multi-chamber processing system, which is installed at a fixed position.
【請求項3】 請求項2記載のマルチチャンバ処理シス
テム用搬送装置において、2個のローダ室を各々の中心
線が搬送アームの旋回軸中心に向く状態に互いに適当な
開き角度を持って並列配置し、これら両ローダ室と連通
する移載室内の搬送アームの最小旋回半径よりわずかに
外側で且つ該両ローダ室の中心線の相互間位置にアライ
メント機構を設置したことを特徴とするマルチチャンバ
処理システム用搬送装置。
3. The transfer device for a multi-chamber processing system according to claim 2, wherein the two loader chambers are arranged in parallel with each other with an appropriate opening angle such that the center lines of the two loader chambers are oriented toward the center of the rotation axis of the transfer arm. However, the multi-chamber processing is characterized in that the alignment mechanism is installed at a position slightly outside the minimum turning radius of the transfer arm in the transfer chamber communicating with the loader chambers and at a position between the center lines of the loader chambers. Conveyor for system.
【請求項4】 請求項1乃至3いずれかに記載のマルチ
チャンバ処理システム用搬送装置において、プロセス変
更に伴い真空処理室の周配個数の増減に対応して大小変
更した各種移載室ごとの被処理体搬送ルート・距離を予
め記憶しておき、そのうちの実際に設置された移載室の
被処理体搬送ルート・距離に合わせて搬送アームを旋回
・伸縮動作せしめる制御手段を備えていることを特徴と
するマルチチャンバ処理システム用搬送装置。
4. The transfer device for a multi-chamber processing system according to claim 1, wherein each transfer chamber is changed in size in response to an increase / decrease in the number of vacuum processing chambers distributed along with a process change. It should be provided with a control means for pre-storing the processing object transfer route and distance, and for rotating and expanding and contracting the transfer arm according to the processing object transfer route and distance of the actually installed transfer chamber. A transfer device for a multi-chamber processing system, characterized by:
【請求項5】 請求項1記載のマルチチャンバ処理シス
テム用搬送装置において、移載室は、その上面にその移
載室内を密閉するための蓋を有し、この蓋は少なくとも
2分割され、少なくとも一方が開閉自在であることを特
徴とするマルチチャンバ処理システム用搬送装置。
5. The transfer apparatus for a multi-chamber processing system according to claim 1, wherein the transfer chamber has a lid on its upper surface for sealing the transfer chamber, and the lid is divided into at least two parts. A transfer device for a multi-chamber processing system, characterized in that one side can be opened and closed.
JP12252295A 1994-05-23 1995-05-22 Multichamber treatment system conveyer Pending JPH0846013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12252295A JPH0846013A (en) 1994-05-23 1995-05-22 Multichamber treatment system conveyer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10848394 1994-05-23
JP6-108483 1994-05-23
JP12252295A JPH0846013A (en) 1994-05-23 1995-05-22 Multichamber treatment system conveyer

Publications (1)

Publication Number Publication Date
JPH0846013A true JPH0846013A (en) 1996-02-16

Family

ID=26448346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12252295A Pending JPH0846013A (en) 1994-05-23 1995-05-22 Multichamber treatment system conveyer

Country Status (1)

Country Link
JP (1) JPH0846013A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189685A (en) * 1996-12-26 1998-07-21 Dainippon Screen Mfg Co Ltd Substrate treatment equipment
JPH10270389A (en) * 1997-03-21 1998-10-09 Seiko Seiki Co Ltd Dicing device
JPH11195695A (en) * 1997-12-26 1999-07-21 Advanced Display Inc Electronic device manufacturing apparatus
JPH11260891A (en) * 1998-01-16 1999-09-24 Brooks Autom Inc Robot non-connection fixing technique
JP2001513592A (en) * 1997-07-11 2001-09-04 ブルックス オートメーション インコーポレイテッド Substrate processing apparatus having substrate transfer device with front end extension and internal substrate buffer
EP1166180A1 (en) * 1999-04-02 2002-01-02 Silicon Valley Group Thermal Systems LLC Semiconductor wafer processing system with vertically-stacked process chambers and single-axis dual-wafer transfer system
WO2002073664A1 (en) * 2001-03-10 2002-09-19 Ips, Ltd Automatic continue wafer processing system and method for using the same
WO2002078066A1 (en) * 2001-03-27 2002-10-03 Ips Ltd. Automatic continue wafer processing system and method for using the same
JP2002313877A (en) * 2001-04-19 2002-10-25 Murata Mach Ltd Automatic guided vehicle
JP2003518736A (en) * 1999-11-02 2003-06-10 東京エレクトロン株式会社 Supercritical process equipment and method for manufactured products
JP2005522891A (en) * 2002-04-15 2005-07-28 ヴィテックス・システムズ・インコーポレーテッド Equipment for depositing multilayer coatings on individual sheets
JP2005243994A (en) * 2004-02-27 2005-09-08 Shin Etsu Handotai Co Ltd Device and method for polishing semiconductor wafer
US7286890B2 (en) 2005-06-28 2007-10-23 Tokyo Electron Limited Transfer apparatus for target object
KR100809126B1 (en) * 2003-06-24 2008-03-03 동경 엘렉트론 주식회사 Processed object processing apparatus
US7455747B2 (en) 2003-11-12 2008-11-25 Tokyo Electron Limited Substrate processing apparatus, control method for the apparatus, and program for implementing the method
WO2009028595A1 (en) * 2007-08-31 2009-03-05 Canon Anelva Corporation Substrate processing apparatus
JP2009117790A (en) * 2007-03-02 2009-05-28 Asm Japan Kk Cluster type semiconductor processing apparatus
JP2011139098A (en) * 1996-06-13 2011-07-14 Brooks Automation Inc Multi-level substrate processing apparatus
US8380337B2 (en) 2008-12-18 2013-02-19 Tokyo Electron Limited Vacuum processing apparatus and vacuum transfer apparatus
JP2018120905A (en) * 2017-01-24 2018-08-02 Sppテクノロジーズ株式会社 Vacuum transfer module and substrate processing apparatus
JP2020053646A (en) * 2018-09-28 2020-04-02 東京エレクトロン株式会社 Transfer method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139098A (en) * 1996-06-13 2011-07-14 Brooks Automation Inc Multi-level substrate processing apparatus
JPH10189685A (en) * 1996-12-26 1998-07-21 Dainippon Screen Mfg Co Ltd Substrate treatment equipment
JPH10270389A (en) * 1997-03-21 1998-10-09 Seiko Seiki Co Ltd Dicing device
JP2010147490A (en) * 1997-07-11 2010-07-01 Brooks Automation Inc Substrate processing apparatus having substrate carrier with front end extension and internal substrate buffer
JP2001513592A (en) * 1997-07-11 2001-09-04 ブルックス オートメーション インコーポレイテッド Substrate processing apparatus having substrate transfer device with front end extension and internal substrate buffer
JPH11195695A (en) * 1997-12-26 1999-07-21 Advanced Display Inc Electronic device manufacturing apparatus
JPH11260891A (en) * 1998-01-16 1999-09-24 Brooks Autom Inc Robot non-connection fixing technique
EP1166180A4 (en) * 1999-04-02 2002-11-06 Silicon Valley Group Thermal Semiconductor wafer processing system with vertically-stacked process chambers and single-axis dual-wafer transfer system
US6610150B1 (en) 1999-04-02 2003-08-26 Asml Us, Inc. Semiconductor wafer processing system with vertically-stacked process chambers and single-axis dual-wafer transfer system
US6846149B2 (en) 1999-04-02 2005-01-25 Aviza Technology, Inc. Semiconductor wafer processing system with vertically-stacked process chambers and single-axis dual-wafer transfer system
EP1166180A1 (en) * 1999-04-02 2002-01-02 Silicon Valley Group Thermal Systems LLC Semiconductor wafer processing system with vertically-stacked process chambers and single-axis dual-wafer transfer system
JP2003518736A (en) * 1999-11-02 2003-06-10 東京エレクトロン株式会社 Supercritical process equipment and method for manufactured products
WO2002073664A1 (en) * 2001-03-10 2002-09-19 Ips, Ltd Automatic continue wafer processing system and method for using the same
WO2002078066A1 (en) * 2001-03-27 2002-10-03 Ips Ltd. Automatic continue wafer processing system and method for using the same
JP2002313877A (en) * 2001-04-19 2002-10-25 Murata Mach Ltd Automatic guided vehicle
JP4677644B2 (en) * 2002-04-15 2011-04-27 サムソン・モバイル・ディスプレイ・カンパニー・リミテッド Equipment for depositing multilayer coatings on individual sheets
JP2005522891A (en) * 2002-04-15 2005-07-28 ヴィテックス・システムズ・インコーポレーテッド Equipment for depositing multilayer coatings on individual sheets
DE102004010688B4 (en) * 2003-06-24 2010-07-22 Tokyo Electron Ltd. Processing device, processing method, pressure control method, transport method, and transport device
US8623765B2 (en) 2003-06-24 2014-01-07 Tokyo Electron Limited Processed object processing apparatus, processed object processing method, pressure control method, processed object transfer method, and transfer apparatus
KR100809126B1 (en) * 2003-06-24 2008-03-03 동경 엘렉트론 주식회사 Processed object processing apparatus
US7455747B2 (en) 2003-11-12 2008-11-25 Tokyo Electron Limited Substrate processing apparatus, control method for the apparatus, and program for implementing the method
US7640072B2 (en) 2003-11-12 2009-12-29 Tokyo Electron Limited Substrate processing apparatus, control method for the apparatus, and program for implementing the method
JP2005243994A (en) * 2004-02-27 2005-09-08 Shin Etsu Handotai Co Ltd Device and method for polishing semiconductor wafer
JP4631293B2 (en) * 2004-02-27 2011-02-16 信越半導体株式会社 Semiconductor wafer polishing apparatus and polishing method
US7286890B2 (en) 2005-06-28 2007-10-23 Tokyo Electron Limited Transfer apparatus for target object
JP2009117790A (en) * 2007-03-02 2009-05-28 Asm Japan Kk Cluster type semiconductor processing apparatus
US8758514B2 (en) 2007-03-02 2014-06-24 Asm Japan K.K. Cluster type semiconductor processing apparatus
KR101455784B1 (en) * 2007-03-02 2014-10-28 에이에스엠 저펜 가부시기가이샤 Cluster type semiconductor processing apparatus
WO2009028595A1 (en) * 2007-08-31 2009-03-05 Canon Anelva Corporation Substrate processing apparatus
US8380337B2 (en) 2008-12-18 2013-02-19 Tokyo Electron Limited Vacuum processing apparatus and vacuum transfer apparatus
JP2018120905A (en) * 2017-01-24 2018-08-02 Sppテクノロジーズ株式会社 Vacuum transfer module and substrate processing apparatus
JP2020053646A (en) * 2018-09-28 2020-04-02 東京エレクトロン株式会社 Transfer method

Similar Documents

Publication Publication Date Title
JPH0846013A (en) Multichamber treatment system conveyer
US5934856A (en) Multi-chamber treatment system
JP4244555B2 (en) Support mechanism for workpiece
US6582175B2 (en) Robot for handling semiconductor wafers
JP5853991B2 (en) Substrate transfer robot, substrate transfer system, and substrate transfer method
TWI447838B (en) Vacuum processing device
US6379095B1 (en) Robot for handling semiconductor wafers
US20080298945A1 (en) Methods and apparatus for extending the reach of a dual scara robot linkage
JP4294984B2 (en) Substrate transport apparatus and substrate processing apparatus
KR101574357B1 (en) Industrial robot
JP3181455B2 (en) Transfer arm device and processing chamber assembly device using the same
JP2000299367A (en) Processing apparatus and transfer method of article to be processed
JP5482500B2 (en) Substrate processing equipment
US10872798B2 (en) Substrate transfer mechanism, substrate processing apparatus, and substrate transfer method
JP4245387B2 (en) Substrate transport apparatus and substrate processing apparatus
US5997235A (en) Swap out plate and assembly
JP4645696B2 (en) Support mechanism and load lock chamber of workpiece
JP2004288719A (en) Substrate carrying system and substrate processing system
JPH06104326A (en) Processing system
WO1999052143A1 (en) Alignment processing mechanism and semiconductor processing device using it
KR20180128349A (en) Vacuum transfer module and substrate processing apparatus
JP2545591B2 (en) Wafer processing equipment
JP2002151568A (en) Treating system and transfer method of object to be treated
JPH10147432A (en) Cassette chamber
JP4056283B2 (en) SUBJECT TRANSFER DEVICE AND ITS TRANSFER METHOD