JP6773680B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6773680B2
JP6773680B2 JP2017551510A JP2017551510A JP6773680B2 JP 6773680 B2 JP6773680 B2 JP 6773680B2 JP 2017551510 A JP2017551510 A JP 2017551510A JP 2017551510 A JP2017551510 A JP 2017551510A JP 6773680 B2 JP6773680 B2 JP 6773680B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
indoor heat
hexagonal
heat exchangers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017551510A
Other languages
Japanese (ja)
Other versions
JPWO2017085888A1 (en
Inventor
拓未 西山
拓未 西山
航祐 田中
航祐 田中
拓也 松田
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017085888A1 publication Critical patent/JPWO2017085888A1/en
Application granted granted Critical
Publication of JP6773680B2 publication Critical patent/JP6773680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0276Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using six-way valves

Description

本発明は、冷凍サイクル装置に関し、特に複数の室内熱交換器を備える冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device, and more particularly to a refrigeration cycle device including a plurality of indoor heat exchangers.

従来、六方弁および膨張弁を備え、室外機または室内について冷暖房時のいずれにおいても温度対向流化できるヒートポンプ空調装置は存在する(特開平8−170864号公報、特開平8−170865号公報参照)。 Conventionally, there is a heat pump air conditioner that has a hexagonal valve and an expansion valve and can countercurrent the temperature of an outdoor unit or an indoor unit at both times of heating and cooling (see JP-A-8-170864 and JP-A-8-1708865). ).

特開平8−170864号公報Japanese Unexamined Patent Publication No. 8-170864 特開平8−170865号公報Japanese Unexamined Patent Publication No. 8-1708865

しかしながら、従来のヒートポンプ空調装置は、個別に運転動作・停止動作を切り替え可能に設けられている複数の室内機を備える冷凍サイクル装置に適用された場合、一部の室内機が運転し他の室内機が停止している状態に置かれたときに、停止している室内機に冷媒が滞留してしまうという問題があった。 However, when the conventional heat pump air conditioner is applied to a refrigeration cycle device having a plurality of indoor units that can be individually switched between operation and stop operations, some indoor units operate and other indoor units are operated. There was a problem that the refrigerant stayed in the stopped indoor unit when the machine was placed in the stopped state.

本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、個別に運転動作・停止動作を切り替え可能に設けられている複数の室内機を備える冷凍サイクル装置であって、一部の室内機が運転し他の室内機が停止している状態に置かれたときにも、停止している室内機に冷媒が滞留することが抑制された冷凍サイクル装置を提供することにある。 The present invention has been made to solve the above problems. A main object of the present invention is a refrigerating cycle device including a plurality of indoor units provided so that the operation operation and the stop operation can be individually switched, and some indoor units are operated and other indoor units are stopped. It is an object of the present invention to provide a refrigerating cycle apparatus in which the refrigerant is suppressed from staying in a stopped indoor unit even when it is placed in the state of being

本発明に係る冷凍サイクル装置は、冷媒と室内の空気との熱交換を行う複数の室内熱交換器と、冷媒と室外の空気との熱交換を行う室外熱交換器と、冷媒の流路を切り替える六方弁と、冷媒を圧縮するための圧縮機と、冷媒の流れを遮断可能に設けられている閉止弁とを備える。複数の室内熱交換器は室外熱交換器と六方弁を介して接続されている。複数の室内熱交換器は六方弁に対し互いに並列に接続されている。複数の室内熱交換器の少なくとも1つは六方弁と閉止弁を介して接続されている。 The refrigeration cycle apparatus according to the present invention comprises a plurality of indoor heat exchangers that exchange heat between the refrigerant and the indoor air, an outdoor heat exchanger that exchanges heat between the refrigerant and the outdoor air, and a flow path of the refrigerant. It includes a six-way valve for switching, a compressor for compressing the refrigerant, and a shutoff valve provided so as to shut off the flow of the refrigerant. A plurality of indoor heat exchangers are connected to the outdoor heat exchanger via a hexagonal valve. Multiple indoor heat exchangers are connected in parallel to each other with respect to the hexagonal valve. At least one of the plurality of indoor heat exchangers is connected via a hexagonal valve and a shutoff valve.

本発明によれば、複数の室内機が個別に運転動作・停止動作を切り替え可能に設けられている場合において一部の室内機が運転し他の室内機が停止している状態に置かれたときにも、停止している室内機に冷媒が滞留することが抑制された冷凍サイクル装置を提供することができる。 According to the present invention, when a plurality of indoor units are individually provided so that the operation operation and the stop operation can be switched, some indoor units are operated and other indoor units are stopped. Occasionally, it is possible to provide a refrigeration cycle device in which the refrigerant is suppressed from staying in the stopped indoor unit.

実施の形態1に係る冷凍サイクル装置を示す図である。It is a figure which shows the refrigeration cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の、冷房運転時における六方弁を示す断面図である。It is sectional drawing which shows the hexagonal valve at the time of a cooling operation of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の、暖房運転時における六方弁を示す断面図である。It is sectional drawing which shows the hexagonal valve at the time of a heating operation of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の六方弁の変形例を示す図である。It is a figure which shows the modification of the hexagonal valve of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 図4に示す六方弁の冷房運転時および暖房運転時の各状態を示す図である。It is a figure which shows each state at the time of the cooling operation and the heating operation of the hexagonal valve shown in FIG. 実施の形態2に係る冷凍サイクル装置を示す図である。It is a figure which shows the refrigeration cycle apparatus which concerns on Embodiment 2.

以下、図面を参照して、本発明に係る実施の形態について説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference numbers, and the description thereof will not be repeated.

(実施の形態1)
<冷凍サイクル装置の構成>
次に、図1を参照して、実施の形態1に係る冷凍サイクル装置100を説明する。冷凍サイクル装置100は、複数の室内熱交換器1(1a,1b)、室外熱交換器2、六方弁3、閉止弁4(4a,4b)、延長配管5(5a,5b),6(6a,6b)、圧縮機7、膨張弁(第2膨張弁)8、ファン9a,9b,9cを備える。冷凍サイクル装置100において、複数の室内熱交換器1、室外熱交換器2、六方弁3、閉止弁4、延長配管5,6、圧縮機7、および膨張弁(第2膨張弁)8は、互いに接続されており、冷媒が循環する冷媒回路を構成している。冷凍サイクル装置100は、複数の閉止弁4a,4bを備える。全ての室内熱交換器1a,1bは、それぞれ閉止弁4a,4bを介して六方弁3と接続されている。
(Embodiment 1)
<Configuration of refrigeration cycle equipment>
Next, the refrigeration cycle apparatus 100 according to the first embodiment will be described with reference to FIG. The refrigeration cycle device 100 includes a plurality of indoor heat exchangers 1 (1a, 1b), outdoor heat exchangers 2, hexagonal valves 3, shutoff valves 4 (4a, 4b), extension pipes 5 (5a, 5b), 6 (6a). , 6b), a compressor 7, an expansion valve (second expansion valve) 8, and fans 9a, 9b, 9c. In the refrigeration cycle device 100, the plurality of indoor heat exchangers 1, outdoor heat exchangers 2, hexagonal valves 3, shutoff valves 4, extension pipes 5, 6 and compressors 7 and expansion valves (second expansion valves) 8 are They are connected to each other and form a refrigerant circuit in which the refrigerant circulates. The refrigeration cycle device 100 includes a plurality of shutoff valves 4a and 4b. All the indoor heat exchangers 1a and 1b are connected to the hexagonal valve 3 via the shutoff valves 4a and 4b, respectively.

複数の室内熱交換器1a,1bは、個別に運転状態と停止状態とを切り替え可能に設けられている。複数の室内熱交換器1a,1bは、それぞれ運転状態において冷媒と室内の空気との熱交換を行う。複数の室内熱交換器1a,1bは六方弁3に対し互いに並列に接続されている。複数の室内熱交換器1a,1bの入側が六方弁3のポート36とそれぞれ接続されており、複数の室内熱交換器1a,1bの出側が六方弁3のポート34とそれぞれ接続されている。 The plurality of indoor heat exchangers 1a and 1b are individually provided so as to be able to switch between an operating state and a stopped state. The plurality of indoor heat exchangers 1a and 1b exchange heat between the refrigerant and the indoor air in the operating state, respectively. The plurality of indoor heat exchangers 1a and 1b are connected to the hexagonal valve 3 in parallel with each other. The inlet sides of the plurality of indoor heat exchangers 1a and 1b are connected to the ports 36 of the hexagonal valve 3, respectively, and the outlet sides of the plurality of indoor heat exchangers 1a and 1b are connected to the ports 34 of the hexagonal valve 3, respectively.

室外熱交換器2は、冷媒と室外の空気との熱交換を行う。六方弁3は、制御装置(図示しない)からの制御信号に応じて、冷房運転時の冷房サイクル状態(図1の実線参照)と暖房運転時の暖房サイクル状態(図1の破線参照)とのいずれかの状態に切り替え可能に設けられている。複数の室内熱交換器1a,1bは室外熱交換器2と六方弁3を介して接続されている。 The outdoor heat exchanger 2 exchanges heat between the refrigerant and the outdoor air. The hexagonal valve 3 has a cooling cycle state during the cooling operation (see the solid line in FIG. 1) and a heating cycle state during the heating operation (see the broken line in FIG. 1) in response to a control signal from a control device (not shown). It is provided so that it can be switched to either state. The plurality of indoor heat exchangers 1a and 1b are connected to the outdoor heat exchanger 2 via a hexagonal valve 3.

図2および図3を参照して、六方弁3は、たとえばスライド式の切り替え弁として構成されている。六方弁3は、中空の枠体である弁本体30と、弁本体30に接続された6つのポート31,32,33,34,35,36を有している。5つのポート32,33,34,35,36は、弁本体30に対しポート31の反対側において、弁本体30の延在方向に配列されている。ポート31は、圧縮機7の吐出側と接続されている。ポート32は、室外熱交換器2と接続されている。ポート32は、冷房運転時における室外熱交換器2の入側、暖房運転時における室外熱交換器2の出側と接続されている。ポート33は、圧縮機7の吸入側と接続されている。ポート34は、複数の室内熱交換器1a,1bの出側と接続されている。ポート35は、膨張弁8を介して室外熱交換器2と接続されている。ポート35は、冷房運転時における室外熱交換器2の出側、暖房運転時における室外熱交換器2の入側と接続されている。ポート36は、複数の室内熱交換器1a,1bの入側と接続されている。 With reference to FIGS. 2 and 3, the hexagonal valve 3 is configured as, for example, a sliding switching valve. The hexagonal valve 3 has a valve body 30 which is a hollow frame body, and six ports 31, 32, 33, 34, 35, 36 connected to the valve body 30. The five ports 32, 33, 34, 35, 36 are arranged on the opposite side of the port 31 with respect to the valve body 30 in the extending direction of the valve body 30. The port 31 is connected to the discharge side of the compressor 7. The port 32 is connected to the outdoor heat exchanger 2. The port 32 is connected to the inlet side of the outdoor heat exchanger 2 during the cooling operation and the outlet side of the outdoor heat exchanger 2 during the heating operation. The port 33 is connected to the suction side of the compressor 7. The port 34 is connected to the outlet side of the plurality of indoor heat exchangers 1a and 1b. The port 35 is connected to the outdoor heat exchanger 2 via the expansion valve 8. The port 35 is connected to the outlet side of the outdoor heat exchanger 2 during the cooling operation and the inlet side of the outdoor heat exchanger 2 during the heating operation. The port 36 is connected to the inlet side of the plurality of indoor heat exchangers 1a and 1b.

弁本体30内には、上記延在方向にスライド可能なスライド弁体39が設けられている。スライド弁体39内には、2つの管路が設けられている。スライド弁体39内の当該2つの管路は、それぞれ5つのポート32,33,34,35,36のうちの2つのポート間を接続可能に設けられている。弁本体30内には、スライド弁体39内の2つの流路と、スライド弁体39の外側において上記2つの管路と接続されていない1つのポートとポート31との間の1つの流路とが形成されている。 A slide valve body 39 slidable in the extending direction is provided in the valve body 30. Two pipelines are provided in the slide valve body 39. The two pipelines in the slide valve body 39 are provided so as to be able to connect between two of the five ports 32, 33, 34, 35, and 36, respectively. In the valve body 30, there are two flow paths in the slide valve body 39 and one flow path between one port and the port 31 which are not connected to the above two pipelines outside the slide valve body 39. And are formed.

図2に示されるように、六方弁3は、冷房運転時にはポート31とポート32、ポート33とポート34、ポート35とポート36が、それぞれ接続される。図3に示されるように、六方弁3は、暖房運転時には、ポート31とポート36、ポート32とポート33、ポート34とポート35が、それぞれ接続される。六方弁3のポート36は、冷房運転時または暖房運転時に関わらず、室内熱交換器1a,1bに冷媒を流出する流出ポートとして機能する。六方弁3のポート34は、冷房運転時または暖房運転時に関わらず、室内熱交換器1a,1bから冷媒を流入可能に設けられている。 As shown in FIG. 2, in the hexagonal valve 3, ports 31 and 32, ports 33 and 34, and ports 35 and 36 are connected to each other during cooling operation. As shown in FIG. 3, in the hexagonal valve 3, port 31 and port 36, port 32 and port 33, and port 34 and port 35 are connected to each other during the heating operation. The port 36 of the hexagonal valve 3 functions as an outflow port for flowing out the refrigerant to the indoor heat exchangers 1a and 1b regardless of the cooling operation or the heating operation. The port 34 of the hexagonal valve 3 is provided so that the refrigerant can flow in from the indoor heat exchangers 1a and 1b regardless of the cooling operation or the heating operation.

六方弁3のポート36と各室内熱交換器1a,1bとの間を接続する配管は、ポート3に接続されている部分と、当該ポート36に接続されている部分から分岐されて互いに並列に構成されており、かつ各室内熱交換器1a,1bと接続されている部分とを有する。閉止弁4aおよび延長配管5aは、六方弁3のポート36と各室内熱交換器1a,1bとの間を接続する配管において室内熱交換器1aと接続されている部分に設けられている。閉止弁4bおよび延長配管5bは、六方弁3のポート36と各室内熱交換器1a,1bとの間を接続する配管において室内熱交換器1bと接続されている部分に設けられている。 Port 36 and the indoor heat exchangers 1a hexagonal valve 3, connects the 1b piping includes a portion connected to the port 3 6, parallel to each other is branched from a portion connected to the port 36 It has a portion connected to each of the indoor heat exchangers 1a and 1b. The shutoff valve 4a and the extension pipe 5a are provided in a portion of the pipe connecting the port 36 of the hexagonal valve 3 and the indoor heat exchangers 1a and 1b, which are connected to the indoor heat exchanger 1a. The shutoff valve 4b and the extension pipe 5b are provided in a portion of the pipe connecting the port 36 of the hexagonal valve 3 and the indoor heat exchangers 1a and 1b, which are connected to the indoor heat exchanger 1b.

閉止弁4a,4bは、それぞれ独立して冷媒の流れを遮断可能に設けられている。閉止弁4aは、上述のように、六方弁3のポート36と室内熱交換器1aとの間を接続する配管上に設けられており、当該配管を閉止可能に設けられている。閉止弁4bは、上述のように、六方弁3のポート36と室内熱交換器1bとの間を接続する配管上に設けられており、当該配管を閉止可能に設けられている。閉止弁4a,4bは、配管の閉止または開通を制御可能に設けられている限りにおいて任意の構成を備えていればよいが、たとえば電磁弁として構成されている。閉止弁4a,4bは、たとえば延長配管5a,5bよりも六方弁3に近い位置に設けられている。 The shutoff valves 4a and 4b are independently provided so as to be able to shut off the flow of the refrigerant. As described above, the shutoff valve 4a is provided on the pipe connecting the port 36 of the hexagonal valve 3 and the indoor heat exchanger 1a, and the pipe can be closed. As described above, the shutoff valve 4b is provided on the pipe connecting the port 36 of the hexagonal valve 3 and the indoor heat exchanger 1b, and the pipe can be closed. The shutoff valves 4a and 4b may have any configuration as long as the closing or opening of the pipe is controllably provided, but are configured as, for example, solenoid valves. The shutoff valves 4a and 4b are provided at positions closer to the hexagonal valve 3 than, for example, the extension pipes 5a and 5b.

延長配管5aは、上述のように、六方弁3のポート36と室内熱交換器1aとの間に設けられており、より特定的には、閉止弁4aと室内熱交換器1aとの間に設けられている。延長配管5bは、上述のように、六方弁3のポート36と室内熱交換器1bとの間に設けられており、より特定的には、閉止弁4bと室内熱交換器1bとの間に設けられている。 As described above, the extension pipe 5a is provided between the port 36 of the hexagonal valve 3 and the indoor heat exchanger 1a, and more specifically, between the shutoff valve 4a and the indoor heat exchanger 1a. It is provided. As described above, the extension pipe 5b is provided between the port 36 of the hexagonal valve 3 and the indoor heat exchanger 1b, and more specifically, between the shutoff valve 4b and the indoor heat exchanger 1b. It is provided.

延長配管6aは、上述のように、室内熱交換器1aと六方弁3のポート34との間に設けられている。延長配管6bは、上述のように、室内熱交換器1bと六方弁3のポート34との間に設けられている。 As described above, the extension pipe 6a is provided between the indoor heat exchanger 1a and the port 34 of the hexagonal valve 3. As described above, the extension pipe 6b is provided between the indoor heat exchanger 1b and the port 34 of the hexagonal valve 3.

圧縮機7は、六方弁3のポート33から吸入される冷媒を圧縮して六方弁3のポート31へ吐出する。膨張弁8は、冷房運転時において、室外熱交換器2から六方弁3のポート35へ流れる冷媒を膨張させる。膨張弁8は、暖房運転時において、六方弁3のポート35から室外熱交換器2へ流れる冷媒を膨張させる。ファン9a,9b,9cは、それぞれ室内熱交換器1a,1b、室外熱交換器2に対して送風可能に設けられている。 The compressor 7 compresses the refrigerant sucked from the port 33 of the hexagonal valve 3 and discharges it to the port 31 of the hexagonal valve 3. The expansion valve 8 expands the refrigerant flowing from the outdoor heat exchanger 2 to the port 35 of the hexagonal valve 3 during the cooling operation. The expansion valve 8 expands the refrigerant flowing from the port 35 of the hexagonal valve 3 to the outdoor heat exchanger 2 during the heating operation. The fans 9a, 9b, and 9c are provided so as to be able to blow air to the indoor heat exchangers 1a and 1b and the outdoor heat exchanger 2, respectively.

冷凍サイクル装置100において循環される流体は、水または不凍液(ブライン)と、冷媒である。冷媒は、たとえば少なくとも2種類以上の冷媒を混合した混合冷媒である。冷媒は、共沸混合冷媒であってもよいし、非共沸混合冷媒であってもよい。 The fluid circulated in the refrigeration cycle device 100 is water or antifreeze liquid (brine) and a refrigerant. The refrigerant is, for example, a mixed refrigerant in which at least two or more types of refrigerants are mixed. The refrigerant may be an azeotropic mixed refrigerant or a non-azeotropic mixed refrigerant.

<冷凍サイクル装置の動作>
次に、図1〜図3を参照して、冷凍サイクル装置100の動作について説明する。はじめに、複数の室内熱交換器1a,1bが全て動作状態にあるときについて説明する。冷房運転時では、六方弁3は図2に示される構成を採るように制御される。これにより、冷凍サイクル装置100は、図1において実線で示される冷房サイクル状態に置かれる。圧縮機7から吐出された冷媒は、六方弁3のポート31およびポート32を通って、室外熱交換器2に達し、室外熱交換器2において室外の空気と熱交換されて凝縮される。凝縮された冷媒は、膨張弁8を通って膨張される。膨張された冷媒は、六方弁3のポート35、ポート36および開放された閉止弁4a,4bを通って、室内熱交換器1a,1bに達し、室内熱交換器1a,1bにおいて室内の空気と熱交換されて蒸発される。
<Operation of refrigeration cycle device>
Next, the operation of the refrigeration cycle apparatus 100 will be described with reference to FIGS. 1 to 3. First, a case where a plurality of indoor heat exchangers 1a and 1b are all in an operating state will be described. During the cooling operation, the hexagonal valve 3 is controlled to adopt the configuration shown in FIG. As a result, the refrigeration cycle device 100 is placed in the cooling cycle state shown by the solid line in FIG. The refrigerant discharged from the compressor 7 reaches the outdoor heat exchanger 2 through the ports 31 and 32 of the hexagonal valve 3, and is heat-exchanged with the outdoor air in the outdoor heat exchanger 2 to be condensed. The condensed refrigerant is expanded through the expansion valve 8. The expanded refrigerant passes through the ports 35 and 36 of the hexagonal valve 3 and the open shutoff valves 4a and 4b, reaches the indoor heat exchangers 1a and 1b, and with the indoor air in the indoor heat exchangers 1a and 1b. It is heat exchanged and evaporated.

次に、複数の室内熱交換器1a,1bのうち、一部の室内熱交換器1aが動作状態に、他の室内熱交換器1bが停止状態にあるときについて説明する。この場合には、閉止弁4bが閉止される。膨張弁8により膨張された冷媒は、閉止弁4bが閉止されていることにより室内熱交換器1bに流れず、開放された閉止弁4aを通って、室内熱交換器1aに達し、室内熱交換器1aにおいて室内の空気と熱交換されて蒸発される。 Next, of the plurality of indoor heat exchangers 1a and 1b, when some of the indoor heat exchangers 1a are in the operating state and the other indoor heat exchangers 1b are in the stopped state will be described. In this case, the shutoff valve 4b is closed. The refrigerant expanded by the expansion valve 8 does not flow to the indoor heat exchanger 1b because the closing valve 4b is closed, but reaches the indoor heat exchanger 1a through the opened closing valve 4a to exchange indoor heat. In the vessel 1a, heat is exchanged with the air in the room and evaporated.

<作用効果>
次に、冷凍サイクル装置100の作用効果について説明する。冷凍サイクル装置100は、運転状態において冷媒と室内の空気との熱交換を行い、個別に運転状態と停止状態とを切り替え可能に設けられている複数の室内熱交換器1a,1bと、冷媒と室外の空気との熱交換を行う室外熱交換器2と、冷媒の流路を切り替える六方弁3と、冷媒を圧縮するための圧縮機7と、冷媒の流れを遮断可能に設けられている閉止弁4a,4bとを備える。複数の室内熱交換器1a,1bは室外熱交換器2と六方弁3を介して接続されている。複数の室内熱交換器1a,1bは六方弁3に対し互いに並列に接続されている。複数の室内熱交換器1a,1bの少なくとも1つは六方弁3と閉止弁4a,4bを介して接続されている。
<Effect>
Next, the operation and effect of the refrigeration cycle device 100 will be described. The refrigeration cycle device 100 exchanges heat between the refrigerant and the air in the room in the operating state, and is provided with a plurality of indoor heat exchangers 1a and 1b that can individually switch between the operating state and the stopped state, and the refrigerant. An outdoor heat exchanger 2 that exchanges heat with the outdoor air, a hexagonal valve 3 that switches the flow path of the refrigerant, a compressor 7 for compressing the refrigerant, and a closure provided so as to block the flow of the refrigerant. It is provided with valves 4a and 4b. The plurality of indoor heat exchangers 1a and 1b are connected to the outdoor heat exchanger 2 via a hexagonal valve 3. The plurality of indoor heat exchangers 1a and 1b are connected to the hexagonal valve 3 in parallel with each other. At least one of the plurality of indoor heat exchangers 1a and 1b is connected to the hexagonal valve 3 via the shutoff valves 4a and 4b.

このようにすれば、複数の室内熱交換器1a,1bのうちの一部の室内熱交換器1aが運転状態、他の室内熱交換器1bが停止状態にあるときに、停止状態にある室内熱交換器1bと六方弁3との間の冷媒の流れを、閉止弁4bにより遮断することができる。その結果、冷凍サイクル装置100によれば、停止状態にある室内熱交換器1bに冷媒が流入しかつ滞留することが抑制されている。 In this way, when some of the indoor heat exchangers 1a and 1b of the plurality of indoor heat exchangers 1a and 1b are in the operating state and the other indoor heat exchangers 1b are in the stopped state, the room is in the stopped state. The flow of the refrigerant between the heat exchanger 1b and the hexagonal valve 3 can be blocked by the shutoff valve 4b. As a result, according to the refrigeration cycle device 100, it is suppressed that the refrigerant flows into and stays in the indoor heat exchanger 1b in the stopped state.

また、複数の室内熱交換器1a,1bは、六方弁3により、冷房運転時および暖房運転時においても冷媒の流通方向が一定であり、逆転しない。具体的には、複数の室内熱交換器1a,1bが並列に接続されている六方弁3のポート36は、冷房運転時には膨張弁8を介して室外熱交換器2と接続されたポート35と接続され、暖房運転時には圧縮機7の吐出側と接続されたポート31と接続される。そのため、冷房運転時および暖房運転時においても、複数の室内熱交換器1a,1bに流れる冷媒は、六方弁3のポート36から流入し、ポート34へ流出される。冷凍サイクル装置100によれば、冷房運転時および暖房運転時においても、室内熱交換器1a,1bを温度対向流化することができる。そのため、冷凍サイクル装置100は、高い伝熱性能を有している。また、冷凍サイクル装置100によれば、室内熱交換器が冷房運転時または暖房運転時のいずれかにおいて冷媒と空気とが平行流化する従来の冷凍サイクル装置と比べて、室内熱交換器1a,1bにおける冷媒と空気との間の対数平均温度差を大きくすることができる。そのため、冷凍サイクル装置100は、非共沸混合冷媒が封入され室内熱交換器1a,1b内において温度勾配が形成される場合にも、熱交換性能の低下が抑制されている。さらに、冷凍サイクル装置100は、室内熱交換器1a,1bの上記対数平均温度が大きいため、室内熱交換器1a,1bの熱交換量を所定の値としたときの圧縮機7の吸入側の冷媒圧力を、上記従来の冷凍サイクル装置と比べて、高圧化することができる。そのため、冷凍サイクル装置100によれば、上記従来の冷凍サイクル装置と比べて、圧縮機7での冷媒の圧縮率を低くすることができ、冷凍サイクルの効率を向上させることができる。 Further, in the plurality of indoor heat exchangers 1a and 1b, the flow direction of the refrigerant is constant and does not reverse even during the cooling operation and the heating operation due to the hexagonal valve 3. Specifically, the port 36 of the hexagonal valve 3 to which a plurality of indoor heat exchangers 1a and 1b are connected in parallel is connected to the port 35 connected to the outdoor heat exchanger 2 via the expansion valve 8 during the cooling operation. It is connected and is connected to the port 31 connected to the discharge side of the compressor 7 during the heating operation. Therefore, even during the cooling operation and the heating operation, the refrigerant flowing through the plurality of indoor heat exchangers 1a and 1b flows in from the port 36 of the hexagonal valve 3 and flows out to the port 34. According to the refrigeration cycle device 100, the indoor heat exchangers 1a and 1b can be countercurrented even during the cooling operation and the heating operation. Therefore, the refrigeration cycle device 100 has high heat transfer performance. Further, according to the refrigerating cycle device 100, the indoor heat exchanger 1a, as compared with the conventional refrigerating cycle device in which the refrigerant and the air flow in parallel during either the cooling operation or the heating operation of the indoor heat exchanger. The logarithmic mean temperature difference between the refrigerant and air in 1b can be increased. Therefore, in the refrigeration cycle device 100, even when the non-azeotropic mixed refrigerant is sealed and the temperature gradient is formed in the indoor heat exchangers 1a and 1b, the deterioration of the heat exchange performance is suppressed. Further, since the refrigeration cycle device 100 has a large logarithmic mean temperature difference between the indoor heat exchangers 1a and 1b, the suction side of the compressor 7 when the heat exchange amount of the indoor heat exchangers 1a and 1b is set to a predetermined value. The refrigerant pressure can be increased as compared with the above-mentioned conventional refrigeration cycle apparatus. Therefore, according to the refrigeration cycle device 100, the compression rate of the refrigerant in the compressor 7 can be lowered as compared with the conventional refrigeration cycle device, and the efficiency of the refrigeration cycle can be improved.

また、冷凍サイクル装置100は、六方弁3により複数の室内熱交換器1a,1bを上記対向流化可能に設けられているため、四方弁やブリッジ回路などを複数台組み合わせることにより対向流化可能に設けられている従来の冷凍サイクル装置と比べて、小型化することができる。また、冷凍サイクル装置100は、従来の冷凍サイクル装置において上述のような複数の室内熱交換器の対向流化および室内熱交換器での冷媒滞留防止を実現する場合と比べて、部品点数を少なくすることができ、信頼性が向上されている。 Further, since the refrigeration cycle device 100 is provided with a plurality of indoor heat exchangers 1a and 1b capable of countercurrent exchange by means of a hexagonal valve 3, it is possible to countercurrent by combining a plurality of four-way valves, bridge circuits and the like. It can be downsized as compared with the conventional refrigeration cycle apparatus provided in. Further, the refrigerating cycle device 100 has a smaller number of parts than the case where the conventional refrigerating cycle device realizes countercurrent exchange of a plurality of indoor heat exchangers and prevention of refrigerant retention in the indoor heat exchangers as described above. It can be done and the reliability is improved.

なお、複数の室内熱交換器1a,1bのうち、一部の室内熱交換器1bのみが動作状態と停止状態との切り替えが行われ得る場合には、当該一部の室内熱交換器1bと六方弁3との間にのみ閉止弁4bが設けられていればよい。複数の室内熱交換器1a,1bの全てが動作状態と停止状態との切り替えが行われ得る場合には、全ての室内熱交換器1a,1bと六方弁3との間に,それぞれ閉止弁4a,4bが設けられている。 If only some of the indoor heat exchangers 1b among the plurality of indoor heat exchangers 1a and 1b can be switched between the operating state and the stopped state, the indoor heat exchangers 1b and some of them can be switched. The shutoff valve 4b need only be provided between the hexagonal valve 3 and the hexagonal valve 3. When all of the plurality of indoor heat exchangers 1a and 1b can be switched between the operating state and the stopped state, the shutoff valve 4a is located between all the indoor heat exchangers 1a and 1b and the hexagonal valve 3, respectively. , 4b are provided.

閉止弁4a,4bは、たとえば電磁弁として構成されていてもよい。このようにすれば、閉止弁4a,4bはそれぞれ独立にかつ容易に制御され得る。 The shutoff valves 4a and 4b may be configured as, for example, solenoid valves. In this way, the shutoff valves 4a and 4b can be controlled independently and easily.

図4および図5を参照して、六方弁3は、ロータリー式の切り替え弁として構成されていてもよい。六方弁3は、弁本体30と、弁本体30に接続された6つのポート31,32,33,34,35,36を有している。弁本体30は、たとえば相対的に回転可能に設けられた第1弁体30Aと第2弁体30Bとを含む。ポート31は第1弁体30Aに、ポート32,33,34,35,36は第2弁体30Bに接続されている。ポート32,33,34,35,36は、第2弁体30Bの周方向に配列されている。第1弁体30Aには3つの管路41,42,43が形成されている。第2弁体30Bには、ポート32,33,34,35,36のそれぞれと接続された5つの管路が形成されている。このようにすれば、六方弁3による冷房運転と暖房運転との切り替え時に、切り替え音抑制のために圧縮機7を一旦停止させることなく、当該切り替えを行うことができる。また、冷凍サイクル装置100は、圧縮機7を一旦停止させることなく上記切り替えを行うことができるため、切り替え後の運転状態が安定化するまでに要する時間が短い。 With reference to FIGS. 4 and 5, the hexagonal valve 3 may be configured as a rotary switching valve. The hexagonal valve 3 has a valve body 30 and six ports 31, 32, 33, 34, 35, 36 connected to the valve body 30. The valve body 30 includes, for example, a first valve body 30A and a second valve body 30B provided so as to be relatively rotatable. The port 31 is connected to the first valve body 30A, and the ports 32, 33, 34, 35, 36 are connected to the second valve body 30B. The ports 32, 33, 34, 35, 36 are arranged in the circumferential direction of the second valve body 30B. Three pipelines 41, 42, and 43 are formed in the first valve body 30A. The second valve body 30B is formed with five pipelines connected to each of the ports 32, 33, 34, 35, and 36. In this way, when switching between the cooling operation and the heating operation by the hexagonal valve 3, the switching can be performed without temporarily stopping the compressor 7 to suppress the switching sound. Further, since the refrigeration cycle device 100 can perform the above switching without temporarily stopping the compressor 7, the time required for the operating state after the switching to stabilize is short.

管路41は、第1弁体30Aと第2弁体30Bとの相対的な回転動作に関わらず、常時ポート31と接続可能に設けられている。管路41は、第1弁体30Aと第2弁体30Bとの相対的な回転動作により、ポート32またはポート36と接続可能に設けられている。管路41は、上記回転動作により、ポート31とポート32との間、またはポート31とポート36との間に流路を形成可能に設けられている。管路42,43は、それぞれポート32,33,34,35,36のうちの2つのポート間を接続可能に設けられている。管路42は、上記回転動作により、ポート33とポート34との間、またはポート32とポート33との間に流路を形成可能に設けられている。管路43は、上記回転動作により、ポート35とポート36との間、またはポート34とポート35との間に流路を形成可能に設けられている。このようにしても、六方弁3は、図1において実線で示される冷房サイクル状態と図1において破線で示される暖房サイクル状態とに切り替え可能である。 The pipeline 41 is provided so as to be always connectable to the port 31 regardless of the relative rotational operation between the first valve body 30A and the second valve body 30B. The pipeline 41 is provided so as to be connectable to the port 32 or the port 36 by the relative rotational operation of the first valve body 30A and the second valve body 30B. The pipeline 41 is provided so that a flow path can be formed between the port 31 and the port 32 or between the port 31 and the port 36 by the rotation operation. The pipelines 42 and 43 are provided so as to be able to connect between two ports of the ports 32, 33, 34, 35 and 36, respectively. The pipeline 42 is provided so that a flow path can be formed between the port 33 and the port 34 or between the port 32 and the port 33 by the rotation operation. The pipeline 43 is provided so that a flow path can be formed between the port 35 and the port 36 or between the port 34 and the port 35 by the rotation operation. Even in this way, the hexagonal valve 3 can be switched between the cooling cycle state shown by the solid line in FIG. 1 and the heating cycle state shown by the broken line in FIG.

(実施の形態2)
次に、図6を参照して、実施の形態2に係る冷凍サイクル装置101について説明する。冷凍サイクル装置101は、基本的には冷凍サイクル装置100と同様の構成を備えるが、閉止弁が膨張弁(第1膨張弁)10a,10bとして構成されている点で異なる。
(Embodiment 2)
Next, the refrigeration cycle apparatus 101 according to the second embodiment will be described with reference to FIG. The refrigeration cycle device 101 basically has the same configuration as the refrigeration cycle device 100, except that the shutoff valves are configured as expansion valves (first expansion valves) 10a and 10b.

膨張弁10a,10bは、それぞれ独立して冷媒の流れを遮断可能に設けられている。膨張弁10aは、六方弁3のポート36と室内熱交換器1aとの間を接続する配管上に設けられている。膨張弁10bは、上述のように、六方弁3のポート36と室内熱交換器1bとの間を接続する配管上に設けられている。膨張弁10a,10bは、その開度に応じて、各配管を閉止可能であり、または、各配管に流れる冷媒を膨張可能である。膨張弁10a,10bは、室内熱交換器1a,1bが停止状態にあるときには各配管を閉止し、室内熱交換器1a,1bが運転状態にあるときには各配管に流れる冷媒を膨張させるように制御される。膨張弁10a,10bは、たとえば延長配管5a,5bよりも六方弁3に近い位置に設けられている。 The expansion valves 10a and 10b are independently provided so as to be able to block the flow of the refrigerant. The expansion valve 10a is provided on a pipe connecting the port 36 of the hexagonal valve 3 and the indoor heat exchanger 1a. As described above, the expansion valve 10b is provided on the pipe connecting the port 36 of the hexagonal valve 3 and the indoor heat exchanger 1b. The expansion valves 10a and 10b can close each pipe or expand the refrigerant flowing through each pipe according to the opening degree thereof. The expansion valves 10a and 10b are controlled so as to close each pipe when the indoor heat exchangers 1a and 1b are stopped and expand the refrigerant flowing through each pipe when the indoor heat exchangers 1a and 1b are in the operating state. Will be done. The expansion valves 10a and 10b are provided at positions closer to the hexagonal valve 3 than, for example, the extension pipes 5a and 5b.

このようにしても、複数の室内熱交換器1a,1bのうちの一部の室内熱交換器1aが運転状態、他の室内熱交換器1bが停止状態にあるときに、停止状態にある室内熱交換器1bと六方弁3との間の冷媒の流れを、膨張弁10bにより遮断することができる。その結果、冷凍サイクル装置10によれば、停止状態にある室内熱交換器1bに冷媒が流入しかつ滞留することが抑制されている。冷凍サイクル装置101は、冷凍サイクル装置100と同様の構成を備える六方弁3を備えるため、冷房運転時および暖房運転時においても、室内熱交換器1a,1bを温度対向流化することができる。 Even in this way, when some of the indoor heat exchangers 1a and 1b of the plurality of indoor heat exchangers 1a and 1b are in the operating state and the other indoor heat exchangers 1b are in the stopped state, the room is in the stopped state. The flow of the refrigerant between the heat exchanger 1b and the hexagonal valve 3 can be blocked by the expansion valve 10b. As a result, according to the refrigeration cycle apparatus 10 1, it is suppressed to be the refrigerant flows and stays in the indoor heat exchanger 1b in a stopped state. Since the refrigeration cycle device 101 includes a hexagonal valve 3 having the same configuration as the refrigeration cycle device 100, the indoor heat exchangers 1a and 1b can be countercurrented even during the cooling operation and the heating operation.

なお、冷凍サイクル装置101において、膨張弁8は、冷房運転時において、全開放されているのが好ましい。一般に、冷房運転時には、室外熱交換器において凝縮された液状態の冷媒(液冷媒)は、膨張弁により減圧膨張されて気液2相状態で室内熱交換器に送られる。冷凍サイクル装置101では、室外熱交換器2と室内熱交換器1a,1bとの間には、室外熱交換器2と六方弁3との間に位置する膨張弁8と、六方弁3と室内熱交換器1a,1bとの間に位置する膨張弁10a,10bとが設けられている。そのため、室内熱交換器1a,1bに送られる冷媒は、少なくとも膨張弁10a,10bにおいて膨張されていればよい。冷房運転時において膨張弁8を全開放とすることで、六方弁3のポート35からポート36には気液2相状態の冷媒ではなく液冷媒を流すことができる。その結果、六方弁3内における冷媒の流れを安定化させることができる。また、冷房運転時において六方弁3に流通させる冷媒を気液2相状態の冷媒ではなく液冷媒とすることにより、冷媒の圧力損失を低減することができる。 In the refrigeration cycle device 101, it is preferable that the expansion valve 8 is fully opened during the cooling operation. Generally, during the cooling operation, the liquid refrigerant (liquid refrigerant) condensed in the outdoor heat exchanger is decompressed and expanded by the expansion valve and sent to the indoor heat exchanger in a gas-liquid two-phase state. In the refrigeration cycle device 101, between the outdoor heat exchanger 2 and the indoor heat exchangers 1a and 1b, an expansion valve 8 located between the outdoor heat exchanger 2 and the hexagonal valve 3 and a hexagonal valve 3 and the indoor Expansion valves 10a and 10b located between the heat exchangers 1a and 1b are provided. Therefore, the refrigerant sent to the indoor heat exchangers 1a and 1b may be expanded at least by the expansion valves 10a and 10b. By fully opening the expansion valve 8 during the cooling operation, the liquid refrigerant can flow from the port 35 to the port 36 of the hexagonal valve 3 instead of the gas-liquid two-phase state refrigerant. As a result, the flow of the refrigerant in the hexagonal valve 3 can be stabilized. Further, the pressure loss of the refrigerant can be reduced by using the liquid refrigerant instead of the gas-liquid two-phase state refrigerant to be distributed to the hexagonal valve 3 during the cooling operation.

今回開示された実施の形態はすべての点において例示であって制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary and not restrictive in all respects. The scope of the present invention is indicated by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本発明に係る冷凍サイクル装置は、個別に運転動作・停止動作を切り替え可能に設けられている複数の室内機を備える冷凍サイクル装置に特に有利に適用される。 The refrigeration cycle apparatus according to the present invention is particularly advantageously applied to a refrigeration cycle apparatus including a plurality of indoor units that are individually provided so as to be able to switch between operation and stop operations.

1,1a,1b 室内熱交換器、2 室外熱交換器、3 六方弁、4,4a,4b 閉止弁、5,5a,5b,6,6a,6b 延長配管、7 圧縮機、8 膨張弁、10a,10b 膨張弁、9a,9b,9c ファン、30 弁本体、30A 第1弁体、30B
第2弁体、31,32,33,34,35,36 ポート、39 スライド弁体、41,42,43 管路、100,101 冷凍サイクル装置。
1,1a, 1b Indoor heat exchanger, 2 Outdoor heat exchanger, 3 Hexagonal valve, 4,4a, 4b Closure valve, 5,5a, 5b, 6,6a, 6b Extension piping, 7 Compressor, 8 Expansion valve, 10a, 10b expansion valve, 9a, 9b, 9c fan, 30 valve body, 30A first valve body, 30B
Second valve body, 31, 32, 33, 34, 35, 36 ports, 39 slide valve body, 41, 42, 43 pipelines, 100, 101 refrigeration cycle equipment.

Claims (5)

冷媒と室内の空気との熱交換を行う複数の室内熱交換器と、
前記冷媒と室外の空気との熱交換を行う室外熱交換器と、
前記冷媒の流路を切り替える六方弁と、
前記冷媒を圧縮するための圧縮機と、
前記冷媒の流れを遮断可能に設けられている第1膨張弁とを備え、
前記複数の室内熱交換器は前記室外熱交換器と前記六方弁を介して接続されており、
前記複数の室内熱交換器は前記六方弁に対し互いに並列に接続されており、
前記複数の室内熱交換器の少なくとも1つは、前記六方弁と、前記第1膨張弁および延長配管を介して接続されており、
前記室外熱交換器と前記六方弁との間に配置された第2膨張弁をさらに備え、
前記第1膨張弁は、前記六方弁と前記複数の室内熱交換器の少なくとも1つとの間において前記延長配管よりも前記六方弁に近い側に配置されており、
冷房運転時に、前記圧縮機から吐出された前記冷媒が、前記六方弁、前記室外熱交換器、前記第2膨張弁、前記六方弁、前記第1膨張弁、前記延長配管、前記複数の室内熱交換器の少なくとも1つ、および前記六方弁を順に流れ、暖房運転時に、前記圧縮機から吐出された前記冷媒が、前記六方弁、前記第1膨張弁、前記延長配管、前記複数の室内熱交換器の少なくとも1つ、前記六方弁、前記第2膨張弁、前記室外熱交換器、前記六方弁を順に流れるように前記六方弁は制御され、かつ前記冷房運転時に前記室外熱交換器において凝縮された冷媒は、前記第1膨張弁と前記第2膨張弁とのうち、少なくとも前記第1膨張弁により減圧膨張されて前記複数の室内熱交換器の少なくとも1つに送られる、冷凍サイクル装置。
Multiple indoor heat exchangers that exchange heat between the refrigerant and the indoor air,
An outdoor heat exchanger that exchanges heat between the refrigerant and the outdoor air,
A six-way valve that switches the flow path of the refrigerant,
A compressor for compressing the refrigerant and
It is provided with a first expansion valve provided so as to block the flow of the refrigerant.
The plurality of indoor heat exchangers are connected to the outdoor heat exchanger via the hexagonal valve.
The plurality of indoor heat exchangers are connected to the hexagonal valve in parallel with each other.
At least one of the plurality of indoor heat exchangers is connected to the hexagonal valve via the first expansion valve and the extension pipe.
Further comprising a second expansion valve located between the outdoor heat exchanger and the hexagonal valve.
The first expansion valve is arranged between the hexagonal valve and at least one of the plurality of indoor heat exchangers on the side closer to the hexagonal valve than the extension pipe.
During the cooling operation, the refrigerant discharged from the compressor is the hexagonal valve, the outdoor heat exchanger , the second expansion valve, the hexagonal valve , the first expansion valve, the extension pipe, and the plurality of indoor heats. At least one of the exchangers and the six-way valve flow in order, and during the heating operation, the refrigerant discharged from the compressor is the six-way valve, the first expansion valve, the extension pipe, and the plurality of indoor heat exchanges. The hexagonal valve is controlled to flow through at least one of the vessels, the hexagonal valve, the second expansion valve, the outdoor heat exchanger, and the hexagonal valve in this order , and is condensed in the outdoor heat exchanger during the cooling operation. The refrigerating cycle apparatus in which the refrigerant is decompressed and expanded by at least the first expansion valve among the first expansion valve and the second expansion valve and sent to at least one of the plurality of indoor heat exchangers.
冷房運転時に、前記第2膨張弁は全開放される、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the second expansion valve is fully opened during the cooling operation. 前記冷媒は、少なくとも2種類以上の冷媒を混合した混合冷媒である、請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the refrigerant is a mixed refrigerant in which at least two types of refrigerants are mixed. 前記冷媒は、非共沸混合冷媒である、請求項3に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 3, wherein the refrigerant is a non-azeotropic mixed refrigerant. 前記第1膨張弁は、前記室内熱交換器の入側に配置されている、請求項1〜4のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the first expansion valve is arranged on the inlet side of the indoor heat exchanger.
JP2017551510A 2015-11-20 2015-11-20 Refrigeration cycle equipment Active JP6773680B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082790 WO2017085888A1 (en) 2015-11-20 2015-11-20 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2017085888A1 JPWO2017085888A1 (en) 2018-07-19
JP6773680B2 true JP6773680B2 (en) 2020-10-21

Family

ID=58718715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017551510A Active JP6773680B2 (en) 2015-11-20 2015-11-20 Refrigeration cycle equipment

Country Status (4)

Country Link
EP (1) EP3379176B1 (en)
JP (1) JP6773680B2 (en)
ES (1) ES2909912T3 (en)
WO (1) WO2017085888A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585514B2 (en) * 2016-01-28 2019-10-02 株式会社不二工機 6-way switching valve
US11365914B2 (en) 2018-05-11 2022-06-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN108775728B (en) * 2018-07-20 2023-08-04 珠海格力电器股份有限公司 Multi-split water chiller-heater unit
JP6576603B1 (en) 2019-02-27 2019-09-18 三菱電機株式会社 Air conditioner
CN113970194B (en) * 2020-07-24 2023-01-20 约克广州空调冷冻设备有限公司 Heat pump system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104051A (en) * 1982-12-03 1984-06-15 株式会社東芝 Air conditioner
JPS63108164A (en) * 1986-10-24 1988-05-13 株式会社日立製作所 Heat pump type air conditioner
JPH04116347A (en) * 1990-09-05 1992-04-16 Matsushita Refrig Co Ltd Multiroom type air conditioner
JPH07324844A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Six-way switching valve and refrigerator using the same
JPH08170865A (en) * 1994-12-19 1996-07-02 Sanyo Electric Co Ltd Changeover valve for heat pump air conditioning apparatus
JPH1194385A (en) * 1997-09-19 1999-04-09 Hitachi Ltd Heat pump type air conditioner
WO2000055551A1 (en) * 1999-03-17 2000-09-21 Hitachi, Ltd. Air conditioner and outdoor equipment used for it
KR100432224B1 (en) * 2002-05-01 2004-05-20 삼성전자주식회사 Refrigerant leakage detecting method for air conditioner
JP5404487B2 (en) * 2010-03-23 2014-01-29 三菱電機株式会社 Multi-room air conditioner
JP2011202738A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
JP5846094B2 (en) * 2012-10-17 2016-01-20 株式会社デンソー Refrigeration cycle equipment
CN104110922B (en) * 2013-04-16 2017-02-15 广东美的暖通设备有限公司 Heat pump system and start control method thereof
JP5979112B2 (en) * 2013-09-30 2016-08-24 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
EP3379176A1 (en) 2018-09-26
ES2909912T3 (en) 2022-05-10
JPWO2017085888A1 (en) 2018-07-19
WO2017085888A1 (en) 2017-05-26
EP3379176B1 (en) 2022-03-02
EP3379176A4 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6773680B2 (en) Refrigeration cycle equipment
JP4254863B2 (en) Air conditioner
ES2526057T3 (en) Air conditioning system
KR100757442B1 (en) Air conditioner
WO2019003291A1 (en) Air conditioner
JP2009047385A (en) Equipment using refrigerating cycle, and air conditioner
WO2008032558A1 (en) Refrigeration device
JP6698862B2 (en) Air conditioner
JP2006071174A (en) Refrigerating device
WO2016079834A1 (en) Air conditioning device
JP4096544B2 (en) Refrigeration equipment
JP6576603B1 (en) Air conditioner
JP2010048506A (en) Multi-air conditioner
JP7116346B2 (en) Heat source unit and refrigerator
JP7034251B2 (en) Heat source equipment and refrigeration cycle equipment
WO2021065678A1 (en) Air conditioner
WO2022239212A1 (en) Air conditioner and air conditioning system
JP5217710B2 (en) Air conditioner
JP4774858B2 (en) Air conditioner
WO2023135630A1 (en) Air conditioner
US11397015B2 (en) Air conditioning apparatus
JP4457831B2 (en) Refrigeration equipment
WO2021065677A1 (en) Air conditioner
JP2009008350A (en) Refrigerating device
JP2010261683A (en) Flow divider and refrigerating device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190913

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190917

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191004

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191008

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200512

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200901

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200929

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250