WO2023135630A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023135630A1
WO2023135630A1 PCT/JP2022/000489 JP2022000489W WO2023135630A1 WO 2023135630 A1 WO2023135630 A1 WO 2023135630A1 JP 2022000489 W JP2022000489 W JP 2022000489W WO 2023135630 A1 WO2023135630 A1 WO 2023135630A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
load
leakage
side expansion
Prior art date
Application number
PCT/JP2022/000489
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 松井
宗史 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023573504A priority Critical patent/JPWO2023135630A1/ja
Priority to PCT/JP2022/000489 priority patent/WO2023135630A1/en
Publication of WO2023135630A1 publication Critical patent/WO2023135630A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to an air conditioner having a solenoid valve that cuts off the flow of refrigerant when refrigerant leaks.
  • Patent Document 1 discloses that, of two pipes connecting a heat source device and a plurality of heat load devices, one pipe is provided with the above-described solenoid valve, and the other pipe is provided with an expansion valve.
  • An air conditioner provided is disclosed. The air conditioner of Patent Document 1 closes only the expansion valve and the solenoid valve corresponding to the heat load device in which refrigerant leakage has been detected, and cuts off the flow of refrigerant to the heat load device. The equipment continues to operate.
  • the present disclosure is intended to solve the above problems, and in an air conditioner having a plurality of heat load devices connected in parallel to a heat source device, when refrigerant leakage occurs on the heat load device side
  • An object of the present invention is to provide an air conditioner that reduces the amount of refrigerant leakage.
  • the air conditioner according to the present disclosure includes a first load-side heat exchanger that exchanges heat between the air in the target space and the refrigerant, and the refrigerant flowing into the first load-side heat exchanger, or from the first load-side heat exchanger. Flows into a first heat load device having a first load-side expansion valve that expands the outflowing refrigerant, a second load-side heat exchanger that exchanges heat between the air in the target space and the refrigerant, and the second load-side heat exchanger.
  • a second heat load device having a second load-side expansion valve for expanding the refrigerant flowing out of the second load-side heat exchanger or the refrigerant flowing out from the second load-side heat exchanger, a compressor for compressing the refrigerant, and a first load-side heat exchanger and a heat source device that supplies refrigerant to the second load side heat exchanger, a refrigerant pipe that flows inside and connects the first heat load device and the second heat load device in parallel to the heat source device; a solenoid valve provided in the refrigerant pipe for adjusting the amount of refrigerant flowing into the first heat load device or the amount of refrigerant flowing out of the first heat load device; When refrigerant leakage in the device is detected and refrigerant leakage in the second heat load device is not detected, the first load side expansion valve and the solenoid valve are closed, and the opening degree of the second load side expansion valve is increased. Increase the current opening.
  • the load-side expansion valve and the solenoid valve corresponding to the heat load equipment in which refrigerant leakage has occurred are closed, and the opening degree of the expansion valve of the heat load equipment in which refrigerant leakage has not occurred is set to the current value. Enlarge more than opening. As a result, the amount of refrigerant supplied to the heat load equipment in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load equipment in which refrigerant leakage has occurred decreases. Therefore, according to the present disclosure, in an air conditioner having a plurality of heat load devices connected in parallel to a heat source device, the amount of refrigerant leakage when refrigerant leakage occurs on the heat load device side is reduced. be able to.
  • FIG. 1 is a circuit diagram of an air conditioner according to Embodiment 1.
  • FIG. 4 is a diagram for explaining the cooling operation of the air conditioner according to Embodiment 1.
  • FIG. 4 is a diagram for explaining the heating operation of the air conditioner according to Embodiment 1.
  • FIG. 1 is a functional block diagram of an air conditioner according to Embodiment 1.
  • FIG. 4 is a flow chart showing operations of the heat source side control device and the load side control device according to Embodiment 1.
  • FIG. FIG. 4 is a diagram for explaining the control of the opening degree of the load-side expansion valve at the time of cooling leakage according to the first embodiment and the comparative example;
  • FIG. 5 is a diagram for explaining cooling leakage amounts according to the first embodiment and a comparative example;
  • FIG. 10 is a diagram for explaining control of the degree of opening of the heat source side expansion valve at the time of cooling leakage according to the second embodiment;
  • FIG. 10 is a diagram for explaining cooling leakage amounts according to the second embodiment and a comparative example;
  • FIG. 11 is a diagram for explaining cooling leakage amounts according to the third embodiment and a comparative example;
  • FIG. 11 is a diagram for explaining cooling leakage amounts according to the fourth embodiment and a comparative example;
  • FIG. 11 is a diagram for explaining cooling leakage amounts according to Embodiment 5 and a comparative example;
  • FIG. 11 is a circuit diagram of an air conditioner according to Embodiment 6.
  • FIG. FIG. 12 is a diagram for explaining the cooling operation of the air conditioner according to Embodiment 6;
  • FIG. 12 is a diagram for explaining the heating operation of the air conditioner according to Embodiment 6;
  • FIG. 1 is a circuit diagram of an air conditioner 100 according to Embodiment 1.
  • the air conditioning apparatus 100 of Embodiment 1 air-conditions a plurality of target spaces such as a room in a building such as a building.
  • the air conditioner 100 includes a heat source device 1, a plurality of heat load devices 2a to 2c, and cutoff devices 3a to 3c.
  • the heat load device 2a corresponds to the "first heat load device" of the present disclosure
  • the heat load device 2b corresponds to the "second heat load device” of the present disclosure.
  • the number of heat load devices may be two or four or more.
  • the heat source unit 1 is, for example, an outdoor unit installed outside the target space.
  • the heat load devices 2a to 2c of the air conditioner 100 supply heat or cold heat to the target space using the refrigerant supplied from the heat source device 1.
  • the heat load devices 2a to 2c are, for example, indoor units that are installed in the target space and perform cooling or heating.
  • the heat load devices 2a to 2c are connected to the heat source device 1 by refrigerant pipes 4 and 5 through which refrigerant flows.
  • the refrigerant pipes 4 and 5 are branched to the heat load devices 2a to 2c, respectively. Therefore, the heat load devices 2a to 2c are connected in parallel to the heat source device 1.
  • the heat source device 1 includes a compressor 10, a flow path switching valve 11, a refrigerant heat exchanger 12, a heat source side expansion valve 13, an accumulator 14, a fan 15, a bypass valve 16, a heat source side refrigerant pipe 17, a bypass pipe 18, and a heat source side.
  • a controller 19 is provided.
  • the compressor 10 sucks a low-temperature, low-pressure gas refrigerant, compresses it, and discharges a high-temperature, high-pressure gas refrigerant.
  • the compressor 10 is, for example, an inverter type compressor 10 whose capacity is controllable.
  • the channel switching valve 11 is, for example, a four-way valve.
  • the channel switching valve 11 switches the channel of the refrigerant discharged from the compressor 10 according to the operation of the heat load devices 2a-2c.
  • the flow path switching valve 11 switches to the flow path indicated by the arrow in FIG. 2 during the cooling operation, and switches to the flow path indicated by the arrow in FIG. 3 during the heating operation.
  • the channel switching valve 11 may be a combination of a three-way valve and a two-way valve.
  • the refrigerant heat exchanger 12 is, for example, a fin-tube heat exchanger.
  • the refrigerant heat exchanger 12 exchanges heat between the air supplied by the fan 15 and the refrigerant.
  • the refrigerant heat exchanger 12 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. Further, the refrigerant heat exchanger 12 functions as an evaporator during heating operation, and evaporates the refrigerant to gasify it.
  • the heat source side expansion valve 13 is an electronic expansion valve whose opening degree is variably controlled.
  • the heat source side expansion valve 13 is connected in series with the refrigerant heat exchanger 12 and reduces the pressure of the refrigerant flowing out of the refrigerant heat exchanger 12 or the refrigerant flowing into the refrigerant heat exchanger 12 to expand the refrigerant.
  • the accumulator 14 is provided on the suction side of the compressor 10 and has a function of separating liquid refrigerant and gas refrigerant and a function of storing excess refrigerant.
  • Fan 15 is, for example, a propeller fan. The fan 15 supplies air around the heat source device 1 to the refrigerant heat exchanger 12 . The condensing ability or the evaporating ability of the refrigerant heat exchanger 12 is controlled by controlling the rotational speed of the fan 15 by the heat source side control device 19 .
  • a bypass valve 16 is provided in a bypass pipe 18 . The bypass valve 16 adjusts the amount of refrigerant flowing through the bypass pipe 18 by having its opening controlled by the heat source side control device 19 .
  • the heat source side refrigerant pipe 17 is the pipe inside the housing (not shown) of the heat source device 1 among the pipes of the air conditioner 100 .
  • the heat source side refrigerant pipe 17 connects the heat source side expansion valve 13, the refrigerant heat exchanger 12, the accumulator 14, the compressor 10, and the flow path switching valve 11 in this order.
  • An end portion of the heat source side refrigerant pipe 17 on the flow path switching valve 11 side is connected to the refrigerant pipe 4 .
  • the heat source side expansion valve 13 side end of the heat source side refrigerant pipe 17 is connected to the refrigerant pipe 5 .
  • the bypass pipe 18 is a pipe that connects the high pressure side and the low pressure side of the compressor 10 .
  • the bypass pipe 18 includes a heat source side refrigerant pipe 17 connected to the suction side of the compressor 10 and a heat source side refrigerant pipe 17 connected to the inflow side of the accumulator 14, that is, the discharge side of the compressor 10. to connect.
  • the heat source side control device 19 controls the operation of the compressor 10, the flow path switching valve 11, the heat source side expansion valve 13, the fan 15, and the bypass valve 16, which are connected by wire or wirelessly.
  • the heat source side control device 19 is composed of a processing device including a memory for storing data and programs required for control and a CPU for executing the program, dedicated hardware such as ASIC or FPGA, or both.
  • the heat source side control device 19 controls the drive frequency of the compressor 10, the flow path of the flow path switching valve 11, the opening degrees of the heat source side expansion valve 13 and the bypass valve 16, and the rotation speed of the fan 15 based on the detection results of each sensor. to control.
  • sensors include a pressure sensor (not shown) mounted on the heat source device 1 for detecting refrigerant pressure and a temperature sensor (not shown) for detecting refrigerant temperature or outside air temperature.
  • the heat source side control device 19 can perform data communication with the load side control devices 25a to 25c (to be described later) of the heat load devices 2a to 2c connected by wire or wirelessly. Further, the heat source side control device 19 controls solenoid valves 31a to 31c, which are connected by wire or wirelessly and will be described later, of the blocking devices 3a to 3c when refrigerant leakage occurs. When refrigerant leakage occurs, the heat source side control device 19 indirectly controls the load side expansion valves 22a to 22c of the heat load devices 2a to 2c via the load side control devices 25a of the heat load devices 2a to 2c, which will be described later. to control. The control of these devices when refrigerant leakage occurs will be described later.
  • the heat load devices 2a to 2c supply the heat generated by the heat source device 1 to the cooling load or heating load of the target space.
  • the heat load device 2a includes a load side heat exchanger 21a, a load side expansion valve 22a, a refrigerant leakage detection sensor 23a, a load side refrigerant pipe 24a, and a load side controller 25a.
  • the load-side heat exchanger 21a is, for example, a fin-tube heat exchanger.
  • the load-side heat exchanger 21a exchanges heat between the air in the target space and the refrigerant.
  • the load-side heat exchanger 21a functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
  • the load-side heat exchanger 21a functions as an evaporator during cooling operation, and evaporates the refrigerant into gas.
  • the load-side expansion valve 22a is an electronic expansion valve whose opening degree is variably controlled.
  • the load-side expansion valve 22a is connected in series with the load-side heat exchanger 21a, and decompresses and expands the refrigerant flowing out of the load-side heat exchanger 21a or the refrigerant flowing into the load-side heat exchanger 21a.
  • the refrigerant leakage detection sensor 23a is provided in a housing (not shown) of the heat load device 2a, and detects refrigerant leakage from the load side heat exchanger 21a, the load side expansion valve 22a, or the load side refrigerant pipe 24a. .
  • Various conventionally used methods such as measurement of the refrigerant gas concentration in the housing or the pressure or temperature of the refrigerant flowing through the load-side refrigerant pipe 24a can be applied to the refrigerant leakage detection method itself.
  • the refrigerant leakage detection sensor 23a detects that refrigerant is leaking from the heat load device 2a, it transmits a detection signal indicating the fact to the load side control device 25a connected by wire or wirelessly.
  • the load-side refrigerant pipe 24a is, among the pipes of the air conditioner 100, the pipe inside the housing (not shown) of the heat load device 2a.
  • the load-side refrigerant pipe 24a connects the load-side heat exchanger 21a and the load-side expansion valve 22a.
  • the load-side heat exchanger 21 a side end of the load-side refrigerant pipe 24 a is connected to the refrigerant pipe 4 .
  • the load-side expansion valve 22 a side end of the load-side refrigerant pipe 24 a is connected to the refrigerant pipe 5 .
  • the load-side control device 25a controls the operation of the load-side expansion valve 22a connected by wire or wirelessly.
  • the load-side control device 25a is composed of a processing device that includes a memory that stores data and programs required for control and a CPU that executes the program, dedicated hardware such as ASIC or FPGA, or both.
  • the load-side control device 25a controls the load based on the detection results of a temperature sensor (not shown) that detects the temperature of the target space and a temperature sensor (not shown) that detects the temperature of the refrigerant at the outlet and inlet of the heat load device 2a. Controls the degree of opening of the side expansion valve 22a.
  • a temperature sensor is, for example, a thermistor. Note that the load-side control device 25a controls the rotational speed of the opening of the load-side expansion valve 22a according to, for example, the difference between the temperature of the target space and the target temperature.
  • the load-side control device 25 a when the load-side control device 25 a receives a detection signal indicating that the refrigerant is leaking from the refrigerant leakage detection sensor 23 a, it transmits a leakage occurrence signal to the heat source-side control device 19 . In addition, the load-side control device 25a closes the load-side expansion valve 22a substantially at the same time.
  • the leakage occurrence signal includes information indicating in which heat load device leakage of the refrigerant has occurred.
  • the refrigerant leakage detection sensor 23a may have only the function of transmitting the result of measuring the refrigerant gas concentration in the housing or the pressure or temperature of the refrigerant flowing through the load-side refrigerant pipe 24a to the load-side control device 25a. . In this case, the load-side control device 25a determines whether or not the refrigerant is leaking based on the measurement result of the refrigerant leakage detection sensor 23a.
  • the heat load devices 2b and 2c have the same configuration as the heat load device 2a. That is, the heat load device 2b includes a load side heat exchanger 21b, a load side expansion valve 22b, a refrigerant leakage detection sensor 23b, a load side refrigerant pipe 24b, and a load side control device 25b. Similarly, the heat load device 2c includes a load side heat exchanger 21c, a load side expansion valve 22c, a refrigerant leakage detection sensor 23c, a load side refrigerant pipe 24c, and a load side control device 25c. The configuration of each device included in the heat load devices 2b and 2c is also the same as that of the heat load device 2a, so description thereof will be omitted.
  • the load-side heat exchanger 21a corresponds to the "first load-side heat exchanger” of the present disclosure
  • the load-side heat exchanger 21b corresponds to the "second load-side heat exchanger” of the present disclosure.
  • the load-side expansion valve 22a corresponds to the "first load-side expansion valve” of the present disclosure
  • the load-side expansion valve 22b corresponds to the "second load-side expansion valve” of the present disclosure.
  • a refrigerant circuit 6 is configured by connecting the side expansion valves 22a to 22c and the solenoid valves 31a to 31c by the heat source side refrigerant pipe 17 and the load side refrigerant pipes 24a to 24c.
  • the shutoff device 3a has an electromagnetic valve 31a.
  • the solenoid valve 31a is provided at a branched portion of the refrigerant pipe 4 at a position corresponding to the heat load device 2a.
  • the electromagnetic valve 31a is housed in a housing (not shown) of the cutoff device 3a.
  • the solenoid valve 31a adjusts the flow rate of refrigerant flowing through the heat load device 2a.
  • the solenoid valve 31a is controlled to be closed by the heat source side control device 19 when refrigerant leakage occurs from the heat load device 2a, and the flow of the refrigerant in the heat load device 2a, that is, the inflow of the refrigerant into the heat load device 2a, and block the outflow of the refrigerant from the heat load device 2a.
  • the blocking devices 3b and 3c have the same configuration as the blocking device 3a.
  • the cutoff device 3b includes an electromagnetic valve 31b corresponding to the heat load device 2b.
  • the cutoff device 3c includes an electromagnetic valve 31c corresponding to the heat load device 2c.
  • the air conditioner 100 performs cooling operation or heating operation based on instructions from a remote controller (not shown) or the like for the heat load devices 2a to 2c. Cooling operation and heating operation are realized by switching the channel switching valve 11 of the heat source device 1 .
  • the refrigerant flow in each operation will be described below.
  • FIG. 2 is a diagram for explaining the cooling operation of the air conditioner 100 according to Embodiment 1.
  • FIG. 2 in cooling operation, high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows through the flow path switching valve 11 into the refrigerant heat exchanger 12 .
  • the refrigerant that has flowed into the refrigerant heat exchanger 12 exchanges heat with the air supplied by the fan 15, condenses, and liquefies.
  • the refrigerant flowing out of the refrigerant heat exchanger 12 passes through the refrigerant pipe 5 and is split to the heat load devices 2a to 2c.
  • the refrigerant that has flowed into the heat load devices 2a-2c is depressurized by the load-side expansion valves 22a-22c, becomes a low-temperature gas-liquid two-phase refrigerant, and flows into the load-side heat exchangers 21a-21c.
  • the refrigerant that has flowed into the load-side heat exchangers 21a to 21c exchanges heat with the air in the target space, evaporates, and gasifies. At this time, the refrigerant absorbs heat from the air in the target space, thereby cooling the target spaces in which the heat load devices 2a to 2c are installed.
  • the refrigerant flowing out of the load-side heat exchanger 21 a flows into the heat source device 1 through the refrigerant pipe 4 .
  • the refrigerant that has flowed into the heat source device 1 is sucked into the compressor 10 again via the flow path switching valve 11 and the accumulator 14 .
  • FIG. 3 is a diagram for explaining the heating operation of the air conditioner 100 according to Embodiment 1.
  • FIG. 3 in the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out from the heat source device 1 through the flow path switching valve 11, and flows through the refrigerant pipe 4 to the heat load equipment. 2a to 2c.
  • the refrigerant that has flowed into the heat load devices 2a-2c exchanges heat with the air in the target space in the load-side heat exchangers 21a-21c, condenses, and liquefies.
  • the refrigerant dissipates heat to the air in the target space, thereby heating the target spaces in which the heat load devices 2a to 2c are installed.
  • the refrigerant flowing out of the load-side heat exchangers 21a-21c is decompressed by the load-side expansion valves 22a-22c, flows out of the heat load devices 2a-2c, and flows through the refrigerant pipe 5 into the heat source device 1.
  • the refrigerant that has flowed into the heat source device 1 flows into the refrigerant heat exchanger 12 .
  • the refrigerant that has flowed into the refrigerant heat exchanger 12 exchanges heat with the air supplied by the fan 15 to evaporate and gasify.
  • the refrigerant that has flowed out of the refrigerant heat exchanger 12 is sucked into the compressor 10 again via the flow switching valve 11 and the accumulator 14 .
  • FIG. 4 is a functional block diagram of the air conditioner 100 according to Embodiment 1. As shown in FIG. 4, when the refrigerant leakage detection sensors 23a to 23c detect that refrigerant is leaking from the corresponding heat load devices 2a to 2c, the detection signals to that effect are sent to the corresponding load side. It is transmitted to the control devices 25a to 25c.
  • the load-side control devices 25a-25c receive detection signals from the refrigerant leakage detection sensors 23a-23c.
  • the load-side control devices 25a to 25c transmit a leak occurrence signal to the heat source-side control device 19 upon receiving the detection signal.
  • the load-side control devices 25a-25c close the corresponding load-side expansion valves 22a-22c.
  • the load-side control devices 25aa-25c in which no refrigerant leakage has occurred expand the opening degrees of the load-side expansion valves 22a-22c based on the command from the heat source-side control device 19 from the current opening degrees.
  • the heat source side control device 19 When the heat source side control device 19 receives a leakage occurrence signal from one of the load side control devices 25a to 25c, the heat source side control device 19 closes the electromagnetic valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage is occurring. . Then, the heat source side control device 19 increases the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage does not occur. 25a-25c. Specifically, the heat source side control device 19 fully opens the load side expansion valves 22a to 22c when they are not fully open, and maintains the fully opened state when the load side expansion valves 22a to 22c are already fully open.
  • FIG. 5 is a flow chart showing operations of the heat source side control device 19 and the load side control devices 25a to 25c according to the first embodiment.
  • the left column shows the processing contents of the heat source side control device 19
  • the middle column shows the processing contents of the load side control device 25a
  • the right column shows the processing contents of the load side control devices 25b and 25c. is shown.
  • refrigerant leakage occurs in the heat load device 2a and refrigerant leakage does not occur in the heat load devices 2b and 2c.
  • the load side expansion valves 22a to 22c of the thermal load devices 2a to 2c and the solenoid valves 31a to 31c of the shutoff devices 3a to 3c are all kept open until the leakage of the refrigerant is detected.
  • the load-side expansion valves 22a to 22c are opened at an opening degree less than fully open.
  • the load-side control device 25a receives a signal from the refrigerant leakage detection sensor 23a. A detection signal is received (step S1). Upon receiving the detection signal, the load side control device 25a transmits a leakage occurrence signal to the heat source side control device 19 (step S2). Then, the load-side control device 25a closes the load-side expansion valve 22a (step S3).
  • the heat source side control device 19 When the heat source side control device 19 receives the leakage occurrence signal from the load side control device 25a, it closes the electromagnetic valve 31a corresponding to the heat load device 2a in which the refrigerant is leaking (step S4). Then, the heat source side control device 19 increases the opening degrees of the load side expansion valves 22b and 22c of the heat load devices 2b and 2c in which refrigerant leakage is not occurring. 25b and 25c (step S5). The load-side control devices 25b and 25c that have received the command from the heat source-side control device 19 increase the opening degrees of the load-side expansion valves 22b and 22c from the current opening degrees (step S6). Note that step S2 and step S3 may be interchanged.
  • the load side expansion valves 22a to 22c and the electromagnetic valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c in which no refrigerant leakage has occurred are increased.
  • the case where refrigerant leakage occurs in the heat load device 2a and refrigerant leakage does not occur in the heat load devices 2b and 2c has been exemplified.
  • the control of the load side expansion valve 22b or 22c and the electromagnetic valve 31b or 31c is the same when refrigerant leakage occurs in the heat load device 2b or 2c.
  • the load side expansion valve 22b and the electromagnetic valve 31b are closed, and the load side expansion valve 22b and the solenoid valve 31b are closed.
  • the opening degrees of the valves 22a and 22c are increased from the current opening degrees.
  • the load side expansion valves 22a and 22b and the solenoid valves 31a and 31b are closed, The opening of the load-side expansion valve 22c is increased from the current opening.
  • FIG. 6 is a diagram for explaining control of the opening degree of the load-side expansion valve at the time of cooling leakage according to the first embodiment and the comparative example.
  • the opening degrees [pulse] of the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which the refrigerant leakage is detected according to Embodiment 1 are plotted against the elapsed time after the refrigerant leakage is detected. Each [s] is indicated by a white triangle.
  • the load-side expansion valves 22a to 22c of the thermal load devices 2a to 2c, in which leakage of the refrigerant is not detected according to Embodiment 1, that is, are normal, are indicated by black triangles.
  • the load-side expansion valve of the heat load device in which leakage of the refrigerant according to the comparative example was detected is indicated by an outline circle.
  • the load-side expansion valves of the normal thermal load equipment according to the comparative example are indicated by black circles.
  • the air conditioner 100 of Embodiment 1 closes the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred. Further, the air conditioner 100 of Embodiment 1 expands the opening degrees of the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage does not occur from the current opening degrees.
  • the comparative example has a configuration equivalent to that of the air conditioner 100 of Embodiment 1, but differs in control content.
  • the opening degree of the load-side expansion valve of the heat-load equipment in which refrigerant leakage has not occurred is less than fully open. to maintain a constant degree of opening.
  • FIG. 7 is a diagram for explaining cooling leakage amounts according to the first embodiment and the comparative example.
  • the refrigerant leakage amount QI [g/s] according to Embodiment 1 is indicated by black triangles for each elapsed time [s] after the refrigerant leakage is detected.
  • the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles.
  • the opening degree of the load-side expansion valve of the heat-load equipment in which refrigerant leakage has not been detected is constant. Therefore, the total flow area of all heat load devices is narrowed.
  • the pressure at the inlet of the load-side expansion valve of each heat-load device increases.
  • the pressure difference between the inlet and outlet of the load-side expansion valve of each heat load device increases, and the amount of refrigerant passing through the load-side expansion valve of the heat load device in which refrigerant leakage has been detected also increases.
  • the amount of refrigerant leakage until the valve is fully closed is greater than in the first embodiment.
  • Embodiment 1 the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and the heat load devices in which refrigerant leakage has not occurred are closed.
  • the opening degrees of the load side expansion valves 22a to 22c of 2a to 2c are increased.
  • the total flow area of all the heat load devices 2a to 2c is kept constant. Therefore, the pressure at the inlets of the load-side expansion valves 22a-22c does not rise.
  • the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases.
  • Embodiment 1 in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
  • Embodiment 1 in order to cut off the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
  • the opening degrees of the load-side expansion valves 22a to 22c of all the heat load devices 2a to 2c in which no refrigerant leakage has occurred are increased from the current opening degrees. I explained it as a thing to do. However, if the total flow area of all the heat load devices 2a to 2c is maintained constant, any one of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage does not occur The opening degrees of the load side expansion valves 22a to 22c may be increased.
  • Embodiment 2 differs from Embodiment 1 in that the degree of opening of the heat source side expansion valve 13 is made smaller than the current degree of opening when refrigerant leakage is detected in any of the heat load devices 2a to 2c. differ.
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • FIG. 8 is a diagram for explaining control of the degree of opening of the heat source side expansion valve 13 at the time of cooling leakage according to the second embodiment.
  • the opening degree [pulse] of the heat source side expansion valve 13 of the heat source device 1 in which refrigerant leakage is detected according to Embodiment 2 is changed for each elapsed time [s] after the refrigerant leakage is detected. It is indicated by a white circle.
  • the heat-source-side control device 19 of the second embodiment operates when refrigerant leakage is detected in any of the heat load devices 2a to 2c during cooling operation, as described in the first embodiment.
  • the degree of opening of the heat source side expansion valve 13 is made smaller than it is at present.
  • FIG. 9 is a diagram for explaining cooling leakage amounts according to the second embodiment and the comparative example.
  • the refrigerant leakage amount QI [g/s] according to Embodiment 2 is indicated by black squares for each elapsed time [s] after the refrigerant leakage is detected.
  • the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles.
  • the refrigerant at the inlets of the load side expansion valves 22a to 22c is in the liquid phase.
  • Embodiment 2 when the opening degree of the heat source side expansion valve 13 of the heat source device 1 is reduced, the refrigerant at the inlets of the load side expansion valves 22a to 22c is two-phase. Since the density of the two-phase refrigerant is lower than that of the liquid phase, even if the volume of the refrigerant passing through the load-side expansion valves 22a to 22c with a certain degree of opening is the same, the weight of the refrigerant is higher than that of the two-phase refrigerant. is smaller than the liquid phase. Therefore, in the second embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
  • the order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the second embodiment is that after any of steps S2 to S6 described in the first embodiment, the heat source side control device 19 controls the heat source side. This corresponds to addition of a process to make the opening of the expansion valve 13 smaller than the current opening. Therefore, detailed description is omitted.
  • the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases.
  • Embodiment 2 in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
  • the degree of opening of the heat source side expansion valve 13 is made smaller than the current degree of opening.
  • the refrigerant at the inlets of the side expansion valves 22a-22c can be two-phase. As a result, the density of the refrigerant is reduced, so that the amount of refrigerant leakage can be further reduced.
  • Embodiment 3 differs from Embodiment 1 in that the air volume of fan 15 is reduced from the current air volume when refrigerant leakage is detected in any of heat load devices 2a to 2c.
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • the air conditioner 100 of Embodiment 3 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effects obtained by the third embodiment will be described by comparing the third embodiment and a comparative example.
  • the heat source side control device 19 of Embodiment 3 operates when refrigerant leakage is detected in any of the heat load devices 2a to 2c during cooling operation. to lower the current airflow. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted.
  • FIG. 10 is a diagram for explaining cooling leakage amounts according to the third embodiment and the comparative example.
  • the refrigerant leakage amount QI [g/s] according to Embodiment 3 is indicated by black diamonds for each elapsed time [s] after the refrigerant leakage is detected.
  • the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles.
  • Embodiment 3 by reducing the air volume of the fan 15 from the current air volume, the degree of subcooling of the refrigerant flowing through the outlet of the refrigerant heat exchanger 12 is reduced, and the density of the refrigerant is reduced.
  • the weight of the refrigerant becomes smaller even if the volume of the refrigerant passing through the load-side expansion valves 22a to 22c with a certain degree of opening remains the same. Therefore, as shown in FIG. 10, in the third embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
  • the order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the third embodiment is that the fan 15 is operated by the heat source side control device 19 after any of steps S2 to S6 described in the first embodiment. This corresponds to the addition of processing to lower the current air volume below the current air volume. Therefore, detailed description is omitted.
  • the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases.
  • Embodiment 3 in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
  • the heat load devices 2a to 2c in which refrigerant leakage has occurred since the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred is blocked, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
  • the air volume of the fan 15 is reduced below the current air volume.
  • the degree of subcooling of the refrigerant flowing through the outlet is reduced.
  • the density of the refrigerant is reduced, so that the amount of refrigerant leakage can be further reduced.
  • Embodiment 4 differs from the first embodiment in that the bypass valve 16 is opened when refrigerant leakage is detected in any one of the heat load devices 2a to 2c.
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • the air conditioner 100 of Embodiment 4 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effect obtained by Embodiment 4 is demonstrated by comparing Embodiment 4 and a comparative example.
  • the heat source side control device 19 of the fourth embodiment opens the bypass valve 16 in addition to the control described in the first embodiment when refrigerant leakage is detected in any one of the heat load devices 2a to 2c. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted.
  • FIG. 11 is a diagram for explaining cooling leakage amounts according to the fourth embodiment and the comparative example.
  • the refrigerant leakage amount QI [g/s] according to Embodiment 4 is indicated by white triangles for each elapsed time [s] after the refrigerant leakage is detected.
  • the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles.
  • the fourth embodiment by opening the bypass valve 16, the discharge pressure of the compressor 10 decreases and the suction pressure of the compressor 10 increases. As a result, the pressure difference between the inlets and outlets of the load-side expansion valves 22a to 22c is reduced.
  • the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c for which refrigerant leakage has been detected decreases. Therefore, as shown in FIG. 11, in the fourth embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
  • the order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the fourth embodiment is that after any of steps S2 to S6 described in the first embodiment, the heat source side control device 19 turns the bypass valve on. 16 is added. Therefore, detailed description is omitted.
  • the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases.
  • Embodiment 4 in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
  • the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
  • the bypass valve 16 when refrigerant leakage is detected in any one of the heat load devices 2a to 2c, the bypass valve 16 is opened. the difference becomes smaller. As a result, the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which leakage has been detected decreases, so that the amount of refrigerant leakage can be further reduced.
  • Embodiment 5 differs from Embodiment 1 in that the operating frequency of compressor 10 is lowered from the current operating frequency when refrigerant leakage is detected in any of heat load devices 2a to 2c. .
  • the same reference numerals are given to the same parts as in the first embodiment, and the description thereof is omitted.
  • the air conditioner 100 of Embodiment 5 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effect obtained by Embodiment 5 is demonstrated by comparing Embodiment 5 and a comparative example.
  • the heat source side control device 19 of Embodiment 5 when refrigerant leakage is detected in any of the heat load devices 2a to 2c during cooling operation, controls the compressor. 10 is lowered below the current operating frequency. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted.
  • FIG. 12 is a diagram for explaining cooling leakage amounts according to the fifth embodiment and the comparative example.
  • the refrigerant leakage amount QI [g/s] according to Embodiment 5 is indicated by white squares for each elapsed time [s] after the refrigerant leakage is detected.
  • the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles.
  • Embodiment 5 by lowering the operating frequency of the compressor 10 from the current operating frequency, the discharge pressure of the compressor 10 is lowered and the suction pressure of the compressor 10 is raised. As a result, the pressure difference between the inlets and outlets of the load-side expansion valves 22a to 22c is reduced.
  • the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which leakage has been detected decreases. Therefore, as shown in FIG. 12, in the fourth embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
  • the order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the fifth embodiment is that after one of steps S2 to S6 described in the first embodiment, the heat source side control device 19 controls the compressor. 10 to which the processing for lowering the operating frequency of 10 below the current operating frequency is added. Therefore, detailed description is omitted.
  • the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases.
  • Embodiment 5 in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
  • the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
  • the operating frequency of the compressor 10 when refrigerant leakage is detected in any one of the heat load devices 2a to 2c, the operating frequency of the compressor 10 is lowered below the current operating frequency. The pressure difference between the inlet and outlet of the expansion valves 22a-22c is reduced. As a result, the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which leakage has been detected decreases, so that the amount of refrigerant leakage can be further reduced.
  • FIG. 13 is a circuit diagram of an air conditioner 100A according to Embodiment 6.
  • the sixth embodiment has a refrigerant heat medium heat exchanger 12A instead of the fan 15 and the refrigerant heat exchanger 12, a pump 41, a flow control valve 42, a heat medium heat exchanger 43, and a heating medium pipe 44, which is different from the first embodiment.
  • the same reference numerals are given to the same parts as in the first embodiment, and the description thereof is omitted.
  • the heat source device 1 of the air conditioner 100A of Embodiment 6 has a refrigerant heat medium heat exchanger 12A instead of the fan 15 and the refrigerant heat exchanger 12.
  • the refrigerant heat medium heat exchanger 12A of the heat source device 1 includes a refrigerant flow path (not shown) through which the refrigerant circulating in the refrigerant circuit 6 flows, and a heat medium flow path (not shown) through which the heat medium circulating in the heat medium circuit 7 flows. (not shown) for heat exchange between the refrigerant and the heat medium.
  • the heat medium circuit 7 is formed by connecting the heat medium flow paths of the pump 41, the flow control valve 42, the heat medium heat exchanger 43, and the refrigerant heat medium heat exchanger 12A through the heat medium pipes 44.
  • the pump 41 is provided in the heat medium pipe 44 and conveys the heat medium to the refrigerant heat medium heat exchanger 12A.
  • the flow rate adjustment valve 42 is provided in the heat medium pipe 44 and adjusts the flow rate of the heat medium circulating through the heat medium circuit 7 .
  • the heat medium heat exchanger 43 exchanges heat between the heat medium and air and supplies hot or cold heat to the heat medium.
  • the heat medium is a fluid different from the refrigerant, such as water.
  • the refrigerant heat medium heat exchanger 12A of the sixth embodiment is not a so-called air-cooled heat exchanger that exchanges heat between the refrigerant and the air as in the first embodiment. It functions as a so-called water-cooled heat exchanger that exchanges heat with the heat medium that has been heat-exchanged in the vessel 43 .
  • the heat source side control device 19 of Embodiment 6 controls the operation of the pump 41 and the flow control valve 42 connected by wire or wirelessly.
  • the heat source side control device 19 controls the operating frequency of the pump 41 and the degree of opening of the flow control valve 42 based on the detection results of the sensors described in the first embodiment. Further, the heat source side control device 19 of the sixth embodiment performs the control described in the first embodiment when refrigerant leakage is detected in any one of the heat load devices 2a to 2c.
  • FIG. 14 is a diagram for explaining the cooling operation of the air conditioner 100A according to Embodiment 6.
  • FIG. 15 is a diagram for explaining the heating operation of the air conditioner 100A according to Embodiment 6.
  • FIG. 14 and 15 the flow of the refrigerant in the refrigerant circuit 6 during cooling and heating is the same as in the first embodiment, and thus the explanation is omitted.
  • the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred.
  • the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases.
  • Embodiment 6 in the air conditioner 100A having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
  • the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
  • the heat source side control device 19 of Embodiment 6 may perform the control described in Embodiments 2, 4, or 5 in addition to the control described in Embodiment 1. Further, instead of lowering the air volume of the fan 15 from the current air volume as in Embodiment 3, the operating frequency of the pump 41 may be lowered from the current operating frequency, or the flow control valve 42 may The opening may be made smaller than the current opening. Also in this case, an effect equivalent to that of the third embodiment can be obtained.
  • the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure.
  • the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure.
  • two or more of the controls described in Embodiments 2 to 5 are combined. , may be performed.
  • each of the heat load devices 2a to 2c exemplifies a form in which the cooling operation and the heating operation cannot be mixed at the same time. It is also possible to apply the present disclosure to any form.
  • one or a plurality of devices that control the solenoid valves 31a to 31c or the load-side expansion valves 22a to 22c of the cutoff devices 3a to 3c correspond to the "control device" of the present disclosure.
  • the heat source side control device 19 controls the electromagnetic valves 31a to 31c of the blocking devices 3a to 3c, and the load side control devices 25a to 25c control the load side expansion valves 22a to 25c. 22c is controlled.
  • either the heat source side control device 19 or the load side control devices 25a to 25c is omitted, and the function of controlling the load side expansion valves 22a to 22c and the solenoid valves 31a to 31c is replaced by any one or a plurality of "control devices.” ” may be integrated into However, the heat source side control device 19 and the load side control devices 25a to 25c may be provided outside the housings of the heat source device 1 and the heat load devices 2a to 2c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner comprises: a first heat load device having a first load-side heat exchanger that exchanges heat between a refrigerant and air in a target space and a first load-side expansion valve for expanding the refrigerant flowing into the first load-side heat exchanger or the refrigerant flowing out from the first load-side heat exchanger; a second heat load device having a second load-side heat exchanger that exchanges heat between a refrigerant and air in the target space and a second load-side expansion valve for expanding the refrigerant flowing into the second load-side heat exchanger or the refrigerant flowing out from the second load-side heat exchanger; a heat source machine that has a compressor for compressing the refrigerants and supplies the refrigerants to the first and second load-side heat exchangers; a refrigerant pipe through which the refrigerants flow therein and with which the first and second heat load devices are connected in parallel to the heat source machine; an electromagnetic valve that is provided to the refrigerant pipe and that adjusts the amount of the refrigerant flowing into the first heat load device or the refrigerant flowing out from the first heat load device; and a control device. The control device closes the first load-side expansion valve and the electromagnet valve and sets the opening of the second load-side expansion valve larger than the opening at present time when leakage of the refrigerant is detected in the first heat load device while leakage of the refrigerant is not detected in the second heat load device.

Description

空気調和装置air conditioner
 本開示は、冷媒漏洩時に冷媒の流通を遮断する電磁弁を有する空気調和装置に関する。 The present disclosure relates to an air conditioner having a solenoid valve that cuts off the flow of refrigerant when refrigerant leaks.
 従来、熱源機に対して並列に接続された複数の熱負荷機器を有し、複数の熱負荷機器のそれぞれに対応して、冷媒漏洩時に冷媒の流通を遮断する電磁弁を有する空気調和装置が知られている。特許文献1には、このような例として、熱源機と複数の熱負荷機器とを接続する2本の配管のうち、一方の配管に上記した電磁弁が設けられ、他方の配管に膨張弁が設けられた空気調和装置が開示されている。特許文献1の空気調和装置は、冷媒漏洩が検知された熱負荷機器に対応する膨張弁及び電磁弁のみを閉止し、当該熱負荷機器への冷媒の流通を遮断する一方で、他の熱負荷機器では運転を継続するようにしている。 Conventionally, there is an air conditioner that has a plurality of heat load devices connected in parallel to a heat source device, and that has solenoid valves that cut off the flow of refrigerant when refrigerant leaks, corresponding to each of the plurality of heat load devices. Are known. As such an example, Patent Document 1 discloses that, of two pipes connecting a heat source device and a plurality of heat load devices, one pipe is provided with the above-described solenoid valve, and the other pipe is provided with an expansion valve. An air conditioner provided is disclosed. The air conditioner of Patent Document 1 closes only the expansion valve and the solenoid valve corresponding to the heat load device in which refrigerant leakage has been detected, and cuts off the flow of refrigerant to the heat load device. The equipment continues to operate.
特許第5517789号公報Japanese Patent No. 5517789
 特許文献1の空気調和装置を含め、一般に、空気調和装置では、冷媒漏洩が発生した場合、膨張弁が完全に閉止するまでの間は冷媒漏洩が継続する。このため、空気調和装置においては、冷媒漏洩が検知された熱負荷機器における冷媒の流通を遮断する場合であっても、冷媒漏洩量の削減が求められる。 Generally, in air conditioners, including the air conditioner of Patent Document 1, when refrigerant leakage occurs, refrigerant leakage continues until the expansion valve is completely closed. Therefore, in the air conditioner, even when the flow of the refrigerant in the heat load device in which the refrigerant leakage is detected is cut off, the amount of refrigerant leakage is required to be reduced.
 本開示は、上記課題を解決するためのものであり、熱源機に対して並列に接続された複数の熱負荷機器を有した空気調和装置において、熱負荷機器側での冷媒漏洩の発生時における冷媒漏洩量を削減する空気調和装置を提供することを目的とする。 The present disclosure is intended to solve the above problems, and in an air conditioner having a plurality of heat load devices connected in parallel to a heat source device, when refrigerant leakage occurs on the heat load device side An object of the present invention is to provide an air conditioner that reduces the amount of refrigerant leakage.
 本開示に係る空気調和装置は、対象空間の空気と冷媒とを熱交換させる第1負荷側熱交換器、及び第1負荷側熱交換器に流入する冷媒、又は第1負荷側熱交換器から流出した冷媒を膨張させる第1負荷側膨張弁を有する第1熱負荷機器と、対象空間の空気と冷媒とを熱交換させる第2負荷側熱交換器、及び第2負荷側熱交換器に流入する冷媒、又は第2負荷側熱交換器から流出した冷媒を膨張させる第2負荷側膨張弁を有する第2熱負荷機器と、冷媒を圧縮する圧縮機を有し、第1負荷側熱交換器及び第2負荷側熱交換器に冷媒を供給する熱源機と、内部に冷媒が流れ、熱源機に対して、第1熱負荷機器と第2熱負荷機器とを並列に接続する冷媒配管と、冷媒配管に設けられ、第1熱負荷機器に流入する冷媒、又は第1熱負荷機器から流出する冷媒の量を調整する電磁弁と、制御装置と、を備え、制御装置は、第1熱負荷機器における冷媒の漏洩を検知し、且つ第2熱負荷機器における冷媒の漏洩を検知していない場合、第1負荷側膨張弁及び電磁弁を閉止すると共に、第2負荷側膨張弁の開度を現在の開度よりも大きくする。 The air conditioner according to the present disclosure includes a first load-side heat exchanger that exchanges heat between the air in the target space and the refrigerant, and the refrigerant flowing into the first load-side heat exchanger, or from the first load-side heat exchanger. Flows into a first heat load device having a first load-side expansion valve that expands the outflowing refrigerant, a second load-side heat exchanger that exchanges heat between the air in the target space and the refrigerant, and the second load-side heat exchanger. A second heat load device having a second load-side expansion valve for expanding the refrigerant flowing out of the second load-side heat exchanger or the refrigerant flowing out from the second load-side heat exchanger, a compressor for compressing the refrigerant, and a first load-side heat exchanger and a heat source device that supplies refrigerant to the second load side heat exchanger, a refrigerant pipe that flows inside and connects the first heat load device and the second heat load device in parallel to the heat source device; a solenoid valve provided in the refrigerant pipe for adjusting the amount of refrigerant flowing into the first heat load device or the amount of refrigerant flowing out of the first heat load device; When refrigerant leakage in the device is detected and refrigerant leakage in the second heat load device is not detected, the first load side expansion valve and the solenoid valve are closed, and the opening degree of the second load side expansion valve is increased. Increase the current opening.
 本開示の空気調和装置では、冷媒漏洩が発生した熱負荷機器に対応する負荷側膨張弁及び電磁弁を閉止すると共に、冷媒漏洩が発生していない熱負荷機器の膨張弁の開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器に供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器に供給される冷媒量が減少する。このため、本開示によれば、熱源機に対して並列に接続された複数の熱負荷機器を有した空気調和装置において、熱負荷機器側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 In the air conditioner of the present disclosure, the load-side expansion valve and the solenoid valve corresponding to the heat load equipment in which refrigerant leakage has occurred are closed, and the opening degree of the expansion valve of the heat load equipment in which refrigerant leakage has not occurred is set to the current value. Enlarge more than opening. As a result, the amount of refrigerant supplied to the heat load equipment in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load equipment in which refrigerant leakage has occurred decreases. Therefore, according to the present disclosure, in an air conditioner having a plurality of heat load devices connected in parallel to a heat source device, the amount of refrigerant leakage when refrigerant leakage occurs on the heat load device side is reduced. be able to.
実施の形態1に係る空気調和装置の回路図である。1 is a circuit diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の冷房運転を説明するための図である。4 is a diagram for explaining the cooling operation of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の暖房運転を説明するための図である。4 is a diagram for explaining the heating operation of the air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の機能ブロック図である。1 is a functional block diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る熱源側制御装置及び負荷側制御装置の動作を示すフローチャートである。4 is a flow chart showing operations of the heat source side control device and the load side control device according to Embodiment 1. FIG. 実施の形態1及び比較例に係る冷房漏洩時における負荷側膨張弁の開度の制御を説明するための図である。FIG. 4 is a diagram for explaining the control of the opening degree of the load-side expansion valve at the time of cooling leakage according to the first embodiment and the comparative example; 実施の形態1及び比較例に係る冷房漏洩量を説明するための図である。FIG. 5 is a diagram for explaining cooling leakage amounts according to the first embodiment and a comparative example; 実施の形態2に係る冷房漏洩時における熱源側膨張弁の開度の制御を説明するための図である。FIG. 10 is a diagram for explaining control of the degree of opening of the heat source side expansion valve at the time of cooling leakage according to the second embodiment; 実施の形態2及び比較例に係る冷房漏洩量を説明するための図である。FIG. 10 is a diagram for explaining cooling leakage amounts according to the second embodiment and a comparative example; 実施の形態3及び比較例に係る冷房漏洩量を説明するための図である。FIG. 11 is a diagram for explaining cooling leakage amounts according to the third embodiment and a comparative example; 実施の形態4及び比較例に係る冷房漏洩量を説明するための図である。FIG. 11 is a diagram for explaining cooling leakage amounts according to the fourth embodiment and a comparative example; 実施の形態5及び比較例に係る冷房漏洩量を説明するための図である。FIG. 11 is a diagram for explaining cooling leakage amounts according to Embodiment 5 and a comparative example; 実施の形態6に係る空気調和装置の回路図である。FIG. 11 is a circuit diagram of an air conditioner according to Embodiment 6. FIG. 実施の形態6に係る空気調和装置の冷房運転を説明するための図である。FIG. 12 is a diagram for explaining the cooling operation of the air conditioner according to Embodiment 6; 実施の形態6に係る空気調和装置の暖房運転を説明するための図である。FIG. 12 is a diagram for explaining the heating operation of the air conditioner according to Embodiment 6;
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Embodiments will be described below based on the drawings. In addition, in each figure, the same reference numerals denote the same or corresponding parts, and this is common throughout the specification. Also, the forms of the constituent elements shown in the entire specification are merely examples and are not limited to these descriptions. Furthermore, in the drawings below, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置100の回路図である。実施の形態1の空気調和装置100は、例えばビル等の建物内の室内等、複数の対象空間の空調を行うものである。図1に示すように、空気調和装置100は、熱源機1、複数の熱負荷機器2a~2c、及び遮断装置3a~3cを備えている。なお、熱負荷機器2aが本開示の「第1熱負荷機器」に相当し、熱負荷機器2bが本開示の「第2熱負荷機器」に相当する。また、熱負荷機器は、2台又は4台以上であってもよい。
Embodiment 1.
FIG. 1 is a circuit diagram of an air conditioner 100 according to Embodiment 1. FIG. The air conditioning apparatus 100 of Embodiment 1 air-conditions a plurality of target spaces such as a room in a building such as a building. As shown in FIG. 1, the air conditioner 100 includes a heat source device 1, a plurality of heat load devices 2a to 2c, and cutoff devices 3a to 3c. The heat load device 2a corresponds to the "first heat load device" of the present disclosure, and the heat load device 2b corresponds to the "second heat load device" of the present disclosure. Also, the number of heat load devices may be two or four or more.
 熱源機1は、例えば、対象空間の外に設置された室外機である。空気調和装置100の熱負荷機器2a~2cは、熱源機1から供給される冷媒により対象空間に温熱又は冷熱を供給する。熱負荷機器2a~2cは、例えば、対象空間に設置され、冷房又は暖房を行う室内機である。熱負荷機器2a~2cは、熱源機1と冷媒が流れる冷媒配管4及び5で接続されている。冷媒配管4及び5は、熱負荷機器2a~2cのそれぞれに対して分岐している。このため、各熱負荷機器2a~2cは、熱源機1に対して並列に接続されている。 The heat source unit 1 is, for example, an outdoor unit installed outside the target space. The heat load devices 2a to 2c of the air conditioner 100 supply heat or cold heat to the target space using the refrigerant supplied from the heat source device 1. FIG. The heat load devices 2a to 2c are, for example, indoor units that are installed in the target space and perform cooling or heating. The heat load devices 2a to 2c are connected to the heat source device 1 by refrigerant pipes 4 and 5 through which refrigerant flows. The refrigerant pipes 4 and 5 are branched to the heat load devices 2a to 2c, respectively. Therefore, the heat load devices 2a to 2c are connected in parallel to the heat source device 1. FIG.
 熱源機1は、圧縮機10、流路切替弁11、冷媒熱交換器12、熱源側膨張弁13、アキュムレータ14、ファン15、バイパス弁16、熱源側冷媒配管17、バイパス配管18、及び熱源側制御装置19を備える。圧縮機10は、低温且つ低圧のガス冷媒を吸入し、圧縮して高温且つ高圧のガス冷媒を吐出する。圧縮機10は、例えば容量が制御可能なインバータタイプの圧縮機10である。 The heat source device 1 includes a compressor 10, a flow path switching valve 11, a refrigerant heat exchanger 12, a heat source side expansion valve 13, an accumulator 14, a fan 15, a bypass valve 16, a heat source side refrigerant pipe 17, a bypass pipe 18, and a heat source side. A controller 19 is provided. The compressor 10 sucks a low-temperature, low-pressure gas refrigerant, compresses it, and discharges a high-temperature, high-pressure gas refrigerant. The compressor 10 is, for example, an inverter type compressor 10 whose capacity is controllable.
 流路切替弁11は、例えば四方弁である。流路切替弁11は、熱負荷機器2a~2cの運転に応じて圧縮機10から吐出された冷媒の流路を切替える。詳細は後述するが、流路切替弁11は、冷房運転時は図2に矢印で示す流路に切り替え、暖房運転時は図3に矢印で示す流路に切り替える。なお、流路切替弁11は、三方弁又は二方弁を組み合わせたものでもよい。 The channel switching valve 11 is, for example, a four-way valve. The channel switching valve 11 switches the channel of the refrigerant discharged from the compressor 10 according to the operation of the heat load devices 2a-2c. Although the details will be described later, the flow path switching valve 11 switches to the flow path indicated by the arrow in FIG. 2 during the cooling operation, and switches to the flow path indicated by the arrow in FIG. 3 during the heating operation. In addition, the channel switching valve 11 may be a combination of a three-way valve and a two-way valve.
 冷媒熱交換器12は、例えばフィンチューブ式の熱交換器である。冷媒熱交換器12は、ファン15によって供給される空気と冷媒との間で熱交換を行う。冷媒熱交換器12は、冷房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、冷媒熱交換器12は、暖房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。熱源側膨張弁13は、開度が可変に制御される電子式膨張弁である。熱源側膨張弁13は、冷媒熱交換器12と直列に接続され、冷媒熱交換器12から流出する冷媒又は冷媒熱交換器12に流入する冷媒を減圧して膨張させる。 The refrigerant heat exchanger 12 is, for example, a fin-tube heat exchanger. The refrigerant heat exchanger 12 exchanges heat between the air supplied by the fan 15 and the refrigerant. The refrigerant heat exchanger 12 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. Further, the refrigerant heat exchanger 12 functions as an evaporator during heating operation, and evaporates the refrigerant to gasify it. The heat source side expansion valve 13 is an electronic expansion valve whose opening degree is variably controlled. The heat source side expansion valve 13 is connected in series with the refrigerant heat exchanger 12 and reduces the pressure of the refrigerant flowing out of the refrigerant heat exchanger 12 or the refrigerant flowing into the refrigerant heat exchanger 12 to expand the refrigerant.
 アキュムレータ14は、圧縮機10の吸入側に設けられ、液冷媒とガス冷媒とを分離する機能と、余剰冷媒を貯留する機能とを有している。ファン15は、例えばプロペラファンである。ファン15は、熱源機1の周辺の空気を冷媒熱交換器12に供給する。ファン15の回転数が熱源側制御装置19によって制御されることで、冷媒熱交換器12の凝縮能力又は蒸発能力が制御される。バイパス弁16は、バイパス配管18に設けられている。バイパス弁16は、熱源側制御装置19によって開度が制御されることで、バイパス配管18を流通する冷媒の量を調整する。 The accumulator 14 is provided on the suction side of the compressor 10 and has a function of separating liquid refrigerant and gas refrigerant and a function of storing excess refrigerant. Fan 15 is, for example, a propeller fan. The fan 15 supplies air around the heat source device 1 to the refrigerant heat exchanger 12 . The condensing ability or the evaporating ability of the refrigerant heat exchanger 12 is controlled by controlling the rotational speed of the fan 15 by the heat source side control device 19 . A bypass valve 16 is provided in a bypass pipe 18 . The bypass valve 16 adjusts the amount of refrigerant flowing through the bypass pipe 18 by having its opening controlled by the heat source side control device 19 .
 熱源側冷媒配管17は、空気調和装置100の配管のうち、熱源機1の筐体(不図示)内部の配管である。熱源側冷媒配管17は、熱源側膨張弁13と、冷媒熱交換器12と、アキュムレータ14と、圧縮機10と、流路切替弁11とをこの順番で接続する。熱源側冷媒配管17の流路切替弁11側の端部は、冷媒配管4に接続されている。同様に、熱源側冷媒配管17の熱源側膨張弁13側の端部は、冷媒配管5に接続されている。バイパス配管18は、圧縮機10の高圧側と低圧側とを接続する配管である。具体的に、バイパス配管18は、圧縮機10の吸入側に接続された熱源側冷媒配管17と、アキュムレータ14への流入側、即ち圧縮機10の吐出側に接続された熱源側冷媒配管17とを接続する。 The heat source side refrigerant pipe 17 is the pipe inside the housing (not shown) of the heat source device 1 among the pipes of the air conditioner 100 . The heat source side refrigerant pipe 17 connects the heat source side expansion valve 13, the refrigerant heat exchanger 12, the accumulator 14, the compressor 10, and the flow path switching valve 11 in this order. An end portion of the heat source side refrigerant pipe 17 on the flow path switching valve 11 side is connected to the refrigerant pipe 4 . Similarly, the heat source side expansion valve 13 side end of the heat source side refrigerant pipe 17 is connected to the refrigerant pipe 5 . The bypass pipe 18 is a pipe that connects the high pressure side and the low pressure side of the compressor 10 . Specifically, the bypass pipe 18 includes a heat source side refrigerant pipe 17 connected to the suction side of the compressor 10 and a heat source side refrigerant pipe 17 connected to the inflow side of the accumulator 14, that is, the discharge side of the compressor 10. to connect.
 熱源側制御装置19は、有線又は無線によって接続された、圧縮機10、流路切替弁11、熱源側膨張弁13、ファン15、及びバイパス弁16の動作を制御する。熱源側制御装置19は、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGA等の専用のハードウェアもしくはその両方で構成される。熱源側制御装置19は、各センサによる検知結果に基づき、圧縮機10の駆動周波数、流路切替弁11の流路、熱源側膨張弁13及びバイパス弁16の開度、並びにファン15の回転数を制御する。センサとしては、熱源機1に搭載された冷媒圧力を検知する圧力センサ(不図示)及び冷媒温度又は外気温度を検知する温度センサ(不図示)等が挙げられる。 The heat source side control device 19 controls the operation of the compressor 10, the flow path switching valve 11, the heat source side expansion valve 13, the fan 15, and the bypass valve 16, which are connected by wire or wirelessly. The heat source side control device 19 is composed of a processing device including a memory for storing data and programs required for control and a CPU for executing the program, dedicated hardware such as ASIC or FPGA, or both. The heat source side control device 19 controls the drive frequency of the compressor 10, the flow path of the flow path switching valve 11, the opening degrees of the heat source side expansion valve 13 and the bypass valve 16, and the rotation speed of the fan 15 based on the detection results of each sensor. to control. Examples of sensors include a pressure sensor (not shown) mounted on the heat source device 1 for detecting refrigerant pressure and a temperature sensor (not shown) for detecting refrigerant temperature or outside air temperature.
 また、熱源側制御装置19は、有線又は無線によって接続された、熱負荷機器2a~2cの後述する負荷側制御装置25a~25cとの間でデータ通信を行うことができる。また、熱源側制御装置19は、冷媒漏洩の発生時において、有線又は無線によって接続された、遮断装置3a~3cの後述する電磁弁31a~31cを制御する。熱源側制御装置19は、冷媒漏洩の発生時には、熱負荷機器2a~2cの後述する負荷側膨張弁22a~22cを、熱負荷機器2a~2cの後述する負荷側制御装置25aを介して間接的に制御する。冷媒漏洩の発生時におけるこれらの機器の制御についての説明は、後述する。 In addition, the heat source side control device 19 can perform data communication with the load side control devices 25a to 25c (to be described later) of the heat load devices 2a to 2c connected by wire or wirelessly. Further, the heat source side control device 19 controls solenoid valves 31a to 31c, which are connected by wire or wirelessly and will be described later, of the blocking devices 3a to 3c when refrigerant leakage occurs. When refrigerant leakage occurs, the heat source side control device 19 indirectly controls the load side expansion valves 22a to 22c of the heat load devices 2a to 2c via the load side control devices 25a of the heat load devices 2a to 2c, which will be described later. to control. The control of these devices when refrigerant leakage occurs will be described later.
 熱負荷機器2a~2cは、対象空間の冷房負荷又は暖房負荷に対し、熱源機1によって生成された熱を供給する。熱負荷機器2aは、負荷側熱交換器21a、負荷側膨張弁22a、冷媒漏洩検知センサ23a、負荷側冷媒配管24a、及び負荷側制御装置25aを備えている。負荷側熱交換器21aは、例えばフィンチューブ式の熱交換器である。負荷側熱交換器21aは、対象空間の空気と冷媒との間で熱交換を行う。負荷側熱交換器21aは、暖房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、負荷側熱交換器21aは、冷房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。 The heat load devices 2a to 2c supply the heat generated by the heat source device 1 to the cooling load or heating load of the target space. The heat load device 2a includes a load side heat exchanger 21a, a load side expansion valve 22a, a refrigerant leakage detection sensor 23a, a load side refrigerant pipe 24a, and a load side controller 25a. The load-side heat exchanger 21a is, for example, a fin-tube heat exchanger. The load-side heat exchanger 21a exchanges heat between the air in the target space and the refrigerant. The load-side heat exchanger 21a functions as a condenser during heating operation, and condenses and liquefies the refrigerant. In addition, the load-side heat exchanger 21a functions as an evaporator during cooling operation, and evaporates the refrigerant into gas.
 負荷側膨張弁22aは、開度が可変に制御される電子式膨張弁である。負荷側膨張弁22aは、負荷側熱交換器21aと直列に接続され、負荷側熱交換器21aから流出する冷媒又は負荷側熱交換器21aに流入する冷媒を減圧して膨張させる。 The load-side expansion valve 22a is an electronic expansion valve whose opening degree is variably controlled. The load-side expansion valve 22a is connected in series with the load-side heat exchanger 21a, and decompresses and expands the refrigerant flowing out of the load-side heat exchanger 21a or the refrigerant flowing into the load-side heat exchanger 21a.
 冷媒漏洩検知センサ23aは、熱負荷機器2aの筐体(不図示)内に設けられ、負荷側熱交換器21a、負荷側膨張弁22a、又は負荷側冷媒配管24aからの冷媒の漏洩を検知する。冷媒の漏洩の検知方法自体には、例えば、筐体内の冷媒ガス濃度、又は負荷側冷媒配管24aを流れる冷媒の圧力若しくは温度の計測など、従来用いられている種々の方法が適用される。冷媒漏洩検知センサ23aは、熱負荷機器2aから冷媒の漏洩が発生していることを検知した場合、有線又は無線によって接続された負荷側制御装置25aにその旨を示す検知信号を送信する。 The refrigerant leakage detection sensor 23a is provided in a housing (not shown) of the heat load device 2a, and detects refrigerant leakage from the load side heat exchanger 21a, the load side expansion valve 22a, or the load side refrigerant pipe 24a. . Various conventionally used methods such as measurement of the refrigerant gas concentration in the housing or the pressure or temperature of the refrigerant flowing through the load-side refrigerant pipe 24a can be applied to the refrigerant leakage detection method itself. When the refrigerant leakage detection sensor 23a detects that refrigerant is leaking from the heat load device 2a, it transmits a detection signal indicating the fact to the load side control device 25a connected by wire or wirelessly.
 負荷側冷媒配管24aは、空気調和装置100の配管のうち、熱負荷機器2aの筐体(不図示)内部の配管である。負荷側冷媒配管24aは、負荷側熱交換器21aと、負荷側膨張弁22aとを接続する。負荷側冷媒配管24aの負荷側熱交換器21a側の端部は、冷媒配管4に接続されている。同様に、負荷側冷媒配管24aの負荷側膨張弁22a側の端部は、冷媒配管5に接続されている。 The load-side refrigerant pipe 24a is, among the pipes of the air conditioner 100, the pipe inside the housing (not shown) of the heat load device 2a. The load-side refrigerant pipe 24a connects the load-side heat exchanger 21a and the load-side expansion valve 22a. The load-side heat exchanger 21 a side end of the load-side refrigerant pipe 24 a is connected to the refrigerant pipe 4 . Similarly, the load-side expansion valve 22 a side end of the load-side refrigerant pipe 24 a is connected to the refrigerant pipe 5 .
 負荷側制御装置25aは、有線又は無線によって接続された負荷側膨張弁22aの動作を制御する。負荷側制御装置25aは、制御に必要なデータ及びプログラムを記憶するメモリと、プログラムを実行するCPUとを備える処理装置、又はASIC又はFPGA等の専用のハードウェアもしくはその両方で構成される。負荷側制御装置25aは、対象空間の温度を検知する温度センサ(不図示)、並びに熱負荷機器2aの出口及び入口における冷媒の温度を検知する温度センサ(不図示)の検知結果に基づき、負荷側膨張弁22aの開度を制御する。温度センサは、例えばサーミスタである。なお、負荷側制御装置25aは、例えば対象空間の温度と目標温度との差に応じて、負荷側膨張弁22aの開度の回転数を制御する。 The load-side control device 25a controls the operation of the load-side expansion valve 22a connected by wire or wirelessly. The load-side control device 25a is composed of a processing device that includes a memory that stores data and programs required for control and a CPU that executes the program, dedicated hardware such as ASIC or FPGA, or both. The load-side control device 25a controls the load based on the detection results of a temperature sensor (not shown) that detects the temperature of the target space and a temperature sensor (not shown) that detects the temperature of the refrigerant at the outlet and inlet of the heat load device 2a. Controls the degree of opening of the side expansion valve 22a. A temperature sensor is, for example, a thermistor. Note that the load-side control device 25a controls the rotational speed of the opening of the load-side expansion valve 22a according to, for example, the difference between the temperature of the target space and the target temperature.
 また、負荷側制御装置25aは、冷媒漏洩検知センサ23aから冷媒の漏洩が発生していることを示す検知信号を受信すると、漏洩発生信号を熱源側制御装置19に送信する。また、負荷側制御装置25aは、略同時に負荷側膨張弁22aを閉止する。漏洩発生信号には、冷媒の漏洩が何れの熱負荷機器で発生したかを示す情報が含まれている。なお、冷媒漏洩検知センサ23aは筐体内の冷媒ガス濃度、又は負荷側冷媒配管24aを流れる冷媒の圧力若しくは温度を計測した結果を負荷側制御装置25aに送信する機能のみを有するようにしてもよい。この場合、負荷側制御装置25aによって、冷媒漏洩検知センサ23aの計測結果に基づいて、冷媒が漏洩しているか否かが判定される。 Also, when the load-side control device 25 a receives a detection signal indicating that the refrigerant is leaking from the refrigerant leakage detection sensor 23 a, it transmits a leakage occurrence signal to the heat source-side control device 19 . In addition, the load-side control device 25a closes the load-side expansion valve 22a substantially at the same time. The leakage occurrence signal includes information indicating in which heat load device leakage of the refrigerant has occurred. The refrigerant leakage detection sensor 23a may have only the function of transmitting the result of measuring the refrigerant gas concentration in the housing or the pressure or temperature of the refrigerant flowing through the load-side refrigerant pipe 24a to the load-side control device 25a. . In this case, the load-side control device 25a determines whether or not the refrigerant is leaking based on the measurement result of the refrigerant leakage detection sensor 23a.
 熱負荷機器2b及び2cは、熱負荷機器2aと同様の構成を有する。つまり、熱負荷機器2bは、負荷側熱交換器21b、負荷側膨張弁22b、冷媒漏洩検知センサ23b、負荷側冷媒配管24b、及び負荷側制御装置25bを備えている。同様に、熱負荷機器2cは、負荷側熱交換器21c、負荷側膨張弁22c、冷媒漏洩検知センサ23c、負荷側冷媒配管24c、及び負荷側制御装置25cを備えている。熱負荷機器2b及び2cが有する各機器自体の構成についても、熱負荷機器2aと同様であるため、説明を割愛する。なお、負荷側熱交換器21aが本開示の「第1負荷側熱交換器」に相当し、負荷側熱交換器21bが本開示の「第2負荷側熱交換器」に相当する。また、負荷側膨張弁22aが本開示の「第1負荷側膨張弁」に相当し、負荷側膨張弁22bが本開示の「第2負荷側膨張弁」に相当する。 The heat load devices 2b and 2c have the same configuration as the heat load device 2a. That is, the heat load device 2b includes a load side heat exchanger 21b, a load side expansion valve 22b, a refrigerant leakage detection sensor 23b, a load side refrigerant pipe 24b, and a load side control device 25b. Similarly, the heat load device 2c includes a load side heat exchanger 21c, a load side expansion valve 22c, a refrigerant leakage detection sensor 23c, a load side refrigerant pipe 24c, and a load side control device 25c. The configuration of each device included in the heat load devices 2b and 2c is also the same as that of the heat load device 2a, so description thereof will be omitted. The load-side heat exchanger 21a corresponds to the "first load-side heat exchanger" of the present disclosure, and the load-side heat exchanger 21b corresponds to the "second load-side heat exchanger" of the present disclosure. Further, the load-side expansion valve 22a corresponds to the "first load-side expansion valve" of the present disclosure, and the load-side expansion valve 22b corresponds to the "second load-side expansion valve" of the present disclosure.
熱源機1の、熱源側膨張弁13、冷媒熱交換器12、アキュムレータ14、圧縮機10、及び流路切替弁11と、熱負荷機器2a~2cの、負荷側熱交換器21a~21c及び負荷側膨張弁22a~22cと、電磁弁31a~31cとが熱源側冷媒配管17、及び負荷側冷媒配管24a~24cによって接続されることで冷媒回路6が構成されている。 The heat source side expansion valve 13, the refrigerant heat exchanger 12, the accumulator 14, the compressor 10, and the flow path switching valve 11 of the heat source device 1, and the load side heat exchangers 21a to 21c and the load A refrigerant circuit 6 is configured by connecting the side expansion valves 22a to 22c and the solenoid valves 31a to 31c by the heat source side refrigerant pipe 17 and the load side refrigerant pipes 24a to 24c.
 遮断装置3aは、電磁弁31aを有している。電磁弁31aは、冷媒配管4の分岐部分のうち、熱負荷機器2aに対応する位置に設けられている。電磁弁31aは、遮断装置3aの筐体(不図示)に格納されている。電磁弁31aは、熱負荷機器2aに流通する冷媒の流量を調整する。電磁弁31aは、熱負荷機器2aから冷媒の漏洩が発生した場合に熱源側制御装置19によって閉止するよう制御され、熱負荷機器2aにおける冷媒の流通、即ち熱負荷機器2aへの冷媒の流入、及び熱負荷機器2aからの冷媒の流出を遮断する。 The shutoff device 3a has an electromagnetic valve 31a. The solenoid valve 31a is provided at a branched portion of the refrigerant pipe 4 at a position corresponding to the heat load device 2a. The electromagnetic valve 31a is housed in a housing (not shown) of the cutoff device 3a. The solenoid valve 31a adjusts the flow rate of refrigerant flowing through the heat load device 2a. The solenoid valve 31a is controlled to be closed by the heat source side control device 19 when refrigerant leakage occurs from the heat load device 2a, and the flow of the refrigerant in the heat load device 2a, that is, the inflow of the refrigerant into the heat load device 2a, and block the outflow of the refrigerant from the heat load device 2a.
 遮断装置3b及び3cは、遮断装置3aと同様の構成を有する。つまり、遮断装置3bは、熱負荷機器2bに対応した電磁弁31bを備えている。同様に、遮断装置3cは、熱負荷機器2cに対応した電磁弁31cを備えている。 The blocking devices 3b and 3c have the same configuration as the blocking device 3a. In other words, the cutoff device 3b includes an electromagnetic valve 31b corresponding to the heat load device 2b. Similarly, the cutoff device 3c includes an electromagnetic valve 31c corresponding to the heat load device 2c.
 空気調和装置100は、熱負荷機器2a~2cに対するリモコン(不図示)等からの指示に基づいて、冷房運転又は暖房運転を実施する。冷房運転と暖房運転は、熱源機1の流路切替弁11を切り替えることで実現する。各運転における冷媒の流れについて以下に説明する。図2は、実施の形態1に係る空気調和装置100の冷房運転を説明するための図である。図2に示すように、冷房運転では、圧縮機10から吐出された高温且つ高圧のガス冷媒が、流路切替弁11を通って冷媒熱交換器12に流入する。冷媒熱交換器12に流入した冷媒は、ファン15により供給される空気と熱交換して凝縮し、液化する。冷媒熱交換器12から流出した冷媒は、冷媒配管5を通って熱負荷機器2a~2cに分流される。 The air conditioner 100 performs cooling operation or heating operation based on instructions from a remote controller (not shown) or the like for the heat load devices 2a to 2c. Cooling operation and heating operation are realized by switching the channel switching valve 11 of the heat source device 1 . The refrigerant flow in each operation will be described below. FIG. 2 is a diagram for explaining the cooling operation of the air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 2 , in cooling operation, high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows through the flow path switching valve 11 into the refrigerant heat exchanger 12 . The refrigerant that has flowed into the refrigerant heat exchanger 12 exchanges heat with the air supplied by the fan 15, condenses, and liquefies. The refrigerant flowing out of the refrigerant heat exchanger 12 passes through the refrigerant pipe 5 and is split to the heat load devices 2a to 2c.
 熱負荷機器2a~2cに流入した冷媒は、負荷側膨張弁22a~22cにて減圧され、低温の気液二相冷媒となって負荷側熱交換器21a~21cに流入する。負荷側熱交換器21a~21cに流入した冷媒は、対象空間の空気と熱交換して蒸発し、ガス化する。このとき、冷媒が対象空間の空気から吸熱することによって、熱負荷機器2a~2cが設置された対象空間がそれぞれ冷房される。負荷側熱交換器21aから流出した冷媒は、冷媒配管4を通って熱源機1に流入する。熱源機1に流入した冷媒は、流路切替弁11及びアキュムレータ14を経由して圧縮機10に再度吸入される。 The refrigerant that has flowed into the heat load devices 2a-2c is depressurized by the load-side expansion valves 22a-22c, becomes a low-temperature gas-liquid two-phase refrigerant, and flows into the load-side heat exchangers 21a-21c. The refrigerant that has flowed into the load-side heat exchangers 21a to 21c exchanges heat with the air in the target space, evaporates, and gasifies. At this time, the refrigerant absorbs heat from the air in the target space, thereby cooling the target spaces in which the heat load devices 2a to 2c are installed. The refrigerant flowing out of the load-side heat exchanger 21 a flows into the heat source device 1 through the refrigerant pipe 4 . The refrigerant that has flowed into the heat source device 1 is sucked into the compressor 10 again via the flow path switching valve 11 and the accumulator 14 .
 図3は、実施の形態1に係る空気調和装置100の暖房運転を説明するための図である。図3に示すように、暖房運転では、圧縮機10から吐出された高温且つ高圧のガス冷媒が、流路切替弁11を通って熱源機1から流出し、冷媒配管4を通って熱負荷機器2a~2cに分流される。熱負荷機器2a~2cに流入した冷媒は、負荷側熱交換器21a~21cにおいて、対象空間の空気と熱交換して凝縮し、液化する。このとき冷媒が対象空間の空気に放熱することによって、熱負荷機器2a~2cが設置された対象空間がそれぞれ暖房される。負荷側熱交換器21a~21cから流出した冷媒は、負荷側膨張弁22a~22cで減圧され熱負荷機器2a~2cから流出し、冷媒配管5を通って熱源機1に流入する。 FIG. 3 is a diagram for explaining the heating operation of the air conditioner 100 according to Embodiment 1. FIG. As shown in FIG. 3, in the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out from the heat source device 1 through the flow path switching valve 11, and flows through the refrigerant pipe 4 to the heat load equipment. 2a to 2c. The refrigerant that has flowed into the heat load devices 2a-2c exchanges heat with the air in the target space in the load-side heat exchangers 21a-21c, condenses, and liquefies. At this time, the refrigerant dissipates heat to the air in the target space, thereby heating the target spaces in which the heat load devices 2a to 2c are installed. The refrigerant flowing out of the load-side heat exchangers 21a-21c is decompressed by the load-side expansion valves 22a-22c, flows out of the heat load devices 2a-2c, and flows through the refrigerant pipe 5 into the heat source device 1.
 熱源機1に流入した冷媒は、冷媒熱交換器12に流入する。冷媒熱交換器12に流入した冷媒は、ファン15によって供給される空気と熱交換して蒸発し、ガス化する。冷媒熱交換器12から流出した冷媒は、流路切替弁11及びアキュムレータ14を経由して圧縮機10に再度吸入される。 The refrigerant that has flowed into the heat source device 1 flows into the refrigerant heat exchanger 12 . The refrigerant that has flowed into the refrigerant heat exchanger 12 exchanges heat with the air supplied by the fan 15 to evaporate and gasify. The refrigerant that has flowed out of the refrigerant heat exchanger 12 is sucked into the compressor 10 again via the flow switching valve 11 and the accumulator 14 .
 ここで、熱源側制御装置19及び負荷側制御装置25a~25cによる熱負荷機器2a~2cの負荷側膨張弁22a~22c、及び遮断装置3a~3cの電磁弁31a~31cの制御の詳細について説明する。図4は、実施の形態1に係る空気調和装置100の機能ブロック図である。図4に示すように、冷媒漏洩検知センサ23a~23cは、対応する熱負荷機器2a~2cから冷媒の漏洩が発生していることを検知した場合、その旨を示す検知信号を対応する負荷側制御装置25a~25cに送信する。負荷側制御装置25a~25cは、冷媒漏洩検知センサ23a~23cから検知信号を受信する。負荷側制御装置25a~25cは、検知信号を受信すると、漏洩発生信号を熱源側制御装置19に送信する。また、負荷側制御装置25a~25cは、対応する負荷側膨張弁22a~22cを閉止する。また、冷媒漏洩が発生していない負荷側制御装置25aa~25cは、熱源側制御装置19からの指令に基づいて、負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。 Here, the details of the control of the load-side expansion valves 22a-22c of the thermal load devices 2a-2c and the electromagnetic valves 31a-31c of the blocking devices 3a-3c by the heat source-side control device 19 and the load-side control devices 25a-25c will be described. do. FIG. 4 is a functional block diagram of the air conditioner 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 4, when the refrigerant leakage detection sensors 23a to 23c detect that refrigerant is leaking from the corresponding heat load devices 2a to 2c, the detection signals to that effect are sent to the corresponding load side. It is transmitted to the control devices 25a to 25c. The load-side control devices 25a-25c receive detection signals from the refrigerant leakage detection sensors 23a-23c. The load-side control devices 25a to 25c transmit a leak occurrence signal to the heat source-side control device 19 upon receiving the detection signal. Also, the load-side control devices 25a-25c close the corresponding load-side expansion valves 22a-22c. In addition, the load-side control devices 25aa-25c in which no refrigerant leakage has occurred expand the opening degrees of the load-side expansion valves 22a-22c based on the command from the heat source-side control device 19 from the current opening degrees.
 熱源側制御装置19は、負荷側制御装置25a~25cの何れかから漏洩発生信号を受信すると、冷媒の漏洩が発生している熱負荷機器2a~2cに対応する電磁弁31a~31cを閉止する。そして、熱源側制御装置19は、冷媒の漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を大きくするように熱負荷機器2a~2cの負荷側制御装置25a~25cに指令する。具体的に、熱源側制御装置19は、負荷側膨張弁22a~22cが全開でない場合、開度を全開にさせ、負荷側膨張弁22a~22cが既に全開である場合、全開状態を維持させる。 When the heat source side control device 19 receives a leakage occurrence signal from one of the load side control devices 25a to 25c, the heat source side control device 19 closes the electromagnetic valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage is occurring. . Then, the heat source side control device 19 increases the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage does not occur. 25a-25c. Specifically, the heat source side control device 19 fully opens the load side expansion valves 22a to 22c when they are not fully open, and maintains the fully opened state when the load side expansion valves 22a to 22c are already fully open.
 ここで、熱源側制御装置19及び負荷側制御装置25a~25cの動作の順序について説明する。図5は、実施の形態1に係る熱源側制御装置19及び負荷側制御装置25a~25cの動作を示すフローチャートである。また、図5では、左側の列に熱源側制御装置19による処理内容を示し、中央の列に負荷側制御装置25aによる処理内容を示し、右側の列に負荷側制御装置25b及び25cによる処理内容を示している。なお、以下では、説明を簡潔にするため、熱負荷機器2aにおいて冷媒の漏洩が発生し、熱負荷機器2b及び2cにおいて冷媒の漏洩が発生していない場合について例示する。また、冷媒の漏洩が検知されるまで、熱負荷機器2a~2cの負荷側膨張弁22a~22c、及び遮断装置3a~3cの電磁弁31a~31cは、何れも開放されている状態であることを前提として説明する。ただし、負荷側膨張弁22a~22cは、全開未満の開度で開放されている。 Here, the order of operation of the heat source side control device 19 and the load side control devices 25a to 25c will be described. FIG. 5 is a flow chart showing operations of the heat source side control device 19 and the load side control devices 25a to 25c according to the first embodiment. In FIG. 5, the left column shows the processing contents of the heat source side control device 19, the middle column shows the processing contents of the load side control device 25a, and the right column shows the processing contents of the load side control devices 25b and 25c. is shown. In the following, for the sake of simplicity, a case will be exemplified where refrigerant leakage occurs in the heat load device 2a and refrigerant leakage does not occur in the heat load devices 2b and 2c. In addition, the load side expansion valves 22a to 22c of the thermal load devices 2a to 2c and the solenoid valves 31a to 31c of the shutoff devices 3a to 3c are all kept open until the leakage of the refrigerant is detected. will be described as a premise. However, the load-side expansion valves 22a to 22c are opened at an opening degree less than fully open.
 図5に示すように、先ず、冷媒漏洩検知センサ23aによって熱負荷機器2aから冷媒の漏洩が発生していることが検知されると、負荷側制御装置25aは、冷媒漏洩検知センサ23aから送信された検知信号を受信する(ステップS1)。検知信号を受信すると、負荷側制御装置25aは、漏洩発生信号を熱源側制御装置19に送信する(ステップS2)。そして、負荷側制御装置25aは、負荷側膨張弁22aを閉止する(ステップS3)。 As shown in FIG. 5, first, when the refrigerant leakage detection sensor 23a detects that refrigerant is leaking from the heat load device 2a, the load-side control device 25a receives a signal from the refrigerant leakage detection sensor 23a. A detection signal is received (step S1). Upon receiving the detection signal, the load side control device 25a transmits a leakage occurrence signal to the heat source side control device 19 (step S2). Then, the load-side control device 25a closes the load-side expansion valve 22a (step S3).
 熱源側制御装置19は、負荷側制御装置25aから漏洩発生信号を受信すると、冷媒の漏洩が発生している熱負荷機器2aに対応する電磁弁31aを閉止する(ステップS4)。そして、熱源側制御装置19は、冷媒の漏洩が発生していない熱負荷機器2b及び2cの負荷側膨張弁22b及び22cの開度を大きくするように熱負荷機器2b及び2cの負荷側制御装置25b及び25cに指令する(ステップS5)。熱源側制御装置19からの指令を受信した、負荷側制御装置25b及び25cは、負荷側膨張弁22b及び22cの開度を現在の開度よりも拡大する(ステップS6)。なお、ステップS2とステップS3とは、入れ替えるようにしてもよい。 When the heat source side control device 19 receives the leakage occurrence signal from the load side control device 25a, it closes the electromagnetic valve 31a corresponding to the heat load device 2a in which the refrigerant is leaking (step S4). Then, the heat source side control device 19 increases the opening degrees of the load side expansion valves 22b and 22c of the heat load devices 2b and 2c in which refrigerant leakage is not occurring. 25b and 25c (step S5). The load- side control devices 25b and 25c that have received the command from the heat source-side control device 19 increase the opening degrees of the load- side expansion valves 22b and 22c from the current opening degrees (step S6). Note that step S2 and step S3 may be interchanged.
 このように、実施の形態1では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止する。また、この制御と共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を大きくしている。なお、熱負荷機器2aにおいて冷媒の漏洩が発生し、熱負荷機器2b及び2cにおいて冷媒の漏洩が発生していない場合について例示した。しかしながら、熱負荷機器2b又は2cにおいて冷媒の漏洩が発生した場合の負荷側膨張弁22b又は22c、及び電磁弁31b又は31cの制御も同様である。つまり、例えば、熱負荷機器2bにおいて冷媒の漏洩が発生し、熱負荷機器2a及び2cにおいて冷媒の漏洩が発生していない場合、負荷側膨張弁22b及び電磁弁31bを閉止すると共に、負荷側膨張弁22a及び22cの開度を現在の開度よりも拡大する。また、熱負荷機器2a及び2bにおいて冷媒の漏洩が発生し、熱負荷機器2cにおいて冷媒の漏洩が発生していない場合、負荷側膨張弁22a及び22b、並びに電磁弁31a及び31bを閉止すると共に、負荷側膨張弁22cの開度を現在の開度よりも拡大する。 Thus, in Embodiment 1, the load side expansion valves 22a to 22c and the electromagnetic valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed. Along with this control, the opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c in which no refrigerant leakage has occurred are increased. The case where refrigerant leakage occurs in the heat load device 2a and refrigerant leakage does not occur in the heat load devices 2b and 2c has been exemplified. However, the control of the load side expansion valve 22b or 22c and the electromagnetic valve 31b or 31c is the same when refrigerant leakage occurs in the heat load device 2b or 2c. That is, for example, when refrigerant leakage occurs in the heat load device 2b and refrigerant leakage does not occur in the heat load devices 2a and 2c, the load side expansion valve 22b and the electromagnetic valve 31b are closed, and the load side expansion valve 22b and the solenoid valve 31b are closed. The opening degrees of the valves 22a and 22c are increased from the current opening degrees. Further, when refrigerant leakage occurs in the heat load devices 2a and 2b and no refrigerant leakage occurs in the heat load device 2c, the load side expansion valves 22a and 22b and the solenoid valves 31a and 31b are closed, The opening of the load-side expansion valve 22c is increased from the current opening.
 以下では、実施の形態1と比較例とを比較することで、実施の形態1によって得られる効果について説明する。図6は、実施の形態1及び比較例に係る冷房漏洩時における負荷側膨張弁の開度の制御を説明するための図である。図6では、実施の形態1に係る冷媒の漏洩が検知された熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度[pulse]を、冷媒の漏洩が検知された後の経過時間[s]ごとに白抜きの三角で示している。同様に、実施の形態1に係る冷媒の漏洩が検知されていない、つまり、正常な熱負荷機器2a~2cの負荷側膨張弁22a~22cについては、黒い三角で示している。また、比較例に係る冷媒の漏洩が検知された熱負荷機器の負荷側膨張弁については、白抜きの丸で示している。そして、比較例に係る正常な熱負荷機器の負荷側膨張弁については、黒い丸で示している。 The effects obtained by Embodiment 1 will be described below by comparing Embodiment 1 and a comparative example. FIG. 6 is a diagram for explaining control of the opening degree of the load-side expansion valve at the time of cooling leakage according to the first embodiment and the comparative example. In FIG. 6, the opening degrees [pulse] of the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which the refrigerant leakage is detected according to Embodiment 1 are plotted against the elapsed time after the refrigerant leakage is detected. Each [s] is indicated by a white triangle. Similarly, the load-side expansion valves 22a to 22c of the thermal load devices 2a to 2c, in which leakage of the refrigerant is not detected according to Embodiment 1, that is, are normal, are indicated by black triangles. In addition, the load-side expansion valve of the heat load device in which leakage of the refrigerant according to the comparative example was detected is indicated by an outline circle. The load-side expansion valves of the normal thermal load equipment according to the comparative example are indicated by black circles.
 図6に示すように、実施の形態1の空気調和装置100は、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止する。また、実施の形態1の空気調和装置100は、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。一方で、比較例は実施の形態1の空気調和装置100と同等の構成を有するが、制御内容が異なる。即ち、比較例では、冷媒漏洩が発生した熱負荷機器に対応する負荷側膨張弁及び電磁弁を閉止するものの、冷媒漏洩が発生していない熱負荷機器の負荷側膨張弁の開度は全開未満の一定の開度を維持させる。 As shown in FIG. 6, the air conditioner 100 of Embodiment 1 closes the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred. Further, the air conditioner 100 of Embodiment 1 expands the opening degrees of the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage does not occur from the current opening degrees. On the other hand, the comparative example has a configuration equivalent to that of the air conditioner 100 of Embodiment 1, but differs in control content. That is, in the comparative example, although the load-side expansion valve and solenoid valve corresponding to the heat-load equipment in which refrigerant leakage has occurred are closed, the opening degree of the load-side expansion valve of the heat-load equipment in which refrigerant leakage has not occurred is less than fully open. to maintain a constant degree of opening.
 図7は、実施の形態1及び比較例に係る冷房漏洩量を説明するための図である。図7には、実施の形態1に係る冷媒漏洩量QI[g/s]を、冷媒の漏洩が検知された後の経過時間[s]ごとに黒い三角で示している。同様に、比較例に係る冷媒漏洩量QI[g/s]を、黒い丸で示している。比較例に係る空気調和装置では、冷媒の漏洩が検知された熱負荷機器の負荷側膨張弁を閉めるときに、冷媒の漏洩が検知されていない熱負荷機器の負荷側膨張弁の開度が一定であるため、全ての熱負荷機器における合計の流路面積が狭くなる。このため、冷媒の漏洩が検知された熱負荷機器の負荷側膨張弁を閉止する過程で、各熱負荷機器の負荷側膨張弁の入口の圧力が上昇する。このとき、各熱負荷機器の負荷側膨張弁では、出入り口の圧力差が大きくなり、冷媒の漏洩が検知された熱負荷機器の負荷側膨張弁を通過する冷媒量も増加するため、負荷側膨張弁が全閉になるまでの冷媒漏洩量が実施の形態1よりも多くなる。 FIG. 7 is a diagram for explaining cooling leakage amounts according to the first embodiment and the comparative example. In FIG. 7, the refrigerant leakage amount QI [g/s] according to Embodiment 1 is indicated by black triangles for each elapsed time [s] after the refrigerant leakage is detected. Similarly, the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles. In the air conditioner according to the comparative example, when closing the load-side expansion valve of the heat-load equipment in which refrigerant leakage has been detected, the opening degree of the load-side expansion valve of the heat-load equipment in which refrigerant leakage has not been detected is constant. Therefore, the total flow area of all heat load devices is narrowed. Therefore, in the process of closing the load-side expansion valve of the heat-load device in which refrigerant leakage has been detected, the pressure at the inlet of the load-side expansion valve of each heat-load device increases. At this time, the pressure difference between the inlet and outlet of the load-side expansion valve of each heat load device increases, and the amount of refrigerant passing through the load-side expansion valve of the heat load device in which refrigerant leakage has been detected also increases. The amount of refrigerant leakage until the valve is fully closed is greater than in the first embodiment.
 一方、実施の形態1では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在よりも拡大する。これにより、全ての熱負荷機器2a~2cにおける合計の流路面積が一定のまま維持される。このため、各負荷側膨張弁22a~22cの入口の圧力は上昇しない。よって、冷媒の漏洩が検知された熱負荷機器2a~2cの負荷側膨張弁22a~22cを閉止する過程で、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量のみが増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量は減少する。したがって、実施の形態1では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22cが全閉になるまでの間の冷媒漏洩量を減らすことができる。 On the other hand, in Embodiment 1, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and the heat load devices in which refrigerant leakage has not occurred are closed. The opening degrees of the load side expansion valves 22a to 22c of 2a to 2c are increased. As a result, the total flow area of all the heat load devices 2a to 2c is kept constant. Therefore, the pressure at the inlets of the load-side expansion valves 22a-22c does not rise. Therefore, in the process of closing the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage has been detected, only the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred is reduced. The amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, in Embodiment 1, the amount of refrigerant leakage can be reduced until the load-side expansion valves 22a to 22c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are fully closed.
 以上のように、実施の形態1では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量が減少する。このため、実施の形態1によれば、熱源機1に対して並列に接続された複数の熱負荷機器2a~2cを有した空気調和装置100において、熱負荷機器2a~2c側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 As described above, in Embodiment 1, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred. The opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, according to Embodiment 1, in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
 また、実施の形態1によれば、冷媒漏洩が発生している熱負荷機器2a~2cに対する冷媒の流通を遮断するため、冷媒漏洩が発生していない熱負荷機器2a~2cでの運転を継続することが可能である。このため、熱負荷機器2a~2cが設置された対象空間の快適性が損なわれることを抑制できる。 Further, according to Embodiment 1, in order to cut off the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
なお、実施の形態1では、冷媒漏洩が発生した際に、冷媒漏洩が発生していない全ての熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大するものとして説明をした。しかしながら、全ての熱負荷機器2a~2cにおける合計の流路面積が一定のまま維持されれば、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cのうち、何れかの負荷側膨張弁22a~22cの開度を大きくするようにしてもよい。 In the first embodiment, when refrigerant leakage occurs, the opening degrees of the load-side expansion valves 22a to 22c of all the heat load devices 2a to 2c in which no refrigerant leakage has occurred are increased from the current opening degrees. I explained it as a thing to do. However, if the total flow area of all the heat load devices 2a to 2c is maintained constant, any one of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c in which refrigerant leakage does not occur The opening degrees of the load side expansion valves 22a to 22c may be increased.
 実施の形態2.
 実施の形態2は、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、熱源側膨張弁13の開度を現在の開度よりも小さくする点で実施の形態1と相違する。実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
Embodiment 2 differs from Embodiment 1 in that the degree of opening of the heat source side expansion valve 13 is made smaller than the current degree of opening when refrigerant leakage is detected in any of the heat load devices 2a to 2c. differ. In the second embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態2の空気調和装置100は、実施の形態1の空気調和装置100と同様の構成を有する。以下では、実施の形態2と比較例とを比較することで、実施の形態2によって得られる効果について説明する。図8は、実施の形態2に係る冷房漏洩時における熱源側膨張弁13の開度の制御を説明するための図である。図8では、実施の形態2に係る冷媒の漏洩が検知された熱源機1の熱源側膨張弁13の開度[pulse]を、冷媒の漏洩が検知された後の経過時間[s]ごとに白抜きの丸で示している。比較例における空気調和装置の構成及び制御内容については、実施の形態1で説明したものと同様であるため、詳細な説明を省略する。図8に示すように、実施の形態2の熱源側制御装置19は、冷房運転時において、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、実施の形態1で説明した制御に加え、熱源側膨張弁13の開度を現在よりも小さくする。 The air conditioner 100 of Embodiment 2 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effects obtained by the second embodiment will be described by comparing the second embodiment with a comparative example. FIG. 8 is a diagram for explaining control of the degree of opening of the heat source side expansion valve 13 at the time of cooling leakage according to the second embodiment. In FIG. 8, the opening degree [pulse] of the heat source side expansion valve 13 of the heat source device 1 in which refrigerant leakage is detected according to Embodiment 2 is changed for each elapsed time [s] after the refrigerant leakage is detected. It is indicated by a white circle. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted. As shown in FIG. 8, the heat-source-side control device 19 of the second embodiment operates when refrigerant leakage is detected in any of the heat load devices 2a to 2c during cooling operation, as described in the first embodiment. In addition to the above control, the degree of opening of the heat source side expansion valve 13 is made smaller than it is at present.
 図9は、実施の形態2及び比較例に係る冷房漏洩量を説明するための図である。図9には、実施の形態2に係る冷媒漏洩量QI[g/s]を、冷媒の漏洩が検知された後の経過時間[s]ごとに黒い四角で示している。同様に、比較例に係る冷媒漏洩量QI[g/s]を、黒い丸で示している。比較例では、熱源機1の熱源側膨張弁13の開度が全開の場合、負荷側膨張弁22a~22cの入口の冷媒は液相となる。 FIG. 9 is a diagram for explaining cooling leakage amounts according to the second embodiment and the comparative example. In FIG. 9, the refrigerant leakage amount QI [g/s] according to Embodiment 2 is indicated by black squares for each elapsed time [s] after the refrigerant leakage is detected. Similarly, the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles. In the comparative example, when the opening degree of the heat source side expansion valve 13 of the heat source device 1 is fully open, the refrigerant at the inlets of the load side expansion valves 22a to 22c is in the liquid phase.
 一方、実施の形態2では、熱源機1の熱源側膨張弁13の開度を小さくした場合、負荷側膨張弁22a~22cの入口の冷媒は二相となる。冷媒の密度は、二相の方が液相よりも小さくなるため、ある開度の負荷側膨張弁22a~22cを通過する冷媒の容積が同じであっても、冷媒の重量は二相の方が液相より小さくなる。そのため、実施の形態2では、比較例よりも漏洩する冷媒量を少なくすることができる。 On the other hand, in Embodiment 2, when the opening degree of the heat source side expansion valve 13 of the heat source device 1 is reduced, the refrigerant at the inlets of the load side expansion valves 22a to 22c is two-phase. Since the density of the two-phase refrigerant is lower than that of the liquid phase, even if the volume of the refrigerant passing through the load-side expansion valves 22a to 22c with a certain degree of opening is the same, the weight of the refrigerant is higher than that of the two-phase refrigerant. is smaller than the liquid phase. Therefore, in the second embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
 実施の形態2の熱源側制御装置19及び負荷側制御装置25a~25cの動作の順序は、実施の形態1で説明したステップS2~ステップS6の何れかの後に、熱源側制御装置19によって熱源側膨張弁13の開度を現在の開度よりも小さくする処理が追加されたものに相当する。このため、詳細な説明を省略する。 The order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the second embodiment is that after any of steps S2 to S6 described in the first embodiment, the heat source side control device 19 controls the heat source side. This corresponds to addition of a process to make the opening of the expansion valve 13 smaller than the current opening. Therefore, detailed description is omitted.
 以上のように、実施の形態2では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量が減少する。このため、実施の形態2によれば、熱源機1に対して並列に接続された複数の熱負荷機器2a~2cを有した空気調和装置100において、熱負荷機器2a~2c側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 As described above, in the second embodiment, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred. The opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, according to Embodiment 2, in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
 また、実施の形態2によれば、冷媒漏洩が発生している熱負荷機器2a~2cに対する冷媒の流通を遮断するため、冷媒漏洩が発生していない熱負荷機器2a~2cでの運転を継続することが可能である。このため、熱負荷機器2a~2cが設置された対象空間の快適性が損なわれることを抑制できる。 Further, according to Embodiment 2, since the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred is blocked, the operation of the heat load devices 2a to 2c in which refrigerant leakage has not occurred continues. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
 また、実施の形態2によれば、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、熱源側膨張弁13の開度を現在の開度よりも小さくするため、負荷側膨張弁22a~22cの入口の冷媒を二相にすることができる。これにより、冷媒の密度が小さくなるため、冷媒漏洩量を更に削減することができる。 Further, according to the second embodiment, when refrigerant leakage is detected in any one of the heat load devices 2a to 2c, the degree of opening of the heat source side expansion valve 13 is made smaller than the current degree of opening. The refrigerant at the inlets of the side expansion valves 22a-22c can be two-phase. As a result, the density of the refrigerant is reduced, so that the amount of refrigerant leakage can be further reduced.
 実施の形態3.
 実施の形態3は、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、ファン15の風量を現在の風量よりも低下させる点で実施の形態1と相違する。実施の形態3では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3.
Embodiment 3 differs from Embodiment 1 in that the air volume of fan 15 is reduced from the current air volume when refrigerant leakage is detected in any of heat load devices 2a to 2c. In the third embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態3の空気調和装置100は、実施の形態1の空気調和装置100と同様の構成を有する。以下では、実施の形態3と比較例とを比較することで、実施の形態3によって得られる効果について説明する。実施の形態3の熱源側制御装置19は、冷房運転時において、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、実施の形態1で説明した制御に加え、ファン15の風量を現在の風量よりも低下させる。比較例における空気調和装置の構成及び制御内容については、実施の形態1で説明したものと同様であるため、詳細な説明を省略する。 The air conditioner 100 of Embodiment 3 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effects obtained by the third embodiment will be described by comparing the third embodiment and a comparative example. In addition to the control described in Embodiment 1, the heat source side control device 19 of Embodiment 3 operates when refrigerant leakage is detected in any of the heat load devices 2a to 2c during cooling operation. to lower the current airflow. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted.
 図10は、実施の形態3及び比較例に係る冷房漏洩量を説明するための図である。図10には、実施の形態3に係る冷媒漏洩量QI[g/s]を、冷媒の漏洩が検知された後の経過時間[s]ごとに黒いひし形で示している。同様に、比較例に係る冷媒漏洩量QI[g/s]を、黒い丸で示している。実施の形態3では、ファン15の風量を現在の風量よりも低下させることで、冷媒熱交換器12の出口を流れる冷媒の過冷却度が小さくなり、冷媒の密度が小さくなる。冷媒の密度が小さくなることで、ある開度の負荷側膨張弁22a~22cを通過する冷媒の容積が同じであっても、冷媒の重量がより小さくなる。そのため、図10に示すように、実施の形態3では、比較例よりも漏洩する冷媒量を少なくすることができる。 FIG. 10 is a diagram for explaining cooling leakage amounts according to the third embodiment and the comparative example. In FIG. 10, the refrigerant leakage amount QI [g/s] according to Embodiment 3 is indicated by black diamonds for each elapsed time [s] after the refrigerant leakage is detected. Similarly, the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles. In Embodiment 3, by reducing the air volume of the fan 15 from the current air volume, the degree of subcooling of the refrigerant flowing through the outlet of the refrigerant heat exchanger 12 is reduced, and the density of the refrigerant is reduced. By reducing the density of the refrigerant, the weight of the refrigerant becomes smaller even if the volume of the refrigerant passing through the load-side expansion valves 22a to 22c with a certain degree of opening remains the same. Therefore, as shown in FIG. 10, in the third embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
 実施の形態3の熱源側制御装置19及び負荷側制御装置25a~25cの動作の順序は、実施の形態1で説明したステップS2~ステップS6の何れかの後に、熱源側制御装置19によってファン15の風量を現在の風量よりも低下させる処理が追加されたものに相当する。このため、詳細な説明を省略する。 The order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the third embodiment is that the fan 15 is operated by the heat source side control device 19 after any of steps S2 to S6 described in the first embodiment. This corresponds to the addition of processing to lower the current air volume below the current air volume. Therefore, detailed description is omitted.
 以上のように、実施の形態3では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量が減少する。このため、実施の形態3によれば、熱源機1に対して並列に接続された複数の熱負荷機器2a~2cを有した空気調和装置100において、熱負荷機器2a~2c側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 As described above, in the third embodiment, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred. The opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, according to Embodiment 3, in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
 また、実施の形態3によれば、冷媒漏洩が発生している熱負荷機器2a~2cに対する冷媒の流通を遮断するため、冷媒漏洩が発生していない熱負荷機器2a~2cでの運転を継続することが可能である。このため、熱負荷機器2a~2cが設置された対象空間の快適性が損なわれることを抑制できる。 Further, according to the third embodiment, since the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred is blocked, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
 また、実施の形態3によれば、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、ファン15の風量を現在の風量よりも低下させるため、冷媒熱交換器12の出口を流れる冷媒の過冷却度が小さくなる。これにより、冷媒の密度が小さくなるため、冷媒漏洩量を更に削減することができる。 Further, according to the third embodiment, when refrigerant leakage is detected in any of the heat load devices 2a to 2c, the air volume of the fan 15 is reduced below the current air volume. The degree of subcooling of the refrigerant flowing through the outlet is reduced. As a result, the density of the refrigerant is reduced, so that the amount of refrigerant leakage can be further reduced.
 実施の形態4.
 実施の形態4は、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、バイパス弁16を開放する点で実施の形態1と相違する。実施の形態4では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4.
The fourth embodiment differs from the first embodiment in that the bypass valve 16 is opened when refrigerant leakage is detected in any one of the heat load devices 2a to 2c. In the fourth embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態4の空気調和装置100は、実施の形態1の空気調和装置100と同様の構成を有する。以下では、実施の形態4と比較例とを比較することで、実施の形態4によって得られる効果について説明する。実施の形態4の熱源側制御装置19は、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、実施の形態1で説明した制御に加え、バイパス弁16を開放する。比較例における空気調和装置の構成及び制御内容については、実施の形態1で説明したものと同様であるため、詳細な説明を省略する。 The air conditioner 100 of Embodiment 4 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effect obtained by Embodiment 4 is demonstrated by comparing Embodiment 4 and a comparative example. The heat source side control device 19 of the fourth embodiment opens the bypass valve 16 in addition to the control described in the first embodiment when refrigerant leakage is detected in any one of the heat load devices 2a to 2c. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted.
 図11は、実施の形態4及び比較例に係る冷房漏洩量を説明するための図である。図11には、実施の形態4に係る冷媒漏洩量QI[g/s]を、冷媒の漏洩が検知された後の経過時間[s]ごとに白抜きの三角で示している。同様に、比較例に係る冷媒漏洩量QI[g/s]を、黒い丸で示している。実施の形態4では、バイパス弁16を開放することで、圧縮機10の吐出圧が低下し、圧縮機10の吸入圧が上昇する。これにより、各負荷側膨張弁22a~22cの出入口の圧力差が小さくなる。よって、冷媒の漏洩が検知された熱負荷機器2a~2cの負荷側膨張弁22a~22cを通過する冷媒量が減少する。そのため、図11に示すように、実施の形態4では、比較例よりも漏洩する冷媒量を少なくすることができる。 FIG. 11 is a diagram for explaining cooling leakage amounts according to the fourth embodiment and the comparative example. In FIG. 11, the refrigerant leakage amount QI [g/s] according to Embodiment 4 is indicated by white triangles for each elapsed time [s] after the refrigerant leakage is detected. Similarly, the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles. In the fourth embodiment, by opening the bypass valve 16, the discharge pressure of the compressor 10 decreases and the suction pressure of the compressor 10 increases. As a result, the pressure difference between the inlets and outlets of the load-side expansion valves 22a to 22c is reduced. Therefore, the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c for which refrigerant leakage has been detected decreases. Therefore, as shown in FIG. 11, in the fourth embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
 実施の形態4の熱源側制御装置19及び負荷側制御装置25a~25cの動作の順序は、実施の形態1で説明したステップS2~ステップS6の何れかの後に、熱源側制御装置19によってバイパス弁16を開放する処理が追加されたものに相当する。このため、詳細な説明を省略する。 The order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the fourth embodiment is that after any of steps S2 to S6 described in the first embodiment, the heat source side control device 19 turns the bypass valve on. 16 is added. Therefore, detailed description is omitted.
 以上のように、実施の形態4では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量が減少する。このため、実施の形態4によれば、熱源機1に対して並列に接続された複数の熱負荷機器2a~2cを有した空気調和装置100において、熱負荷機器2a~2c側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 As described above, in the fourth embodiment, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred. The opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, according to Embodiment 4, in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
 また、実施の形態4によれば、冷媒漏洩が発生している熱負荷機器2a~2cに対する冷媒の流通を遮断するため、冷媒漏洩が発生していない熱負荷機器2a~2cでの運転を継続することが可能である。このため、熱負荷機器2a~2cが設置された対象空間の快適性が損なわれることを抑制できる。 Further, according to the fourth embodiment, in order to cut off the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
 また、実施の形態4によれば、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、バイパス弁16を開放するため、各負荷側膨張弁22a~22cの出入口の圧力差が小さくなる。これにより、漏洩が検知された熱負荷機器2a~2cの負荷側膨張弁22a~22cを通過する冷媒量が減少するため、冷媒漏洩量を更に削減することができる。 Further, according to the fourth embodiment, when refrigerant leakage is detected in any one of the heat load devices 2a to 2c, the bypass valve 16 is opened. the difference becomes smaller. As a result, the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which leakage has been detected decreases, so that the amount of refrigerant leakage can be further reduced.
 実施の形態5.
 実施の形態5は、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、圧縮機10の運転周波数を現在の運転周波数よりも低下させる点で実施の形態1と相違する。実施の形態5では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 5.
Embodiment 5 differs from Embodiment 1 in that the operating frequency of compressor 10 is lowered from the current operating frequency when refrigerant leakage is detected in any of heat load devices 2a to 2c. . In the fifth embodiment, the same reference numerals are given to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態5の空気調和装置100は、実施の形態1の空気調和装置100と同様の構成を有する。以下では、実施の形態5と比較例とを比較することで、実施の形態5によって得られる効果について説明する。実施の形態5の熱源側制御装置19は、冷房運転時において、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、実施の形態1で説明した制御に加え、圧縮機10の運転周波数を現在の運転周波数よりも低下させる。比較例における空気調和装置の構成及び制御内容については、実施の形態1で説明したものと同様であるため、詳細な説明を省略する。 The air conditioner 100 of Embodiment 5 has the same configuration as the air conditioner 100 of Embodiment 1. Below, the effect obtained by Embodiment 5 is demonstrated by comparing Embodiment 5 and a comparative example. In addition to the control described in Embodiment 1, the heat source side control device 19 of Embodiment 5, when refrigerant leakage is detected in any of the heat load devices 2a to 2c during cooling operation, controls the compressor. 10 is lowered below the current operating frequency. Since the configuration and control details of the air conditioner in the comparative example are the same as those described in Embodiment 1, detailed description thereof will be omitted.
 図12は、実施の形態5及び比較例に係る冷房漏洩量を説明するための図である。図12には、実施の形態5に係る冷媒漏洩量QI[g/s]を、冷媒の漏洩が検知された後の経過時間[s]ごとに白抜きの四角で示している。同様に、比較例に係る冷媒漏洩量QI[g/s]を、黒い丸で示している。実施の形態5では、圧縮機10の運転周波数を現在の運転周波数よりも低下させることで、圧縮機10の吐出圧が低下し、圧縮機10の吸入圧が上昇する。これにより、各負荷側膨張弁22a~22cの出入口の圧力差が小さくなる。よって、漏洩が検知された熱負荷機器2a~2cの負荷側膨張弁22a~22cを通過する冷媒量が減少する。そのため、図12に示すように、実施の形態4では、比較例よりも漏洩する冷媒量を少なくすることができる。 FIG. 12 is a diagram for explaining cooling leakage amounts according to the fifth embodiment and the comparative example. In FIG. 12, the refrigerant leakage amount QI [g/s] according to Embodiment 5 is indicated by white squares for each elapsed time [s] after the refrigerant leakage is detected. Similarly, the refrigerant leakage amount QI [g/s] according to the comparative example is indicated by black circles. In Embodiment 5, by lowering the operating frequency of the compressor 10 from the current operating frequency, the discharge pressure of the compressor 10 is lowered and the suction pressure of the compressor 10 is raised. As a result, the pressure difference between the inlets and outlets of the load-side expansion valves 22a to 22c is reduced. Therefore, the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which leakage has been detected decreases. Therefore, as shown in FIG. 12, in the fourth embodiment, the amount of refrigerant that leaks can be reduced more than in the comparative example.
 実施の形態5の熱源側制御装置19及び負荷側制御装置25a~25cの動作の順序は、実施の形態1で説明したステップS2~ステップS6の何れかの後に、熱源側制御装置19によって圧縮機10の運転周波数を現在の運転周波数よりも低下させる処理が追加されたものに相当する。このため、詳細な説明を省略する。 The order of operation of the heat source side control device 19 and the load side control devices 25a to 25c of the fifth embodiment is that after one of steps S2 to S6 described in the first embodiment, the heat source side control device 19 controls the compressor. 10 to which the processing for lowering the operating frequency of 10 below the current operating frequency is added. Therefore, detailed description is omitted.
 以上のように、実施の形態5では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量が減少する。このため、実施の形態5によれば、熱源機1に対して並列に接続された複数の熱負荷機器2a~2cを有した空気調和装置100において、熱負荷機器2a~2c側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 As described above, in the fifth embodiment, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred. The opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, according to Embodiment 5, in the air conditioner 100 having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
 また、実施の形態5によれば、冷媒漏洩が発生している熱負荷機器2a~2cに対する冷媒の流通を遮断するため、冷媒漏洩が発生していない熱負荷機器2a~2cでの運転を継続することが可能である。このため、熱負荷機器2a~2cが設置された対象空間の快適性が損なわれることを抑制できる。 Further, according to the fifth embodiment, in order to cut off the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
 また、実施の形態5によれば、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、圧縮機10の運転周波数を現在の運転周波数よりも低下させるため、各負荷側膨張弁22a~22cの出入口の圧力差が小さくなる。これにより、漏洩が検知された熱負荷機器2a~2cの負荷側膨張弁22a~22cを通過する冷媒量が減少するため、冷媒漏洩量を更に削減することができる。 Further, according to the fifth embodiment, when refrigerant leakage is detected in any one of the heat load devices 2a to 2c, the operating frequency of the compressor 10 is lowered below the current operating frequency. The pressure difference between the inlet and outlet of the expansion valves 22a-22c is reduced. As a result, the amount of refrigerant passing through the load-side expansion valves 22a to 22c of the heat load devices 2a to 2c in which leakage has been detected decreases, so that the amount of refrigerant leakage can be further reduced.
 実施の形態6.
 図13は、実施の形態6に係る空気調和装置100Aの回路図である。図13に示すように、実施の形態6は、ファン15及び冷媒熱交換器12に代わり冷媒熱媒体熱交換器12Aを有する点、並びにポンプ41、流量調整弁42、熱媒体熱交換器43、及び熱媒体配管44を有する点で実施の形態1と相違する。実施の形態6では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 6.
FIG. 13 is a circuit diagram of an air conditioner 100A according to Embodiment 6. As shown in FIG. As shown in FIG. 13, the sixth embodiment has a refrigerant heat medium heat exchanger 12A instead of the fan 15 and the refrigerant heat exchanger 12, a pump 41, a flow control valve 42, a heat medium heat exchanger 43, and a heating medium pipe 44, which is different from the first embodiment. In the sixth embodiment, the same reference numerals are given to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態6の空気調和装置100Aの熱源機1は、ファン15及び冷媒熱交換器12に代わり冷媒熱媒体熱交換器12Aを有する。また、熱源機1の冷媒熱媒体熱交換器12Aは、冷媒回路6を循環する冷媒が流れる冷媒流路(図示せず)と、熱媒体回路7を循環する熱媒体が流れる熱媒体流路(図示せず)を有し、冷媒と熱媒体との間で熱交換させる。ポンプ41、流量調整弁42、熱媒体熱交換器43、冷媒熱媒体熱交換器12Aの熱媒体流路が熱媒体配管44によって接続されることで、熱媒体回路7が形成される。ポンプ41は、熱媒体配管44に設けられ、熱媒体を冷媒熱媒体熱交換器12Aに搬送する。流量調整弁42は、熱媒体配管44に設けられ、熱媒体回路7を循環する熱媒体の流量を調整する。熱媒体熱交換器43は、熱媒体と空気との間で熱交換させ、熱媒体に温熱又は冷熱を供給する。熱媒体は、冷媒と異なる流体であり、例えば水である。このように、実施の形態6の冷媒熱媒体熱交換器12Aは、実施の形態1のような、冷媒と空気とで熱交換させる所謂空冷式の熱交換器ではなく、冷媒と熱媒体熱交換器43で熱交換された熱媒体とで熱交換させる所謂水冷式の熱交換器として機能する。 The heat source device 1 of the air conditioner 100A of Embodiment 6 has a refrigerant heat medium heat exchanger 12A instead of the fan 15 and the refrigerant heat exchanger 12. The refrigerant heat medium heat exchanger 12A of the heat source device 1 includes a refrigerant flow path (not shown) through which the refrigerant circulating in the refrigerant circuit 6 flows, and a heat medium flow path (not shown) through which the heat medium circulating in the heat medium circuit 7 flows. (not shown) for heat exchange between the refrigerant and the heat medium. The heat medium circuit 7 is formed by connecting the heat medium flow paths of the pump 41, the flow control valve 42, the heat medium heat exchanger 43, and the refrigerant heat medium heat exchanger 12A through the heat medium pipes 44. FIG. The pump 41 is provided in the heat medium pipe 44 and conveys the heat medium to the refrigerant heat medium heat exchanger 12A. The flow rate adjustment valve 42 is provided in the heat medium pipe 44 and adjusts the flow rate of the heat medium circulating through the heat medium circuit 7 . The heat medium heat exchanger 43 exchanges heat between the heat medium and air and supplies hot or cold heat to the heat medium. The heat medium is a fluid different from the refrigerant, such as water. Thus, the refrigerant heat medium heat exchanger 12A of the sixth embodiment is not a so-called air-cooled heat exchanger that exchanges heat between the refrigerant and the air as in the first embodiment. It functions as a so-called water-cooled heat exchanger that exchanges heat with the heat medium that has been heat-exchanged in the vessel 43 .
 実施の形態6の熱源側制御装置19は、有線又は無線によって接続された、ポンプ41、及び流量調整弁42の動作を制御する。熱源側制御装置19は、実施の形態1で説明した各センサによる検知結果に基づき、ポンプ41の運転周波数、及び流量調整弁42の開度を制御する。また、実施の形態6の熱源側制御装置19は、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、実施の形態1で説明した制御を行う。 The heat source side control device 19 of Embodiment 6 controls the operation of the pump 41 and the flow control valve 42 connected by wire or wirelessly. The heat source side control device 19 controls the operating frequency of the pump 41 and the degree of opening of the flow control valve 42 based on the detection results of the sensors described in the first embodiment. Further, the heat source side control device 19 of the sixth embodiment performs the control described in the first embodiment when refrigerant leakage is detected in any one of the heat load devices 2a to 2c.
 図14は、実施の形態6に係る空気調和装置100Aの冷房運転を説明するための図である。図15は、実施の形態6に係る空気調和装置100Aの暖房運転を説明するための図である。図14及び図15に示すように、冷暖房時の冷媒回路6における冷媒の流れについては、実施の形態1と同様であるため、説明を割愛する。 FIG. 14 is a diagram for explaining the cooling operation of the air conditioner 100A according to Embodiment 6. FIG. FIG. 15 is a diagram for explaining the heating operation of the air conditioner 100A according to Embodiment 6. FIG. As shown in FIGS. 14 and 15, the flow of the refrigerant in the refrigerant circuit 6 during cooling and heating is the same as in the first embodiment, and thus the explanation is omitted.
 以上のように、実施の形態6では、冷媒漏洩が発生した熱負荷機器2a~2cに対応する負荷側膨張弁22a~22c及び電磁弁31a~31cを閉止すると共に、冷媒漏洩が発生していない熱負荷機器2a~2cの負荷側膨張弁22a~22cの開度を現在の開度よりも拡大する。これにより、冷媒漏洩が発生していない熱負荷機器2a~2cに供給される冷媒量が増加し、冷媒漏洩が発生した熱負荷機器2a~2cに供給される冷媒量が減少する。このため、実施の形態6によれば、熱源機1に対して並列に接続された複数の熱負荷機器2a~2cを有した空気調和装置100Aにおいて、熱負荷機器2a~2c側での冷媒漏洩の発生時における冷媒漏洩量を削減することができる。 As described above, in Embodiment 6, the load-side expansion valves 22a to 22c and solenoid valves 31a to 31c corresponding to the heat load devices 2a to 2c in which refrigerant leakage has occurred are closed, and no refrigerant leakage has occurred. The opening degrees of the load side expansion valves 22a to 22c of the heat load devices 2a to 2c are increased from the current opening degrees. As a result, the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has not occurred increases, and the amount of refrigerant supplied to the heat load devices 2a to 2c in which refrigerant leakage has occurred decreases. Therefore, according to Embodiment 6, in the air conditioner 100A having a plurality of heat load devices 2a to 2c connected in parallel to the heat source device 1, refrigerant leakage occurs on the side of the heat load devices 2a to 2c. It is possible to reduce the amount of refrigerant leakage at the time of occurrence.
 また、実施の形態6によれば、冷媒漏洩が発生している熱負荷機器2a~2cに対する冷媒の流通を遮断するため、冷媒漏洩が発生していない熱負荷機器2a~2cでの運転を継続することが可能である。このため、熱負荷機器2a~2cが設置された対象空間の快適性が損なわれることを抑制できる。 Further, according to the sixth embodiment, in order to cut off the flow of refrigerant to the heat load devices 2a to 2c in which refrigerant leakage has occurred, the heat load devices 2a to 2c in which refrigerant leakage has not occurred continue to operate. It is possible to Therefore, it is possible to prevent the comfort of the target space in which the heat load devices 2a to 2c are installed from being impaired.
 なお、実施の形態6の熱源側制御装置19は、実施の形態1で説明した制御に加え、実施の形態2、4、又は5で説明した制御を行うようにしてもよい。また、実施の形態3のようにファン15の風量を現在の風量よりも低下させることに代えて、ポンプ41の運転周波数を現在の運転周波数よりも低下させてもよいし、流量調整弁42の開度を現在の開度よりも小さくするようにしてもよい。この場合も、実施の形態3と同等の効果を得ることができる。 Note that the heat source side control device 19 of Embodiment 6 may perform the control described in Embodiments 2, 4, or 5 in addition to the control described in Embodiment 1. Further, instead of lowering the air volume of the fan 15 from the current air volume as in Embodiment 3, the operating frequency of the pump 41 may be lowered from the current operating frequency, or the flow control valve 42 may The opening may be made smaller than the current opening. Also in this case, an effect equivalent to that of the third embodiment can be obtained.
 以上が実施の形態の説明であるが、本開示は、上記の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形又は組み合わせることが可能である。例えば、熱負荷機器2a~2cの何れかで冷媒の漏洩が検知された際に、実施の形態1で説明した制御に加え、実施の形態2~5で説明した制御の2つ以上を組み合わせて、行うようにしてもよい。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments, and can be variously modified or combined without departing from the gist of the present disclosure. For example, when refrigerant leakage is detected in any of the heat load devices 2a to 2c, in addition to the control described in Embodiment 1, two or more of the controls described in Embodiments 2 to 5 are combined. , may be performed.
 また、実施の形態1~6では、各熱負荷機器2a~2cにおいて、冷房運転と暖房運転とを同時に混在させることができない形態を例示しているが、冷房運転と暖房運転とを同時に混在させられる形態においても本開示を適用することが可能である。 Further, in Embodiments 1 to 6, each of the heat load devices 2a to 2c exemplifies a form in which the cooling operation and the heating operation cannot be mixed at the same time. It is also possible to apply the present disclosure to any form.
 また、遮断装置3a~3cの電磁弁31a~31c又は負荷側膨張弁22a~22cを制御する1つ又は複数の機器が本開示の「制御装置」に相当する。実施の形態1~6では「制御装置」の形態として、熱源側制御装置19によって遮断装置3a~3cの電磁弁31a~31cが制御され、負荷側制御装置25a~25cによって負荷側膨張弁22a~22cが制御される場合について説明した。しかしながら、熱源側制御装置19又は負荷側制御装置25a~25cの何れかを省略し、負荷側膨張弁22a~22c及び電磁弁31a~31cを制御する機能を何れか1つ又は複数の「制御装置」に統合してもよい。もっとも、熱源側制御装置19及び負荷側制御装置25a~25cは、熱源機1及び熱負荷機器2a~2cの筐体の外部に設けられていてもよい。 Also, one or a plurality of devices that control the solenoid valves 31a to 31c or the load-side expansion valves 22a to 22c of the cutoff devices 3a to 3c correspond to the "control device" of the present disclosure. In Embodiments 1 to 6, the heat source side control device 19 controls the electromagnetic valves 31a to 31c of the blocking devices 3a to 3c, and the load side control devices 25a to 25c control the load side expansion valves 22a to 25c. 22c is controlled. However, either the heat source side control device 19 or the load side control devices 25a to 25c is omitted, and the function of controlling the load side expansion valves 22a to 22c and the solenoid valves 31a to 31c is replaced by any one or a plurality of "control devices." ” may be integrated into However, the heat source side control device 19 and the load side control devices 25a to 25c may be provided outside the housings of the heat source device 1 and the heat load devices 2a to 2c.
 1 熱源機、2a、2b、2c 熱負荷機器、3a、3b、3c 遮断装置、4、5 冷媒配管、6 冷媒回路、7 熱媒体回路、10 圧縮機、11 流路切替弁、12 冷媒熱交換器、12A 冷媒熱媒体熱交換器、13 熱源側膨張弁、14 アキュムレータ、15 ファン、16 バイパス弁、17 熱源側冷媒配管、18 バイパス配管、19 熱源側制御装置、21a、21b、21c 負荷側熱交換器、22a、22b、22c 負荷側膨張弁、23a、23b、23c 冷媒漏洩検知センサ、24a、24b、24c 負荷側冷媒配管、25a、25b、25c 負荷側制御装置、31a、31b、31c 電磁弁、41 ポンプ、42 流量調整弁、43 熱媒体熱交換器、44 熱媒体配管、100、100A 空気調和装置。 1 Heat source equipment, 2a, 2b, 2c Heat load equipment, 3a, 3b, 3c Breaker, 4, 5 Refrigerant piping, 6 Refrigerant circuit, 7 Heat medium circuit, 10 Compressor, 11 Flow switching valve, 12 Refrigerant heat exchange vessel, 12A refrigerant heat medium heat exchanger, 13 heat source side expansion valve, 14 accumulator, 15 fan, 16 bypass valve, 17 heat source side refrigerant piping, 18 bypass piping, 19 heat source side control device, 21a, 21b, 21c load side heat Exchangers 22a, 22b, 22c Load side expansion valves 23a, 23b, 23c Refrigerant leakage detection sensors 24a, 24b, 24c Load side refrigerant pipes 25a, 25b, 25c Load side controllers 31a, 31b, 31c Solenoid valves , 41 pump, 42 flow control valve, 43 heat medium heat exchanger, 44 heat medium piping, 100, 100A air conditioner.

Claims (6)

  1.  対象空間の空気と冷媒とを熱交換させる第1負荷側熱交換器、及び前記第1負荷側熱交換器に流入する冷媒、又は前記第1負荷側熱交換器から流出した冷媒を膨張させる第1負荷側膨張弁を有する第1熱負荷機器と、
     対象空間の空気と冷媒とを熱交換させる第2負荷側熱交換器、及び前記第2負荷側熱交換器に流入する冷媒、又は前記第2負荷側熱交換器から流出した冷媒を膨張させる第2負荷側膨張弁を有する第2熱負荷機器と、
     冷媒を圧縮する圧縮機を有し、前記第1負荷側熱交換器及び前記第2負荷側熱交換器に冷媒を供給する熱源機と、
     内部に冷媒が流れ、前記熱源機に対して、前記第1熱負荷機器と前記第2熱負荷機器とを並列に接続する冷媒配管と、
     前記冷媒配管に設けられ、前記第1熱負荷機器に流入する冷媒、又は前記第1熱負荷機器から流出する冷媒の量を調整する電磁弁と、
     制御装置と、を備え、
     前記制御装置は、
     前記第1熱負荷機器における冷媒の漏洩を検知し、且つ前記第2熱負荷機器における冷媒の漏洩を検知していない場合、前記第1負荷側膨張弁及び前記電磁弁を閉止すると共に、前記第2負荷側膨張弁の開度を現在の開度よりも大きくする
     空気調和装置。
    a first load-side heat exchanger that exchanges heat between the air in the target space and the refrigerant; a first heat load device having a first load side expansion valve;
    a second load-side heat exchanger that exchanges heat between the air in the target space and the refrigerant; a second heat load device having a two-load side expansion valve;
    a heat source device having a compressor that compresses refrigerant and supplying refrigerant to the first load heat exchanger and the second load heat exchanger;
    a refrigerant pipe that flows a refrigerant therein and connects the first heat load device and the second heat load device in parallel with the heat source device;
    a solenoid valve provided in the refrigerant pipe for adjusting the amount of refrigerant flowing into the first heat load device or refrigerant flowing out of the first heat load device;
    a controller;
    The control device is
    When refrigerant leakage in the first heat load device is detected and refrigerant leakage in the second heat load device is not detected, the first load side expansion valve and the electromagnetic valve are closed, and the first load side expansion valve and the solenoid valve are closed. An air conditioner that increases the degree of opening of a two-load side expansion valve from the current degree of opening.
  2.  前記熱源機は、
     冷媒を膨張させる熱源側膨張弁を有し、
     前記制御装置は、
     前記第1熱負荷機器又は前記第2熱負荷機器において、冷媒の漏洩を検知した場合、前記熱源側膨張弁の開度を現在の開度よりも小さくする
     請求項1に記載の空気調和装置。
    The heat source machine is
    Having a heat source side expansion valve that expands the refrigerant,
    The control device is
    The air conditioner according to claim 1, wherein when refrigerant leakage is detected in the first heat load device or the second heat load device, the degree of opening of the heat source side expansion valve is made smaller than the current degree of opening.
  3.  前記熱源機は、
     冷媒と空気との間で熱交換させる冷媒熱交換器と、
     前記冷媒熱交換器に空気を送るファンと、を更に備え、
     前記制御装置は、
     前記第1熱負荷機器又は前記第2熱負荷機器において、冷媒の漏洩を検知した場合、前記ファンの風量を現在の風量よりも低下させる
     請求項1又は2に記載の空気調和装置。
    The heat source machine is
    a refrigerant heat exchanger that exchanges heat between refrigerant and air;
    A fan that sends air to the refrigerant heat exchanger,
    The control device is
    3. The air conditioner according to claim 1 or 2, wherein when refrigerant leakage is detected in the first heat load device or the second heat load device, the air volume of the fan is reduced below the current air volume.
  4.  熱媒体と空気との間で熱交換させる熱媒体熱交換器を更に備え、
     前記熱源機は、
     冷媒と、前記熱媒体熱交換器で熱交換された熱媒体との間で熱交換を行わせる冷媒熱媒体熱交換器と、を更に有する
     請求項1又は2に記載の空気調和装置。
    further comprising a heat medium heat exchanger for exchanging heat between the heat medium and air;
    The heat source machine is
    3. The air conditioner according to claim 1, further comprising a refrigerant heat medium heat exchanger for exchanging heat between a refrigerant and the heat medium heat-exchanged in the heat medium heat exchanger.
  5.  前記熱源機は、
     前記圧縮機の吸入側と吐出側とを接続するバイパス配管と、
     前記バイパス配管に設けられ、前記バイパス配管を流通する冷媒の量を調整するバイパス弁と、を有し、
     前記制御装置は、
     前記第1熱負荷機器又は前記第2熱負荷機器において、冷媒の漏洩を検知した場合、バイパス弁を開放する
     請求項1~4の何れか1項に記載の空気調和装置。
    The heat source machine is
    a bypass pipe connecting the suction side and the discharge side of the compressor;
    a bypass valve that is provided in the bypass pipe and adjusts the amount of refrigerant flowing through the bypass pipe;
    The control device is
    The air conditioner according to any one of claims 1 to 4, wherein a bypass valve is opened when refrigerant leakage is detected in the first heat load device or the second heat load device.
  6.  前記制御装置は、
     前記第1熱負荷機器又は前記第2熱負荷機器において、冷媒の漏洩を検知した場合、前記圧縮機の運転周波数を現在の運転周波数よりも低下させる
     請求項1~5の何れか1項に記載の空気調和装置。
    The control device is
    The operating frequency of the compressor is lowered below the current operating frequency when refrigerant leakage is detected in the first heat load device or the second heat load device. air conditioner.
PCT/JP2022/000489 2022-01-11 2022-01-11 Air conditioner WO2023135630A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023573504A JPWO2023135630A1 (en) 2022-01-11 2022-01-11
PCT/JP2022/000489 WO2023135630A1 (en) 2022-01-11 2022-01-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000489 WO2023135630A1 (en) 2022-01-11 2022-01-11 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023135630A1 true WO2023135630A1 (en) 2023-07-20

Family

ID=87278580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000489 WO2023135630A1 (en) 2022-01-11 2022-01-11 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2023135630A1 (en)
WO (1) WO2023135630A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517789B2 (en) 2010-07-02 2014-06-11 日立アプライアンス株式会社 Air conditioner
JP2016011782A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type
JP2017067428A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Refrigeration device
JP2018036030A (en) * 2016-09-02 2018-03-08 ダイキン工業株式会社 Refrigeration device
JP2021012009A (en) * 2019-07-09 2021-02-04 ダイキン工業株式会社 Water quantity regulating device
JP2021014960A (en) * 2019-07-12 2021-02-12 ダイキン工業株式会社 Refrigeration cycle system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517789B2 (en) 2010-07-02 2014-06-11 日立アプライアンス株式会社 Air conditioner
JP2016011782A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type
JP2017067428A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Refrigeration device
JP2018036030A (en) * 2016-09-02 2018-03-08 ダイキン工業株式会社 Refrigeration device
JP2021012009A (en) * 2019-07-09 2021-02-04 ダイキン工業株式会社 Water quantity regulating device
JP2021014960A (en) * 2019-07-12 2021-02-12 ダイキン工業株式会社 Refrigeration cycle system

Also Published As

Publication number Publication date
JPWO2023135630A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
JP6081033B1 (en) Air conditioner
JP6479162B2 (en) Air conditioner
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
WO2019073870A1 (en) Refrigeration device
JP5182358B2 (en) Refrigeration equipment
JP6636173B2 (en) Air conditioner and air conditioning system
JP6300954B2 (en) Air conditioner
AU2011357097B2 (en) Air-conditioning apparatus
US9857113B2 (en) Air-conditioning apparatus
WO2014128831A1 (en) Air conditioning device
US20220065506A1 (en) Refrigerant cycle apparatus
WO2018062547A1 (en) Air conditioner
WO2016079834A1 (en) Air conditioning device
JP6576603B1 (en) Air conditioner
JP2008039233A (en) Refrigerating device
WO2023135630A1 (en) Air conditioner
JP2006258331A (en) Refrigerating apparatus
JP6257812B2 (en) Air conditioner
WO2022038708A1 (en) Air conditioner
KR20080084482A (en) Controlling method for air conditioner
JP7496938B2 (en) Air Conditioning Equipment
WO2024161554A1 (en) Heat pump apparatus
JP2014126289A (en) Air conditioning system
WO2022163058A1 (en) Air-conditioning device
JP2007051795A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573504

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022920157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022920157

Country of ref document: EP

Effective date: 20240812