JP6771351B2 - Stainless steel sheet carbon composite material and its manufacturing method - Google Patents

Stainless steel sheet carbon composite material and its manufacturing method Download PDF

Info

Publication number
JP6771351B2
JP6771351B2 JP2016195627A JP2016195627A JP6771351B2 JP 6771351 B2 JP6771351 B2 JP 6771351B2 JP 2016195627 A JP2016195627 A JP 2016195627A JP 2016195627 A JP2016195627 A JP 2016195627A JP 6771351 B2 JP6771351 B2 JP 6771351B2
Authority
JP
Japan
Prior art keywords
resin
stainless steel
carbon
plate
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016195627A
Other languages
Japanese (ja)
Other versions
JP2017071219A (en
Inventor
村上 信吉
信吉 村上
禰宜 教之
教之 禰宜
琢 香川
琢 香川
淳子 今村
淳子 今村
快朗 萩原
快朗 萩原
雅史 臼井
雅史 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2017071219A publication Critical patent/JP2017071219A/en
Application granted granted Critical
Publication of JP6771351B2 publication Critical patent/JP6771351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Fuel Cell (AREA)

Description

この発明は、ステンレス鋼板カーボン複合材及びその製造方法に係り、特にステンレス鋼製の板状基材の表面に炭素粉末及び樹脂粉末を含むカーボン層が積層されていることにより、例えば、固体高分子形燃料電池用等の燃料電池用セパレータを始めとして、レドックスフロー型2次電池用の集電板や、石油精製用、石油化学用等のガスケットやパッキン等においても使用可能な、導電性、耐食性及び可撓性等に優れたステンレス鋼板カーボン複合材及びその製造方法に関する。 The present invention relates to a stainless steel plate carbon composite material and a method for producing the same, and in particular, a carbon layer containing carbon powder and resin powder is laminated on the surface of a stainless steel plate-like base material, whereby, for example, a solid polymer. Conductivity and corrosion resistance that can be used for separators for fuel cells such as type fuel cells, current collectors for redox flow type secondary batteries, gaskets and packings for petrochemical refining, petrochemicals, etc. The present invention relates to a stainless steel plate carbon composite material having excellent flexibility and the like, and a method for producing the same.

近年、環境保全の観点から固体高分子形燃料電池が注目されている。斯かる燃料電池及び燃料電池用セパレータの一例を図7及び図8(a)、(b)に示す。
ここで、図7は、燃料電池16を構成する単位セルの構成を示す分解図であり、図8は、図7に示す燃料電池用セパレータ5の構成を示す図である。図8(a)は、平面図であり、図8(b)は、図8(a)の線X−Yにとった断面図である。
In recent years, polymer electrolyte fuel cells have been attracting attention from the viewpoint of environmental protection. Examples of such a fuel cell and a separator for a fuel cell are shown in FIGS. 7 and 8 (a) and 8 (b).
Here, FIG. 7 is an exploded view showing the configuration of the unit cells constituting the fuel cell 16, and FIG. 8 is a diagram showing the configuration of the fuel cell separator 5 shown in FIG. 7. 8 (a) is a plan view, and FIG. 8 (b) is a cross-sectional view taken along the line XY of FIG. 8 (a).

固体高分子形燃料電池16は、固体高分子電解質膜6とアノード(燃料電極)7とカソード(酸化剤電極)8とからなるMEA(membrane electrode assembly:膜/電極接合体)を2枚の燃料電池用セパレータ5によって、ガスケット9を介して挟持した構成10を単位セルとして、これを数十個〜数百個積層し、アノード7に流体である燃料ガス(水素ガス)を、カソード8に流体である酸化ガス(酸素ガス)を供給することにより、外部回路から電流を取り出す構成となっている。そして、燃料電池用セパレータ5は、図8(a)、(b)に示すように、薄肉の板状体の片面又は両面に複数個のガス供給排出用溝11と、ガス供給排出用溝11に燃料ガス又は酸化ガスを供給する開口部12と、MEAを並設するための固定穴13とを有する形状であり、燃料電池内を流れる燃料ガスと酸化ガスとが混合しないように分離する働きを有すると共に、MEAで発電した電気エネルギーを外部へ伝達したり、MEAで生じた熱を外部へ放熱したりするという重要な役割を担っている。 The polymer electrolyte fuel cell 16 uses two MEA (membrane / electrode assembly) fuels, which are composed of a polymer electrolyte membrane 6, an anode (fuel electrode) 7, and a cathode (oxidizer electrode) 8. Dozens to hundreds of configurations 10 sandwiched between the battery separators 5 and the gasket 9 as a unit cell are laminated, and the fuel gas (hydrogen gas) which is a fluid is applied to the anode 7 and the fluid is applied to the cathode 8. By supplying the oxidative gas (oxygen gas), the current is taken out from the external circuit. As shown in FIGS. 8A and 8B, the fuel cell separator 5 has a plurality of gas supply / discharge grooves 11 and a gas supply / discharge groove 11 on one side or both sides of a thin plate-like body. It has a shape having an opening 12 for supplying fuel gas or oxidation gas to the fuel cell and a fixing hole 13 for arranging MEAs in parallel, and has a function of separating the fuel gas flowing in the fuel cell and the oxidation gas so as not to be mixed. In addition to having the above, it plays an important role of transferring the electric energy generated by the MEA to the outside and dissipating the heat generated by the MEA to the outside.

そのため、固体高分子形燃料電池用セパレータに求められる特性としては、燃料電池内の使用環境(高温、腐食性、低pH等)下における長期の耐久性(耐食性)があること、発電ロスを少なくするために電気抵抗を小さくて導電性に優れること、及び燃料ガスと酸化ガスをその両面で完全に分離して電極に供給するためのガス不透過性などの特性に加えて、車載を想定すると組立時におけるボルト締め付けや振動に対しても割れない強度やフレキシブル性(可撓性)があること、が求められている。 Therefore, the characteristics required for the separator for polymer electrolyte fuel cells are long-term durability (corrosion resistance) under the operating environment (high temperature, corrosiveness, low pH, etc.) in the fuel cell, and less power generation loss. In addition to the characteristics such as low electrical resistance and excellent conductivity, and gas impermeable to completely separate fuel gas and oxidation gas on both sides and supply them to the electrodes, assuming an in-vehicle use. It is required to have strength and flexibility (flexibility) that does not break even when bolted or vibrated during assembly.

そして、このような要請に応えるために、以下に示すような様々な取り組みが行われている。
すなわち、固体高分子形燃料電池用セパレータとしては、ガラス状カーボンを中心としたカーボン製セパレータが従来から検討されていたが、このようなカーボン製のセパレータは、非常に割れやすく、可撓性・柔軟性が乏しく、また、車載用の燃料電池等としての用途を考えると、ガスバリア性・気密性に乏しく、更には、小型化が困難で加工コストも高い等といった問題もあることから、実用性に問題があるとされている。
In order to meet such demands, various efforts are being made as shown below.
That is, as a separator for a polymer electrolyte fuel cell, a carbon separator centered on glassy carbon has been conventionally studied, but such a carbon separator is extremely fragile and flexible. Practicality is lacking, and considering its use as an in-vehicle fuel cell, etc., it has poor gas barrier properties and airtightness, and also has problems such as difficulty in miniaturization and high processing cost. Is said to have a problem.

そのため、カーボン製セパレータに替えて、金属素材を適用する試みがなされ、特に、機械的強度、加工性、コストの点から、ステンレス鋼を素材とするセパレータが検討されているが、一般的にステンレス鋼表面にはその製造過程などに起因して形成された比較的厚い不動態皮膜を有しており、耐食性に優れるものの、この不動態皮膜は電気抵抗が大きくて導電性に乏しい。そのため、このようにステンレス鋼製のセパレータの導電性を向上(接触抵抗を低減)させる観点から、いくつかの報告がなされている。 Therefore, attempts have been made to use a metal material instead of the carbon separator, and in particular, from the viewpoint of mechanical strength, workability, and cost, a separator made of stainless steel has been studied, but stainless steel is generally used. The steel surface has a relatively thick passivation film formed due to the manufacturing process or the like, and although it has excellent corrosion resistance, this passivation film has high electrical resistance and poor conductivity. Therefore, some reports have been made from the viewpoint of improving the conductivity (reducing the contact resistance) of the stainless steel separator as described above.

例えば、特許文献1においては、ステンレス鋼製部材の表面を金メッキし、導電性を確保すると共に、耐食性を改善した燃料電池用セパレータが提案されているが、この燃料電池用セパレータにおいては、ステンレス鋼製部材の表面を金メッキしているために、製造コストが高くなり過ぎ、経済的な観点から工業的には不向きである。 For example, Patent Document 1 proposes a fuel cell separator in which the surface of a stainless steel member is gold-plated to ensure conductivity and improve corrosion resistance. However, in this fuel cell separator, stainless steel is used. Since the surface of the manufacturing member is gold-plated, the manufacturing cost becomes too high, which makes it unsuitable industrially from an economical point of view.

また、特許文献2においては、厚み方向中心部が質量%割合でC:0.03%以下、Si:0.01%以上1.5%以下、Mn:0.01%以上2.5%以下、P:0.035%以下、S:0.01%以下、Cr:16.0%以上30.0%以下、Ni:6.0%以上30.0%以下、B:0.01%以下、Al:0.001%以上0.2%以下、N:0.06%以上0.3%以下、Mo:7.0%以下、及びCu:5.0%以下、残部:Fe及び不純物からなる化学組成を有し、また、全体の厚さの10%以下の深さまでの表面部が質量%割合でC:0.03%以下、Si:0.01%以上1.5%以下、Mn:0.01%以上2.5%以下、P:0.035%以下、S:0.01%以下、Cr:16.0%以上30.0%以下、Ni:12.0%以上50.0%以下、B:0.4%以上3.5%以下、Al:0.001%以上0.2%以下、N:0.01%以上0.1%以下、Mo:7.0%以下、及びCu:5.0%以下、残部:Fe及び不純物からなる化学組成を有すると共に、17.0≦Cr+3Mo−2.5Bの関係を満たす化学組成を有するステンレス鋼であって、0.2%耐力YSが300N/mm2以上、かつ、全伸びEIが40%以上の燃料電池セパレータ用ステンレス鋼及びこれを用いた燃料電池用セパレータが提案されている。そして、この特許文献2においては、導電性に優れる硼化物を微細分散させることにより接触抵抗を低下させることが記載されているが、この硼化物が表面部に比較的高濃度で存在することにより、セパレータとして使用する際には、薄片化するために、圧延等を行うと硬度が高い硼化物に起因して割れを発生しやすい等の問題がある。 Further, in Patent Document 2, the central portion in the thickness direction is C: 0.03% or less, Si: 0.01% or more and 1.5% or less, Mn: 0.01% or more and 2.5% or less in terms of mass%. , P: 0.035% or less, S: 0.01% or less, Cr: 16.0% or more and 30.0% or less, Ni: 6.0% or more and 30.0% or less, B: 0.01% or less , Al: 0.001% or more and 0.2% or less, N: 0.06% or more and 0.3% or less, Mo: 7.0% or less, and Cu: 5.0% or less, balance: Fe and impurities C: 0.03% or less, Si: 0.01% or more and 1.5% or less, Mn in terms of mass% of the surface portion up to a depth of 10% or less of the total thickness. : 0.01% or more and 2.5% or less, P: 0.035% or less, S: 0.01% or less, Cr: 16.0% or more and 30.0% or less, Ni: 12.0% or more and 50. 0% or less, B: 0.4% or more and 3.5% or less, Al: 0.001% or more and 0.2% or less, N: 0.01% or more and 0.1% or less, Mo: 7.0% or less , And Cu: 5.0% or less, the balance: a stainless steel having a chemical composition consisting of Fe and impurities, and having a chemical composition satisfying the relationship of 17.0 ≤ Cr + 3Mo-2.5B, 0.2%. Stainless steel for fuel cell separators having a withstand strength YS of 300 N / mm 2 or more and a total elongation EI of 40% or more, and a separator for fuel cells using the same have been proposed. And, in this Patent Document 2, it is described that the contact resistance is lowered by finely dispersing a boride having excellent conductivity, but this boride is present in a relatively high concentration on the surface portion. When used as a separator, there is a problem that cracks are likely to occur due to boride having a high hardness when rolling or the like in order to make it thin.

また、特許文献3においては、フッ素イオンを含有した溶液にステンレス鋼を所定の溶解速度で浸漬し、表面の不動態被膜にフッ素を含有させて導電性を改善した(接触抵抗の低い)通電部品用ステンレス鋼が提案されているが、この通電部品用ステンレス鋼においては、フッ素イオンが不動態被膜中に存在するため、ステンレス鋼に劣化が起き易く、その結果として燃料電池の使用環境下で腐食し易く、使用途中での劣化が避けられない。 Further, in Patent Document 3, stainless steel is immersed in a solution containing fluorine ions at a predetermined dissolution rate, and the passivation film on the surface contains fluorine to improve conductivity (low contact resistance). Stainless steel for energizing parts has been proposed, but in this stainless steel for energizing parts, since fluorine ions are present in the passivation coating, the stainless steel is liable to deteriorate, and as a result, it corrodes in the usage environment of the fuel cell. It is easy to use and deterioration during use is unavoidable.

また、特許文献4においては、オーステナイト系ステンレス鋼の表面を、第1の酸と第2の酸とで処理することにより、表面にクロム酸化物組成比が大きい不導体被膜を形成して得られた固体高分子形燃料電池セパレータ用のステンレス部材が提案されており、耐食性に優れ、かつ、接触抵抗が低いとされているが、このステンレス部材においては、クロム酸化物組成比が大きくて不導体被膜の抵抗率が高いだけでなく、フッ化水素酸及び硝酸(以下、これを「フッ硝酸」等と表すことがある。)溶液中の過多な硝酸に起因して表面の酸化が起き易く、このステンレス部材だけをセパレータとして用いると、経時的に接触抵抗が変化し易いという問題がある。 Further, in Patent Document 4, it is obtained by treating the surface of austenite-based stainless steel with a first acid and a second acid to form a non-conductor coating having a large chromium oxide composition ratio on the surface. A stainless steel member for a solid polymer fuel cell separator has been proposed, which is said to have excellent corrosion resistance and low contact resistance. However, this stainless steel member has a large chromium oxide composition ratio and is non-conductor. Not only the resistance of the film is high, but also the surface is easily oxidized due to the excess nitric acid in the hydrofluoric acid and nitric acid (hereinafter, this may be referred to as "fluoric acid" etc.) solution. If only this stainless steel member is used as a separator, there is a problem that the contact resistance tends to change with time.

更に、特許文献5においては、16質量%のクロムを含有するステンレス鋼に対して、電解処理を施した後、フッ化水素酸やフッ硝酸などのフッ素を含有する溶液に浸漬することで、接触抵抗が低減され、且つ耐食性にも優れる燃料電池セパレータ用ステンレス鋼が提案されているが、このステンレス鋼についても、不動態皮膜を除去するための処理を行ったあとは、何らの処理も行なわれていないため、表面の酸化が起き易く、このステンレス部材だけをセパレータとして用いると、燃料電池の使用環境下において経時的に接触抵抗が増大しやすいという問題がある。 Further, in Patent Document 5, stainless steel containing 16% by mass of chromium is electrolyzed and then immersed in a solution containing fluorine such as hydrofluoric acid and fluoric acid to bring it into contact. Stainless steel for fuel cell separators, which has reduced resistance and excellent corrosion resistance, has been proposed. However, this stainless steel is also subjected to any treatment after the treatment for removing the passivation film. Therefore, surface oxidation is likely to occur, and if only this stainless steel member is used as a separator, there is a problem that the contact resistance tends to increase over time in the usage environment of the fuel cell.

このように、ステンレス鋼製のセパレータについても、例えば、燃料電池の使用環境下においては、十分な導電性や耐食性を経時的に発揮させることは難しく、また、割れや亀裂などの発生がなく可撓性にも優れて、それらを満足するステンレス鋼製のセパレータはこれまでは見出されていない。
一方で、金属製の基材に対して、炭素粉末と樹脂粉末とを混合した混合粉末を含んだ塗料を塗布して、金属基材の表面に導電性塗膜を形成した塗装金属や、前記混合粉末を成型したカーボン板を金属製の基材に積層させた複合カーボン板を、燃料電池用のセパレータとして使用することもこれまで検討されている。
As described above, it is difficult for the stainless steel separator to exhibit sufficient conductivity and corrosion resistance over time under the usage environment of the fuel cell, for example, and it is possible without cracks or cracks. So far, no stainless steel separator has been found that has excellent flexibility and satisfies them.
On the other hand, a coated metal in which a paint containing a mixed powder of a mixture of carbon powder and resin powder is applied to a metal base material to form a conductive coating film on the surface of the metal base material, or the above-mentioned It has also been studied to use a composite carbon plate in which a carbon plate obtained by molding a mixed powder is laminated on a metal base material as a separator for a fuel cell.

例えば、特許文献6においては、酸洗したステンレス鋼板の基材表面に、グラファイト粉末及びカーボンブラックの混合粉末からなる導電剤とポリオレフィン樹脂とを含む水分散性塗料を塗布した表面塗装金属セパレータ材料が提案されており、塗膜欠陥がなく塗膜密着性や接触抵抗を向上させたものであるとされているが、この表面塗装金属セパレータ材料においては、ステンレス表面の不動態皮膜を酸洗により除去する方法を用いたものであるものの、具体的に使用されている塩酸洗浄では十分ではなく、導電材との間が接触し難くなり、所望の低い接触抵抗を達成できないという問題や、また、塗装部分の形成材料が黒鉛粒子、カーボンブラックという組合せでは可撓性に劣るといった問題がある。 For example, in Patent Document 6, a surface-coated metal separator material obtained by applying a water-dispersible paint containing a conductive agent composed of a mixed powder of graphite powder and carbon black and a polyolefin resin to the surface of a pickled stainless steel plate base material. It has been proposed that there are no coating defects and the adhesion and contact resistance of the coating are improved. However, in this surface-coated metal separator material, the passivation film on the stainless steel surface is removed by pickling. Although the method is used, the graphite cleaning that is specifically used is not sufficient, it becomes difficult to make contact with the conductive material, and the desired low contact resistance cannot be achieved. There is a problem that the flexibility is inferior when the material for forming the portion is a combination of graphite particles and carbon black.

同じく塗装金属を用いた特許文献7においては、ステンレス鋼板の表面に、カーボンブラック及びグラファイトの混合物からなる導電剤とエポキシ樹脂又はフェノール樹脂からなる熱硬化性樹脂とを含む導電性塗料を塗布した塗装ステンレス鋼板が提案されているが、この塗装ステンレス鋼板は、衝撃に対して比較的弱くて割れ易く、その結果、例えば自動車用等の固体高分子形燃料電池のセパレータとして使用中の震動等に起因して表面の塗膜に亀裂が入り、燃料電池の使用環境下において、腐食してステンレス鋼板と塗膜との間の接触抵抗が大きく悪化することが懸念される。 Similarly, in Patent Document 7 using a coated metal, a conductive paint containing a conductive agent composed of a mixture of carbon black and graphite and a thermosetting resin composed of an epoxy resin or a phenol resin is applied to the surface of a stainless steel plate. Although a stainless steel plate has been proposed, this painted stainless steel plate is relatively weak against impact and easily cracked, and as a result, it is caused by vibration during use as a separator for a polymer electrolyte fuel cell for automobiles, for example. Therefore, there is a concern that the coating film on the surface may be cracked and corroded in the usage environment of the fuel cell, and the contact resistance between the stainless steel plate and the coating film may be significantly deteriorated.

更に、特許文献8においては、炭素粉末として膨張黒鉛粉末と黒鉛粉末とを特定の割合で混合し、これにアンモニアを含まない特定量のフェノール樹脂とを共に圧縮成型したカーボン板を金属基材に積層した複合カーボン板が提案されているが、この複合カーボン板においては、使用されている金属基材であるステンレス鋼は何らの処理はなされていないことから、接触抵抗が比較的高いといった問題がある。また、この特許文献8で使用されているカーボン板は、膨張黒鉛粉末の量が30wt%以上と多く使用されているため、粒子内に空隙を多く持つ膨張黒鉛の中に樹脂が包埋してしまい、それによりカーボン板と金属箔との接着力が低下して接触抵抗が増加してしまうことが懸念される。 Further, in Patent Document 8, expanded graphite powder and graphite powder are mixed as carbon powder in a specific ratio, and a carbon plate obtained by compression molding a specific amount of phenol resin containing no ammonia is used as a metal base material. Laminated composite carbon plates have been proposed, but in this composite carbon plate, the stainless steel, which is the metal base material used, has not been treated in any way, so there is a problem that the contact resistance is relatively high. is there. Further, since the carbon plate used in Patent Document 8 uses a large amount of expanded graphite powder of 30 wt% or more, the resin is embedded in expanded graphite having many voids in the particles. As a result, there is a concern that the adhesive force between the carbon plate and the metal foil will decrease and the contact resistance will increase.

特開平10-228,914号公報Japanese Unexamined Patent Publication No. 10-228,914 特開2010-037614号公報Japanese Unexamined Patent Publication No. 2010-037614 特開2010-013684号公報Japanese Unexamined Patent Publication No. 2010-013684 特開2013-129896号公報Japanese Unexamined Patent Publication No. 2013-129896 WO 2012/098689号公報WO 2012/098689 特開平11-345618号公報Japanese Unexamined Patent Publication No. 11-345618 特開2010-248474号公報Japanese Unexamined Patent Publication No. 2010-248474 WO 2014/148649号公報WO 2014/148649

このように、燃料電池用のセパレータとして、カーボン製、金属(ステンレス鋼板)製、又はカーボンと金属とを積層させたものがそれぞれ提案されてきたものの、いずれも実用上で要求されるフレキシブル性(可撓性)、耐久性(耐食性)及び導電性などの特性を全て満足するものは見出されていなかった。
そこで、このような状況の下、本発明者らが鋭意検討した結果、以下のような知見が得られた。すなわち、ステンレス表面をフッ硝酸等で表面処理しても、時間変化と共に接触抵抗が増加してしまうことを把握したが、そのステンレス表面の状態を詳細に解析していくと、そのうちの最表面に存在するSi含有量が多いものほど経時で接触抵抗の増加が見られることを突き止めた。そして、接触抵抗の経時変化が大きいステンレスについては、工業的な量産を鑑みると表面処理後に短時間でカーボン層を形成する等の対策が必要であって実用的ではないことから、本発明者らの検討によれば、板状基材として特定の組成を有するステンレス鋼板を用い、この板状基材の最表面層におけるケイ素濃度を可及的に低減させた上で、この表面層を介してカーボン層を積層することにより、安定的に接触抵抗が低くて導電性が良く、しかも、耐食性及び可撓性も共に優れたステンレス鋼板カーボン複合材が得られることを見出し、本発明を完成した。
As described above, carbon, metal (stainless steel plate), or laminated carbon and metal have been proposed as separators for fuel cells, but all of them have the flexibility required for practical use (flexibility required for practical use). No one was found that satisfied all the properties such as flexibility), durability (corrosion resistance) and conductivity.
Therefore, as a result of diligent studies by the present inventors under such circumstances, the following findings were obtained. That is, it was found that even if the surface of the stainless steel is surface-treated with fluorine or the like, the contact resistance increases with time, but when the state of the stainless steel surface is analyzed in detail, the outermost surface is found. It was found that the larger the Si content present, the greater the contact resistance over time. As for stainless steel, which has a large change in contact resistance with time, it is not practical because it is necessary to take measures such as forming a carbon layer in a short time after surface treatment in view of industrial mass production. According to the study of, a stainless steel plate having a specific composition was used as the plate-shaped base material, the silicon concentration in the outermost surface layer of the plate-shaped base material was reduced as much as possible, and then through this surface layer. We have found that by laminating a carbon layer, a stainless steel plate carbon composite material having stable low contact resistance, good conductivity, and excellent corrosion resistance and flexibility can be obtained, and the present invention has been completed.

従って、本発明の目的は、例えば、固体高分子形燃料電池用等の燃料電池用セパレータを始めとして、レドックスフロー型2次電池用の集電板や、石油精製用、石油化学用等のガスケットやパッキン等においても使用可能な、導電性、耐食性及び可撓性等が共に優れたステンレス鋼板カーボン複合材を提供することにある。
また、本発明の他の目的は、導電性、耐食性及び可撓性等が共に優れたステンレス鋼板カーボン複合材の製造方法を提供することにある。
Therefore, an object of the present invention is, for example, a separator for a fuel cell such as a polymer electrolyte fuel cell, a current collector plate for a redox flow type secondary battery, and a gasket for petroleum refining, petrochemicals, etc. It is an object of the present invention to provide a stainless steel plate carbon composite material having excellent conductivity, corrosion resistance, flexibility and the like, which can also be used for packing and packing.
Another object of the present invention is to provide a method for producing a stainless steel plate carbon composite material having excellent conductivity, corrosion resistance, flexibility and the like.

すなわち、本発明の要旨は、以下の通りである。
(1) ステンレス鋼製の板状基材の少なくとも片面に、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むカーボン層が積層されたステンレス鋼板カーボン複合材であり、
前記板状基材は、ケイ素含有量が1.0質量%以下のステンレス鋼板であって、表面から5nmの深さまでのケイ素濃度が0.5at%以下であり、
前記カーボン層は、炭素粉末(C)と樹脂粉末(R)との体積比(C/R)が6/4〜9/1の割合であることを特徴とするステンレス鋼板カーボン複合材。
(2) 前記板状基材の表面から5nmの深さまでのケイ素濃度が0.01at%以下であることを特徴とする前記(1)に記載のステンレス鋼板カーボン複合材。
(3) 前記板状基材が、オーステナイト系ステンレス鋼又はフェライト系ステンレス鋼であることを特徴とする前記(1)又は(2)に記載のステンレス鋼板カーボン複合材。
(4) 前記熱可塑性樹脂からなる樹脂粉末が、ポリプロピレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリメチルペンテン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、液晶ポリマー樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエチレンテレフタレート樹脂及びポリブチレンテレフタレート樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする前記(1)〜(3)のいずれかに記載のステンレス鋼板カーボン複合材。
(5) 前記熱硬化性樹脂からなる樹脂粉末が、フェノール樹脂及びエポキシ樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする前記(1)〜(3)のいずれかに記載のステンレス鋼板カーボン複合材。
(6) 前記板状基材の表面とこの表面に積層されるカーボン層との間が、接着剤層を介して接合されていることを特徴とする前記(1)〜(5)のいずれかに記載のステンレス鋼板カーボン複合材。
(7) ケイ素含有量が1.0質量%以下のステンレス鋼製の板状基材の少なくとも片面に、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むカーボン層を積層してステンレス鋼板カーボン複合材を製造する方法であり、
前記板状基材の少なくとも片面に、表面処理液として、1〜10質量%濃度のフッ化水素酸水溶液、又は、フッ化水素酸(HF)と硝酸(HNO3)との濃度比(HF/HNO3)が2以上であってHF濃度が2質量%以上のフッ化水素酸・硝酸混合水溶液を接触させる表面処理工程と、
この表面処理後の板状基材の表面に、前記炭素粉末(C)と樹脂粉末(R)との体積比(C/R)が6/4〜9/1の割合であるカーボン層を積層する積層工程とを有することを特徴とするステンレス鋼板カーボン複合材の製造方法。
(8) 前記表面処理工程に先駆けて、前記板状基材の少なくとも片面に、前処理液として、酸濃度25質量%以上及び塩化鉄濃度20質量%以上の塩化鉄含有酸水溶液を接触させる前処理工程を有することを特徴とする前記(7)に記載のステンレス鋼板カーボン複合材の製造方法。
(9) 前記積層工程では、前記炭素粉末と樹脂粉末とを含む粉末混合物をホットプレスしてカーボン層を形成し、得られたカーボン層を表面処理後の板状基材の表面にホットプレスして積層することを特徴とする前記(7)又は(8)に記載のステンレス鋼板カーボン複合材の製造方法。
(10) 前記積層工程に先駆けて、表面処理後の板状基材の表面に接着剤組成物を塗布して接着剤層を形成する接着剤層形成工程を有し、積層工程ではこの接着剤層を介して表面処理後の板状基材の表面にカーボン層が積層されることを特徴とする前記(7)〜(9)のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。
(11) 前記熱可塑性樹脂からなる樹脂粉末が、ポリプロピレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリメチルペンテン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、液晶ポリマー樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエチレンテレフタレート樹脂及びポリブチレンテレフタレート樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする前記(7)〜(10)のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。
(12) 前記熱硬化性樹脂からなる樹脂粉末が、フェノール樹脂及びエポキシ樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする前記(7)〜(10)のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。
(13) 前記板状基材が、オーステナイト系ステンレス鋼又はフェライト系ステンレス鋼であることを特徴とする前記(7)〜(12)のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。
That is, the gist of the present invention is as follows.
(1) A stainless steel plate carbon composite material in which a carbon layer containing carbon powder and a resin powder made of a thermoplastic resin or a thermosetting resin is laminated on at least one surface of a plate-shaped base material made of stainless steel.
The plate-like base material is a stainless steel plate having a silicon content of 1.0% by mass or less, and has a silicon concentration of 0.5 at% or less from the surface to a depth of 5 nm.
The carbon layer is a stainless steel plate carbon composite material having a volume ratio (C / R) of carbon powder (C) and resin powder (R) of 6/4 to 9/1.
(2) The stainless steel plate carbon composite material according to (1) above, wherein the silicon concentration from the surface of the plate-shaped base material to a depth of 5 nm is 0.01 at% or less.
(3) The stainless steel plate carbon composite material according to (1) or (2) above, wherein the plate-shaped base material is austenitic stainless steel or ferritic stainless steel.
(4) The resin powder composed of the thermoplastic resin is polypropylene resin, polyethylene resin, polyamide resin, polyphenylene sulfide resin, polymethylpentene resin, polyether ether ketone resin, polyphenylene ether resin, liquid crystal polymer resin, polyamideimide resin, polysulfone. Any one of the above (1) to (3), which is a resin powder composed of any one selected from the group consisting of a resin, a polyethylene terephthalate resin and a polybutylene terephthalate resin, or a mixture of two or more kinds. The stainless steel plate carbon composite material described in.
(5) The resin powder made of the thermosetting resin is a resin powder made of any one or a mixture of two or more selected from the group consisting of phenol resin and epoxy resin. The stainless steel plate carbon composite material according to any one of 1) to (3).
(6) Any of the above (1) to (5), wherein the surface of the plate-shaped base material and the carbon layer laminated on the surface are bonded via an adhesive layer. The stainless steel plate carbon composite material described in.
(7) A carbon layer containing carbon powder and a resin powder made of a thermoplastic resin or a thermosetting resin is laminated on at least one surface of a stainless steel plate-shaped base material having a silicon content of 1.0% by mass or less. It is a method of manufacturing stainless steel plate carbon composite material.
A hydrofluoric acid aqueous solution having a concentration of 1 to 10% by mass or a concentration ratio of hydrofluoric acid (HF) to nitric acid (HNO 3 ) (HF /) on at least one surface of the plate-like substrate as a surface treatment liquid. A surface treatment step in which a hydrofluoric acid / nitric acid mixed aqueous solution having an HNO 3 ) of 2 or more and an HF concentration of 2% by mass or more is brought into contact with each other.
A carbon layer having a volume ratio (C / R) of 6/4 to 9/1 of the carbon powder (C) and the resin powder (R) is laminated on the surface of the plate-shaped base material after the surface treatment. A method for producing a stainless steel plate carbon composite material, which comprises a laminating step.
(8) Prior to the surface treatment step, before contacting at least one surface of the plate-shaped substrate with an iron chloride-containing acid aqueous solution having an acid concentration of 25% by mass or more and an iron chloride concentration of 20% by mass or more as a pretreatment liquid. The method for producing a stainless steel plate carbon composite material according to (7) above, which comprises a treatment step.
(9) In the laminating step, a powder mixture containing the carbon powder and the resin powder is hot-pressed to form a carbon layer, and the obtained carbon layer is hot-pressed on the surface of the plate-shaped base material after surface treatment. The method for producing a stainless steel plate carbon composite material according to (7) or (8) above, which comprises laminating the materials.
(10) Prior to the laminating step, there is an adhesive layer forming step of applying an adhesive composition to the surface of the plate-shaped base material after surface treatment to form an adhesive layer, and this adhesive is used in the laminating step. The method for producing a stainless steel plate carbon composite material according to any one of (7) to (9) above, wherein a carbon layer is laminated on the surface of a plate-like base material after surface treatment via a layer.
(11) The resin powder made of the thermoplastic resin is polypropylene resin, polyethylene resin, polyamide resin, polyphenylene sulfide resin, polymethylpentene resin, polyether ether ketone resin, polyphenylene ether resin, liquid crystal polymer resin, polyamideimide resin, polysulfone. Any one of (7) to (10) above, which is a resin powder composed of any one or a mixture of two or more selected from the group consisting of a resin, a polyethylene terephthalate resin and a polybutylene terephthalate resin. A method for producing a stainless steel plate carbon composite material according to.
(12) The resin powder made of the thermosetting resin is a resin powder made of any one or a mixture of two or more selected from the group consisting of a phenol resin and an epoxy resin. The method for producing a stainless steel plate carbon composite material according to any one of 7) to (10).
(13) The method for producing a stainless steel plate carbon composite material according to any one of (7) to (12) above, wherein the plate-shaped base material is austenitic stainless steel or ferritic stainless steel.

本発明によれば、導電性、耐食性及び可撓性が共に優れたステンレス鋼板カーボン複合材を提供することができる。
また、本発明によれば、導電性、耐食性及び可撓性が共に優れたステンレス鋼板カーボン複合材の製造方法を提供することができる。
According to the present invention, it is possible to provide a stainless steel plate carbon composite material having excellent conductivity, corrosion resistance and flexibility.
Further, according to the present invention, it is possible to provide a method for producing a stainless steel plate carbon composite material having excellent conductivity, corrosion resistance and flexibility.

図1は、ステンレス鋼製板状基材及びその表面に形成された酸化皮膜のTEM観察断面を示す説明図(写真)である〔(a)フッ硝酸処理(HF:1質量%、HNO3:4質量%)30日後、(b)フッ化水素酸処理(HF:4質量%)30日後〕FIG. 1 is an explanatory view (photograph) showing a TEM observation cross section of a stainless steel plate-shaped base material and an oxide film formed on the surface thereof [(a) Hydrofluoric acid treatment (HF: 1% by mass, HNO 3 : HNO 3 :). 4% by mass) 30 days later, (b) Hydrofluoric acid treatment (HF: 4% by mass) 30 days later] 図2は、SUS316L鋼板に対して、フッ硝酸処理(HF:1質量%、HNO3:4質量%)で処理した後30日間大気中で保存したものと、フッ化水素酸処理(HF:4質量%)後30日間大気中で保存したものとの試料を用いて、XPS測定により、SUS表面に形成された酸化皮膜の表面からの深さ方向(nm)とそのSi濃度(at%)との関係を示すグラフである。Figure 2 shows a SUS316L steel plate treated with nitric acid (HF: 1% by mass, HNO 3 : 4% by mass) and then stored in the air for 30 days, and hydrofluoric acid treatment (HF: 4). By XPS measurement using a sample that was stored in the air for 30 days after (mass%), the depth direction (nm) from the surface of the oxide film formed on the SUS surface and its Si concentration (at%) It is a graph which shows the relationship of. 図3は、SUS316L鋼板に対して、フッ硝酸処理(HF:1質量%、HNO3:4質量%)後30日間大気中で保存したもの(a)と、フッ化水素酸処理(HF:4質量%)後30日間大気中で保存したもの(b)との試料を用いて、これら処理液の違いについて、XPS測定により、SUS表面に形成された酸化皮膜中のSiと酸素との結合状態の差異を示すグラフである。FIG. 3 shows a SUS316L steel sheet stored in the air for 30 days after being treated with fluoric acid (HF: 1% by mass, HNO 3 : 4% by mass) and hydrofluoric acid treatment (HF: 4). Using the sample (b) stored in the air for 30 days after (mass%), the difference between these treatment solutions was measured by XPS measurement, and the bonding state of Si and oxygen in the oxide film formed on the SUS surface was observed. It is a graph which shows the difference of. 図4はカーボン層又はステンレス鋼板カーボン複合材を製造するための成型方法の概略説明図である。FIG. 4 is a schematic explanatory view of a molding method for producing a carbon layer or a stainless steel plate carbon composite material. 図5は、本発明のステンレス鋼板カーボン複合材の製造におけるカーボン層、接着剤層及びステンレス鋼製の板状基材の積層方法の概略説明図である。FIG. 5 is a schematic explanatory view of a method of laminating a carbon layer, an adhesive layer, and a plate-shaped base material made of stainless steel in the production of the stainless steel plate carbon composite material of the present invention. 図6は、接触抵抗を測定する方法の概略説明図である。FIG. 6 is a schematic explanatory view of a method for measuring contact resistance. 図7は、燃料電池を構成する単位セルの構成を示す分解図である。FIG. 7 is an exploded view showing the configuration of the unit cells constituting the fuel cell. 図8(a)は燃料電池用セパレータの一例を示す平面図であり、図8(b)は図8(a)の線X−Y断面を示す断面図である。FIG. 8A is a plan view showing an example of a fuel cell separator, and FIG. 8B is a cross-sectional view showing a cross section taken along line XY of FIG. 8A.

以下、本発明のステンレス鋼板カーボン複合材及びその製造方法について、詳細に説明する。
本発明のステンレス鋼板カーボン複合材は、ステンレス鋼製の板状基材の少なくとも片面に、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むカーボン層が積層されたステンレス鋼板カーボン複合材であって、前記板状基材は、ケイ素含有量(Si含有量)が1.0質量%以下のステンレス鋼板であって、SUS表面に形成されている表面層のうち、表面から5nmの深さまでのケイ素濃度(Si濃度)が0.5at%以下であり、前記カーボン層は、炭素粉末(C)と樹脂粉末(R)との体積比(C/R)が6/4〜9/1の割合であることに特徴を有する。
Hereinafter, the stainless steel plate carbon composite material of the present invention and a method for producing the same will be described in detail.
The stainless steel plate carbon composite material of the present invention is a stainless steel plate carbon in which a carbon layer containing carbon powder and a resin powder made of a thermoplastic resin or a thermosetting resin is laminated on at least one surface of a plate-shaped base material made of stainless steel. The plate-like base material is a composite material, which is a stainless steel plate having a silicon content (Si content) of 1.0% by mass or less, and is 5 nm from the surface of the surface layer formed on the SUS surface. The silicon concentration (Si concentration) to the depth of is 0.5 at% or less, and the carbon layer has a volume ratio (C / R) of carbon powder (C) and resin powder (R) of 6/4 to 9 It is characterized by a ratio of / 1.

本発明において、板状基材を構成するステンレス鋼については、そのSi含有量が1.0質量%以下、好ましくは0.8質量%以下であれば、特に制限されるものではないが、好ましくは、例えばオーステナイト系ステンレス鋼として、SUS316L、SUS316、SUS304L、SU304等を例示することができ、また、例えばフェライト系ステンレス鋼として、SUS430、SUS444、SUS434、SUS405、SUS429等を例示することができる。ここで、Si含有量が1.0質量%を超えて高くなると、耐食性および溶接性の低下、ならびに粗粒化を誘発して冷間加工性を劣化させる虞が生じる。また、当該Si含有量については、少なすぎると脱酸剤であるSiの不足による製品の品質低下が起きるか、または元々高品質な原料を用意する必要がありコスト増加に繋がると言う虞があることから、好ましくは、0.05質量%以上であることがよい。 In the present invention, the stainless steel constituting the plate-like base material is not particularly limited as long as its Si content is 1.0% by mass or less, preferably 0.8% by mass or less, but it is preferable. For example, SUS316L, SUS316, SUS304L, SU304 and the like can be exemplified as the austenitic stainless steel, and SUS430, SUS444, SUS434, SUS405, SUS429 and the like can be exemplified as the ferrite stainless steel, for example. Here, if the Si content exceeds 1.0% by mass, the corrosion resistance and weldability may be lowered, and coarse graining may be induced to deteriorate the cold workability. In addition, if the Si content is too small, the quality of the product may deteriorate due to a shortage of Si, which is an antacid, or it may be necessary to prepare high-quality raw materials from the beginning, leading to an increase in cost. Therefore, it is preferably 0.05% by mass or more.

また、本発明において、板状基材の表面層は、ステンレス鋼板の表面の不動態皮膜を除いた後に形成される酸化皮膜であり、そのSi濃度については、表面(すなわち、表面層のうちの最表面)から5nmの領域において0.5at%以下である必要があり、好ましくは、0.01at%以下であって、可及的に少ないことが望ましい。ここで、本発明における当該Si濃度(at%)については、前記最表面から5nmの領域までの各深さにおける全原子数に対するSi原子数の割合(%)を示すものである。この領域のSi濃度が0.5at%を超えて高くなると、Siの酸化物であるSiO2比率が高くなることより導電性が低下する虞が生じる。また、この酸化皮膜からなる表面層の厚さについては、通常6nm以上25nm以下、好ましくは10nm以上20nm以下であり、この表面層の厚さが、6nmよりも小さくなると安定化せず暫時酸化が進行し結果として酸化皮膜が厚く形成される虞があり、反対に、25nmを超えて大きくなると導電性が低下するという虞がある。 Further, in the present invention, the surface layer of the plate-like base material is an oxide film formed after removing the passivation film on the surface of the stainless steel sheet, and the Si concentration thereof is the surface (that is, the surface layer). It needs to be 0.5 at% or less in the region of 5 nm from the outermost surface), preferably 0.01 at% or less, and preferably as small as possible. Here, the Si concentration (at%) in the present invention indicates the ratio (%) of the number of Si atoms to the total number of atoms at each depth from the outermost surface to the region of 5 nm. If the Si concentration in this region becomes higher than 0.5 at%, the ratio of SiO 2 which is an oxide of Si becomes high, so that the conductivity may decrease. The thickness of the surface layer composed of this oxide film is usually 6 nm or more and 25 nm or less, preferably 10 nm or more and 20 nm or less. If the thickness of this surface layer is smaller than 6 nm, it is not stabilized and oxidation occurs for a while. As a result, the oxide film may be formed thicker, and conversely, if the thickness exceeds 25 nm, the conductivity may decrease.

ここで、本発明において、前記板状基材の表面から5nmの深さまでのSi濃度は、例えば、XPS(X-Ray photoelectron spectroscopy:光電子分光法)で測定することが可能であり、得られたスペクトルデータから算出を行うことで得られる。具体的には、深さ方向のデータはArイオン等の照射によりエッチングしていくことで、任意の深さ方向のスペクトルデータを採取することにより行なう。そして、深さ方向の定量性は照射時間と深さデータの基準としてSiO2を標準材料として用いた値より換算することで算出することができる。そして、本発明におけるこの表面のSi濃度については、本発明者らは以下のように推測している。すなわち、前記板状基材の表面層における表面近傍でSiが濃化するほど接触抵抗が大きくなるといった現象を把握しており、このことから、板状基材の母材中のSiではなく、表面から5nmまでに露出しているSiが酸化されてSiO2となることにより経時的に接触抵抗が高くなって導電性を失っていくことが、前記板状基材の表面の導電性に大きく影響を及ぼしていると推測している。 Here, in the present invention, the Si concentration from the surface of the plate-shaped substrate to a depth of 5 nm can be measured by, for example, XPS (X-Ray photoelectron spectroscopy), and is obtained. It is obtained by performing calculation from spectral data. Specifically, the data in the depth direction is etched by irradiation with Ar ions or the like, and the spectrum data in an arbitrary depth direction is collected. Then, the quantitativeness in the depth direction can be calculated by converting from the value using SiO 2 as the standard material as the reference for the irradiation time and the depth data. Then, the present inventors speculate about the Si concentration of this surface in the present invention as follows. That is, we have grasped the phenomenon that the contact resistance increases as Si becomes thicker near the surface in the surface layer of the plate-shaped base material, and from this, it is not Si in the base material of the plate-shaped base material, but The fact that the Si exposed up to 5 nm from the surface is oxidized to SiO 2 and the contact resistance increases over time and loses conductivity greatly affects the conductivity of the surface of the plate-shaped substrate. I'm guessing it's influencing.

本発明においては、前記板状基材がこのような表面状態を有するものであることから、好ましくはその接触抵抗が10mΩ・cm2以下であることがよく、より好ましくは5mΩ・cm2以下、さらに好ましくは3mΩ・cm2以下であり尚且つ、その接触抵抗が30日経過後においても実質的に変化しないことが好ましい。 In the present invention, since the plate-shaped base material has such a surface state, the contact resistance thereof is preferably 10 mΩ · cm 2 or less, more preferably 5 mΩ · cm 2 or less. More preferably, it is 3 mΩ · cm 2 or less, and its contact resistance does not substantially change even after 30 days have passed.

そして、このステンレス鋼製の板状基材の厚さについては、特に制限されるものではないが、通常10μm以上150μm以下、好ましくは20μm以上70μm以下であるのがよく、この板状基材の厚さが10μm未満であると機械的強度が低下する虞があり、反対に、150μmを超えて厚くなると柔軟性や可撓性の点で問題が生じる虞がある。 The thickness of the stainless steel plate-shaped base material is not particularly limited, but is usually 10 μm or more and 150 μm or less, preferably 20 μm or more and 70 μm or less. If the thickness is less than 10 μm, the mechanical strength may decrease, and conversely, if the thickness exceeds 150 μm, problems may occur in terms of flexibility and flexibility.

また、上記の板状基材の表面に積層されるカーボン層については、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むものであり、炭素粉末(C)と樹脂粉末(R)とを体積比(C/R)で6/4〜9/1、好ましくは7/3〜8/2の割合で含み、また、その厚さが0.05mm以上2.0mm以下、好ましくは0.1mm以上1.0mm以下である。この炭素粉末(C)と樹脂粉末(R)との体積比(C/R)については、6/4より小さくなって炭素粉末の比率が低下すると導電性が低下する虞があり、反対に、9/1より大きくなると熱可塑性樹脂又は熱硬化性樹脂の比率が低いために柔軟性、可撓性および耐食性に劣る虞がある。また、カーボン層の厚さについては、0.05mmより薄くなるとカーボン層の僅かなクラックから腐食が始まる可能性があり、反対に、2.0mmより厚くなると可撓性に悪影響を及ぼす可能性がある。 The carbon layer laminated on the surface of the plate-shaped base material contains carbon powder and a resin powder made of a thermoplastic resin or a thermosetting resin, and is a carbon powder (C) and a resin powder ( R) is contained in a volume ratio (C / R) of 6/4 to 9/1, preferably 7/3 to 8/2, and the thickness thereof is preferably 0.05 mm or more and 2.0 mm or less. Is 0.1 mm or more and 1.0 mm or less. Regarding the volume ratio (C / R) of the carbon powder (C) and the resin powder (R), if it becomes smaller than 6/4 and the ratio of the carbon powder decreases, the conductivity may decrease. If it is larger than 9/1, the ratio of the thermoplastic resin or the thermosetting resin is low, so that the flexibility, flexibility and corrosion resistance may be inferior. Regarding the thickness of the carbon layer, if it is thinner than 0.05 mm, corrosion may start from a slight crack in the carbon layer, and conversely, if it is thicker than 2.0 mm, it may adversely affect the flexibility. is there.

ここで、前記カーボン層を形成する炭素粉末については、例えば、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、膨張化黒鉛粉末、鱗片状黒鉛粉末、球状黒鉛粉末などの粉末等から選ばれたいずれか1種か、又は2種以上の混合物を挙げることができ、好ましくは、可撓性及び導電性の点から、少なくとも膨張黒鉛粉末及び/又は膨張化黒鉛粉末を含む方が良い。その場合、当該膨張黒鉛粉末及び/又は膨張化黒鉛粉末の含有量は、炭素粉末と樹脂粉末との混合粉末中4体積%以上51体積%未満が好ましく、5体積%以上21体積%未満がより好ましい。4体積%未満の場合、可撓性が低くなる虞があり、一方、51体積%以上の場合、本来、粒子同士、又は粒子と金属板との接着に寄与する樹脂がうまく機能することができずに、接触抵抗が大きくなる虞がある。なお、この範囲において炭素粉末中の膨張黒鉛粉末及び/又は膨張化黒鉛粉末の質量含有量としては、膨張黒鉛粉末及び/又は膨張化黒鉛粉末の真比重を他の黒鉛粉末と同じ2.2g/cmとして計算することができ、5質量%以上73質量%未満が好ましく、7質量%以上30質量%未満がより好ましい。
そして、この炭素粉末の粒子径については、レーザー回折式粒度分布測定装置(例えば、Malvern製「Mastersizer2000」等)等の粒度測定計において算出されたD50(累積50体積%径)の値で表される平均粒子径が、通常4μm以上200μm以下、好ましくは10μm以上30μm以下であるのがよく、4μmより小さいと比表面積が大きいため樹脂が粒子同士またはSUS板との接着に使用されにくく、可撓性に劣る虞があり、反対に、200μmより大きくなるとカーボン層を形成する際に平滑な面が得られにくく、不良率が大きくなる虞がある。
Here, the carbon powder forming the carbon layer is selected from, for example, natural graphite powder, artificial graphite powder, expanded graphite powder, expanded graphite powder, scaly graphite powder, spheroidal graphite powder, and the like. One type or a mixture of two or more types can be mentioned, and it is preferable to include at least expanded graphite powder and / or expanded graphite powder from the viewpoint of flexibility and conductivity. In that case, the content of the expanded graphite powder and / or the expanded graphite powder is preferably 4% by volume or more and less than 51% by volume, more preferably 5% by volume or more and less than 21% by volume in the mixed powder of the carbon powder and the resin powder. preferable. If it is less than 4% by volume, the flexibility may be lowered, while if it is 51% by volume or more, the resin that originally contributes to the adhesion between the particles or between the particles and the metal plate can function well. Instead, the contact resistance may increase. In this range, the mass content of the expanded graphite powder and / or the expanded graphite powder in the carbon powder is such that the true specific gravity of the expanded graphite powder and / or the expanded graphite powder is 2.2 g / g, which is the same as that of other graphite powders. It can be calculated as cm 3 , preferably 5% by mass or more and less than 73% by mass, and more preferably 7% by mass or more and less than 30% by mass.
The particle size of this carbon powder is represented by the value of D 50 (cumulative 50% by volume) calculated by a particle size counter such as a laser diffraction type particle size distribution measuring device (for example, "Mastersizer 2000" manufactured by Malvern). The average particle size to be formed is usually 4 μm or more and 200 μm or less, preferably 10 μm or more and 30 μm or less, and if it is smaller than 4 μm, the specific surface area is large, so that it is difficult for the resin to be used for adhesion between particles or a SUS plate. The flexibility may be inferior, and conversely, if it is larger than 200 μm, it is difficult to obtain a smooth surface when forming the carbon layer, and the defect rate may increase.

また、前記カーボン層を形成する樹脂粉末については、熱可塑性樹脂であっても、また、熱硬化性樹脂であってもよく、前記熱可塑性樹脂としては、用途に応じて選択できるものであって特に制限されるものではないが、好ましくはポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリアミド樹脂(PA)、ポリフェニレンスルフィド樹脂(PPS)、ポリメチルペンテン樹脂(PMP)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリフェニレンエーテル樹脂(PPE)、液晶ポリマー樹脂(LCP)、ポリアミドイミド樹脂(PAI)、ポリスルホン樹脂(PSU)、ポリエチレンテレフタレート樹脂(PET)及びポリブチレンテレフタレート樹脂(PBT)からなる群から選ばれたいずれか1種か又は2種以上の混合物を挙げることができ、また、前記熱硬化性樹脂についても、用途に応じて選択できるものであって特に制限されるものではないが、好ましくはフェノール樹脂及びエポキシ樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物を挙げることができる。 Further, the resin powder forming the carbon layer may be a thermoplastic resin or a thermosetting resin, and the thermoplastic resin can be selected according to the intended use. Although not particularly limited, polypropylene resin (PP), polyethylene resin (PE), polyamide resin (PA), polyphenylene sulfide resin (PPS), polymethylpentene resin (PMP), polyetheretherketone resin ( Selected from the group consisting of PEEK), polyphenylene ether resin (PPE), liquid crystal polymer resin (LCP), polyamideimide resin (PAI), polysulfone resin (PSU), polyethylene terephthalate resin (PET) and polybutylene terephthalate resin (PBT). Any one or a mixture of two or more thereof can be mentioned, and the thermosetting resin can be selected according to the intended use and is not particularly limited, but is preferably phenol. Examples thereof include any one or a mixture of two or more selected from the group consisting of resins and epoxy resins.

ここで、前記PP、PE、PMPなどのポリオレフィン樹脂については、不飽和カルボン酸又はその誘導体の一部又は全部が当該ポリオレフィン樹脂にグラフトされて変性された変性ポリオレフィン樹脂を使用することも可能である。このような変性ポリオレフィン樹脂を使用することにより、カーボン層やそれを備えたステンレス鋼板カーボン複合材としての可撓性の向上や、SUSとの密着性及び炭素粒子との密着性が向上することが期待され、それにより接触抵抗が低下するため好ましい。そして、変性ポリオレフィン樹脂全体に占めるグラフト量(グラフト率)としては通常、0.05〜15質量%であることが好ましく、より好ましくは0.1〜10質量%、さらに好ましくは0.1〜3質量%とされる。変性前のポリオレフィン樹脂にグラフトするために使用される前記不飽和カルボン酸又はその誘導体の具体的なものとしては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、無水マレイン酸、無水ハイミック酸、4−メチルシクロヘキセ−4−エン−1,2−ジカルボン酸無水物、α−エチルアクリル酸、フマール酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、エンドシス−ビシクロ〔2,2,1〕ヘプト−5−エン−2,3−ジカルボン酸(ナジック酸〔商標〕)、ビシクロ[2.2.2]オクト−5−エン−2,3−ジカルボン酸無水物、1,2,3,4,5,8,9,10−オクタヒドロナフタレン−2,3−ジカルボン酸無水物、2−オクタ−1,3−ジケトスピロ[4.4]ノン−7−エン、ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物、マレオピマル酸、テトラヒドロフタル酸無水物、x−メチル−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸無水物、x−メチル−ノルボルネン−5−エン−2,3−ジカルボン酸無水物(xはメチル基の置換位置を示す)、及びノルボルン−5−エン−2,3−ジカルボン酸無水物などを使用することができる。また、上記不飽和カルボン酸の酸ハライド、アミド、イミド、エステル等の誘導体なども使用可能である。これらの中では不飽和ジカルボン酸又はその酸無水物が好ましく、特に無水マレイン酸又は無水ハイミック酸が好ましい。このような不飽和カルボン酸又はその誘導体を1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。ハロゲン基としては、塩素或いは臭素を好適に使用することができる。 Here, as for the polyolefin resin such as PP, PE, PMP, it is also possible to use a modified polyolefin resin in which a part or all of the unsaturated carboxylic acid or a derivative thereof is grafted on the polyolefin resin. .. By using such a modified polyolefin resin, it is possible to improve the flexibility of the carbon layer and the stainless steel plate carbon composite material provided with the carbon layer, and to improve the adhesion to SUS and the adhesion to carbon particles. Expected, which is preferable as it reduces contact resistance. The amount of graft (graft ratio) in the entire modified polyolefin resin is usually preferably 0.05 to 15% by mass, more preferably 0.1 to 10% by mass, and further preferably 0.1 to 3%. It is said to be% by mass. Specific examples of the unsaturated carboxylic acid or its derivative used for grafting to the polyolefin resin before modification include acrylic acid, methacrylic acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, and maleic anhydride. , Hymic anhydride, 4-methylcyclohexe-4-ene-1,2-dicarboxylic acid anhydride, α-ethylacrylic acid, fumaric acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, endocis-bicyclo [2,2 1] Hept-5-ene-2,3-dicarboxylic acid (nagic acid [trademark]), bicyclo [2.2.2] octo-5-ene-2,3-dicarboxylic acid anhydride, 1,2,3 , 4,5,8,9,10-Octahydronaphthalene-2,3-dicarboxylic acid anhydride, 2-octa-1,3-diketospiro [4.4] non-7-ene, bicyclo [2.2. 1] Hept-5-ene-2,3-dicarboxylic acid anhydride, maleopimaric acid, tetrahydrophthalic acid anhydride, x-methyl-bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid Anhydride, x-methyl-norbornen-5-ene-2,3-dicarboxylic acid anhydride (x indicates the substitution position of the methyl group), norborn-5-ene-2,3-dicarboxylic acid anhydride, etc. Can be used. In addition, derivatives such as acid halide, amide, imide, and ester of the unsaturated carboxylic acid can also be used. Among these, unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, and maleic anhydride or hymic anhydride is particularly preferable. Such an unsaturated carboxylic acid or a derivative thereof may be used alone, or a combination of two or more thereof may be used. As the halogen group, chlorine or bromine can be preferably used.

そして、前記した樹脂粉末については、その平均粒子径が通常5μm以上300μm以下、好ましくは20μm以上200μm以下であるのがよく、5μmより小さいと樹脂粒子の凝集が起きる虞があり、反対に、300μmより大きくなると温間圧縮成型(ホットプレス)中の樹脂流れが悪くなりカーボン層の形成に問題が起きる虞がある。平均粒子径については、前記炭素粉末の場合と同様に定義される。 The average particle size of the above-mentioned resin powder is usually 5 μm or more and 300 μm or less, preferably 20 μm or more and 200 μm or less, and if it is smaller than 5 μm, agglomeration of resin particles may occur, and conversely, 300 μm. If it becomes larger, the resin flow during warm compression molding (hot pressing) becomes poor, and there is a risk that a problem may occur in the formation of the carbon layer. The average particle size is defined in the same manner as in the case of the carbon powder.

本発明においては、ステンレス鋼製の板状基材の表面とこの表面に積層されるカーボン層との間が、通常0.1μm以上10μm以下の接着剤層を介して接合されていてもよい。このような接着剤層を形成するための接着剤組成物については、特に制限されるものではないが、好ましくは不飽和カルボン酸若しくはその誘導体の一部又は全部がポリオレフィン樹脂にグラフトした変性ポリオレフィン樹脂を含むもの(例えば、特開2005-146,178号公報参照)であるのがよく、具体的には、接着性ポリオレフィン樹脂を含む接着剤組成物(三井化学株式会社製商品名:アドマー)、不飽和カルボン酸によりグラフト変性された変性ポリオレフィン樹脂を含む接着剤組成物(三井化学株式会社製商品名:ユニストール)等が挙げられる。なお、ハロゲンによりグラフト変性された変性ポリオレフィン樹脂を含む接着剤組成物(東洋紡株式会社製商品名:トーヨータック)等も使用することができ、また、5wt%-フェノール樹脂接着剤組成物(溶媒:イソプロピルアルコール、フェノール樹脂:リグナイト株式会社製商品名:AH-1148)やエポキシ樹脂接着剤組成物(新日鉄住金化学株式会社製商品名:YSLV-80XY)等も使用することができる。この接着剤層の層厚が0.1μm未満だと接着強度が低下する虞があり、反対に、10μmを超えると作製されたステンレス鋼板カーボン複合材の導電性が低下する虞がある。 In the present invention, the surface of the stainless steel plate-like base material and the carbon layer laminated on the surface may be bonded via an adhesive layer of usually 0.1 μm or more and 10 μm or less. The adhesive composition for forming such an adhesive layer is not particularly limited, but preferably a modified polyolefin resin in which a part or all of an unsaturated carboxylic acid or a derivative thereof is grafted on the polyolefin resin. (For example, refer to Japanese Patent Application Laid-Open No. 2005-146,178), specifically, an adhesive composition containing an adhesive polyolefin resin (trade name: Admer manufactured by Mitsui Chemicals, Inc.), unsaturated. Examples thereof include an adhesive composition containing a modified polyolefin resin graft-modified with a carboxylic acid (trade name: Unistor, manufactured by Mitsui Chemicals, Inc.). An adhesive composition containing a modified polyolefin resin graft-modified with halogen (trade name: Toyo Tuck Co., Ltd.) can also be used, and a 5 wt% -phenol resin adhesive composition (solvent: Isopropyl alcohol, phenol resin: Lignite Co., Ltd. trade name: AH-1148), epoxy resin adhesive composition (Nippon Steel & Sumikin Chemical Co., Ltd. trade name: YSLV-80XY) and the like can also be used. If the layer thickness of the adhesive layer is less than 0.1 μm, the adhesive strength may decrease, and if it exceeds 10 μm, the conductivity of the produced stainless steel plate carbon composite material may decrease.

そして、本発明のステンレス鋼板カーボン複合材の製造方法については、ケイ素含有量が1.0質量%以下のステンレス鋼製の板状基材の少なくとも片面に、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むカーボン層を積層してステンレス鋼板カーボン複合材を製造するに際し、好ましくは、前記板状基材の少なくとも片面に、表面処理液として、1〜10質量%濃度のフッ化水素酸水溶液、又は、フッ化水素酸(HF)と硝酸(HNO3)との濃度比(HF/HNO3)が2以上であってHF濃度が2質量%以上のフッ化水素酸・硝酸混合水溶液を接触させる表面処理工程と、この表面処理後の板状基材の表面に、前記炭素粉末(C)と樹脂粉末(R)との体積比(C/R)が6/4〜9/1の割合であるカーボン層を積層する積層工程とを有する方法であるのがよい。この際、更に、好ましくは、前記表面処理工程を行なうことに先駆けて、前記板状基材の少なくとも片面に、前処理液として、酸濃度25質量%以上及び塩化鉄濃度20質量%以上の塩化鉄含有酸水溶液を接触させる前処理工程を行なってもよい。 Regarding the method for producing a carbon composite material of a stainless steel plate of the present invention, carbon powder and a thermoplastic resin or thermosetting property are formed on at least one surface of a plate-shaped base material made of stainless steel having a silicon content of 1.0% by mass or less. When a carbon layer containing a resin powder made of a resin is laminated to produce a stainless steel plate carbon composite material, preferably, a surface treatment liquid having a concentration of 1 to 10% by mass is applied to at least one surface of the plate-shaped base material. hydrogen acid aqueous solution, or a hydrofluoric acid (HF) and nitric acid (HNO 3) and the concentration ratio (HF / HNO 3) is 2 or more in a by HF concentration of 2 mass% or more hydrofluoric acid-nitric acid The volume ratio (C / R) of the carbon powder (C) and the resin powder (R) is 6/4 to 9 on the surface treatment step of bringing the mixed aqueous solution into contact and the surface of the plate-shaped base material after the surface treatment. It is preferable to use a method having a laminating step of laminating carbon layers having a ratio of 1/1. At this time, more preferably, chloride having an acid concentration of 25% by mass or more and an iron chloride concentration of 20% by mass or more as a pretreatment liquid on at least one surface of the plate-shaped substrate prior to performing the surface treatment step. A pretreatment step of contacting the iron-containing acid aqueous solution may be performed.

前記表面処理工程で表面処理液として用いるフッ化水素酸については、濃度1質量%以上10質量%以下、好ましくは3質量%以上8質量%以下のフッ化水素酸水溶液を用いる。ここで、表面処理液として用いるフッ化水素酸水溶液のフッ化水素酸濃度が1質量%より低いと、ステンレス表面の酸化皮膜中のSi濃度を所定の濃度範囲とすることができない虞があり、反対に、10質量%より高くなると、母材のステンレスの溶出が大きく、その表面に形成される酸化皮膜の厚みが厚くなり、接触抵抗が大きくなる虞がある。
また、表面処理液として、フッ化水素酸・硝酸の混合水溶液を用いる場合には、フッ化水素酸(HF)と硝酸(HNO3)との濃度比(HF/HNO3)が2以上、好ましくは、2.5以上とし、尚且つHF濃度が2質量%以上、好ましくは3質量%以上とする。フッ化水素酸(HF)と硝酸(HNO3)との濃度比(HF/HNO3)が2未満であると、前述の表面領域のSi濃度が高くなり接触抵抗が10mΩ・cm2より大きくなる虞があり、また、HF濃度が2質量%未満の場合にも、表面領域のSi濃度が高くなり接触抵抗が10mΩ・cm2より大きくなる虞がある。混合水溶液として使用する場合においても、フッ化水素酸の上限濃度については、前記同様に、濃度10質量%以下、好ましくは8質量%以下とする。なお、処理温度については、温度30℃以上60℃以下及び時間1分以上20分以下の処理条件で板状基材を浸漬し、その後に純水等で洗浄する。
As the hydrofluoric acid used as the surface treatment liquid in the surface treatment step, an aqueous hydrofluoric acid solution having a concentration of 1% by mass or more and 10% by mass or less, preferably 3% by mass or more and 8% by mass or less is used. Here, if the hydrofluoric acid concentration of the hydrofluoric acid aqueous solution used as the surface treatment liquid is lower than 1% by mass, the Si concentration in the oxide film on the stainless steel surface may not be within a predetermined concentration range. On the contrary, when it is higher than 10% by mass, the stainless steel of the base material is largely eluted, the thickness of the oxide film formed on the surface thereof is increased, and the contact resistance may be increased.
When a mixed aqueous solution of hydrofluoric acid and nitric acid is used as the surface treatment liquid, the concentration ratio (HF / HNO 3 ) of hydrofluoric acid (HF) and nitric acid (HNO 3 ) is preferably 2 or more. Is 2.5 or more, and the HF concentration is 2% by mass or more, preferably 3% by mass or more. When the concentration ratio (HF / HNO 3 ) of hydrofluoric acid (HF) and nitric acid (HNO 3 ) is less than 2, the Si concentration in the above-mentioned surface region becomes high and the contact resistance becomes larger than 10 mΩ · cm 2. In addition, when the HF concentration is less than 2% by mass, the Si concentration in the surface region may increase and the contact resistance may become larger than 10 mΩ · cm 2 . Even when used as a mixed aqueous solution, the upper limit concentration of hydrofluoric acid is 10% by mass or less, preferably 8% by mass or less, as described above. Regarding the treatment temperature, the plate-like substrate is immersed under the treatment conditions of a temperature of 30 ° C. or higher and 60 ° C. or lower and a time of 1 minute or longer and 20 minutes or lower, and then washed with pure water or the like.

ここで、前記表面処理に先駆けて行なってもよい前処理工程では、前処理液としてFeCl3等の塩化鉄を塩酸やフッ化水素酸等の非酸化性の酸水溶液中に溶解させて得られた塩化鉄含有酸水溶液を用い、この塩化鉄含有酸水溶液中に板状基材を浸漬し、その後に純水等で洗浄する前処理が行われる。ここで、塩化鉄含有酸水溶液については、使用する酸の種類や塩化鉄の種類によっても異なるが、酸濃度が通常25質量%以上、好ましくは30質量%以上40質量%以下であり、また、塩化鉄濃度が通常20質量%以上、好ましくは20質量%以上30質量%以下であるものが用いられ、また、板状基材を塩化鉄含有酸水溶液中に浸漬する前処理条件については、通常温度30℃以上60℃以下及び時間30秒以上3分以下の処理条件で行われる。この前処理により、ステンレス鋼の製造過程で行なわれる焼鈍工程でステンレス表面に形成された比較的厚い酸化皮膜に予め孔食を形成させるか、もしくは当該酸化皮膜を薄膜化させることで、その後の表面処理工程において、当該酸化皮膜の構造を制御することが容易となるため好ましい。 Here, in the pretreatment step that may be performed prior to the surface treatment, iron chloride such as FeCl 3 is dissolved in a non-oxidizing acid aqueous solution such as hydrochloric acid or hydrofluoric acid as a pretreatment solution. A pretreatment is performed in which a plate-like base material is immersed in the iron chloride-containing acid aqueous solution, and then washed with pure water or the like. Here, the iron chloride-containing acid aqueous solution varies depending on the type of acid used and the type of iron chloride, but the acid concentration is usually 25% by mass or more, preferably 30% by mass or more and 40% by mass or less, and also. Those having an iron chloride concentration of usually 20% by mass or more, preferably 20% by mass or more and 30% by mass or less are used, and the pretreatment conditions for immersing the plate-shaped base material in the iron chloride-containing acid aqueous solution are usually used. The treatment is carried out under the treatment conditions of a temperature of 30 ° C. or higher and 60 ° C. or lower and a time of 30 seconds or longer and 3 minutes or shorter. By this pretreatment, pitting corrosion is formed in advance on the relatively thick oxide film formed on the stainless steel surface in the annealing step performed in the stainless steel manufacturing process, or the oxide film is thinned to form a thin film on the subsequent surface. It is preferable because it becomes easy to control the structure of the oxide film in the treatment step.

そして、表面処理後の板状基材の表面にカーボン層を積層する積層工程では、表面処理後の板状基材の表面に炭素粉末と樹脂粉末とを含むカーボン層が積層され、この際のカーボン層を積層する方法については、特に制限されるものではなく、例えば、板状基材の表面に炭素粉末と樹脂粉末とを含む粉末混合物を充填しホットプレスする方法、樹脂粉末と炭素粉末とを溶剤中に分散させたスラリーを、ドクターブレード等を使いステンレス表面に塗布し、乾燥後にホットプレスする方法等が例示できるが、好ましくは、炭素粉末と樹脂粉末とを含む粉末混合物を温間圧縮成型(ホットプレス)して予めカーボン層を形成し、得られたカーボン層を表面処理後の板状基材の表面に再びホットプレスして積層させるホットプレス法で行うのがよい。このホットプレス法でカーボン層を形成し、また、積層することにより、連続的に炭素層を表面処理後の板状基材の表面に形成することができるという利点がある。 Then, in the laminating step of laminating the carbon layer on the surface of the plate-shaped base material after the surface treatment, the carbon layer containing the carbon powder and the resin powder is laminated on the surface of the plate-shaped base material after the surface treatment. The method of laminating the carbon layer is not particularly limited, and for example, a method of filling the surface of a plate-shaped base material with a powder mixture containing carbon powder and resin powder and hot-pressing, resin powder and carbon powder An example is a method in which a slurry obtained by dispersing the above in a solvent is applied to a stainless steel surface using a doctor blade or the like, and then hot-pressed after drying. However, a powder mixture containing carbon powder and resin powder is preferably warmly compressed. It is preferable to use a hot press method in which a carbon layer is formed in advance by molding (hot pressing), and the obtained carbon layer is hot-pressed again on the surface of the plate-shaped base material after surface treatment and laminated. By forming the carbon layer by this hot press method and laminating the carbon layer, there is an advantage that the carbon layer can be continuously formed on the surface of the plate-like base material after the surface treatment.

本発明の製造方法においては、前記積層工程に先駆けて、表面処理後の板状基材の表面に前記接着剤組成物を塗布し、表面処理後の板状基材の表面に接着剤層を形成する接着剤層形成工程を実施してもよく、前記積層工程では、この接着剤層を介してカーボン層が積層される。積層工程に先駆けて接着剤層形成工程を実施することにより、板状基材とカーボン層との間の密着性が向上することや、板状基材のステンレス表面を接着層で被覆することから、例えば、固体高分子形燃料電池として使用する場合には腐食性環境に対する耐久性が向上するという利点がある。 In the production method of the present invention, prior to the laminating step, the adhesive composition is applied to the surface of the plate-shaped base material after surface treatment, and an adhesive layer is applied to the surface of the plate-shaped base material after surface treatment. The adhesive layer forming step to be formed may be carried out, and in the laminating step, the carbon layer is laminated via the adhesive layer. By carrying out the adhesive layer forming step prior to the laminating step, the adhesion between the plate-shaped base material and the carbon layer is improved, and the stainless steel surface of the plate-shaped base material is covered with the adhesive layer. For example, when used as a polymer electrolyte fuel cell, it has the advantage of improving durability against a corrosive environment.

本発明の方法によって得られた本発明のステンレス鋼板カーボン複合材は、圧縮強度が3MPa以上であって、曲げ歪が0.8%以上で割れが無く、また、接触抵抗が10mΩ・cm2以下であることが好ましく、より好ましくは5mΩ・cm2以下、さらに好ましくは3mΩ・cm2以下であって、尚且つ、その接触抵抗が燃料電池の使用環境に相当する環境下(例えば、後述の実施例で示すようなフッ素イオンを含んだ酸溶液中に浸漬させる耐久試験)においても実質的に変化しないものであることが好ましい。
本発明のステンレス鋼板カーボン複合材は、柔軟性や可撓性、圧縮強度、成形性、気密性等において優れているだけでなく、導電性(低接触抵抗)と耐食性とが共に優れており、例えば、固体高分子形燃料電池用等の燃料電池用セパレータ、レドックスフロー型2次電池用の集電板、石油精製用、石油化学用等のガスケットやパッキン等の用途において好適に用いられる。
The stainless steel plate carbon composite material of the present invention obtained by the method of the present invention has a compressive strength of 3 MPa or more, a bending strain of 0.8% or more, no cracks, and a contact resistance of 10 mΩ · cm 2 or less. It is preferably 5 mΩ · cm 2 or less, more preferably 3 mΩ · cm 2 or less, and the contact resistance is in an environment corresponding to the usage environment of the fuel cell (for example, the implementation described later). It is preferable that the material does not change substantially even in the durability test) in which the material is immersed in an acid solution containing fluorine ions as shown in the example.
The stainless steel plate carbon composite material of the present invention is not only excellent in flexibility, flexibility, compressive strength, moldability, airtightness, etc., but also excellent in both conductivity (low contact resistance) and corrosion resistance. For example, it is suitably used in applications such as fuel cell separators for polymer electrolyte fuel cells, current collectors for redox flow type secondary batteries, gaskets and packings for petroleum refining and petroleum chemistry.

以下、実施例及び比較例に基づいて、本発明のステンレス鋼板カーボン複合材、その製造方法、及び各性能評価について、具体的に説明する。 Hereinafter, the stainless steel plate carbon composite material of the present invention, a method for producing the same, and each performance evaluation will be specifically described based on Examples and Comparative Examples.

<実施例1〜8>
1.ステンレス鋼製の板状基材の調製
〔ステンレス鋼製の板状基材〕
以下の各実施例及び比較例においては、SUS430ステンレス鋼板(Si含有量0.47質量%、以下、「M1」という。)、SUS444ステンレス鋼板(Si含有量0.75質量%、以下、「M2」という。)、SUS316Lステンレス鋼板(Si含有量0.75質量%、以下、「M3」という。)、及びSUS447J1ステンレス鋼板(Si含有量0.1質量%、以下、「M4」という。)から切り出された50μm厚み×幅100mm×長さ100mmの大きさの板状基材(M1〜M4)を用いた。
<Examples 1 to 8>
1. 1. Preparation of stainless steel plate-shaped base material [Stainless steel plate-shaped base material]
In each of the following examples and comparative examples, SUS430 stainless steel sheet (Si content 0.47% by mass, hereinafter referred to as "M1"), SUS444 stainless steel sheet (Si content 0.75% by mass, hereinafter referred to as "M2"). , SUS316L stainless steel sheet (Si content 0.75% by mass, hereinafter referred to as "M3"), and SUS447J1 stainless steel sheet (Si content 0.1% by mass, hereinafter referred to as "M4") 50 μm thickness × width 100 mm × A plate-shaped base material (M1 to M4) having a size of 100 mm in length was used.

〔板状基材の表面処理工程:表面層の形成〕
上で得られた板状基材(M1〜M4)について、それぞれ、表面処理液として表1に示すように4質量%のフッ化水素酸水溶液を用い、この表面処理液中に50℃及び10分間の処理条件で浸漬し、次いで超純水を用いて表面を洗浄し、板状基材の表面に酸化皮膜からなる表面層が形成された表面処理後の板状基材(M1〜M4)を調製した。
[Surface treatment process of plate-like substrate: formation of surface layer]
For the plate-shaped substrates (M1 to M4) obtained above, 4% by mass hydrofluoric acid aqueous solution was used as the surface treatment liquid as shown in Table 1, and 50 ° C. and 10 were used in the surface treatment liquid, respectively. Plate-shaped base material (M1 to M4) after surface treatment in which a surface layer consisting of an oxide film is formed on the surface of the plate-shaped base material after immersion under the treatment conditions for 1 minute and then cleaning the surface with ultrapure water. Was prepared.

〔表面層の厚さ測定〕
表面処理後の板状基材(M1〜M4)について、集束イオンビーム加工装置(日立ハイテクサイエンス社製SMI3050SE)を用い、Mo製メッシュ、また、表面保護膜としてカーボンデポ膜を使用し、FIB-マイクロサンプリング法にてTEM観察用の薄膜断面試料を作製した。
また、TEM観察には電解放出型透過電子顕微鏡(日本電子株式会社製のJEM-2100F)を用い、1視野につき任意の3箇所の酸化皮膜の厚みを測定しその平均をすることで酸化皮膜からなる表面層の厚さを測定した(図1)。
[Measurement of surface layer thickness]
For the plate-shaped base material (M1 to M4) after surface treatment, using a focused ion beam processing device (SMI3050SE manufactured by Hitachi High-Tech Science), a Mo mesh, and a carbon depot film as a surface protective film, FIB- A thin film cross-sectional sample for TEM observation was prepared by the microsampling method.
For TEM observation, an electrolytic emission type transmission electron microscope (JEM-2100F manufactured by JEOL Ltd.) is used to measure the thickness of the oxide film at any three locations per field and average the thickness to obtain the oxide film. The thickness of the surface layer was measured (Fig. 1).

〔Si濃度の測定〕
表面処理後の板状基材(M1〜M4)について、X線光電子分光装置(PHI社製Quantum 2000型XPS)を用い、X線出力15kV、25W、及び測定領域300×300μmの条件で、また、イオン種としてアルゴンを用い、加速電圧2kV、及び照射範囲2mm×2mmの条件でスパッタを行い、当該板状基材(M1〜M4)の表面からの深さ方向のSi濃度を測定した(図2)。スパッターレートはSiO2を基準として用いており、表面処理材の表面をスパッタした時の時間から換算し、厚みを算出した。また、データ解析にはMultiPak V.80(Ulvac-phi社製解析ソフト)を用いた。
XPSではその化学状態に応じて化学シフト(ピークシフト)が起き、例えばSiの単体の2p軌道スペクトルが98.8eVから99.5eV付近にピークを有するのに対して、Siの酸化物であれば102eV〜104eV付近にピークが現れることから、Siがどのような状態にあるのかを同定することが可能である。図3より、HF処理(濃度4質量%)の場合はSiおよびSi酸化物のピークが観察できないのに対し、フッ硝酸処理(HF濃度1質量%、HNO3濃度4質量%)の場合はSi酸化物のピークが確認できることから、接触抵抗が暫時増大したのは、表面近傍に残ったSiが酸化し、接触抵抗値を増大させたものと推測できる。
得られた結果を下記の表2に示す。
[Measurement of Si concentration]
For the plate-shaped substrates (M1 to M4) after surface treatment, use an X-ray photoelectron spectrometer (Quantum 2000 type XPS manufactured by PHI) under the conditions of X-ray output of 15 kV, 25 W, and measurement area of 300 x 300 μm. Sputtering was performed under the conditions of an accelerating voltage of 2 kV and an irradiation range of 2 mm × 2 mm using argon as an ion species, and the Si concentration in the depth direction from the surface of the plate-shaped substrate (M1 to M4) was measured (Fig.). 2). The spatter rate is based on SiO 2 , and the thickness is calculated by converting from the time when the surface of the surface treatment material is sputtered. In addition, MultiPak V.80 (analysis software manufactured by Ulvac-phi) was used for data analysis.
In XPS, a chemical shift (peak shift) occurs depending on the chemical state. For example, the 2p orbital spectrum of Si alone has a peak around 98.8eV to 99.5eV, whereas the oxide of Si has a peak of 102eV ~. Since the peak appears near 104 eV, it is possible to identify the state of Si. From FIG. 3, the peaks of Si and Si oxides cannot be observed in the case of HF treatment (concentration 4% by mass), whereas Si in the case of fluoride nitric acid treatment (HF concentration 1% by mass, HNO 3 concentration 4% by mass). From the fact that the peak of the oxide can be confirmed, it can be inferred that the contact resistance increased for a while because the Si remaining near the surface was oxidized and the contact resistance value increased.
The results obtained are shown in Table 2 below.

2.カーボン層の積層工程
〔接着剤層形成工程〕
接着剤層を形成するための接着剤組成物としては、後述の実施例及び比較例の場合も含めて、樹脂粉末として熱可塑性樹脂〔ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリアミド樹脂(PA)、ポリフェニレンスルフィド樹脂(PPS、ポリメチルペンテン樹脂(PMP)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリフェニレンエーテル樹脂(PPE)、液晶ポリマー樹脂(LCP)、ポリアミドイミド樹脂(PAI)、ポリスルホン樹脂(PSU)、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂(PBT)〕を使用する場合には、変性ポリオレフィン樹脂接着剤(三井化学株式会社製、ユニストール)を用い、また、樹脂粉末として熱硬化性樹脂を使用する場合において、当該熱硬化性樹脂がフェノール樹脂(PF)の場合には、イソプロピルアルコールに5wt%になる様にフェノール樹脂を溶解させたフェノール樹脂接着剤(リグナイト株式会社製フェノール樹脂、商品名:AH-1148)を用い、一方で、当該熱硬化性樹脂がエポキシ樹脂(EP)の場合には、エポキシ樹脂接着剤(新日鉄住金化学株式会社製商品名:YSLV-80XY)を用いた。
そして、上で得られた表面処理後30日経過後の板状基材(M1〜M4)の表面に、卓上コーターを用いて塗布厚10μmとなるように前記接着剤組成物を塗布し室温中で10分乾燥させて接着剤層を形成し、接着剤層付きの板状基材(M1〜M4)を得た。
2. Carbon layer laminating process [adhesive layer forming process]
Examples of the adhesive composition for forming the adhesive layer include thermoplastic resins [polypropylene resin (PP), polyethylene resin (PE), polyamide resin (polypropylene resin (PP), polyethylene resin (PE), polyamide resin) as resin powders, including the cases of Examples and Comparative Examples described later. PA), polyphenylene sulfide resin (PPS, polymethylpentene resin (PMP), polyether ether ketone resin (PEEK), polyphenylene ether resin (PPE), liquid crystal polymer resin (LCP), polyamideimide resin (PAI), polysulfone resin (PA) When using PSU), polyethylene terephthalate resin (PET), polypropylene terephthalate resin (PBT)], a modified polyolefin resin adhesive (manufactured by Mitsui Kagaku Co., Ltd., Unistor) is used, and heat curing is performed as a resin powder. When using a sex resin, if the thermosetting resin is a phenol resin (PF), a phenol resin adhesive in which the phenol resin is dissolved in isopropyl alcohol so as to be 5 wt% (phenol resin manufactured by Lignite Co., Ltd.). , Product name: AH-1148), while using an epoxy resin adhesive (trade name: YSLV-80XY manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) when the thermosetting resin is epoxy resin (EP). There was.
Then, the adhesive composition was applied to the surface of the plate-shaped substrate (M1 to M4) 30 days after the surface treatment obtained above using a tabletop coater so as to have a coating thickness of 10 μm, and at room temperature. It was dried for 10 minutes to form an adhesive layer, and plate-like substrates (M1 to M4) with the adhesive layer were obtained.

〔カーボン層の形成〕
炭素粉末としては、球状黒鉛(伊藤黒鉛株式会社製商品名:SG-BH、平均粒子径:20μm)及び膨張黒鉛(伊藤黒鉛株式会社製商品名:EC100、平均粒子径:160μm)を使用した。
また、樹脂粉末としては、後述の実施例及び比較例の場合も含めて、熱可塑性樹脂としてポリプロピレン樹脂(PP)(住友精化株式会社製商品名:フローブレンHP-8522)、ポリエチレン樹脂(PE)(住友精化株式会社製商品名:フローセンUF-20S)、ポリアミド樹脂(PA)(東レ株式会社製商品名:TR-2)、ポリフェニレンスルフィド樹脂(PPS)(東レ株式会社製商品名:A900)、ポリメチルペンテン樹脂(PMP)(三井化学株式会社製商品名:MX002)、変性ポリメチルペンテン樹脂(m-PMP)〔開発品、無水マレイン酸変性(変性量:1.0質量%)〕、ポリエーテルエーテルケトン樹脂(PEEK)(クオドラントポリペンコジャパン株式会社製商品名:ケトロン1000)、ポリフェニレンエーテル樹脂(PPE)(旭化成ケミカルズ株式会社製商品名:ザイロン300H)、液晶ポリマー樹脂(LCP)(JX日鉱日石エネルギー株式会社製商品名:ザイダーNX−101)、ポリアミドイミド樹脂(PAI)(東レ株式会社製商品名:TI−5013)、ポリスルホン樹脂(PSU)(BASF社製商品名:ウルトラゾーンS2010)、ポリエチレンテレフタレート樹脂(PET)(株式会社帝人製:TRN−MTJ)、及びポリブチレンテレフタレート樹脂(PBT)(三菱エンジニアリングプラスチックス株式会社製商品名:ノバデュラン5010R5)を使用し、また、熱硬化性樹脂としてフェノール(PF)樹脂(リグナイト株式会社製商品名:AH-1148)、及びエポキシ(EP)樹脂(新日鉄住金化学株式会社製 商品名:YSLV-80XY)を使用した。
[Formation of carbon layer]
As the carbon powder, spheroidal graphite (trade name: SG-BH manufactured by Ito Graphite Co., Ltd., average particle size: 20 μm) and expanded graphite (trade name: EC100, average particle size: 160 μm manufactured by Ito Graphite Co., Ltd.) were used.
In addition, as the resin powder, including the cases of Examples and Comparative Examples described later, as the thermoplastic resin, polypropylene resin (PP) (trade name: Flowbren HP-8522 manufactured by Sumitomo Seika Co., Ltd.) and polyethylene resin (PE). ) (Sumitomo Seika Co., Ltd. product name: Frosen UF-20S), polyamide resin (PA) (Toray Co., Ltd. product name: TR-2), polyphenylene sulfide resin (PPS) (Toray Co., Ltd. product name: A900) ), Polymethylpentene resin (PMP) (trade name: MX002 manufactured by Mitsui Chemicals, Inc.), modified polymethylpentene resin (m-PMP) [developed product, modified with maleic anhydride (modification amount: 1.0% by mass)] , Polyether ether ketone resin (PEEK) (Quadrant Polypenco Japan Co., Ltd. product name: Ketron 1000), Polyphenylene ether resin (PPE) (Asahi Kasei Chemicals Co., Ltd. product name: Zylon 300H), Liquid crystal polymer resin (LCP) ( JX Nikko Nisseki Energy Co., Ltd. Product name: Zider NX-101), Polyamiimide resin (PAI) (Toray Co., Ltd. product name: TI-5013), Polysulfone resin (PSU) (BASF product name: Ultrazone) S2010), polyethylene terephthalate resin (PET) (manufactured by Teijin Co., Ltd .: TRN-MTJ), and polybutylene terephthalate resin (PBT) (trade name: Novaduran 5010R5 manufactured by Mitsubishi Engineering Plastics Co., Ltd.) are used and heat-cured. As the sex resin, phenol (PF) resin (trade name: AH-1148 manufactured by Lignite Co., Ltd.) and epoxy (EP) resin (trade name: YSLV-80XY manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) were used.

そして、上記の炭素粉末と樹脂粉末とを表1に示す比率で混合して粉末混合物とし、この粉末混合物1.6gを、図4に示すように(この場合は、接着剤層付きステンレス鋼製板状基材4は用いない。)プレス装置(東洋精機製作所社製卓上ホットプレスMP-SCL)の50×50×20mmの容積を持つ雌型金型に均等になるように投入し、前プレスとしてのホットプレス〔圧力:2MPa、温度:180℃(PP)、80℃(PF)〕によりカーボン層3(厚さ:0.4mm)とした。次いで、図4及び図5のように、この得られたカーボン層3と、前記で準備した接着剤層付きの板状基材4とを重ね、加熱温度180℃(PP)又は150℃(PF)(T)及び圧力5MPa(P)で押圧し(本プレス、成型時間10分)、ステンレス鋼板カーボン複合材15として得た。 Then, the above carbon powder and resin powder were mixed at the ratios shown in Table 1 to obtain a powder mixture, and 1.6 g of this powder mixture was made of stainless steel with an adhesive layer as shown in FIG. 4 (in this case, made of stainless steel with an adhesive layer). The plate-shaped base material 4 is not used.) Put it evenly into a female mold with a volume of 50 x 50 x 20 mm of a press device (desktop hot press MP-SCL manufactured by Toyo Seiki Seisakusho Co., Ltd.) and pre-press. The carbon layer 3 (thickness: 0.4 mm) was obtained by hot pressing [pressure: 2 MPa, temperature: 180 ° C. (PP), 80 ° C. (PF)]. Next, as shown in FIGS. 4 and 5, the obtained carbon layer 3 and the plate-shaped base material 4 with the adhesive layer prepared above are superposed, and the heating temperature is 180 ° C. (PP) or 150 ° C. (PF). ) (T) and a pressure of 5 MPa (P) (main press, molding time 10 minutes) to obtain a stainless steel plate carbon composite material 15.

上で得られた実施例1〜8に係る表面処理後(直後及び30日経過後)の板状基材、及び表面処理後30日経過後の板状基材を用いて作製されたステンレス鋼板カーボン複合材について、以下の評価を行なった。 Stainless steel plate carbon composite produced using the plate-shaped base material after the surface treatment (immediately after and after 30 days) according to Examples 1 to 8 obtained above and the plate-shaped base material after 30 days after the surface treatment. The materials were evaluated as follows.

〔接触抵抗測定方法〕
図6に接触抵抗の測定方法を示す。先ず、表面処理直後の各板状基材を、長さ17〜20mm、幅3〜5mmに加工して試験片Sとし、これと、標準とするカーボンペーパ(東レ株式会社製商品名:TGP-H-120)301とを重ねた。そして、これを2つの金メッキした銅製金具302で挟み込み、圧縮応力0.9MPa(P’)を付加した状態で2つの金メッキ銅製金具の間に試験片S/カーボンペーパ接触面積値(単位cm2)と同じ値の直流電流(単位A)を流して、金メッキ銅金具302/カーボンペーパ301/試験片Sの接続部に生ずる電圧降下を測定することで得られる接触抵抗値(単位:mΩ・cm2)で確認した。測定は10点測定を行い、最大値と最小値を省いた8点の平均値を測定値とした。さらに、表面処理後30日経過した各板状基材(S’)及びその板状基材を使用して作製されたステンレス鋼板カーボン複合材(S’’)についても、同様の方法で接触抵抗を測定した。
得られた結果を下記の表2に示す。
[Contact resistance measurement method]
FIG. 6 shows a method for measuring contact resistance. First, each plate-shaped base material immediately after surface treatment is processed into a test piece S having a length of 17 to 20 mm and a width of 3 to 5 mm, and this and standard carbon paper (trade name: TGP- of Toray Industries, Inc.) are used. H-120) 301 was overlapped. Then, this is sandwiched between two gold-plated copper metal fittings 302, and a test piece S / carbon paper contact area value (unit: cm 2 ) is applied between the two gold-plated copper metal fittings with a compressive stress of 0.9 MPa (P') applied. Contact resistance value (unit: mΩ · cm 2) obtained by measuring the voltage drop that occurs at the connection part of the gold-plated copper metal fitting 302 / carbon paper 301 / test piece S by passing a direct current (unit A) of the same value as ) Confirmed. The measurement was performed at 10 points, and the average value of 8 points excluding the maximum value and the minimum value was used as the measured value. Further, the contact resistance of each plate-shaped base material (S') 30 days after the surface treatment and the stainless steel plate carbon composite material (S'') produced by using the plate-shaped base material in the same manner. Was measured.
The results obtained are shown in Table 2 below.

〔耐久性試験方法〕
耐久性試験は、前記の試験片S’’(ステンレス鋼板カーボン複合材)を、予め20ppmのフッ素(F)イオンを含んだ80℃のpH3の硫酸溶液中に4日間浸漬した上で、処理後の試験片S’’を超純水で洗浄し、乾燥した後、上記と同様の方法で接触抵抗値(単位:mΩ・cm2)を測定した。浸漬前後の接触抵抗値の変化を評価することで耐久性(耐食性)を評価した。
得られた結果を下記の表2に示す。
[Durability test method]
In the durability test, the test piece S'' (stainless steel plate carbon composite material) was previously immersed in a sulfuric acid solution containing 20 ppm of fluorine (F) ions at 80 ° C. and pH 3 for 4 days, and then treated. The test piece S'' was washed with ultrapure water, dried, and then the contact resistance value (unit: mΩ · cm 2 ) was measured by the same method as described above. Durability (corrosion resistance) was evaluated by evaluating the change in contact resistance before and after immersion.
The results obtained are shown in Table 2 below.

〔可撓性評価(曲げ強度評価)〕
実施例1〜8で得られた各ステンレス鋼板カーボン複合材S’’から、それぞれ50mm×5mm×0.6mmの大きさの試験片として切り出し、この各試験片を、JIS K7171に準拠して、万能試験機(島津製作所社製AUTOGRAPH AG-IS型)によりStress-Strain曲線を測定し、歪み1.5%又は0.8%の時における各試験片の破壊(亀裂)の発生の有無を目視で観察し、下記の基準で評価した。
得られた結果を下記の表2に示す。
◎:1.5%歪みで破壊しない場合
○:0.8%歪みで破壊しない場合
×:0.8%歪みで破壊する場合
[Flexibility evaluation (bending strength evaluation)]
From each of the stainless steel plate carbon composite materials S'' obtained in Examples 1 to 8, each was cut out as a test piece having a size of 50 mm × 5 mm × 0.6 mm, and each of these test pieces was made in accordance with JIS K7171. Measure the Stress-Strain curve with a universal testing machine (AUTOGRAPH AG-IS type manufactured by Shimadzu Corporation) and visually check whether or not each test piece is broken (cracked) when the strain is 1.5% or 0.8%. Was observed and evaluated according to the following criteria.
The results obtained are shown in Table 2 below.
⊚: When not destroyed by 1.5% distortion ○: When not destroyed by 0.8% distortion ×: When destroyed by 0.8% distortion

<実施例9〜13、比較例1>
前記板状基材(M1)を用いて、先ず、前処理液として塩酸(関東化学社製特級)及び塩化鉄(FeCl3)(関東化学社製特級)をそれぞれ30質量%の濃度で溶解された塩化鉄含有酸溶液を用い、この前処理液中に50℃及び1分間の処理条件で浸漬し、次いで超純水を用いて表面を洗浄し、前処理後の板状基材(M1)を調製した。
<Examples 9 to 13, Comparative Example 1>
Using the plate-shaped base material (M1), first, hydrochloric acid (special grade manufactured by Kanto Chemical Co., Inc.) and iron chloride (FeCl 3 ) (special grade manufactured by Kanto Chemical Co., Inc.) are dissolved as pretreatment solutions at a concentration of 30% by mass. Using an iron chloride-containing acid solution, the surface was washed with ultrapure water at 50 ° C. for 1 minute under the treatment conditions, and the plate-like substrate (M1) after the pretreatment was performed. Was prepared.

〔板状基材の表面処理工程:表面層の形成〕
上で得られた前処理後の板状基材(M1)について、それぞれ、表面処理液として表1に示す濃度のフッ化水素酸水溶液を用い、この表面処理液中に50℃及び10分間の処理条件で浸漬し、次いで超純水を用いて表面を洗浄し、板状基材の表面に酸化皮膜からなる表面層が形成された表面処理後の板状基材(M1)を調製した。
[Surface treatment process of plate-like substrate: formation of surface layer]
For each of the plate-shaped base materials (M1) after the pretreatment obtained above, a hydrofluoric acid aqueous solution having the concentration shown in Table 1 was used as the surface treatment liquid, and the surface treatment liquid was charged at 50 ° C. for 10 minutes. After immersion under the treatment conditions, the surface was washed with ultrapure water to prepare a plate-shaped base material (M1) after surface treatment in which a surface layer composed of an oxide film was formed on the surface of the plate-shaped base material.

その後、得られた表面処理後の各板状基材(M1)について、前述の実施例1〜8と同様に、基材の表面層の厚み、Si濃度及び接触抵抗値を測定し、また、同じように、表面処理後30日経過後の板状基材に接着剤層及びカーボン層(樹脂粉末としてPPを使用)を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す。
Then, for each of the obtained plate-shaped base materials (M1) after the surface treatment, the thickness, Si concentration, and contact resistance value of the surface layer of the base material were measured in the same manner as in Examples 1 to 8 described above, and also. Similarly, an adhesive layer and a carbon layer (PP is used as a resin powder) are laminated on a plate-like base material 30 days after the surface treatment to obtain a stainless steel plate carbon composite material, and the contact resistance value is measured and durability is obtained. A sex test and a flexibility evaluation were performed.
The results obtained are shown in Table 2 below.

<実施例14〜18、比較例2〜4>
前記実施例9〜13において、表面処理液として使用したフッ化水素酸水溶液に代えて、表面処理液として硝酸(関東化学社製特級)及びフッ化水素酸(関東化学社製特級)を表1に示す割合で含有するフッ化水素酸・硝酸混合水溶液を用いた以外は、実施例9〜13と同様の方法で前処理及び表面処理後の板状基材(M1)を調製し、同じように、基材の表面層の厚み、Si濃度及び接触抵抗値を測定し、更に、同じように、表面処理後30日経過後の板状基材に接着剤層及びカーボン層を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す。
<Examples 14 to 18, Comparative Examples 2 to 4>
In Examples 9 to 13, nitric acid (special grade manufactured by Kanto Chemical Co., Ltd.) and hydrofluoric acid (special grade manufactured by Kanto Chemical Co., Ltd.) were used as the surface treatment liquid instead of the hydrofluoric acid aqueous solution used as the surface treatment liquid. A plate-like base material (M1) after pretreatment and surface treatment was prepared in the same manner as in Examples 9 to 13 except that the hydrofluoric acid / nitric acid mixed aqueous solution contained in the above ratio was used. In addition, the thickness, Si concentration, and contact resistance value of the surface layer of the base material were measured, and similarly, the adhesive layer and the carbon layer were laminated on the plate-shaped base material 30 days after the surface treatment to form a stainless steel plate. A carbon composite material was obtained, and the contact resistance value was measured, the durability test and the flexibility evaluation were performed.
The results obtained are shown in Table 2 below.

<実施例19〜40>
前記実施例9〜13において、表面処理液として使用したフッ化水素酸水溶液の濃度4質量%とした以外は、実施例9〜13と同様の方法で前処理及び表面処理を行なった板状基材(M1)を調製し、同じように、基材の表面層の厚み、Si濃度及び接触抵抗値を測定した。そして、実施例9〜13において使用した樹脂粉末に代えて、表1に記載の通り、樹脂粉末をそれぞれPE、PA、PPS、PMP、m-PMP、PEEK、PSU、LCP、PET、PAI、PPE、PBT、PF又はEPとすると共に、カーボン層を形成する際の前プレスの温度をそれぞれ130℃(PE)、250℃(PA、PBT、PPE、m-PMP)、300℃(PPS、PET、PAI)、350℃(LCP)、400℃(PEEK、PSU)、250℃(PMP)及び80℃(PF及びEP)とした以外は、実施例9〜13と同様にカーボン層を形成し、また、同じように、表面処理後30日経過後の板状基材に接着剤層及びカーボン層を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。なお、表面処理後30日経過後の板状基材に接着剤層付きのカーボン層を積層させてステンレス鋼板カーボン複合材を得る際の本プレスの温度は、それぞれ130℃(PE)、250℃(PA、PBT、PPE、m-PMP)、300℃(PPS、PET、PAI)、350℃(LCP)、400℃(PEEK、PSU)、150℃(PF及びEP)とした。
得られた結果を下記の表2に示す。
<Examples 19 to 40>
Plate-like groups pretreated and surface-treated in the same manner as in Examples 9 to 13 except that the concentration of the hydrofluoric acid aqueous solution used as the surface treatment liquid was 4% by mass in Examples 9 to 13. A material (M1) was prepared, and the thickness of the surface layer of the substrate, the Si concentration and the contact resistance value were measured in the same manner. Then, instead of the resin powder used in Examples 9 to 13, as shown in Table 1, the resin powder was used as PE, PA, PPS, PMP, m-PMP, PEEK, PSU, LCP, PET, PAI, PPE, respectively. , PBT, PF or EP, and the pre-press temperature for forming the carbon layer is 130 ° C (PE), 250 ° C (PA, PBT, PPE, m-PMP), 300 ° C (PPS, PET, respectively. A carbon layer was formed in the same manner as in Examples 9 to 13 except that the temperature was PAI), 350 ° C (LCP), 400 ° C (PEEK, PSU), 250 ° C (PMP) and 80 ° C (PF and EP). Similarly, the adhesive layer and the carbon layer are laminated on the plate-like base material 30 days after the surface treatment to obtain a stainless steel plate carbon composite material, and the contact resistance value is measured, the durability test and the flexibility evaluation are performed. Was performed. The temperatures of this press when a carbon layer with an adhesive layer is laminated on a plate-like base material 30 days after the surface treatment to obtain a stainless steel plate carbon composite material are 130 ° C (PE) and 250 ° C (, respectively). PA, PBT, PPE, m-PMP), 300 ° C (PPS, PET, PAI), 350 ° C (LCP), 400 ° C (PEEK, PSU), 150 ° C (PF and EP).
The results obtained are shown in Table 2 below.

<実施例41〜43、比較例5〜6>
前記実施例9〜13において、表面処理液として使用したフッ化水素酸水溶液の濃度4質量%とした以外は、実施例9〜13と同様の方法で前処理及び表面処理を行なった板状基材(M1)を調製し、同じように基材の表面層の厚み、Si濃度及び接触抵抗値を測定した。そして、実施例9〜13において使用した炭素粉末及び樹脂粉末の配合比率を表1に示す比率とした以外は、実施例9〜13と同様にカーボン層を形成し、同じように、表面処理後30日経過後の板状基材に接着剤層及びカーボン層を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す。
<Examples 41 to 43, Comparative Examples 5 to 6>
Plate-like groups pretreated and surface-treated in the same manner as in Examples 9 to 13 except that the concentration of the hydrofluoric acid aqueous solution used as the surface treatment liquid was 4% by mass in Examples 9 to 13. A material (M1) was prepared, and the thickness, Si concentration and contact resistance value of the surface layer of the base material were measured in the same manner. Then, the carbon layer was formed in the same manner as in Examples 9 to 13, except that the blending ratios of the carbon powder and the resin powder used in Examples 9 to 13 were set to the ratios shown in Table 1, and similarly, after the surface treatment. After 30 days, the adhesive layer and the carbon layer were laminated on the plate-shaped base material to obtain a stainless steel plate carbon composite material, and the contact resistance value was measured, the durability test and the flexibility evaluation were performed.
The results obtained are shown in Table 2 below.

<実施例44〜47>
前記実施例9〜13において、表面処理液として使用したフッ化水素酸水溶液の濃度4質量%とした以外は、実施例9〜13と同様の方法で前処理及び表面処理を行なった板状基材(M1)を調製し、同じように基材の表面層の厚み、Si濃度及び接触抵抗値を測定した。そして、実施例9〜13において使用した炭素粉末の配合比率を表1に示す比率とした以外は、実施例9〜13と同様にカーボン層を形成し、同じように、表面処理後30日経過後の板状基材に接着剤層及びカーボン層を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す。
<Examples 44 to 47>
Plate-like groups pretreated and surface-treated in the same manner as in Examples 9 to 13 except that the concentration of the hydrofluoric acid aqueous solution used as the surface treatment liquid was 4% by mass in Examples 9 to 13. A material (M1) was prepared, and the thickness, Si concentration and contact resistance value of the surface layer of the base material were measured in the same manner. Then, a carbon layer was formed in the same manner as in Examples 9 to 13, except that the blending ratio of the carbon powders used in Examples 9 to 13 was set to the ratio shown in Table 1, and similarly, 30 days after the surface treatment had passed. An adhesive layer and a carbon layer were laminated on the plate-shaped base material of No. 1 to obtain a stainless steel plate carbon composite material, and a contact resistance value was measured, a durability test and a flexibility evaluation were performed.
The results obtained are shown in Table 2 below.

<実施例48〜54>
前記実施例9〜13において、前処理液として、塩酸及び塩化鉄(FeCl3)が表1に記載の通りの濃度で溶解された塩化鉄含有酸溶液を用い、且つ、表面処理液として使用したフッ化水素酸水溶液の濃度4質量%とした以外は、実施例9〜13と同様の方法で前処理及び表面処理を行なった板状基材(M1)を調製し、同じように基材の表面層の厚み、Si濃度及び接触抵抗値を測定した。そして、実施例9〜13と同じように、表面処理後30日経過後の板状基材に接着剤層及びカーボン層を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す。
<Examples 48 to 54>
In Examples 9 to 13, an iron chloride-containing acid solution in which hydrochloric acid and iron chloride (FeCl 3 ) were dissolved at the concentrations shown in Table 1 was used as the pretreatment liquid, and was used as the surface treatment liquid. A plate-shaped base material (M1) which had been pretreated and surface-treated by the same method as in Examples 9 to 13 except that the concentration of the hydrofluoric acid aqueous solution was 4% by mass was prepared, and the base material was similarly prepared. The thickness of the surface layer, the Si concentration and the contact resistance value were measured. Then, as in Examples 9 to 13, the adhesive layer and the carbon layer are laminated on the plate-like base material 30 days after the surface treatment to obtain a stainless steel plate carbon composite material, and the contact resistance value is measured and the durability is measured. A sex test and a flexibility evaluation were performed.
The results obtained are shown in Table 2 below.

<比較例7>
前記板状基材(M3)を用いて、これを2質量%硫酸(関東化学社製)中に浸漬させて、温度30℃において、+2A/dm2×1秒、-2A/dm2×1秒、+2A/dm2×1秒、-2A/dm2×1秒、及び+2A/dm2×1秒(+がアノード電極、-がカソード電極)の順に電解処理(前処理)を行った。次いで、表面処理液として5質量%のフッ化水素酸水溶液を用い、前記電解処理後の板状基材を55℃及び90秒間の処理条件で浸漬し、次いで超純水を用いて表面を洗浄し、板状基材の表面に酸化皮膜からなる表面層が形成された表面処理後の板状基材(M3)を調製した。
その後、得られた表面処理後の板状基材(M3)について、前述の実施例1〜8と同様に、基材の表面層の厚み、Si濃度及び接触抵抗値を測定した。接着剤層及びカーボン層の積層は行なわず、当該表面処理後の各板状基材(M3)としたまま、実施例1〜8と同様の方法を用いて、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す。
<Comparative Example 7>
Using the plate-shaped substrate (M3), this is immersed in 2% by mass sulfuric acid (manufactured by Kanto Chemical Co., Inc.), and at a temperature of 30 ° C., + 2A / dm 2 × 1 second, -2A / dm 2 × 1 Electrolysis treatment (pretreatment) was performed in the order of seconds, + 2A / dm 2 × 1 second, -2A / dm 2 × 1 second, and + 2A / dm 2 × 1 second (+ is the anode electrode and-is the cathode electrode). Next, a 5% by mass hydrofluoric acid aqueous solution was used as the surface treatment liquid, the plate-shaped base material after the electrolysis treatment was immersed under the treatment conditions of 55 ° C. and 90 seconds, and then the surface was washed with ultrapure water. Then, a plate-shaped base material (M3) after surface treatment in which a surface layer composed of an oxide film was formed on the surface of the plate-shaped base material was prepared.
Then, with respect to the obtained plate-shaped base material (M3) after the surface treatment, the thickness of the surface layer of the base material, the Si concentration and the contact resistance value were measured in the same manner as in Examples 1 to 8 described above. Durability test and flexibility evaluation are performed using the same method as in Examples 1 to 8 without laminating the adhesive layer and the carbon layer and leaving each plate-like base material (M3) after the surface treatment as it is. Was done.
The results obtained are shown in Table 2 below.

<比較例8>
前記板状基材(M3)を用いて、これを、前処理として濃度5質量%、液温60℃のオルソケイ酸ナトリウム溶液に浸漬し、電流密度5A/dmでアノード電解脱脂を10秒間実施した後、中和処理のため、濃度5質量%、常温の塩酸酸洗を10秒間実施した。 そして、温度50℃の15質量%FeCl3(関東化学社製)中に浸漬させ、アノード電流密度は3.0kA/m、カソード電流密度は0.5kA/m、交番サイクル2.5Hzの電解処理を60秒実施し、次いで超純水を用いて表面を洗浄した。
その後、得られた電解処理後の板状基材(M3)について、前述の実施例1〜8と同様に、基材の表面層の厚み、Si濃度及び接触抵抗値を測定した。一方で、フェノール樹脂(リグナイト株式会社製商品名:AH-1148)と天然黒鉛粉(伊藤黒鉛株式会社製商品名:SG-BH8)とカーボンブラック(ライオン株式会社製商品名:ECP-600JD)とをそれぞれ3g、6g又は1g(質量比で3:6:1)で混合し、これに、イソシアネート架橋剤(旭化成ケミカルズ株式会社製商品名:MF-B60X)を前記フェノール樹脂質量に対して3倍量添加し、これを混練した。これに酢酸エチレングリコールモノブチルエーテルを添加しスラリー状にした後、前記電解処理後の板状基材(M3)にバーコーターで塗布し、275℃で60秒焼き付け処理を経てステンレス鋼板カーボン複合材とした。乾燥後の被覆層厚さは6μmとした。その後、得られたステンレス鋼板カーボン複合材について、実施例1〜8と同様の方法で、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった。
得られた結果を下記の表2に示す(なお、この比較例8については、表2における「表面処理直後」は『電解処理直後』と読み替え、また、「表面処理30日後」は『電解処理30日後』と読み替えるものとする)。
<Comparative Example 8>
Using the plate-shaped substrate (M3), this is immersed in a sodium orthosilicate solution having a concentration of 5% by mass and a liquid temperature of 60 ° C. as a pretreatment, and anode electrolytic degreasing is carried out at a current density of 5 A / dm 2 for 10 seconds. After that, for neutralization treatment, pickling with hydrochloric acid at a concentration of 5% by mass and room temperature was carried out for 10 seconds. Then, it is immersed in 15 mass% FeCl 3 (manufactured by Kanto Chemical Co., Inc.) at a temperature of 50 ° C., and the anode current density is 3.0 kA / m 2 , the cathode current density is 0.5 kA / m 2 , and the alternating cycle is 2.5 Hz. The electrolytic treatment was carried out for 60 seconds, and then the surface was washed with ultrapure water.
Then, with respect to the obtained plate-shaped base material (M3) after the electrolytic treatment, the thickness of the surface layer of the base material, the Si concentration and the contact resistance value were measured in the same manner as in Examples 1 to 8 described above. On the other hand, phenolic resin (trade name: AH-1148 manufactured by Lignite Co., Ltd.), natural graphite powder (trade name: SG-BH8 manufactured by Ito Graphite Co., Ltd.) and carbon black (trade name: ECP-600JD manufactured by Lion Co., Ltd.) 3 g, 6 g or 1 g (mass ratio 3: 6: 1), respectively, and an isocyanate cross-linking agent (trade name: MF-B60X manufactured by Asahi Kasei Chemicals Co., Ltd.) was added to the mixture three times the mass of the phenol resin. The amount was added and this was kneaded. Ethylene glycol monobutyl ether acetate is added to this to form a slurry, which is then applied to the electrolytically treated plate-like base material (M3) with a bar coater, and baked at 275 ° C. for 60 seconds to form a stainless steel plate carbon composite material. did. The thickness of the coating layer after drying was 6 μm. Then, the obtained stainless steel plate carbon composite material was subjected to a contact resistance value measurement, a durability test and a flexibility evaluation in the same manner as in Examples 1 to 8.
The obtained results are shown in Table 2 below (for Comparative Example 8, "immediately after surface treatment" in Table 2 should be read as "immediately after electrolytic treatment", and "30 days after surface treatment" should be read as "electrolytic treatment". It shall be read as "30 days later").

<比較例9>
前記板状基材(M1)を用いて、表面処理を行わなかった以外は、前述の実施例1と同様にして、基材の表面層の厚み、Si濃度及び接触抵抗値を測定し、また、同じように、30日経過後の板状基材に接着剤層及びカーボン層(樹脂粉末としてPPを使用)を積層させてステンレス鋼板カーボン複合材を得ると共に、接触抵抗値の測定、耐久性試験及び可撓性評価を行なった(なお、この比較例9については、表面処理を行っていないが、表2における「表面処理直後」は『30日経過前』と読み替え、また、「表面処理30日後」は『30日経過後』と読み替えるものとする)。
<Comparative Example 9>
The thickness, Si concentration, and contact resistance value of the surface layer of the base material were measured in the same manner as in Example 1 described above, except that the surface treatment was not performed using the plate-shaped base material (M1). Similarly, after 30 days have passed, an adhesive layer and a carbon layer (PP is used as the resin powder) are laminated on the plate-like base material to obtain a stainless steel plate carbon composite material, and the contact resistance value is measured and the durability test is performed. And flexibility evaluation was performed (Note that, in this Comparative Example 9, no surface treatment was performed, but "immediately after the surface treatment" in Table 2 was read as "before 30 days passed", and "surface treatment 30" was performed. "After 30 days" shall be read as "after 30 days").

Figure 0006771351
Figure 0006771351

Figure 0006771351
Figure 0006771351

1…酸化皮膜層、2…ステンレス鋼製板状基材層、3…カーボン層、4…接着剤層付きステンレス鋼製板状基材、5…燃料電池用セパレータ、6…固体高分子電解質膜、7…アノード(燃料電極)、8…カソード(酸化剤電極)、9…ガスケット、10…単位セル、11…ガス供給排出用溝、12…開口部、13…固定穴、14…接着剤層、15…ステンレス鋼板カーボン複合材、16…固体高分子形燃料電池、100…プレス装置、101…雄型、102…雌型、103…金型、104…機枠、105…油圧シリンダ、301…カーボンペーパ、302…銅製金具、303…測定装置
1 ... oxide film layer, 2 ... stainless steel plate-like base material layer, 3 ... carbon layer, 4 ... stainless steel plate-like base material with adhesive layer, 5 ... fuel cell separator, 6 ... solid polymer electrolyte membrane , 7 ... Anode (fuel electrode), 8 ... Cathode (oxidizer electrode), 9 ... Gasket, 10 ... Unit cell, 11 ... Gas supply / discharge groove, 12 ... Opening, 13 ... Fixing hole, 14 ... Adhesive layer , 15 ... Stainless steel plate carbon composite material, 16 ... Solid polymer fuel cell, 100 ... Press device, 101 ... Male mold, 102 ... Female mold, 103 ... Mold, 104 ... Machine frame, 105 ... Hydraulic cylinder, 301 ... Carbon paper, 302 ... Copper metal fittings, 303 ... Measuring device

Claims (13)

ステンレス鋼製の板状基材の少なくとも片面に、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むカーボン層が積層されたステンレス鋼板カーボン複合材であり、
前記板状基材は、ケイ素含有量が1.0質量%以下のステンレス鋼板であって、表面から5nmの深さまでのケイ素濃度が0.5at%以下であり、
前記カーボン層は、炭素粉末(C)と樹脂粉末(R)との体積比(C/R)が6/4〜9/1の割合であることを特徴とするステンレス鋼板カーボン複合材。
A stainless steel plate carbon composite material in which a carbon layer containing carbon powder and a resin powder made of a thermoplastic resin or a thermosetting resin is laminated on at least one surface of a stainless steel plate-shaped base material.
The plate-like base material is a stainless steel plate having a silicon content of 1.0% by mass or less, and has a silicon concentration of 0.5 at% or less from the surface to a depth of 5 nm.
The carbon layer is a stainless steel plate carbon composite material having a volume ratio (C / R) of carbon powder (C) and resin powder (R) of 6/4 to 9/1.
前記板状基材の表面から5nmの深さまでのケイ素濃度が0.01at%以下であることを特徴とする請求項1に記載のステンレス鋼板カーボン複合材。 The stainless steel plate carbon composite material according to claim 1, wherein the silicon concentration from the surface of the plate-shaped base material to a depth of 5 nm is 0.01 at% or less. 前記板状基材が、オーステナイト系ステンレス鋼又はフェライト系ステンレス鋼であることを特徴とする請求項1又は2に記載のステンレス鋼板カーボン複合材。 The stainless steel plate carbon composite material according to claim 1 or 2, wherein the plate-shaped base material is an austenitic stainless steel or a ferritic stainless steel. 前記熱可塑性樹脂からなる樹脂粉末が、ポリプロピレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリメチルペンテン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、液晶ポリマー樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエチレンテレフタレート樹脂及びポリブチレンテレフタレート樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする請求項1〜3のいずれかに記載のステンレス鋼板カーボン複合材。 The resin powder made of the thermoplastic resin is a polypropylene resin, a polyethylene resin, a polyamide resin, a polyphenylene sulfide resin, a polymethylpentene resin, a polyether ether ketone resin, a polyphenylene ether resin, a liquid crystal polymer resin, a polyamideimide resin, a polysulfone resin, and polyethylene. The stainless steel plate carbon according to any one of claims 1 to 3, which is a resin powder composed of any one or a mixture of two or more selected from the group consisting of a terephthalate resin and a polybutylene terephthalate resin. Composite material. 前記熱硬化性樹脂からなる樹脂粉末が、フェノール樹脂及びエポキシ樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする請求項1〜3のいずれかに記載のステンレス鋼板カーボン複合材。 Claims 1 to 3 characterized in that the resin powder made of the thermosetting resin is a resin powder made of any one or a mixture of two or more selected from the group consisting of a phenol resin and an epoxy resin. The stainless steel plate carbon composite material described in any of. 前記板状基材の表面とこの表面に積層されるカーボン層との間が、接着剤層を介して接合されていることを特徴とする請求項1〜5のいずれかに記載のステンレス鋼板カーボン複合材。 The stainless steel plate carbon according to any one of claims 1 to 5, wherein the surface of the plate-shaped base material and the carbon layer laminated on the surface are bonded via an adhesive layer. Composite material. ケイ素含有量が1.0質量%以下のステンレス鋼製の板状基材の少なくとも片面に、炭素粉末と熱可塑性樹脂又は熱硬化性樹脂からなる樹脂粉末とを含むカーボン層を積層してステンレス鋼板カーボン複合材を製造する方法であり、
前記板状基材の少なくとも片面に、表面処理液として、1〜10質量%濃度のフッ化水素酸水溶液、又は、フッ化水素酸(HF)と硝酸(HNO3)との濃度比(HF/HNO3)が2以上であってHF濃度が2質量%以上のフッ化水素酸・硝酸混合水溶液を接触させる表面処理工程と、
この表面処理後の板状基材の表面に、前記炭素粉末(C)と樹脂粉末(R)との体積比(C/R)が6/4〜9/1の割合であるカーボン層を積層する積層工程とを有することを特徴とするステンレス鋼板カーボン複合材の製造方法。
A stainless steel plate in which a carbon layer containing carbon powder and a resin powder made of a thermoplastic resin or a thermosetting resin is laminated on at least one surface of a stainless steel plate-like base material having a silicon content of 1.0% by mass or less. It is a method of manufacturing carbon composite material.
A hydrofluoric acid aqueous solution having a concentration of 1 to 10% by mass or a concentration ratio of hydrofluoric acid (HF) to nitric acid (HNO 3 ) (HF /) on at least one surface of the plate-like substrate as a surface treatment liquid. A surface treatment step in which a hydrofluoric acid / nitric acid mixed aqueous solution having an HNO 3 ) of 2 or more and an HF concentration of 2% by mass or more is brought into contact with each other.
A carbon layer having a volume ratio (C / R) of 6/4 to 9/1 of the carbon powder (C) and the resin powder (R) is laminated on the surface of the plate-shaped base material after the surface treatment. A method for producing a stainless steel plate carbon composite material, which comprises a laminating step.
前記表面処理工程に先駆けて、前記板状基材の少なくとも片面に、前処理液として、酸濃度25質量%以上及び塩化鉄濃度20質量%以上の塩化鉄含有酸水溶液を接触させる前処理工程を有することを特徴とする請求項7に記載のステンレス鋼板カーボン複合材の製造方法。 Prior to the surface treatment step, a pretreatment step of contacting at least one surface of the plate-shaped base material with an iron chloride-containing acid aqueous solution having an acid concentration of 25% by mass or more and an iron chloride concentration of 20% by mass or more as a pretreatment liquid is performed. The method for producing a stainless steel plate carbon composite material according to claim 7, wherein the material is provided. 前記積層工程では、前記炭素粉末と樹脂粉末とを含む粉末混合物をホットプレスしてカーボン層を形成し、得られたカーボン層を表面処理後の板状基材の表面にホットプレスして積層することを特徴とする請求項7又は8に記載のステンレス鋼板カーボン複合材の製造方法。 In the laminating step, a powder mixture containing the carbon powder and the resin powder is hot-pressed to form a carbon layer, and the obtained carbon layer is hot-pressed and laminated on the surface of a plate-shaped base material after surface treatment. The method for producing a carbon composite material of a stainless steel plate according to claim 7 or 8. 前記積層工程に先駆けて、表面処理後の板状基材の表面に接着剤組成物を塗布して接着剤層を形成する接着剤層形成工程を有し、積層工程ではこの接着剤層を介して表面処理後の板状基材の表面にカーボン層が積層されることを特徴とする請求項7〜9のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。 Prior to the laminating step, there is an adhesive layer forming step of applying an adhesive composition to the surface of the plate-shaped base material after surface treatment to form an adhesive layer, and in the laminating step, the adhesive layer is used. The method for producing a stainless steel plate carbon composite material according to any one of claims 7 to 9, wherein a carbon layer is laminated on the surface of the plate-like base material after surface treatment. 前記熱可塑性樹脂からなる樹脂粉末が、ポリプロピレン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリメチルペンテン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、液晶ポリマー樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエチレンテレフタレート樹脂及びポリブチレンテレフタレート樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする請求項7〜10のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。 The resin powder made of the thermoplastic resin is a polypropylene resin, a polyethylene resin, a polyamide resin, a polyphenylene sulfide resin, a polymethylpentene resin, a polyether ether ketone resin, a polyphenylene ether resin, a liquid crystal polymer resin, a polyamideimide resin, a polysulfone resin, and polyethylene. The stainless steel plate carbon according to any one of claims 7 to 10, which is a resin powder composed of any one or a mixture of two or more selected from the group consisting of a terephthalate resin and a polybutylene terephthalate resin. Method of manufacturing composite material. 前記熱硬化性樹脂からなる樹脂粉末が、フェノール樹脂及びエポキシ樹脂からなる群から選ばれたいずれか1種か又は2種以上の混合物からなる樹脂粉末であることを特徴とする請求項7〜10のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。 Claims 7 to 10 characterized in that the resin powder made of the thermosetting resin is a resin powder made of any one or a mixture of two or more kinds selected from the group consisting of a phenol resin and an epoxy resin. The method for producing a stainless steel plate carbon composite material according to any one of. 前記板状基材が、オーステナイト系ステンレス鋼又はフェライト系ステンレス鋼であることを特徴とする請求項7〜12のいずれかに記載のステンレス鋼板カーボン複合材の製造方法。
The method for producing a stainless steel plate carbon composite material according to any one of claims 7 to 12, wherein the plate-shaped base material is an austenitic stainless steel or a ferritic stainless steel.
JP2016195627A 2015-10-05 2016-10-03 Stainless steel sheet carbon composite material and its manufacturing method Active JP6771351B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015197744 2015-10-05
JP2015197744 2015-10-05

Publications (2)

Publication Number Publication Date
JP2017071219A JP2017071219A (en) 2017-04-13
JP6771351B2 true JP6771351B2 (en) 2020-10-21

Family

ID=58538054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016195627A Active JP6771351B2 (en) 2015-10-05 2016-10-03 Stainless steel sheet carbon composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6771351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195862A1 (en) * 2019-03-22 2020-10-01 日鉄ケミカル&マテリアル株式会社 Composite material, method for producing same, and separator, cell and stack for fuel cells, each using said composite material
JP7272706B1 (en) 2021-12-28 2023-05-12 ドングァン ディーエスピー テクノロジー カンパニー リミテッド Stainless steel surface treatment method for polymer-stainless steel joints

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268927B2 (en) * 1993-12-22 2002-03-25 新日本製鐵株式会社 Bright annealed ferritic stainless steel with excellent workability and rust resistance
JP3224694B2 (en) * 1994-10-07 2001-11-05 新日本製鐵株式会社 Ferritic stainless steel sheet with excellent rust resistance and workability
JPH11345618A (en) * 1998-06-03 1999-12-14 Nisshin Steel Co Ltd Coating metal separator material for solid polymer fuel cell
WO2003026052A1 (en) * 2001-09-18 2003-03-27 Furuya Metal Co., Ltd. Bipolar plate for fuel cell and method for production thereof
JP2007176070A (en) * 2005-12-28 2007-07-12 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
JP5621186B2 (en) * 2008-07-02 2014-11-05 Jfeスチール株式会社 Method for producing stainless steel for polymer electrolyte fuel cell separator
KR100993412B1 (en) * 2008-12-29 2010-11-09 주식회사 포스코 Stainless steel for polymer electrolyte membrane fuel cell and fabrication method for the same
JP2011047044A (en) * 2009-07-30 2011-03-10 Jfe Steel Corp Stainless steel for fuel cell having excellent corrosion resistance in high potential environment
ES2535395T3 (en) * 2009-07-30 2015-05-11 Jfe Steel Corporation Stainless steel for fuel cell separators that have excellent electrical conductivity and ductility, and process for the production thereof
JP2011038166A (en) * 2009-08-13 2011-02-24 Nisshin Steel Co Ltd Energizing member for fuel cell and method for producing the same
JP5703560B2 (en) * 2009-12-11 2015-04-22 Jfeスチール株式会社 Stainless steel plate for fuel cell separator with excellent conductivity
ES2701408T3 (en) * 2011-01-17 2019-02-22 Jfe Steel Corp Method to produce stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator and fuel cell
JP6058786B2 (en) * 2013-03-22 2017-01-11 新日鉄住金マテリアルズ株式会社 Carbon plate and composite carbon plate

Also Published As

Publication number Publication date
JP2017071219A (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4886885B2 (en) Titanium fuel cell separator
CN103326045B (en) Fuel cell separator, fuel cell, and method for manufacturing fuel cell separator
US20070065703A1 (en) Durable conductive adhesive bonds for fuel cell separator plates
JP2001214286A (en) Method for producing stainless steel for conductive part
JP4402630B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
KR20130124540A (en) Fuel cell separator
JPH11144744A (en) Separator for low temperature type fuel cell and manufacture thereof
JP2012028047A (en) Method for manufacturing titanium separator for fuel cell
JP6771351B2 (en) Stainless steel sheet carbon composite material and its manufacturing method
WO2015152379A1 (en) Composite metal foil for fuel cell separator, fuel cell separator, fuel cell, and method for producing composite metal foil for fuel cell separator
JP2003272659A (en) Separator for solid polymer fuel cell and fuel cell
JP6970495B2 (en) Stainless steel sheet carbon composite material and its manufacturing method
CA2460187C (en) Separator for fuel cell and method for preparation thereof
JP4900426B2 (en) Conductive film, conductive material and method for producing the same, polymer electrolyte fuel cell and separator thereof, and conductive powder and method for producing the same
JP7448522B2 (en) Composite material and its manufacturing method, as well as separators, cells and stacks for fuel cells using the composite material
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP2004071321A (en) Metal separator for fuel cell and manufacturing method therefor
JP7282103B2 (en) Stainless steel plate carbon composite material and its use, etc.
TWI617078B (en) Stainless steel plate for partition of solid polymer fuel cell
JP5891849B2 (en) Fuel cell separator and method for producing the same
JP7235607B2 (en) Composite materials and separators, cells and stacks for fuel cells using the same
JP2022529968A (en) Stainless steel for polymer fuel cell separation plate and its manufacturing method
JP5132224B2 (en) Aluminum plate for fuel cell, separator using the same, end plate, fuel cell using them, and repair method thereof.
JP2020111805A (en) Stainless steel sheet, separator for fuel battery, fuel battery cell, and fuel battery stack
CA2955125C (en) Metallic material, and conductive component including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20181029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200929

R150 Certificate of patent or registration of utility model

Ref document number: 6771351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250