JP6770811B2 - Bundling steel pipe inspection equipment and binding steel pipe inspection method - Google Patents

Bundling steel pipe inspection equipment and binding steel pipe inspection method Download PDF

Info

Publication number
JP6770811B2
JP6770811B2 JP2016057151A JP2016057151A JP6770811B2 JP 6770811 B2 JP6770811 B2 JP 6770811B2 JP 2016057151 A JP2016057151 A JP 2016057151A JP 2016057151 A JP2016057151 A JP 2016057151A JP 6770811 B2 JP6770811 B2 JP 6770811B2
Authority
JP
Japan
Prior art keywords
steel pipe
arc
bound
corresponding circle
steel pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057151A
Other languages
Japanese (ja)
Other versions
JP2017173992A (en
Inventor
裕次郎 宗
裕次郎 宗
晃一 田中
晃一 田中
江口 正修
正修 江口
太地 中井
太地 中井
Original Assignee
山九株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山九株式会社 filed Critical 山九株式会社
Priority to JP2016057151A priority Critical patent/JP6770811B2/en
Publication of JP2017173992A publication Critical patent/JP2017173992A/en
Application granted granted Critical
Publication of JP6770811B2 publication Critical patent/JP6770811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Description

本発明は、口径規格が同一の複数の鋼管が長手方向を揃えて束ねられた結束鋼管に含まれる鋼管本数を計数する結束鋼管検査装置及び結束鋼管検査方法に関する。 The present invention relates to a bound steel pipe inspection device and a bound steel pipe inspection method for counting the number of steel pipes contained in a bundled steel pipe in which a plurality of steel pipes having the same diameter standard are bundled in the longitudinal direction.

結束鋼管の出荷作業における本数確認は、作業者が目視で計数することが一般的である。しかし、鋼管の数が多くなるとヒューマンエラーの発生が多くなり、誤出荷が発生すると、出荷先(受入側)では作業工程の見直し作業が生じ、出荷元では結束鋼管の再出荷及び誤出荷された結束鋼管の回収等のための作業が生じるという問題がある。そこで、鋼管(長尺物)の計数を人手によらずに自動的に計数することが提案されている(例えば、特許文献1参照)。 It is common for the operator to visually count the number of bound steel pipes in the shipping work. However, as the number of steel pipes increases, human error occurs more often, and when erroneous shipment occurs, the work process is reviewed at the shipping destination (accepting side), and the bundled steel pipe is reshipped and erroneously shipped at the shipping source. There is a problem that work for collecting the bound steel pipe is required. Therefore, it has been proposed to automatically count steel pipes (long objects) without human intervention (see, for example, Patent Document 1).

特開2014−219842号公報Japanese Unexamined Patent Publication No. 2014-21842

特許文献1に記載された技術は、結束鋼管の端面を撮像した画像を用いて鋼管本数を計数するもので、結束鋼管を形成している各鋼管の端面が明確に表示されている画像を準備する必要がある。ここで、結束鋼管の端面を正面から1台のカメラで撮像するだけでは、結束鋼管の各鋼管の端面が明確に表示された画像は得られないので、結束鋼管を形成している複数の鋼管の少なくとも一部が共通して含まれるように、複数の位置でそれぞれ結束鋼管の端面を撮像し、得られた各画像を重ね合わせて合成画像を作成することにより、結束鋼管の各鋼管の端面が明確に表示された画像を得ている。しかしながら、合成画像を得るには複数の作業を行う必要があるため、結束鋼管の出荷に即応して鋼管本数を確認することはできないという問題がある。 The technique described in Patent Document 1 counts the number of steel pipes using an image of the end face of the bound steel pipe, and prepares an image in which the end face of each steel pipe forming the bound steel pipe is clearly displayed. There is a need to. Here, if the end faces of the bound steel pipes are imaged from the front with a single camera, it is not possible to obtain an image in which the end faces of each steel pipe of the bound steel pipes are clearly displayed. Therefore, a plurality of steel pipes forming the bound steel pipes are formed. By imaging the end faces of the bound steel pipes at a plurality of positions and superimposing the obtained images to create a composite image so that at least a part of the above is included in common, the end faces of the bound steel pipes are created. Is getting a clearly displayed image. However, since it is necessary to perform a plurality of operations to obtain a composite image, there is a problem that the number of steel pipes cannot be confirmed immediately in response to the shipment of the bound steel pipes.

本発明はかかる事情に鑑みてなされたもので、口径規格が同一の複数の鋼管が長手方向を揃えて束ねられた結束鋼管に含まれる鋼管本数を出荷に即応して計数することが可能な結束鋼管検査装置及び結束鋼管検査方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to count the number of steel pipes contained in a bundled steel pipe in which a plurality of steel pipes having the same diameter standard are bundled in the longitudinal direction in accordance with shipment. It is an object of the present invention to provide a steel pipe inspection apparatus and a bound steel pipe inspection method.

前記目的に沿う第1の発明に係る結束鋼管検査装置は、口径規格が同一の複数の鋼管が長手方向を揃えて束ねられた結束鋼管に含まれる鋼管本数を数える結束鋼管検査装置において、
前記結束鋼管の端面を該結束鋼管の長手方向から撮影して結束鋼管端面画像を作成する撮像手段と、
前記結束鋼管端面画像から輪郭線を抽出して輪郭線画像を形成する輪郭線抽出手段と、
前記輪郭線画像に含まれる円弧を抽出し、該円弧を円周の一部とする円弧対応円の該輪郭線画像上における中心位置及び該輪郭線画像内の該円弧対応円の総数を求める円検出手段と、
前記各円弧対応円の中心位置を用いて、該円弧対応円毎に近接する円弧対応円までの近接中心間距離を求める近接中心間距離設定手段と、
前記鋼管の口径規格が同一であることから、該結束鋼管の隣接鋼管中心間距離の分布範囲を設定し、前記円弧対応円毎に前記近接中心間距離と前記分布範囲を比較して、該近接中心間距離が該分布範囲外にある前記円弧対応円を特定し、特定された該円弧対応円の個数を前記総数から除いた残数を前記結束鋼管の鋼管本数とする鋼管本数計数手段とを有し
前記円検出手段には前記各円弧対応円の半径を求める機能が設けられ、
前記結束鋼管の結束鋼管情報を取得するデータ取得手段と、前記円検出手段で求めた前記円弧対応円の半径と前記結束鋼管情報中の口径規格から設定される前記鋼管の半径分布範囲を比較して、該半径分布範囲から外れる半径の前記円弧対応円が存在する場合は異径鋼管有り、該半径分布範囲から外れる半径の前記円弧対応円が存在しない場合は異径鋼管無しと判定する異径鋼管検出手段とを有している。
The bound steel pipe inspection device according to the first invention according to the above object is a bound steel pipe inspection device for counting the number of steel pipes contained in a bundled steel pipe in which a plurality of steel pipes having the same diameter standard are bundled in the longitudinal direction.
An imaging means for creating an image of the end face of the bound steel pipe by photographing the end face of the bound steel pipe from the longitudinal direction of the bound steel pipe.
A contour line extraction means for extracting a contour line from the bound steel pipe end face image to form a contour line image, and
A circle that extracts the arc included in the contour image and obtains the center position of the arc-corresponding circle having the arc as a part of the circumference on the contour image and the total number of the arc-corresponding circles in the contour image. Detection means and
Using the center position of each arc-corresponding circle, a proximity center-to-center distance setting means for obtaining a proximity center-to-center distance to an arc-corresponding circle adjacent to each arc-corresponding circle.
Since the diameter standards of the steel pipes are the same, the distribution range of the distance between the adjacent steel pipe centers of the bound steel pipe is set, the distance between the proximity centers and the distribution range are compared for each arc-corresponding circle, and the proximity is said. An arc-corresponding circle whose center-to-center distance is outside the distribution range is specified, and the remaining number obtained by subtracting the number of the identified arc-corresponding circles from the total number is defined as the number of steel pipes of the bound steel pipe. Have and
The circle detecting means is provided with a function of obtaining the radius of each arc-corresponding circle.
Compare the data acquisition means for acquiring the bound steel pipe information of the bound steel pipe with the radius of the arc-corresponding circle obtained by the circle detecting means and the radius distribution range of the steel pipe set from the diameter standard in the bound steel pipe information. If the arc-corresponding circle with a radius outside the radius distribution range exists, it is determined that there is a different-diameter steel pipe, and if the arc-corresponding circle with a radius outside the radius distribution range does not exist, it is determined that there is no different-diameter steel pipe. It has a steel pipe detecting means .

前記目的に沿う第2の発明に係る結束鋼管検査方法は、口径規格が同一の複数の鋼管を長手方向を揃えて束ねた結束鋼管に含まれる鋼管本数を数える結束鋼管検査方法において、
前記結束鋼管の端面を該結束鋼管の長手方向から撮影して結束鋼管端面画像を作成する第1工程と、
前記結束鋼管端面画像から輪郭線を抽出して輪郭線画像を形成する第2工程と、
前記輪郭線画像に含まれる円弧を抽出し、該円弧を円周の一部とする円弧対応円の該輪郭線画像上における中心位置及び該円弧対応円の総数を求める第3工程と、
前記各円弧対応円の中心位置を用いて、該円弧対応円毎に近接する円弧対応円までの近接中心間距離を求める第4工程と、
前記鋼管の口径規格が同一であることから、該結束鋼管の隣接鋼管中心間距離の分布範囲を設定し、前記円弧対応円毎に前記近接中心間距離と前記分布範囲を比較して、該近接中心間距離が該分布範囲外にある前記円弧対応円を特定し、特定された該円弧対応円の個数を前記総数から除いた残数を前記結束鋼管の鋼管本数とする第5工程とを有し、
前記第1工程では前記結束鋼管の結束鋼管情報を取得し、前記第3工程では前記各円弧対応円の半径を求め、更に、前記第3工程で求めた前記円弧対応円の半径と前記結束鋼管情報中の口径規格から設定される前記鋼管の半径分布範囲を比較して、該半径分布範囲から外れる半径の前記円弧対応円が存在する場合は異径鋼管有り、該半径分布範囲から外れる半径の前記円弧対応円が存在しない場合は異径鋼管無しと判定する第6工程を有する。
The bound steel pipe inspection method according to the second invention according to the above object is a bound steel pipe inspection method for counting the number of steel pipes contained in a bundled steel pipe in which a plurality of steel pipes having the same diameter standard are bundled in the longitudinal direction.
The first step of photographing the end face of the bound steel pipe from the longitudinal direction of the bound steel pipe to create an image of the end face of the bound steel pipe.
The second step of extracting the contour line from the bound steel pipe end face image to form the contour line image, and
A third step of extracting an arc included in the contour line image and obtaining the center position of the arc-corresponding circle having the arc as a part of the circumference on the contour line image and the total number of the arc-corresponding circles.
The fourth step of obtaining the distance between the proximity centers to the adjacent arc-corresponding circles for each arc-corresponding circle using the center position of each arc-corresponding circle.
Since the diameter standards of the steel pipes are the same, the distribution range of the distance between the adjacent steel pipe centers of the bound steel pipe is set, the distance between the proximity centers and the distribution range are compared for each arc-corresponding circle, and the proximity is said. There is a fifth step in which the arc-corresponding circle whose center-to-center distance is outside the distribution range is specified, and the remaining number obtained by subtracting the number of the specified arc-corresponding circles from the total number is defined as the number of steel pipes of the bound steel pipe. And
In the first step, the bound steel pipe information of the bound steel pipe is acquired, in the third step, the diameter of each arc-corresponding circle is obtained, and further, the radius of the arc-corresponding circle and the bound steel pipe obtained in the third step. Comparing the radius distribution range of the steel pipe set from the diameter standard in the information, if there is the arc corresponding circle with a radius outside the radius distribution range, there is a different diameter steel pipe, and the radius deviating from the radius distribution range If the circular arc corresponding circle does not exist to have a sixth step of determining that no different-diameter steel pipe.

第1の発明に係る結束鋼管検査装置及び第2の発明に係る結束鋼管検査方法においては、結束鋼管端面画像の輪郭線画像に含まれる円弧を抽出して鋼管本数を求めるので、各鋼管の端面が鮮明に表れている結束鋼管端面画像は要求されない。このため、結束鋼管端面画像の作成が容易になって、結束鋼管の出荷に即応して結束鋼管に含まれる鋼管本数を計数することが可能となる。
また、結束鋼管の隣接鋼管中心間距離の分布範囲内に存在する近接中心間距離を有する円弧対応円の総数を鋼管本数とするので、輪郭線画像において、鋼管画像に基づかない輪郭線から円弧が抽出されても、この円弧を円周の一部とする円弧対応円の近接中心間距離は結束鋼管の隣接鋼管中心間距離の分布範囲から大きく外れるため、結束鋼管端面画像から結束鋼管に含まれる鋼管本数を正確に計数することが可能になる。
In the bound steel pipe inspection apparatus according to the first invention and the bound steel pipe inspection method according to the second invention, since the arc included in the contour line image of the bound steel pipe end face image is extracted to obtain the number of steel pipes, the end face of each steel pipe is obtained. A bound steel pipe end face image in which is clearly shown is not required. Therefore, it becomes easy to create an image of the end face of the bound steel pipe, and it is possible to count the number of steel pipes contained in the bound steel pipe in response to the shipment of the bound steel pipe.
Further, since the total number of arc-corresponding circles having a proximity center distance existing within the distribution range of the distance between adjacent steel pipe centers of the bound steel pipe is defined as the number of steel pipes, the arc is formed from the contour line not based on the steel pipe image in the contour line image. Even if it is extracted, the distance between the centers of the arc-corresponding circles that make this arc a part of the circumference greatly deviates from the distribution range of the distance between the centers of the adjacent steel pipes of the bound steel pipe, so it is included in the bound steel pipe from the end face image of the bound steel pipe. It becomes possible to accurately count the number of steel pipes.

本発明の一実施の形態に係る結束鋼管検査装置のブロック図である。It is a block diagram of the bound steel pipe inspection apparatus which concerns on one Embodiment of this invention. 同結束鋼管検査装置を使用した結束鋼管検査方法のフロー図である。It is a flow chart of the bound steel pipe inspection method using the same bound steel pipe inspection apparatus. 結束鋼管検査方法の第1工程の説明図である。It is explanatory drawing of the 1st process of the bound steel pipe inspection method. 結束鋼管検査方法の第3工程の説明図である。It is explanatory drawing of the 3rd process of the bound steel pipe inspection method. (A)、(B)は結束鋼管検査方法の第4工程において、結束鋼管領域に存在する円弧対応円に対して設定される近接中心間距離の説明図である。(A) and (B) are explanatory views of the distance between the proximity centers set for the arc-corresponding circle existing in the bound steel pipe region in the fourth step of the bound steel pipe inspection method. 実施例1で使用した結束鋼管端面画像である。It is the bundling steel pipe end face image used in Example 1. FIG. 実施例1の結束鋼管端面画像から求めた円弧対応円の画像である。It is an image of the arc corresponding circle obtained from the bound steel pipe end face image of Example 1. 実施例2で使用した結束鋼管端面画像である。It is the bundling steel pipe end face image used in Example 2. 実施例2の結束鋼管端面画像から求めた円弧対応円の画像である。It is an image of the arc corresponding circle obtained from the bound steel pipe end face image of Example 2.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図3に示すように、本発明の一実施の形態に係る結束鋼管検査装置10は、口径規格が同一の複数(図3では19本)の鋼管11が長手方向を揃えて束ねられて形成された結束鋼管12に含まれる鋼管本数を数える装置である。なお、図3の符号13は、鋼管11を結束するための帯材である。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
As shown in FIGS. 1 and 3, in the bound steel pipe inspection device 10 according to the embodiment of the present invention, a plurality of steel pipes 11 having the same diameter standard (19 in FIG. 3) are bundled in the longitudinal direction. It is a device for counting the number of steel pipes contained in the bound steel pipe 12 formed in the above. Reference numeral 13 in FIG. 3 is a strip for binding the steel pipe 11.

結束鋼管検査装置10は、図示しない照明装置で照らされている結束鋼管12の端面を結束鋼管12の長手方向から撮影して結束鋼管端面画像を作成する撮像手段の一例であるCCDカメラ14と、結束鋼管端面画像から輪郭線を抽出して輪郭線画像を形成する輪郭線抽出手段15と、輪郭線画像に含まれる円弧を抽出し、抽出した円弧を円周の一部とする円弧対応円の総数M(図4では、M=20)を求めると共に、円弧対応円C(i=1、2、・・・、M)毎に中心座標(輪郭線画像上に設定した二次元座標系における中心位置)と半径rを求める円検出手段16とを有している。 The bound steel pipe inspection device 10 includes a CCD camera 14 which is an example of an imaging means for creating an image of the end face of the bound steel pipe 12 by photographing the end face of the bound steel pipe 12 illuminated by a lighting device (not shown) from the longitudinal direction of the bound steel pipe 12. Contour line extraction means 15 that extracts a contour line from the bound steel pipe end face image to form a contour line image, and an arc-corresponding circle that extracts an arc included in the contour line image and makes the extracted arc a part of the circumference. The total number M (M = 20 in FIG. 4) is obtained, and the center coordinates (in the two-dimensional coordinate system set on the contour line image) for each arc-corresponding circle C i (i = 1, 2, ..., M) are obtained. It has a center position) and a circle detecting means 16 for obtaining the radius r.

ここで、輪郭線抽出手段15は、例えば、入手した結束鋼管端面画像に対して微分処理を行い、微分強度が所定の閾値より大きい点(2値化処理により抽出した点)を輪郭点として抽出する機能を備えたプロクラムをコンピュータに搭載させることにより、円検出手段16は、抽出された輪郭点の座標をハフ変換することにより抽出された円弧を円周の一部とする円弧対応円の輪郭線画像上における中心座標と半径、及び円弧対応円の総数を求める機能を備えたプロクラムをコンピュータに搭載させることによりそれぞれ構成することができる。
なお、円検出手段16では、輪郭線画像上の輪郭点の座標を数学的に処理することにより円弧を検出するので、図4に示すように、円検出手段16により求めた円弧対応円は、結束鋼管端面画像内の結束鋼管画像の輪郭線から抽出された円弧に基づく円弧対応円(図4では、C、C、・・・、C19)と、結束鋼管端面画像内の結束鋼管画像以外の画像の輪郭線から抽出された円弧に基づく円弧対応円(図4ではC20)から構成される。
Here, the contour line extracting means 15 performs differential processing on the obtained bound steel pipe end face image, and extracts points whose differential strength is larger than a predetermined threshold value (points extracted by binarization processing) as contour points. By mounting a program equipped with a function to perform this on a computer, the circle detecting means 16 uses the arc corresponding to the circle as a part of the circumference by Hough transforming the coordinates of the extracted contour points. Each can be configured by mounting a program having a function of obtaining the center coordinates and radii on the line image and the total number of circles corresponding to arcs on the computer.
Since the circle detecting means 16 detects the arc by mathematically processing the coordinates of the contour points on the contour line image, as shown in FIG. 4, the arc-corresponding circle obtained by the circle detecting means 16 is Arc-corresponding circles (C 1 , C 2 , ..., C 19 in FIG. 4) based on the arc extracted from the contour line of the bound steel pipe image in the bound steel pipe end face image and the bound steel pipe in the bound steel pipe end face image. composed of a circular arc corresponding circle (Fig. 4, C 20) based on the arc extracted from the contour lines other than the picture.

また、図1に示すように、結束鋼管検査装置10は、各円弧対応円C(i=1、2、・・・、M)の中心座標を用いて、円弧対応円C(i=1、2、・・・、M)毎に近接する円弧対応円までの近接中心間距離を求める機能を備えたプロクラムをコンピュータに搭載させることにより構成した近接中心間距離設定手段17と、鋼管11の口径規格が同一であることから、結束鋼管12の隣接鋼管中心間距離の分布範囲を設定し、円弧対応円C毎に近接中心間距離と分布範囲を比較して、近接中心間距離が分布範囲外にある円弧対応円(図4では、C20)を特定し、特定された円弧対応円の個数Sを総数Mから除いた残数(=M−S)を結束鋼管12の鋼管本数とする鋼管本数計数手段18とを有している。 Further, as shown in FIG. 1, the binding steel pipe inspection device 10 uses the center coordinates of each arc-corresponding circle C i (i = 1, 2, ..., M) to arc-corresponding circle C i (i =. 1, 2, ..., M) A proximity center distance setting means 17 configured by mounting a program having a function of obtaining a proximity center distance to a circle corresponding to an arc adjacent to each other on a computer, and a steel pipe 11 since the diameter standards are identical, to set the distribution range of the adjacent steel center-to-center distance between the bundling steel pipe 12, by comparing the distribution range and the near-center distance for each arc corresponding circle C i, the proximity distance between the centers (in FIG. 4, C 20) arc corresponding circle is outside distribution range to identify the remaining number excluding the number S of the specified circular arc corresponding circle from the total number M (= M-S) the steel number of tie steel 12 It has a steel pipe number counting means 18.

図1に示すように、更に、結束鋼管検査装置10は、例えば、結束鋼管12に添付された二次元バーコード又はICタグ等の記録媒体19に書き込まれた結束鋼管情報(例えば、結束鋼管12を構成する鋼管11の口径規格、長さ、使用本数等)を取得する(読み取る)データ取得手段20と、特定された円弧対応円(図4では、C、C、・・・、C19)の半径と結束鋼管情報中の口径規格から設定される鋼管11の半径分布範囲を比較して、半径分布範囲から外れる半径の円弧対応円が存在する場合は異径鋼管有り、半径分布範囲から外れる半径の円弧対応円が存在しない場合は異径鋼管無しと判定する機能を備えたプロクラムをコンピュータに搭載させることにより構成した異径鋼管検出手段21とを有している。 As shown in FIG. 1, the bound steel pipe inspection device 10 further uses the bound steel pipe information (for example, the bound steel pipe 12) written on a recording medium 19 such as a two-dimensional bar code or an IC tag attached to the bound steel pipe 12. Data acquisition means 20 for acquiring (reading) the diameter standard, length, number of used pipes, etc. of the steel pipes 11 constituting the steel pipe 11 and the specified arc-corresponding circle (C 1 , C 2 , ..., C in FIG. 4). Compare the radius of 19 ) with the radius distribution range of the steel pipe 11 set from the diameter standard in the bound steel pipe information, and if there is an arc-corresponding circle with a radius that deviates from the radius distribution range, there is a different diameter steel pipe and the radius distribution range. It has a different diameter steel pipe detecting means 21 configured by mounting a program having a function of determining that there is no different diameter steel pipe when there is no arc-corresponding circle having a radius deviating from the above.

そして、結束鋼管検査装置10は更に、図1に示すように、鋼管本数計数手段18で得られた鋼管本数と結束鋼管情報中の使用本数を比較して、鋼管本数が使用本数に一致するか否かを判定する機能を備えたプロクラムをコンピュータに搭載させることにより構成した本数照合手段22と、本数照合手段22で鋼管本数が使用本数に一致すると判定され、かつ異径鋼管検出手段21で異径鋼管無しと判定された場合は合格判定を、鋼管本数が使用本数に一致すると判定され、かつ異径鋼管検出手段21で異径鋼管有りと判定された場合は誤口径として不合格判定を、鋼管本数が使用本数に一致しないと判定された場合は誤本数として不合格判定を行う機能を備えたプロクラムをコンピュータに搭載させることにより構成した合否判定手段23と、合否判定手段23の判定結果を、例えば、文字、音、及び光のいずれか1を用いて又は2以上を組み合わせて表示する表示手段24と、合否判定手段23の判定結果、結束鋼管12の結束鋼管端面画像、及び結束鋼管情報を記憶する記憶手段25とを有している。 Then, as shown in FIG. 1, the bound steel pipe inspection device 10 further compares the number of steel pipes obtained by the steel pipe number counting means 18 with the number of used steel pipes in the bound steel pipe information, and whether the number of steel pipes matches the number of used steel pipes. It is determined that the number of steel pipes matches the number of steel pipes used by the number matching means 22 and the number matching means 22 configured by mounting a program having a function of determining whether or not the pipe is mounted on the computer, and the different diameter steel pipe detecting means 21 is different. If it is determined that there is no diameter steel pipe, a pass judgment is made, and if it is determined that the number of steel pipes matches the number of used steel pipes and the different diameter steel pipe detecting means 21 determines that there is a different diameter steel pipe, a rejection judgment is made as an erroneous diameter. When it is determined that the number of steel pipes does not match the number of used pipes, the pass / fail judgment means 23 configured by mounting a program having a function of performing a fail judgment as an erroneous number on the computer and the judgment result of the pass / fail judgment means 23 For example, a display means 24 that displays using any one of characters, sound, and light, or a combination of two or more, a judgment result of the pass / fail judgment means 23, a bound steel pipe end face image of the bound steel pipe 12, and bound steel pipe information. It has a storage means 25 for storing the above.

続いて、本発明の一実施の形態に係る結束鋼管検査装置10を使用した結束鋼管検査方法について説明する。
図2、図3、図4に示すように、口径規格が同一の複数の鋼管11を長手方向を揃えて束ねた結束鋼管12に含まれる鋼管本数を数える方法であって、例えば、結束鋼管12に添付された記録媒体19に書き込まれた結束鋼管12の結束鋼管情報を取得し(読み取り)、結束鋼管12の端面を結束鋼管12の長手方向から撮影して結束鋼管端面画像を作成する第1工程と、結束鋼管端面画像から輪郭線を抽出して輪郭線画像を形成する第2工程と、輪郭線画像に含まれる円弧を抽出し、抽出された円弧を円周の一部とする円弧対応円の総数Mを求めると共に、円弧対応円C(i=1、2、・・・、M、図4ではM=20)の中心座標(輪郭線画像上に設定した二次元座標系における中心位置)と円弧対応円Cの半径を求める第3工程と、各円弧対応円Cの中心座標を用いて、円弧対応円C毎に近接する円弧対応円までの近接中心間距離を求める第4工程とを有している。
Subsequently, a bound steel pipe inspection method using the bound steel pipe inspection device 10 according to the embodiment of the present invention will be described.
As shown in FIGS. 2, 3 and 4, a method of counting the number of steel pipes included in a bundled steel pipe 12 in which a plurality of steel pipes 11 having the same diameter standard are bundled in the same longitudinal direction, for example, the bound steel pipe 12 First, the bound steel pipe information of the bound steel pipe 12 written on the recording medium 19 attached to the above is acquired (read), and the end face of the bound steel pipe 12 is photographed from the longitudinal direction of the bound steel pipe 12 to create a bound steel pipe end face image. Corresponding to the process, the second step of extracting the contour line from the bound steel pipe end face image to form the contour line image, and the arc correspondence of extracting the arc included in the contour line image and making the extracted arc a part of the circumference. The total number M of the circles is calculated, and the center coordinates (center in the two-dimensional coordinate system set on the contour line image) of the arc-corresponding circles C i (i = 1, 2, ..., M, M = 20 in FIG. 4) determining position) and a third step of determining the radius of the arc corresponding circle C i, with the center coordinates of each arc corresponding circle C i, the proximity distance between the centers to the arc corresponding circle in proximity to each arc the corresponding circle C i It has a fourth step.

更に、結束鋼管検査方法は、鋼管11の口径規格が同一であることから、結束鋼管12の隣接鋼管中心間距離の分布範囲を設定し、円弧対応円C毎に近接中心間距離と分布範囲を比較して、近接中心間距離が分布範囲外にある円弧対応円(図4では、C20)を特定し、特定された円弧対応円の個数Sを総数Mから除いた残数(=M−S)を結束鋼管12の鋼管本数とする第5工程と、第3工程で特定された円弧対応円の半径と結束鋼管情報中の口径規格から設定される鋼管11の半径分布範囲を比較して、半径分布範囲から外れる半径の円弧対応円が存在する場合は異径鋼管有り、半径分布範囲から外れる半径の円弧対応円が存在しない場合は異径鋼管無しと判定する第6工程と、第5工程で得られた鋼管本数と結束鋼管情報中の使用本数を比較し、鋼管本数が使用本数に一致し、かつ第6工程で異径鋼管無しと判定された場合は合格判定を、鋼管本数が使用本数に一致し、かつ第6工程で異径鋼管有りと判定された場合は誤口径として不合格判定を、鋼管本数が使用本数に一致しない場合は誤本数として不合格判定を行う第7工程とを有する。 The bundling steel pipe inspection method, since the diameter standard steel pipes 11 are identical, to set the distribution range of the adjacent steel center-to-center distance between the bundling steel pipe 12, the circular arc corresponding circle C i distribution range and the near-center distance for each by comparing (in FIG. 4, C 20) arc corresponding circle close center-to-center distance is outside distribution range to identify the remaining number excluding the number S of the specified circular arc corresponding circle from the total number M (= M Compare the radius of the arc-corresponding circle specified in the third step with the fifth step in which −S) is the number of steel pipes of the bound steel pipe 12, and the radius distribution range of the steel pipe 11 set from the diameter standard in the bound steel pipe information. If there is an arc-corresponding circle with a radius outside the radius distribution range, it is determined that there is a different-diameter steel pipe, and if there is no arc-corresponding circle with a radius outside the radius distribution range, it is determined that there is no different-diameter steel pipe. Compare the number of steel pipes obtained in the 5 steps with the number of used steel pipes in the bound steel pipe information, and if the number of steel pipes matches the number of used steel pipes and it is judged in the 6th step that there are no steel pipes of different diameters, a pass judgment is made and the number of steel pipes is passed. If it matches the number of used steel pipes and it is determined in the 6th step that there is a different diameter steel pipe, it is judged as a false diameter, and if the number of steel pipes does not match the number of used steel pipes, it is judged as a false circle. Has a process.

本発明の結束鋼管検査方法では、例えば、CCDカメラ14を用いて結束鋼管12を撮影することにより結束鋼管12の結束鋼管端面画像は容易に作成する(第1工程)ことができ、得られた結束鋼管端面画像に対して、市販の画像解析装置を適用することにより結束鋼管端面画像の輪郭線画像を容易に形成する(第2工程)ことができるので、第1、第2工程の説明は省略し、第3〜第7工程について説明する。 In the bound steel pipe inspection method of the present invention, for example, an image of the bound steel pipe end face of the bound steel pipe 12 can be easily created (first step) by photographing the bound steel pipe 12 with a CCD camera 14, and obtained. By applying a commercially available image analyzer to the bound steel pipe end face image, a contour line image of the bound steel pipe end face image can be easily formed (second step). Therefore, the first and second steps will be described. Omitted, the third to seventh steps will be described.

(第3工程)
輪郭線画像上に二次元座標系を設け、輪郭線上の輪郭点(x,y)を、輪郭点(x,y)を通るすべての円を表示する3つのパラメータ(円の中心位置のx座標P、円の中心位置のy座標P、円の半径r)で構成される三次元空間の曲面に変換(ハフ変換)する。その結果、三次元空間には、輪郭点(x,y)の個数に相当する曲面が存在することになって、これらの曲面に共有点が存在する場合、各曲面に対応する輪郭点(x,y)は一つの円周上に存在することになる。このため、輪郭点(x,y)の位置を変えながら共有点が検出される度に、各輪郭点(x,y)に対して、(x−P+(y−P=rの関係を適用することにより、円の中心座標(P、P)と半径rを決定することができ、共有点の総数Mが円の総数に対応する。なお、検出された円弧対応円には、識別のために番号1〜Mを付与する。
(Third step)
A two-dimensional coordinate system is provided on the contour line image, and three parameters (x coordinate of the center position of the circle) that display the contour points (x, y) on the contour line and all the circles passing through the contour points (x, y). It is transformed (Hough transform) into a curved surface in a three-dimensional space composed of P 1 , the y coordinate P 2 of the center position of the circle, and the radius r of the circle. As a result, there are curved surfaces corresponding to the number of contour points (x, y) in the three-dimensional space, and when there are common points on these curved surfaces, the contour points (x) corresponding to each curved surface are present. , Y) will exist on one circumference. Therefore, every time a shared point is detected while changing the position of the contour point (x, y), (x−P 1 ) 2 + (y−P 2 ) for each contour point (x, y). By applying the relationship of 2 = r 2 , the center coordinates (P 1 , P 2 ) of the circle and the radius r can be determined, and the total number M of the shared points corresponds to the total number of circles. Numbers 1 to M are assigned to the detected arc-corresponding circles for identification.

輪郭線画像から円を抽出する場合、輪郭線上の全輪郭点に対しハフ変換を行なって円の中心座標(P、P)と半径rを決定すると、非常に演算時間が長くなるという問題が生じる。そこで、円の中心座標(P、P)、半径r、及び総数が判明しているモデル輪郭線画像を用いて、輪郭線上に設定する輪郭点の個数を増加させながら、検出される円の中心座標(P、P)、半径r、及び総数の変化を求め、検出された円の中心座標(P、P)、半径r、及び総数が、それぞれ判明している値に一定精度範囲で一致するために必要な輪郭点の個数を求めて、演算時間の短縮化を図った。このため、輪郭線画像からは円弧が抽出されることになり、検出される円は、抽出された円弧を円周の一部とする円弧対応円となる。 When extracting a circle from a contour image, if the center coordinates (P 1 , P 2 ) and radius r of the circle are determined by performing a Hough transform on all contour points on the contour line, the calculation time becomes very long. Occurs. Therefore, using the model contour line image in which the center coordinates (P 1 , P 2 ), radius r, and total number of the circle are known, the circle detected while increasing the number of contour points set on the contour line. Find the changes in the center coordinates (P 1 , P 2 ), radius r, and total number of the detected circles, and set the detected center coordinates (P 1 , P 2 ), radius r, and total number to the known values. The calculation time was shortened by finding the number of contour points required for matching within a certain accuracy range. Therefore, an arc is extracted from the contour image, and the detected circle is an arc-corresponding circle having the extracted arc as a part of the circumference.

(第4工程)
先ず、円弧対応円Cの中心座標を用いて、円弧対応円同士の中心間距離を求める。次いで、円弧対応円C(i=1、・・・、M)毎に、円弧対応円Cの周囲に存在する円弧対応円C(j=1、・・・、i−1、i+1、・・・M)との間の中心間距離di1、・・・、dii−1、dii+1、・・・、dを小さい順に並べ、先頭から(値の小さいものから)k番目までの中心間距離を用いて最近傍集合N(=[diλ1、diλ2、diλ3、・・・、diλk])を求め、最近傍集合Nの要素の平均値(=(diλ1+diλ2+diλ3+・・・+diλk))/k)を近接中心間距離Lとする。
(4th step)
First, using the center coordinates of the circular arc corresponding circle C i, determine the distance between centers of the circular arc corresponding circle. Next, for each arc-corresponding circle C i (i = 1, ..., M), the arc-corresponding circle C j (j = 1, ..., I-1, i + 1 existing around the arc-corresponding circle C i ). , ・ ・ ・ M) The distance between centers di1 , ・ ・ ・, dii-1 , dii + 1 , ..., d M are arranged in ascending order, and the kth from the beginning (from the smallest value) nearest neighbor set N i with center distance of up to (= [d iλ1, d iλ2 , d iλ3, ···, d iλk]) the calculated recent average value of the elements beside the set N i (= (d iλ1 + d iλ2 + d iλ3 + ··· + d iλk)) / k) and the adjacent center-to-center distance L i.

ここで、円弧対応円C(i=1、・・・、M)と円弧対応円C(j=1、・・・、M、但しi≠j)との間の中心間距離dijは、円弧対応円Cの中心座標(P 、P )、円弧対応円Cの中心座標(P 、P )を用いてdij={(P −P +(P −P 1/2として求めることができる。なお、図5(A)には、図4の円弧対応円Cの周囲に存在する円弧対応円C(j=2、・・・、20)との間の中心間距離d12、d13、d14、・・・、d117、d118、d119、d120を、図5(B)には、図4の円弧対応円C20の周囲に存在する円弧対応円C(j=1、2、3、・・・、19)との間の中心間距離d201、d202、d203、・・・、d2017、d2018、d2019をそれぞれ示す。 Here, the arc corresponding circle C i (i = 1, ··· , M) an arc corresponding circle C j (j = 1, ··· , M, where i ≠ j) and center-to-center distance d ij between Using the center coordinates of the arc-corresponding circle C i (P 1 i , P 2 i ) and the center coordinates of the arc-corresponding circle C j (P 1 j , P 2 j ), dij = {(P 1 i −P) It can be calculated as 1 j ) 2 + (P 2 i −P 2 j ) 2 } 1/2 . In addition, in FIG. 5A, the distances between the centers d 12 and d with the arc-corresponding circle C j (j = 2, ..., 20) existing around the arc-corresponding circle C 1 in FIG. 13 , d 14 , ..., d 117 , d 118 , d 119 , d 120 , and in FIG. 5 (B), the arc-corresponding circle C j (j) existing around the arc-corresponding circle C 20 in FIG. = 1, 2, 3, ..., 19) and the center-to-center distances d 201 , d 202 , d 203 , ..., d 2017 , d 2018 , d 2019 , respectively.

また、口径規格が同一の鋼管11を用いて結束鋼管12を形成した場合、結束鋼管12の内側に存在する鋼管には6本の鋼管が、結束鋼管12の外周角部に存在する鋼管には3本の鋼管が、結束鋼管12の外周辺部に存在する鋼管には4本の鋼管がそれぞれ隣接する。従って、最近接する円弧対応円の最大個数は6個であり、近接中心間距離を求める円弧対応円の位置が結束鋼管12内で変化しても近接中心間距離は一定値を示すことから、kの値は1〜6の範囲に設定できる。更に、結束鋼管端面画像の結束鋼管の束から離れた位置において円弧対応円が複数検出される確率は非常に小さいので、結束鋼管の束から離れた位置で検出された円弧対応円Cの周囲に存在する円弧対応円Cとの間の中心間距離dijを小さい順に並べた場合、先頭から2番目までの中心間距離を用いて最近傍集合Nを形成すると、2番目に小さい値の集合要素は、円弧対応円Cと結束鋼管端面画像の結束鋼管内の円弧対応円Cとの間の中心間距離を示す確率が高くなる。このため、kの値を少なくとも2とすることにより、近接中心間距離Lは、近接中心間距離を求める円弧対応円の場所(結束鋼管12内であるか又は結束鋼管12の束から離れた位置であるか)を反映した値となる。 When the bound steel pipe 12 is formed using steel pipes 11 having the same diameter standard, the steel pipes existing inside the bound steel pipe 12 have 6 steel pipes, and the steel pipes existing at the outer peripheral corners of the bound steel pipe 12 have 6 steel pipes. Three steel pipes are present in the outer peripheral portion of the bound steel pipe 12, and four steel pipes are adjacent to each other. Therefore, the maximum number of arc-corresponding circles that are in close contact with each other is 6, and even if the position of the arc-corresponding circle for which the distance between the proximity centers is obtained changes in the bound steel pipe 12, the distance between the proximity centers shows a constant value. The value of can be set in the range of 1 to 6. The bundling since arc corresponding circle at a position away from the bundle of tie steel of the steel pipe end face image probability of multiple detected is very small, around the arc corresponding circle C i detected at a position away from the bundle of tie steel When the center-to-center distance dij with the arc-corresponding circle C j existing in is arranged in ascending order, the nearest neighbor set N j is formed using the center-to-center distance from the first to the second, and the second smallest value. set elements of the probability indicating the center distance between the arc corresponding circle C j in the bundling steel arcs corresponding circle C i and bundling steel pipe end face image is high. Therefore, by setting the value of k to at least 2, the proximity center distance Li is set to the location of the arc-corresponding circle (inside the binding steel pipe 12 or away from the bundle of the binding steel pipe 12) for obtaining the proximity center distance. It is a value that reflects the position).

(第5工程)
先ず、鋼管11の口径規格が同一であることから、結束鋼管12の隣接鋼管中心間距離の分布範囲を設定する。次いで、円弧対応円C(i=1、・・・、M)毎に近接中心間距離Lと分布範囲を比較して、近接中心間距離Lが分布範囲外にある円弧対応円(例えば、結束鋼管端面画像の結束鋼管の束から離れた位置で検出された円弧対応円、図4ではC20)を特定し、特定された円弧対応円の個数Sを円弧対応円の総数Mから除いた残数(=M−S)を結束鋼管12の鋼管本数とする。
ここで、隣接鋼管中心間距離の分布範囲は、例えば、円弧対応円C(i=1、・・・、M)の近接中心間距離Lの平均値L(=(L+L+・・・+L)/M)と、近接中心間距離Lの不偏分散uから得られる不偏標準偏差uと、数値係数α、αを用いて、上限値をL+αu、下限値をL−αuとして設定することができる。なお、不偏分散uは{(L−L+(L−L+・・・+(L−L}/(M−1))として算出される。
(Fifth step)
First, since the diameter standards of the steel pipes 11 are the same, the distribution range of the distance between the centers of the adjacent steel pipes of the bound steel pipes 12 is set. Then, the arc corresponding circle C i (i = 1, ··· , M) by comparing the near-center distance L i and distribution range for each, near center distance L i is the arc corresponding circle is outside distribution range ( for example, detected at a position away from the bundle of tie steel unity steel edge image the arc corresponding circle, to identify C 20) in Figure 4, the number S of the specified circular arc corresponding circle from the total number M of the circular arc corresponding circle The remaining number (= MS) excluded is the number of steel pipes of the bound steel pipe 12.
Here, the distribution range between adjacent steel center distance is, for example, a circular arc corresponding circle C i (i = 1, ··· , M) average L A proximity center distance L i of (= (L 1 + L 2 + ... + a L M) / M), and unbiased standard deviation u obtained from the unbiased variance u 2 proximity center distance L i, numerical coefficients alpha 1, with alpha 2, the upper limit L a + alpha 1 u, the lower limit can be set as L a 2 u. Incidentally, unbiased variance u 2 is calculated as {(L 1 -L A) 2 + (L 2 -L A) 2 + ··· + (L M -L A) 2} / (M-1)) ..

そして、第1工程で取得した結束鋼管12の結束鋼管情報中の鋼管11の口径規格から、結束鋼管端面画像における鋼管画像の直径(画素数)が判るので、L+αuが鋼管画像の直径より大きくなるように、L及びuの値に応じてαを設定する。これにより、例えば、結束鋼管端面画像の結束鋼管の束から離れた位置で検出された円弧対応円(図4ではC20)の近接中心間距離は上限値を超えるため鋼管本数の計数において排除され、特定された円弧対応円C20の個数1を総数20から除いた残数19を結束鋼管12の鋼管本数とする。
また、L−αuが鋼管画像の直径より小さくなるように、L及びuの値に応じてαを設定する。これにより、例えば、円弧対応円が重なって検出された場合、これらの円弧対応円の近接中心間距離は下限値を下回るため、重なっている円弧対応円は鋼管本数の計数において排除の対象となる。ここで、重なっている円弧対応円のそれぞれの近接中心間距離とL−αuを順次比較する場合、近接中心間距離がL−αuより小さくなって対応する円弧対応円が鋼管本数の計数において排除される度に、残りの円弧対応円の中心座標を用いて円弧対応円毎の近接中心間距離の平均値Lを再計算してL−αuの値を更新しながら行う。その結果、鋼管本数の計数において、重なっている円弧対応円の中の一つを残して、他の円弧対応円を排除することができる。
Then, the diameter standard steel pipe 11 in the bundling steel information bundling steel pipe 12 obtained in the first step, the diameter of the steel pipe image in bundled steel edge image (number of pixels) is known, L A + alpha 1 u is steel image to be greater than the diameter, to set the alpha 1 according to the value of L a and u. Thus, for example, the proximity distance between the centers of the detected arc corresponding circle at a position apart from the bundle of tie steel unity steel edge image (C 20 in FIG. 4) is eliminated in the counting of the steel pipe number to exceed the upper limit The remaining number 19 obtained by subtracting the number 1 of the specified arc-corresponding circles C 20 from the total number 20 is defined as the number of steel pipes of the bound steel pipe 12.
Further, L A-.alpha. 2 u is to be smaller than the diameter of the steel pipe image, sets the alpha 2 in accordance with the value of L A and u. As a result, for example, when arc-corresponding circles are detected to overlap, the distance between the proximity centers of these arc-corresponding circles is less than the lower limit, so the overlapping arc-corresponding circles are excluded in counting the number of steel pipes. .. Here, when comparing between the respective adjacent centers of arcs corresponding circles overlap distance and L A2 u sequentially arc corresponding circle close center-to-center distance corresponding smaller than L A2 u each time it is eliminated in the counting of the steel pipe number, the value of re-calculating the mean value L a proximity distance between the centers of each arc corresponding circle with the center coordinates of the remaining arcs corresponding circle L a-.alpha. 2 u Do it while updating. As a result, in counting the number of steel pipes, one of the overlapping arc-corresponding circles can be left and the other arc-corresponding circles can be excluded.

(第6工程)
結束鋼管端面画像中の鋼管画像は、鋼管11の肉厚を反映した外周線と内周線から構成されるが、結束鋼管端面画像を2値化処理すると、外周線と内周線の中でより鮮明な(コントラストの高い)方の線に対応した輪郭線が抽出され易い。
例えば、結束鋼管端面画像を2値化処理して得られる輪郭線画像が、鋼管11の内周線に対応する輪郭線を含む場合、第3工程で特定された円弧対応円の半径は、鋼管11の内半径に対応する。一方、結束鋼管情報中の口径規格に基づいて、鋼管11の最大内半径と最小内半径をそれぞれ画素数を用いて設定できる。従って、鋼管11の最大内半径と最小内半径を用いて設定される鋼管11の内半径分布範囲と第3工程で特定された各円弧対応円の半径を比較して、鋼管11の内半径分布範囲から外れる半径の円弧対応円が存在する場合は、結束鋼管端面画像中に異径鋼管の画像が存在していることになって、結束鋼管12中に異径鋼管有りと判定でき、鋼管11の内半径分布範囲から外れる半径の円弧対応円が存在しない場合は、結束鋼管端面画像中に異径鋼管の画像が存在しないことになって、結束鋼管12中に異径鋼管無しと判定できる。
(6th step)
The steel pipe image in the bound steel pipe end face image is composed of an outer peripheral line and an inner peripheral line reflecting the wall thickness of the steel pipe 11, but when the bound steel pipe end face image is binarized, the outer peripheral line and the inner peripheral line are included. The contour line corresponding to the clearer (higher contrast) line is easily extracted.
For example, when the contour line image obtained by binarizing the end face image of the bound steel pipe includes the contour line corresponding to the inner peripheral line of the steel pipe 11, the radius of the arc-corresponding circle specified in the third step is the steel pipe. Corresponds to the inner radius of 11. On the other hand, the maximum inner radius and the minimum inner radius of the steel pipe 11 can be set by using the number of pixels, respectively, based on the diameter standard in the bound steel pipe information. Therefore, the inner radius distribution of the steel pipe 11 is compared with the inner diameter distribution range of the steel pipe 11 set by using the maximum inner diameter and the minimum inner diameter of the steel pipe 11 and the radius of each arc-corresponding circle specified in the third step. If there is an arc-corresponding circle with a radius outside the range, it means that the image of the different diameter steel pipe exists in the bound steel pipe end face image, and it can be determined that there is a different diameter steel pipe in the bound steel pipe 12, and the steel pipe 11 If there is no arc-corresponding circle with a radius outside the inner radius distribution range of, the image of the different diameter steel pipe does not exist in the bound steel pipe end face image, and it can be determined that there is no different diameter steel pipe in the bound steel pipe 12.

(第7工程)
結束鋼管の合否条件は、結束鋼管端面画像を用いて計数された鋼管本数が結束鋼管情報中の使用本数に一致し、かつ鋼管本数の計数に使用された鋼管画像から得られる鋼管のサイズ(例えば、半径)が結束鋼管情報中の口径規格の範囲内であることである。このため、先ず、第5工程で得られた鋼管本数と結束鋼管情報中の使用本数を比較し、鋼管本数が使用本数に一致しない場合は誤本数として不合格判定する。次いで、鋼管本数が使用本数に一致した場合、更に結束鋼管を構成している各鋼管11の鋼管画像毎に、鋼管画像のサイズが結束鋼管情報中の口径規格の範囲内である(異径鋼管無し)か否(異径鋼管有り)かを判定する。そして、異径鋼管有りと判定された場合は誤口径として不合格判定し、異径鋼管無しと判定された場合は合格判定する。
(7th step)
The pass / fail condition of the bound steel pipe is that the number of steel pipes counted using the bound steel pipe end face image matches the number used in the bound steel pipe information, and the size of the steel pipe obtained from the steel pipe image used for counting the number of steel pipes (for example). , Radius) is within the range of the diameter standard in the bound steel pipe information. Therefore, first, the number of steel pipes obtained in the fifth step is compared with the number of used steel pipes in the bound steel pipe information, and if the number of steel pipes does not match the number of used steel pipes, it is determined as an erroneous number and rejected. Next, when the number of steel pipes matches the number used, the size of the steel pipe image is within the range of the diameter standard in the bound steel pipe information for each steel pipe image of each steel pipe 11 constituting the bound steel pipe (different diameter steel pipe). Judge whether or not (with different diameter steel pipe). Then, if it is determined that there is a different diameter steel pipe, it is determined to be rejected as an erroneous diameter, and if it is determined that there is no different diameter steel pipe, it is determined to be acceptable.

(実施例1)
25Aの鋼管19本を束ねた結束鋼管に本発明を適用し、結束鋼管の鋼管本数の計数と、鋼管の口径検出が可能であることを確認した。
先ず、図6に示すように、結束鋼管の端面を長手方向から撮影して結束鋼管端面画像(482×383ピクセル)を作成した。次いで、結束鋼管端面画像から輪郭線画像を形成し、輪郭線画像の各輪郭点をハフ変換することにより、輪郭線画像に含まれる円弧をそれぞれ抽出して円弧対応円の中心座標と内半径を求めた。そして、輪郭線画像に含まれる円弧の抽出が終了した時点で検出されている円弧対応円の総数を求めると19であった。検出された円弧対応円の画像を図7に、検出された円弧対応円毎の中心座標と内半径を表1に示す。
(Example 1)
The present invention was applied to a bound steel pipe in which 19 25A steel pipes were bundled, and it was confirmed that the number of steel pipes in the bound steel pipe could be counted and the diameter of the steel pipe could be detected.
First, as shown in FIG. 6, the end face of the bound steel pipe was photographed from the longitudinal direction to create a bound steel pipe end face image (482 × 383 pixels). Next, a contour line image is formed from the bound steel pipe end face image, and each contour point of the contour line image is Hough-transformed to extract the arcs included in the contour line image and obtain the center coordinates and inner radius of the arc-corresponding circle. I asked. Then, the total number of arc-corresponding circles detected at the time when the extraction of the arcs included in the contour line image was completed was 19. The image of the detected arc-corresponding circle is shown in FIG. 7, and the center coordinates and inner radius of each detected arc-corresponding circle are shown in Table 1.

次いで、円弧対応円毎に、円弧対応円の周囲に存在する他の円弧対応円との間の中心間距離を小さい順に並べ、先頭から2番目までの中心間距離を用いて最近傍集合を形成した。そして、円弧対応円についての最近傍集合の要素の平均値を求めて、円弧対応円に対する近接中心間距離とした。ここで、円弧対応円毎に求めた近接中心間距離を用いて算出した近接中心間距離の平均値は70.08(単位はピクセル)、近接中心間距離の不偏標準偏差は0.95(単位はピクセル)であった。 Next, for each arc-corresponding circle, the center-to-center distances between the arc-corresponding circles and other arc-corresponding circles are arranged in ascending order, and the nearest neighbor set is formed using the center-to-center distance from the first to the second. did. Then, the average value of the elements of the nearest neighbor set for the arc-corresponding circle was obtained, and the distance between the proximity centers with respect to the arc-corresponding circle was obtained. Here, the average value of the proximity center distance calculated using the proximity center distance obtained for each arc-corresponding circle is 70.08 (unit is pixel), and the unbiased standard deviation of the proximity center distance is 0.95 (unit). Was a pixel).

続いて、鋼管の口径規格から、数値係数αを2として近接中心間距離の上限値を71.98(単位はピクセル)、数値係数αを2として近接中心間距離の下限値を68.17(単位はピクセル)とする結束鋼管の隣接鋼管中心間距離の分布範囲を設定し、円弧対応円毎に求めた近接中心間距離と分布範囲を比較して、近接中心間距離が分布範囲外にある円弧対応円を特定すると、該当する円弧対応円は存在しなかった。従って、特定された円弧対応円の個数0を総数19から除いた残数19が結束鋼管の鋼管本数となり、結束鋼管の使用本数に一致した。 Subsequently, the diameter standard steel pipe, the upper limit of the proximity distance between the centers of the numerical coefficients alpha 1 as 2 71.98 (in pixels), the numerical coefficient alpha 2 as 2 the lower limit of the proximity distance between the centers 68. Set the distribution range of the distance between the centers of the adjacent steel pipes of the bound steel pipe to be 17 (unit is pixel), compare the distance between the proximity centers obtained for each arc-corresponding circle and the distribution range, and the distance between the proximity centers is out of the distribution range. When the arc-corresponding circle in was specified, the corresponding arc-corresponding circle did not exist. Therefore, the remaining number 19 obtained by subtracting the number 0 of the specified arc-corresponding circles from the total number 19 is the number of steel pipes of the bound steel pipe, which matches the number of used bound steel pipes.

また、25Aの鋼管の内半径は、結束鋼管端面画像上では約28ピクセルの長さを有するので、表1に示されるように特定された円弧対応円の内半径が27〜29ピクセルであることから、結束鋼管端面画像を介して、結束鋼管を構成している鋼管の口径が確認できる。 Further, since the inner radius of the steel pipe of 25A has a length of about 28 pixels on the end face image of the bound steel pipe, the inner radius of the arc-corresponding circle specified as shown in Table 1 is 27 to 29 pixels. Therefore, the diameter of the steel pipe constituting the bound steel pipe can be confirmed through the image of the end face of the bound steel pipe.

(実施例2)
25Aの鋼管18本と20Aの鋼管1本を束ねた結束鋼管に本発明を適用し、結束鋼管の鋼管本数の計数と、結束鋼管内の異径鋼管の検出が可能であることを確認した。
図8に示すように、実施例1と同様の方法で結束鋼管端面画像(484×387ピクセル)を作成し、結束鋼管端面画像から輪郭線画像を形成して、輪郭線画像の各輪郭点をハフ変換することにより、輪郭線画像に含まれる円弧に対応する円弧対応円の中心座標と内半径を求めた。そして、輪郭線画像に含まれる円弧の抽出が終了した時点で検出されている円弧対応円の総数を求めると19であった。検出された円弧対応円の画像を図9に、検出された円弧対応円毎の中心座標と内半径を表2に示す。
(Example 2)
The present invention was applied to a bound steel pipe in which 18 25A steel pipes and one 20A steel pipe were bundled, and it was confirmed that the number of steel pipes in the bound steel pipe could be counted and different diameter steel pipes in the bound steel pipe could be detected.
As shown in FIG. 8, a bound steel pipe end face image (484 × 387 pixels) is created by the same method as in Example 1, a contour line image is formed from the bound steel pipe end face image, and each contour point of the contour line image is formed. By Hough transform, the center coordinates and inner radius of the arc-corresponding circle corresponding to the arc included in the contour image were obtained. Then, the total number of arc-corresponding circles detected at the time when the extraction of the arcs included in the contour line image was completed was 19. The image of the detected arc-corresponding circle is shown in FIG. 9, and the center coordinates and inner radius of each detected arc-corresponding circle are shown in Table 2.

次いで、円弧対応円毎に、円弧対応円の周囲に存在する他の円弧対応円との間の中心間距離を小さい順に並べ、先頭から2番目までの中心間距離を用いて最近傍集合を形成した。そして、円弧対応円についての最近傍集合の要素の平均値を求めて、円弧対応円に対する近接中心間距離とした。ここで、円弧対応円毎に求めた近接中心間距離を用いて算出した近接中心間距離の平均値は75.75(単位はピクセル)、近接中心間距離の不偏標準偏差は2.30(単位はピクセル)であった。 Next, for each arc-corresponding circle, the center-to-center distances between the arc-corresponding circles and other arc-corresponding circles are arranged in ascending order, and the nearest neighbor set is formed using the center-to-center distance from the first to the second. did. Then, the average value of the elements of the nearest neighbor set for the arc-corresponding circle was obtained, and the distance between the proximity centers with respect to the arc-corresponding circle was obtained. Here, the average value of the proximity center distance calculated using the proximity center distance obtained for each arc-corresponding circle is 75.75 (unit is pixel), and the unbiased standard deviation of the proximity center distance is 2.30 (unit). Was a pixel).

続いて、鋼管の口径規格から、数値係数αを3として近接中心間距離の上限値を82.64(単位はピクセル)、数値係数αを3として近接中心間距離の下限値を68.86(単位はピクセル)とする結束鋼管の隣接鋼管中心間距離の分布範囲を設定し、円弧対応円毎に求めた近接中心間距離と分布範囲を比較して、近接中心間距離が分布範囲外にある円弧対応円を特定すると、該当する円弧対応円は存在しなかった。従って、特定された円弧対応円の個数0を総数19から除いた残数19が結束鋼管の鋼管本数となり、結束鋼管の使用本数に一致した。 Subsequently, the diameter standard steel pipe, the upper limit of the proximity distance between the centers of the numerical coefficients alpha 1 as 3 82.64 (in pixels), as numerical coefficients alpha 2 and 3 the lower limit of the proximity distance between the centers 68. Set the distribution range of the distance between the centers of the adjacent steel pipes of the bound steel pipe to 86 (unit is pixel), compare the distance between the proximity centers obtained for each arc-corresponding circle and the distribution range, and the distance between the proximity centers is out of the distribution range. When the arc-corresponding circle in was specified, the corresponding arc-corresponding circle did not exist. Therefore, the remaining number 19 obtained by subtracting the number 0 of the specified arc-corresponding circles from the total number 19 is the number of steel pipes of the bound steel pipe, which matches the number of used bound steel pipes.

また、結束鋼管端面画像上では、25Aの鋼管の内半径は27〜30ピクセル、20Aの鋼管の内半径は23〜25ピクセルの長さをそれぞれ有する。従って、表2に示されるように、特定された円弧対応円の中で、27〜30ピクセルの内半径の円弧対応円が18個、23〜25ピクセルの内半径の円弧対応円が1個であることから、結束鋼管端面画像を介して、結束鋼管は25Aの鋼管18本と20Aの鋼管1本から構成されている(結束鋼管に異径鋼管が含まれている)ことが確認できる。
更に、20Aの鋼管に対応する円弧対応円の中心座標が判明しているので、例えば、図9を用いて、20Aの鋼管(異径鋼管)の場所を示すこともできる。
Further, on the end face image of the bound steel pipe, the inner radius of the steel pipe of 25A has a length of 27 to 30 pixels, and the inner radius of the steel pipe of 20A has a length of 23 to 25 pixels. Therefore, as shown in Table 2, among the specified arc-corresponding circles, there are 18 arc-corresponding circles with an inner radius of 27 to 30 pixels and one arc-corresponding circle with an inner radius of 23 to 25 pixels. From this, it can be confirmed from the image of the end face of the bound steel pipe that the bound steel pipe is composed of 18 steel pipes of 25A and one steel pipe of 20A (the bound steel pipe includes a steel pipe having a different diameter).
Further, since the center coordinates of the arc-corresponding circle corresponding to the 20A steel pipe are known, for example, FIG. 9 can be used to indicate the location of the 20A steel pipe (different diameter steel pipe).

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the configuration described in the above-described embodiments, and the matters described in the claims. It also includes other embodiments and variations that may be considered within the scope.
Further, the present invention also includes a combination of the components included in the present embodiment and other embodiments and modifications.

10:結束鋼管検査装置、11:鋼管、12:結束鋼管、13:帯材、14:CCDカメラ、15:輪郭線抽出手段、16:円検出手段、17:近接中心間距離設定手段、18:鋼管本数計数手段、19:記録媒体、20:データ取得手段、21:異径鋼管検出手段、22:本数照合手段、23:合否判定手段、24:表示手段、25:記憶手段
10: Bundling steel pipe inspection device, 11: Steel pipe, 12: Bundling steel pipe, 13: Strip, 14: CCD camera, 15: Contour line extracting means, 16: Circle detecting means, 17: Proximity center distance setting means, 18: Steel pipe number counting means, 19: Recording medium, 20: Data acquisition means, 21: Different diameter steel pipe detecting means, 22: Number matching means, 23: Pass / fail determination means, 24: Display means, 25: Storage means

Claims (4)

口径規格が同一の複数の鋼管が長手方向を揃えて束ねられた結束鋼管に含まれる鋼管本数を数える結束鋼管検査装置において、
前記結束鋼管の端面を該結束鋼管の長手方向から撮影して結束鋼管端面画像を作成する撮像手段と、
前記結束鋼管端面画像から輪郭線を抽出して輪郭線画像を形成する輪郭線抽出手段と、
前記輪郭線画像に含まれる円弧を抽出し、該円弧を円周の一部とする円弧対応円の該輪郭線画像上における中心位置及び該輪郭線画像内の該円弧対応円の総数を求める円検出手段と、
前記各円弧対応円の中心位置を用いて、該円弧対応円毎に近接する円弧対応円までの近接中心間距離を求める近接中心間距離設定手段と、
前記鋼管の口径規格が同一であることから、該結束鋼管の隣接鋼管中心間距離の分布範囲を設定し、前記円弧対応円毎に前記近接中心間距離と前記分布範囲を比較して、該近接中心間距離が該分布範囲外にある前記円弧対応円を特定し、特定された該円弧対応円の個数を前記総数から除いた残数を前記結束鋼管の鋼管本数とする鋼管本数計数手段とを有し、
前記円検出手段には前記各円弧対応円の半径を求める機能が設けられ、
前記結束鋼管の結束鋼管情報を取得するデータ取得手段と、前記円検出手段で求めた前記円弧対応円の半径と前記結束鋼管情報中の口径規格から設定される前記鋼管の半径分布範囲を比較して、該半径分布範囲から外れる半径の前記円弧対応円が存在する場合は異径鋼管有り、該半径分布範囲から外れる半径の前記円弧対応円が存在しない場合は異径鋼管無しと判定する異径鋼管検出手段とを有していることを特徴とする結束鋼管検査装置。
In a bound steel pipe inspection device that counts the number of steel pipes contained in a bundled steel pipe in which a plurality of steel pipes having the same diameter standard are bundled in the longitudinal direction.
An imaging means for creating an image of the end face of the bound steel pipe by photographing the end face of the bound steel pipe from the longitudinal direction of the bound steel pipe.
A contour line extraction means for extracting a contour line from the bound steel pipe end face image to form a contour line image, and
A circle that extracts the arc included in the contour image and obtains the center position of the arc-corresponding circle having the arc as a part of the circumference on the contour image and the total number of the arc-corresponding circles in the contour image. Detection means and
Using the center position of each arc-corresponding circle, a proximity center-to-center distance setting means for obtaining a proximity center-to-center distance to an arc-corresponding circle adjacent to each arc-corresponding circle.
Since the diameter standards of the steel pipes are the same, the distribution range of the distance between the adjacent steel pipe centers of the bound steel pipe is set, the distance between the proximity centers and the distribution range are compared for each arc-corresponding circle, and the proximity is said. An arc-corresponding circle whose center-to-center distance is outside the distribution range is specified, and the remaining number obtained by subtracting the number of the identified arc-corresponding circles from the total number is defined as the number of steel pipes of the bound steel pipe. Yes, and
The circle detecting means is provided with a function of obtaining the radius of each arc-corresponding circle.
Compare the data acquisition means for acquiring the bound steel pipe information of the bound steel pipe with the radius of the arc-corresponding circle obtained by the circle detecting means and the radius distribution range of the steel pipe set from the diameter standard in the bound steel pipe information. If the arc-corresponding circle with a radius outside the radius distribution range exists, it is determined that there is a different-diameter steel pipe, and if the arc-corresponding circle with a radius outside the radius distribution range does not exist, it is determined that there is no different-diameter steel pipe. bundling steel pipe inspection apparatus characterized that you have and a steel tube detector.
請求項記載の結束鋼管検査装置において、前記鋼管本数計数手段で得られた前記鋼管本数と前記結束鋼管情報中の使用本数を比較して、該鋼管本数が該使用本数に一致するか否かを判定する本数照合手段と、該本数照合手段で該鋼管本数が該使用本数に一致すると判定され、かつ前記異径鋼管検出手段で異径鋼管無しと判定された場合は合格判定を、該鋼管本数が該使用本数に一致すると判定され、かつ異径鋼管有りと判定された場合は誤口径として不合格判定を、前記鋼管本数が前記使用本数に一致しないと判定された場合は誤本数として不合格判定を行う合否判定手段とを有していることを特徴とする結束鋼管検査装置。 In the bound steel pipe inspection apparatus according to claim 1 , the number of steel pipes obtained by the steel pipe number counting means is compared with the number of used steel pipes in the bound steel pipe information, and whether or not the number of steel pipes matches the number of used steel pipes. If it is determined by the number matching means and the number matching means that the number of steel pipes matches the number of used steel pipes and the different diameter steel pipe detecting means determines that there is no different diameter steel pipe, a pass judgment is made. If it is determined that the number of steel pipes matches the number of used steel pipes and it is determined that there are steel pipes of different diameters, it is judged as an erroneous diameter. A bound steel pipe inspection device characterized by having a pass / fail judgment means for making a pass judgment. 口径規格が同一の複数の鋼管を長手方向を揃えて束ねた結束鋼管に含まれる鋼管本数を数える結束鋼管検査方法において、
前記結束鋼管の端面を該結束鋼管の長手方向から撮影して結束鋼管端面画像を作成する第1工程と、
前記結束鋼管端面画像から輪郭線を抽出して輪郭線画像を形成する第2工程と、
前記輪郭線画像に含まれる円弧を抽出し、該円弧を円周の一部とする円弧対応円の該輪郭線画像上における中心位置及び該円弧対応円の総数を求める第3工程と、
前記各円弧対応円の中心位置を用いて、該円弧対応円毎に近接する円弧対応円までの近接中心間距離を求める第4工程と、
前記鋼管の口径規格が同一であることから、該結束鋼管の隣接鋼管中心間距離の分布範囲を設定し、前記円弧対応円毎に前記近接中心間距離と前記分布範囲を比較して、該近接中心間距離が該分布範囲外にある前記円弧対応円を特定し、特定された該円弧対応円の個数を前記総数から除いた残数を前記結束鋼管の鋼管本数とする第5工程とを有し、
前記第1工程では前記結束鋼管の結束鋼管情報を取得し、前記第3工程では前記各円弧対応円の半径を求め、更に、前記第3工程で求めた前記円弧対応円の半径と前記結束鋼管情報中の口径規格から設定される前記鋼管の半径分布範囲を比較して、該半径分布範囲から外れる半径の前記円弧対応円が存在する場合は異径鋼管有り、該半径分布範囲から外れる半径の前記円弧対応円が存在しない場合は異径鋼管無しと判定する第6工程を有することを特徴とする結束鋼管検査方法。
In a bound steel pipe inspection method that counts the number of steel pipes contained in a bundled steel pipe in which a plurality of steel pipes having the same diameter standard are bundled in the longitudinal direction.
The first step of photographing the end face of the bound steel pipe from the longitudinal direction of the bound steel pipe to create an image of the end face of the bound steel pipe.
The second step of extracting the contour line from the bound steel pipe end face image to form the contour line image, and
A third step of extracting an arc included in the contour line image and obtaining the center position of the arc-corresponding circle having the arc as a part of the circumference on the contour line image and the total number of the arc-corresponding circles.
The fourth step of obtaining the distance between the proximity centers to the adjacent arc-corresponding circles for each arc-corresponding circle using the center position of each arc-corresponding circle.
Since the diameter standards of the steel pipes are the same, the distribution range of the distance between the adjacent steel pipe centers of the bound steel pipe is set, the distance between the proximity centers and the distribution range are compared for each arc-corresponding circle, and the proximity is said. There is a fifth step in which the arc-corresponding circle whose center-to-center distance is outside the distribution range is specified, and the remaining number obtained by subtracting the number of the specified arc-corresponding circles from the total number is defined as the number of steel pipes of the bound steel pipe. And
In the first step, the bound steel pipe information of the bound steel pipe is acquired, in the third step, the diameter of each arc-corresponding circle is obtained, and further, the radius of the arc-corresponding circle and the bound steel pipe obtained in the third step. Comparing the radius distribution range of the steel pipe set from the diameter standard in the information, if there is the arc corresponding circle with a radius outside the radius distribution range, there is a different diameter steel pipe, and the radius deviating from the radius distribution range tying steel test method if the circular arc corresponding circle does not exist, characterized in that the chromatic sixth step of determining that no different-diameter steel pipe.
請求項記載の結束鋼管検査方法において、前記第5工程で得られた前記鋼管本数と前記結束鋼管情報中の使用本数を比較し、該鋼管本数が該使用本数に一致し、かつ異径鋼管無しと判定された場合は合格判定を、該鋼管本数が該使用本数に一致し、かつ異径鋼管有りと判定された場合は誤口径として不合格判定を、前記鋼管本数が前記使用本数に一致しない場合は誤本数として不合格判定を行う第7工程を有することを特徴とする結束鋼管検査方法。 In the bound steel pipe inspection method according to claim 3, the number of the steel pipes obtained in the fifth step is compared with the number of used pipes in the bound steel pipe information, and the number of the used steel pipes matches the number of used steel pipes and different diameter steel pipes. If it is determined that there is no steel pipe, the number of steel pipes matches the number of used steel pipes, and if it is determined that there is a steel pipe with a different diameter, it is judged as a false diameter and the number of steel pipes matches the number of used steel pipes. A method for inspecting bound steel pipes, which comprises a seventh step of determining a failure as an erroneous number if not.
JP2016057151A 2016-03-22 2016-03-22 Bundling steel pipe inspection equipment and binding steel pipe inspection method Active JP6770811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057151A JP6770811B2 (en) 2016-03-22 2016-03-22 Bundling steel pipe inspection equipment and binding steel pipe inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057151A JP6770811B2 (en) 2016-03-22 2016-03-22 Bundling steel pipe inspection equipment and binding steel pipe inspection method

Publications (2)

Publication Number Publication Date
JP2017173992A JP2017173992A (en) 2017-09-28
JP6770811B2 true JP6770811B2 (en) 2020-10-21

Family

ID=59973140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057151A Active JP6770811B2 (en) 2016-03-22 2016-03-22 Bundling steel pipe inspection equipment and binding steel pipe inspection method

Country Status (1)

Country Link
JP (1) JP6770811B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729351B2 (en) * 2016-12-26 2020-07-22 日本製鉄株式会社 How to check the number of tubes
JP7438176B2 (en) 2021-10-12 2024-02-26 日鉄鋼管株式会社 Method and device for measuring the number of pipes
CN115063410B (en) * 2022-08-04 2023-01-10 中建电子商务有限责任公司 Steel pipe counting method based on anchor-free target detection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228503A (en) * 1988-07-19 1990-01-30 Nippon Steel Corp Method for recognizing circular body and detecting center position
JP5479385B2 (en) * 2011-02-21 2014-04-23 株式会社みどり精密 Counting method and counting device for the number of steel materials in a bundle of steel materials
JP5467624B2 (en) * 2011-03-25 2014-04-09 日本たばこ産業株式会社 Cigarette inspection device
JP5774554B2 (en) * 2012-07-31 2015-09-09 新日鐵住金株式会社 Long object number counting device, long object number counting method, and computer program
JP5825226B2 (en) * 2012-08-28 2015-12-02 新日鐵住金株式会社 Pipe number counting method, pipe number counting device, and computer program
CN104866857B (en) * 2015-05-26 2018-04-13 大连海事大学 A kind of method of counting of bar

Also Published As

Publication number Publication date
JP2017173992A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6079948B1 (en) Surface defect detection device and surface defect detection method
JP6770811B2 (en) Bundling steel pipe inspection equipment and binding steel pipe inspection method
US20120213425A1 (en) Combining feature boundaries
JP5446849B2 (en) Wire rope inspection device
US7916949B2 (en) Method of inspecting granular material and inspection device for conducting that method
JP2020008501A (en) Surface defect detection device and surface defect detection method
JP2017208014A (en) Needle type meter detection device, method, and program
CN115731222A (en) Billet surface detection method, device, equipment and computer readable storage medium
JP2014020926A (en) Surface defect inspection device and surface defect inspection method
CN109767426B (en) Shield tunnel water leakage detection method based on image feature recognition
CN114926415A (en) Steel rail surface detection method based on PCNN and deep learning
JP6357046B2 (en) Work item identification device
WO2024066463A1 (en) Rebar spacing measurement method and system based on binocular vision
JP4670994B2 (en) Color image processing method and image processing apparatus
JP4415285B1 (en) Wire inspection apparatus, wire inspection method, and wire inspection program
US6757421B1 (en) Method and apparatus for detecting defects
JP2014044674A (en) Method for counting number of pipes, device for counting number of pipes, and computer program
CN111460198A (en) Method and device for auditing picture timestamp
CN115861161A (en) Machine learning system, learning data collection method, and storage medium
JP6397292B2 (en) Item identification and image discrimination method by image processing
JP4670993B2 (en) Color image processing method and image processing apparatus
JP4670995B2 (en) Color image processing method and image processing apparatus
US20180293467A1 (en) Method for identifying corresponding image regions in a sequence of images
JP2897612B2 (en) Work detection method
CN112730427B (en) Product surface defect detection method and system based on machine vision

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6770811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250