JP6768775B2 - シンプルrach(srach) - Google Patents

シンプルrach(srach) Download PDF

Info

Publication number
JP6768775B2
JP6768775B2 JP2018239961A JP2018239961A JP6768775B2 JP 6768775 B2 JP6768775 B2 JP 6768775B2 JP 2018239961 A JP2018239961 A JP 2018239961A JP 2018239961 A JP2018239961 A JP 2018239961A JP 6768775 B2 JP6768775 B2 JP 6768775B2
Authority
JP
Japan
Prior art keywords
random access
sequence
subcarriers
uplink
preamble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018239961A
Other languages
English (en)
Other versions
JP2019075806A (ja
Inventor
マクゴワン、ニ−ル
シルヴェイラ、マルティヌス ウィレム ダ
シルヴェイラ、マルティヌス ウィレム ダ
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル), テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority to JP2018239961A priority Critical patent/JP6768775B2/ja
Publication of JP2019075806A publication Critical patent/JP2019075806A/ja
Application granted granted Critical
Publication of JP6768775B2 publication Critical patent/JP6768775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本開示は、セルラー通信ネットワークにおけるランダムアクセスに関する。
ランダムアクセスは、あらゆるセルラー通信ネットワークの基本的なコンポーネントである。概して、ランダムアクセスは、3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)標準においてはユーザ機器(UE)として言及されるワイヤレスデバイスが接続セットアップを要求することを可能にする。ランダムアクセスは、セルラー通信ネットワークへの初期アクセスの際の無線リンクの確立、無線リンク障害の後の無線リンクの再確立、ハンドオーバのための新たなセル向けのアップリンク同期の確立などを含む多様な目的のために使用され得る。図1に示したように、3GPP LTEにおいて、ランダムアクセス手続は、最初にセルサーチ手続を実行した後に行われる。より具体的には、拡張ノードB(eNB)10がプライマリ及びセカンダリ同期信号(PSS/SSS)並びにシステム情報をブロードキャストする(ステップ1000)。UE12はセルサーチ手続を実行し、それによってUE12はPSS/SSSを検出してeNB10によりサービスされるセルのダウンリンクタイミングへ同期する(ステップ1002)。そして、UE12は、システム情報を取得し又は読み取る(ステップ1004)。システム情報は、ランダムアクセスのためにUE12により使用されるべき物理的な時間及び周波数リソースを識別する情報を含む多様なタイプの情報を含む。
ランダムアクセス手続に関していうと、UE12は、ランダムアクセスプリアンブルを送信する(ステップ1006)。ランダムアクセスプリアンブルは、論理的なトランスポートチャネルであるランダムアクセスチャネル(RACH)上で送信される。RACHは物理的なRACH(PRACH)へとマッピングされ、PRACHはeNB10によりブロードキャストされるシステム情報により示される時間及び周波数無線リソース上に提供される。eNB10は、UE12により送信されるランダムアクセスプリアンブルを検出し、そこで送信されたランダムアクセスシーケンスに基づいて、UE12についてのアップリンクタイミングを判定する(ステップ1008)。そして、eNB10は、UE12からのアップリンクのためのタイミング調整値を含むランダムアクセスレスポンスをUE12へ送信する(ステップ1010)。UE12は、ランダムアクセスレスポンスにおいて受信されたタイミング調整値に従って自身のアップリンクタイミングを調整する(ステップ1012)。そして、UE12及びeNB10は、無線リソース制御(RRC)シグナリングを用いて、eNB10とUE12との間の無線リンクの確立を完了させるための情報を交換する(ステップ1014及び1016)。
図2に示したように、ここではRACHプリアンブルともいうランダムアクセスプリアンブルは、時間長TSEQを有するシーケンス(ここではRACHシーケンスという)と、時間長TCPを有するサイクリックプレフィクス(CP)とを含む。CPは、シンボル間干渉(ISI)を低減する目的でRACHシーケンスへ追加される。RACHシーケンスは、NZCポイントのZadoff−Chu(ZC)シーケンスであり、ここでNZC=839である。NZCは、ZCシーケンスの長さであり、よってRACHシーケンスの長さである。3GPP LTEにおいて、約150キロメートル(km)(半径)までのセルサイズがサポートされる。このサポートを提供する目的で、RACHシーケンスの時間長(TSEQ)は、最も大きいサポートされるセルサイズについてのラウンドトリップ時間よりも有意に大きくなければならない。具体的には、3GPP LTEは、4つのランダムアクセス構成(コンフィグレーション0〜3)を定義している。各構成について、RACHシーケンスは、1回以上の0.8ミリ秒(ms)(送信)サイクルにわたる。典型的なランダムアクセス構成はコンフィグレーション0である。コンフィグレーション0ではRACHシーケンスは0.8msのシーケンスであり、そのため、当該RACHシーケンスは1回の0.8msサイクルのみにわたる。特に、コンフィグレーション0では、TSEQ=0.8ms、TCP=0.1ms、ガード時間(図示せず)もまた0.1msに等しい。コンフィグレーション0は、15kmまでのセルサイズ(半径)を可能とする。より一層大きいセルサイズ(即ち、150kmまで)をサポートする目的で、コンフィグレーション1〜3はより長いCPを使用し、コンフィグレーション2及び3のケースでは、シーケンス長はより長い(即ち、TSEQ=1.6ms)が複数のサブフレームにわたる。例えば、コンフィグレーション2では、TSEQ=1.6ms、TCP=0.2ms、ガード時間(図示せず)もまた0.2msに等しい。コンフィグレーション2では、RACHシーケンス(TSEQ=1.6msという時間長)は、0.8msサイクル2回分にわたる。しかしながら、各サイクルは、0.8msという時間長を有し、1.25キロヘルツ(kHz)のPRACHサブキャリアについてのサブキャリア周波数間隔(ΔfPRACH)に対応する(即ち、ΔfPRACH=1/TCYC=1/0.8ms=1.25kHzであり、ここではTCYCをサイクル時間という)。
RACHプリアンブルを送信するために使用されるPRACHは、周波数ドメインにおいて6リソースブロック(RB)である。時間ドメインにおいて、PRACHは、1サブフレーム(1ms)(コンフィグレーション0)、2サブフレーム(2ms)(コンフィグレーション1若しくは2)、又は3サブフレーム(3ms)(コンフィグレーション3)のいずれかである。図3は、コンフィグレーション0についてのPRACHを示している。図示したように、0.8msシーケンスを周波数ドメインにおいて6RBへとフィットさせ、及びPRACHサブキャリア間の直交性を提供するために、PRACHサブキャリアについてのサブキャリア周波数間隔(ΔfPRACH)は1.25キロヘルツ(kHz)である(即ち、ΔfPRACH=1/TCYC=1/0.8ms=1.25kHz)。よって、図示したように、PRACHサブキャリアについてのサブキャリア周波数間隔(ΔfPRACH)は、15kHzである他のアップリンクチャネル(例えば、物理アップリンク共有チャネル(PUSCH))のサブキャリアについてのサブキャリア周波数間隔(ΔfTRAFFIC)の1/12である。PRACHについては、6RBの範囲内に864本のPRACHサブキャリアの割り当てがある。これら864本のPRACHサブキャリアのうち、839本のPRACHサブキャリアが839ポイントのZCシーケンスの送信のために使用される。
3GPP LTEの旧来のPRACHに伴う1つの課題は、多数のPRACHサブキャリアに起因して、送信機及び受信機の双方におけるPRACHの処理が複雑なことである。具体的には、図4に旧来のPRACHプリアンブル送信機14が示されている。図示したように、(時間ドメインにおける)RACHプリアンブルのためのRACHシーケンスが、離散フーリエ変換(DFT)(例えば、高速フーリエ変換(FFT))機能16へと入力され、DFT機能16は、NZCポイントのFFTを実行する。あらためて言うと、3GPP LTEについてNZC=839である。RACHシーケンスは、839ポイントのZCシーケンスである。RACHシーケンスのサイクル時間又は時間長(TCYC)は0.8msであり、そのため、FFT機能16の出力における周波数ビンの周波数間隔は1/TCYC=1.25kHzである。サブキャリアマッピング機能18は、FFT機能16の出力を、アップリンクシステム帯域幅のうちの適切なPRACHサブキャリアへとマッピングする。
サブキャリアマッピング機能18の出力は、逆離散フーリエ変換(IDFT)(例えば、逆FFT(IFFT))機能20の対応する入力へ提供される。IFFT20のサイズ(ここではNDFTという)は、TCYC・fであり、ここでfはサンプリングレートである。20メガヘルツ(MHz)のシステム帯域幅について、3GPP LTEは、30.72MHzというサンプリングレートを使用し、そのため、IFFT20のサイズは24,576である。(即ち、NDFT=TCYC・f=800マイクロ秒(μs)・30.72MHz)。IFFT20のサイズが大きいことは、RACHプリアンブル送信機14を実装する際の相当の量のリソース及び複雑さをもたらす。反復機能22は、IFFT20により出力される時間ドメインのシーケンスを、ランダムアクセス構成に従って必要な場合に反復する。最後に、CP挿入機能24は、CPを挿入し、それにより最終的な時間ドメインのRACHプリアンブルが送信のために出力される。
同じようにして、小さいRACHサブキャリア間隔が旧来のRACHプリアンブル受信機における複雑さに帰結する。図5に示したように、旧来の装置26は、通常トラフィックパス28とRACHパス30とを含み、RACHパス30が旧来のRACHプリアンブル受信機である。通常トラフィックパス28は、データ処理部32を含み、データ処理部32は、CP除去機能34、周波数シフト機能36及びシンボルFFT機能38を含む。CP除去機能34は、受信信号のCPを除去する。次いで、周波数シフト機能36は、受信信号の周波数を通常のサブキャリア間隔の1/2(即ち、15/2kHz=7.5kHz)だけシフトさせる。次いで、受信信号は、シンボルとして言及される、1ミリ秒の数分の1(例えば、1/14又は1/12)に相当する時間断片へと分割される。次いで、シンボルFFT機能38は、シンボルごとにFFTを実行する。具体的には、20MHzの帯域幅について、シンボルFFT機能38は、2,048ポイントのFFTをシンボルごとに実行する。次いで、結果として生じる周波数ドメインの信号断片は、さらなる信号処理のためにアップリンク処理機能40へと提供される。
RACHパス30について、“スーパーFFT”機能42は、受信信号のサンプルの0.8msでのFFTを実行する。20MHzの帯域幅について、FFTのサイズは24,576である。よって、FFTのサイズが大きいことに起因して、FFTはここでは“スーパーFFT”として言及される。スーパーFFT機能42は、トランスポートすべき多量のデータ及びバッファを包含し、多量の計算を要する。次いで、スーパーFFT機能42の出力は、データ処理部44へと提供される。データ処理部44は、RACHサブキャリア選択機能46、相関機能48、及びIFFT機能50を含む。RACHサブキャリア選択機能46は、RACHサブキャリアに対応するスーパーFFT機能42の839個の出力を選択する。次いで、相関機能48は、RACHサブキャリア選択機能46の出力と、既知のZCシーケンスとの相関演算を行い、それによって送信中のUEの一時識別子を抽出する。より具体的には、相関機能48は、受信したRACHサブキャリアと周波数ドメインにおける既知のZCシーケンスのうちの1つの共役との乗算を行う。これによって、一度のステップでそのZCシーケンスの全ての時間シフトでの相関が効率的に同時に行われる。次いで、IFFT機能50は、2,048ポイントのIFFTを実行して時間ドメイン信号を生じさせ、当該信号は、次いで、RACH検出モジュール52により処理される。IFFT機能50の出力は、何らかの相関ピークが時間的にどこに位置するかを示す。とりわけ、(周波数ドメインにおける)相関及びIFFTは、所望のZCシーケンスの各々について1回実行される。スーパーFFT機能42は記憶空間及び電力の観点で相当な重荷であるのに対し、スーパーFFT機能42の出力のほとんどはデータ処理部44において破棄される。
2011年6月1日に出願され、2014年1月21日に発行された“SYMBOL FFT RACH PROCESSING METHODS AND DEVICES”と題された米国特許第8,634,288号(B2)は、スーパーFFTを使用することなくRACHプリアンブルを抽出するためのシステム及び方法を説明している。米国特許第8,634,288号(B2)において開示された装置54の1つの実施形態が図6に示されている。図示したように、装置54は、スーパーFFTの必要性を排除するやり方で、受信信号からRACHプリアンブルを抽出するためのデバイス56を含む。具体的には、装置54は、トラフィックパス及びRACHパスを含む。トラフィックパスは、図4のそれと同じである。一方、RACHパスは、(トラフィックパスのためにも使用される)データ処理部32と、デバイス56と、RACHパス用のデータ処理部44と、RACH検出モジュール52とを含む。図4の旧来の装置26とは異なり、図5の装置54は、トラフィックパスのデータ処理部32をRACHパスの一部として、スーパーFFT機能42を排除するためのデバイス56と共に使用する。結果的に、複雑さが実質的に低減される。
具体的には、RACHパスについて、予め決定される数のシンボル(例えば、12個)についてのシンボルFFT機能38の出力が、1つ1つデバイス56へ入力される。デバイス56の中で、デマッピング機能58は、信号のうちその時点でRACHが位置するはずの部分を選択する。より粗いFFT(即ち、シンボルFFT機能38により実行されるFFT)に起因して、信号のうち選択される部分は、約1MHzにわたり、シンボルFFTの出力スペクトル内の約72個の別個の周波数をカバーする。信号のうち選択される部分(全ての他の非RACH周波数ビンはゼロに設定されている)は、ベースバンドへとシフトされる。
IFFT機能60は、信号の選択部分に対し256ポイントのIFFTを実行し、それによって信号の選択部分を時間ドメインへ再変換する。位相調整機能62は、データをベースバンドへ移動させた際のシンボルCPギャップの集合遅延を補償するために、位相調整を実行する(IFFT出力の最初のサンプルの位相は、CP時間の最後の信号の位相に必ずしも等しくなく、ゼロ又は他の値であり得る)。CPゼロ挿入機能64は、シンボルCP時間へゼロを挿入し、ダウンサンプリング機能66は、当該信号をファクタ3でダウンサンプリングする。ダウンサンプリングは、RACHプリアンブルに相当するシーケンス内のポイント数を必要且つ関係のあるポイント数へと限定するために生じる(IFFT機能60において使用される256ポイントという数は、3・72を上回っており、これはデマッピング後のRACH帯域に相当する周波数の数であり、この数はシンボルCPの挿入によってさらに増加される)。機能58〜66におけるデータ処理は、考慮されるシンボルの各々について実行される(例えば、シンボル数は12個であり得る)。
ダウンサンプリング機能66の出力は、蓄積機能66により蓄積され、次いで、プリアンブル選択機能70によりRACHプリアンブル部分が選択される。次いで、FFT機能72は、1,024ポイントのFFTを実行する。FFT機能72の出力ビンの周波数間隔は1.25kHzであり、FFT機能72の出力ビンのうちの839個が839個のPRACHサブキャリアに対応する。次いで、FFT機能72の出力はデータ処理部44へ入力され、上で議論したやり方で処理が続行される。このようにして、デバイス56を用いることにより、シンボルFFT機能38の出力を、RACH抽出のために使用することができる。但し、シンボルFFT機能38の出力の周波数間隔は15kHzであることから、デバイス56は、1.25kHzのサブキャリア間隔を有するPRACHサブキャリアを、15kHzの間隔を有するシンボルFFT機能38の出力から復元するように動作する。
米国特許第8,634,288号(B2)のシステム及び方法は、複雑さの低減の観点において実質的な利益を提供する。しかしながら、図5の装置26において使用される旧来のRACH受信機及び図6の装置54に実装されるRACH受信機の双方において、通常のトラフィック(例えば、PUSCHトラフィック)がRACH検出の期間中に干渉をもたらし、逆もまたしかりである。よって、RACH送信信号と通常のトラフィック送信信号との間の干渉を低減し又は排除するシステム及び方法の必要性が存在する。
セルラー通信ネットワークにおけるランダムアクセスに関するシステム及び方法が開示される。概して、セルラー通信ネットワークは、直交周波数分割多重(OFDM)ベースのセルラー通信ネットワーク(例えば、3GPP(3rd Generation Partnership Program) LTE(Long Term Evolution)セルラー通信ネットワーク)又は類似の複数サブキャリアベースのセルラー通信ネットワークである。但し、1つの実施形態において、セルラー通信ネットワークは、3GPP LTEセルラー通信ネットワーク又はその何らかの派生である。ランダムアクセスは、アップリンクの1つ以上の他のチャネル(例えば、物理アップリンク共有チャネル(PUSCH))におけるサブキャリア周波数間隔に等しいサブキャリア周波数間隔を有する複数のサブキャリアを含む物理ランダムアクセスチャネル(PRACH)を用いて行われる。結果として、PRACHにおけるサブキャリアは、アップリンクの上記他のチャネルにおけるサブキャリアに対し直交的となり、これが転じて、PRACHサブキャリアとアップリンクの上記他のチャネルのサブキャリアとの間の干渉を低減し又は実質的に排除する。
1つの実施形態において、セルラー通信ネットワークにおいてランダムアクセスを実行するための、ワイヤレスデバイスの動作方法が提供される。1つの実施形態において、上記方法は、上記ワイヤレスデバイスから上記セルラー通信ネットワーク内の無線アクセスノードへ、アップリンクにおいて、PRACH上で、RACHプリアンブルを送信すること、を含む。上記PRACHは、当該アップリンクの1つ以上の他のチャネル(例えば、アップリンクのPUSCH)のサブキャリア周波数間隔に等しいサブキャリア周波数間隔を有する複数のサブキャリアを含む。上記方法は、上記RACHプリアンブルの送信に応じて、上記無線アクセスノードからランダムアクセスレスポンスを受信すること、をさらに含む。
1つの実施形態において、上記セルラー通信ネットワークは、OFDMベースのセルラー通信ネットワークである。1つの具体的な実施形態において、上記セルラー通信ネットワークは、LTEセルラー通信ネットワークである。
1つの実施形態において、上記PRACHにおける上記複数のサブキャリア及び上記アップリンクの上記1つ以上の他のチャネルにおけるサブキャリアの双方のサブキャリア周波数間隔は、15キロヘルツ(kHz)である。他の実施形態において、上記PRACHにおける上記複数のサブキャリア及び上記アップリンクの上記1つ以上の他のチャネルにおけるサブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15kHzである。
1つの実施形態において、上記RACHプリアンブルを送信することは、上記RACHプリアンブルのRACHシーケンスの1つの送信サイクルについて基本RACHシーケンスを生成することと、上記基本RACHシーケンスを時間ドメインから周波数ドメインへと変換することにより、上記基本RACHシーケンスの周波数ドメイン表現を提供することと、上記基本RACHシーケンスの上記周波数ドメイン表現を、上記アップリンクのシステム帯域幅内の上記PRACHについての適切な周波数オフセットへとマッピングすることにより、上記基本RACHシーケンスのマッピング後周波数ドメイン表現を提供することと、上記基本RACHシーケンスの上記マッピング後周波数ドメイン表現を周波数ドメインから時間ドメインへと変換することにより、上記PRACHの1つのシンボルピリオドについての上記RACHプリアンブルのためのRACHシーケンスについてのサンプルを提供することと、を含む。上記基本RACHシーケンスの長さは、上記PRACHにおけるサブキャリア数以下の長さを有する。1つの実施形態において、上記基本RACHシーケンスから生成される上記サンプルは、Qを1以上として、上記RACHシーケンスを提供するために合計Q回反復される。
1つの実施形態において、上記RACHプリアンブルを送信することは、上記RACHプリアンブルの上記RACHシーケンスについての上記サンプルを、上記RACHプリアンブルの上記RACHシーケンスについての1つ以上の追加的な送信サイクル分反復すること、をさらに含む。
他の実施形態において、1つの送信サイクルについて提供される上記RACHプリアンブルのための上記RACHシーケンスのサンプル数(Z)は、上記基本RACHシーケンスの時間長と上記アップリンクの上記システム帯域幅に依存するシステムサンプルレートとの積として定義され、上記RACHプリアンブルを送信することは、上記RACHプリアンブルの上記RACHシーケンスの上記Z個のサンプルを、Qを2以上として、上記RACHプリアンブルの上記RACHシーケンスのQ個の送信サイクル分反復すること、をさらに含む。
他の実施形態において、上記RACHプリアンブルを送信することは、上記RACHプリアンブルの上記RACHシーケンスの上記1つの送信サイクルについて、上記RACHプリアンブルの上記RACHシーケンスの上記サンプルの冒頭に、ある数のサイクリッププレフィクス(CP)サンプルを挿入することと、上記RACHプリアンブルの上記RACHシーケンスの第2の送信サイクルについて、上記RACHプリアンブルの上記RACHシーケンスについての上記サンプルを反復することと、当該送信サイクルについて、上記RACHプリアンブルの上記RACHシーケンスの上記サンプルの冒頭に、ある数のCPサンプルを挿入することと、をさらに含む。上記CPサンプルは、上記RACH CPの一部ではなく、当該CPサンプルが上記RACHプリアンブルの上記RACHシーケンスの一部を実際に形成するように、PUSCHシンボルのケースでなされることと等価な処理において生成される。
1つの実施形態において、上記方法は、上記RACHプリアンブルの送信中に、上記RACHプリアンブルの送信の早期停止を求めるリクエストを上記無線アクセスノードから受信することと、上記リクエストの受信に応じて、上記RACHプリアンブルの送信を停止することと、をさらに含む。
1つの実施形態において、上記PRACHの帯域幅は、1.08メガヘルツ(MHz)であり、上記PRACHにおける上記複数のサブキャリア及び上記アップリンクの上記1つ以上の他のチャネルにおける上記サブキャリアの双方のサブキャリア周波数間隔は、15kHzであり、上記基本RACHシーケンスの長さは72以下である。1つの実施形態において、上記基本RACHシーケンスは、Zadoff−Chu(ZC)シーケンスであり、上記基本RACHシーケンスの長さは71である。
他の実施形態において、上記PRACHの帯域幅はX・1.08MHzであり、上記PRACHにおける上記複数のサブキャリア及び上記アップリンクの上記1つ以上の他のチャネルにおける上記サブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15キロヘルツであり、上記RACHシーケンスの長さは72以下である。1つの実施形態において、上記RACHシーケンスはZCシーケンスであり、上記RACHシーケンスの長さは71である。
他の実施形態において、上記PRACHの帯域幅はX・M・15kHzであり、上記PRACHにおける上記複数のサブキャリア及び上記アップリンクの上記1つ以上の他のチャネルにおける上記サブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15kHzであり、上記RACHシーケンスの長さはM以下である。上記RACHシーケンスはZCシーケンスであり、上記RACHシーケンスの長さはM以下の最大の素数である。
他の実施形態において、上述した実施形態のいずれか1つに従って動作するように構成されるワイヤレスデバイスが開示される。
当業者は、添付図面の図との関連において実施形態の以下の詳細な説明を読んだ後に、本開示のスコープを認識し、それらの追加的な側面を理解するであろう。
本明細書に取り入れられ及びその一部をなす添付図面の図は、本開示の複数の観点を描いており、本説明と共に本開示の原理の説明のために供される。
3GPP(3rd Generation Partnership Program) LTE(Long Term Evolution)ネットワークにおける旧来のセルサーチ及びランダムアクセス手続を示している。 旧来のランダムアクセスチャネル(RACH)プリアンブルを示している。 他のアップリンクトラフィックチャネルのサブキャリア周波数間隔に対する旧来の物理ランダムアクセスチャネル(PRACH)についてのサブキャリア周波数間隔を示している。 旧来のRACHプリアンブル送信機を示している。 通常のアップリンクトラフィック処理パス及び旧来のRACHプリアンブル受信機を含む装置を示している。 通常のアップリンクトラフィック処理パス及び複雑さの低減されたRACHプリアンブル受信機を含む装置を示している。 本開示の1つの実施形態に係るシンプルランダムアクセスチャネル(SRACH)を利用するセルラー通信ネットワークを示している。 本開示の1つの実施形態に係る、他のアップリンクトラフィックチャネルのサブキャリア周波数間隔に対する、シンプル物理ランダムアクセスチャネル(SPRACH)の1つの例についてのサブキャリア周波数間隔を示している。 周波数スケーリング型(scaled frequency)のセルラー通信ネットワークについてのアップリンクサブフレームの1つのスロットを示している。 本開示の1つの実施形態に係る、周波数スケーリング型セルラー通信ネットワークにおける他のアップリンクトラフィックチャネルのサブキャリア周波数間隔に対する、SPRACHの1つの例についてのサブキャリア周波数間隔を示している。 本開示の1つの実施形態に従ってSPRACH上で送信されるSRACHプリアンブルを利用したセルサーチ及びランダムアクセス手続を示している。 本開示の1つの実施形態に従ってSRACHプリアンブルを生成するための処理を示している。 本開示の1つの実施形態に係る図12の処理に従ってSRACHプリアンブルを生成するように動作する、図7のワイヤレスデバイスのブロック図である。 本開示の1つの実施形態に係るワイヤレスデバイスにより生成され及び送信されるSRACHプリアンブルを検出するように動作する、図7の基地局のブロック図である。 本開示の1つの実施形態に従ってSRACHプリアンブルの送信を停止させるための早期停止処理を示している。 本開示の他の実施形態に従ってSRACHプリアンブルを生成するための処理を示している。 本開示の1つの実施形態に係る、図7の基地局のブロック図である。 本開示の1つの実施形態に係る、図7のワイヤレスデバイスのブロック図である。
以下に説明される実施形態は、当業者がそれら実施形態を実践することを可能とする情報を表現し、それら実施形態の実践の最良の態様を例示している。添付図面を踏まえて以下の説明を読めば、当業者は、本開示の概念を理解し、ここで具体的に明記されていないそれら概念の応用を認識するであろう。それら概念及び応用は、本開示及び添付の特許請求の範囲のスコープの範囲内に入るものと理解されるべきである。
セルラー通信ネットワークにおけるランダムアクセスに関するシステム及び方法が開示される。概して、セルラー通信ネットワークは、直交周波数分割多重(OFDM)ベースのセルラー通信ネットワーク(例えば、3GPP(3rd Generation Partnership Program) LTE(Long Term Evolution)セルラー通信ネットワーク)又は類似の複数サブキャリアベースのセルラー通信ネットワークである。ランダムアクセスは、アップリンクの1つ以上の他のチャネル(例えば、物理アップリンク共有チャネル(PUSCH))におけるサブキャリア周波数間隔に等しいサブキャリア周波数間隔を有する複数のサブキャリアを含む物理ランダムアクセスチャネル(PRACH)を用いて行われる。結果として、PRACHにおけるサブキャリアは、アップリンクの上記他のチャネルにおけるサブキャリアに対し直交的となり、これが転じて、PRACHサブキャリアとアップリンクの上記他のチャネルのサブキャリアとの間の干渉を低減し又は実質的に排除する。なお、アップリンクチャネルとの用語は、アップリンク信号(例えば、復調リファレンス信号(DRS)又はサウンディングリファレンス信号(SRS))を含む。RACHサブキャリア間隔の均等性はアップリンク信号についてもその通りとし得るが、簡潔さ及び明瞭さのために、チャネルとの用語がここでは使用されるであろう。
この点に関し、図7は、本開示の1つの実施形態に従ってランダムアクセスのためにPRACHを利用するセルラー通信ネットワーク74の1つの例を示している。とりわけ、旧来のPRACH及び旧来のRACHからここで開示されるPRACH及びランダムアクセスチャネル(RACH)を区別する目的で、ここで開示されるPRACH及びRACHは、以下の議論の大半においてシンプルPRACH(SPRACH)及びシンプルRACH(SRACH)として言及される。これは、単に議論の簡明さ及び容易さのためになされる。“シンプル”との用語は、ここで開示されるSPRACH/SRACHについて使用されるサブキャリア間隔が他のアップリンクチャネルのサブキャリア間隔に等しいという事実を超える何かを意味するものと解釈されるべきではない。
ここで説明される実施形態において、セルラー通信ネットワーク74は、好適には、第4世代(4G)、第5世代(5G)、又は3GPP LTEセルラー通信ネットワークの何らかの将来の世代である。そのため、3GPP LTEの専門用語がここで度々使用される。しかしながら、理解されるべきこととして、ここで開示されるシステム及び方法は3GPP LTEに限定されない。むしろ、ここで開示されるシステム及び方法は、いかなるOFDMベースのセルラー通信ネットワーク又はいかなる複数サブキャリアベースのセルラー通信ネットワークにおいても使用されてよい(例えば、OFDMには限定されない)。
図示したように、セルラー通信ネットワーク74は、セル78へサービスする基地局76、及びワイヤレスデバイス80を含み、ワイヤレスデバイス80は、3GPP LTEではユーザ機器(UE)として言及される。基地局76は、マクロ基地局又は高電力基地局であってよく、3GPP LTEでは拡張ノードB(eNB)として言及される。基地局76は、代替的に、低電力基地局(例えば、マイクロ、ピコ、フェムト又はホームeNB)であってもよい。なお、以下に説明する実施形態では基地局76が使用されるものの、それら実施形態はランダムアクセスプリアンブルの送信を処理するいかなる無線アクセスノードにも等しく適用可能である。
ワイヤレスデバイス80は、例えばセルラー通信ネットワーク74への初期アクセスの際の無線リンクの確立、無線リンク障害の後の基地局76との無線リンクの再確立、ハンドオーバのための基地局76によりサービスされるセル78とのアップリンク同期の確立などを含む多様な目的のためにランダムアクセスを実行する。ランダムアクセスの期間中に、ワイヤレスデバイス80は、SPRACH上でSRACHプリアンブルを送信する。旧来の3GPP LTEネットワークにおいて、大規模なセルサイズ(即ち、半径15キロメートル(km)より大きく、半径約150kmまで)をサポートする目的で、旧来のRACHプリアンブルは、0.8ミリ秒(ms)サイクル(即ち、TCYC=0.8ms)1回以上にわたって送信されるZadoff−Chu(ZC)シーケンスを含む。1回のサイクルについてのZCシーケンスの長さは、NZCとして言及される。最も一般的なRACH構成(コンフィグレーション0)について、RACHプリアンブルは、1サイクル上で送信されるNZCポイントのZCシーケンスを含み、NZCは839に等しく(即ち、ZCシーケンスは長さ839)、ZCシーケンスの時間長は0.8msである(即ち、時間長はTCYC=0.8msに等しい)。ここではPRACHサブキャリアとして言及される旧来のPRACH内の複数のサブキャリアの間の直交性を維持する目的で、旧来のPRACH内のサブキャリア周波数間隔は1.25キロヘルツ(kHz)である(即ち、1/TCYC=1/0.8ms=1.25kHz)。しかし、1.25kHzのサブキャリア周波数間隔は旧来のPRACHサブキャリア間の直交性を維持するものの、PRACHのこの1.25kHzのサブキャリア周波数間隔は、アップリンクの他のチャネル(例えば、PUSCH)についての15kHzのサブキャリア間隔とは異なる。従って、旧来のPRACHサブキャリアは、アップリンクの他のチャネルについてのサブキャリア(例えば、PUSCHサブキャリア)とは直交的でない。結果として、1つのワイヤレスデバイスからの旧来のPRACH送信は、他のワイヤレスデバイスからの例えばPUSCH送信に対する干渉を引き起こし、逆もまたしかりである。
対照的に、SPRACHは、アップリンクの1つ以上の他のチャネル(例えば、PUSCH)のサブキャリア間隔(ΔfTRAFFIC)に等しいサブキャリア間隔(ΔfSPRACH)を用いる。アップリンクの当該1つ以上の他のチャネルは、ここでは通常のトラフィックチャネルとして言及される場合がある。3GPP LTEを一例として用いると、ΔfSPRACH=ΔfTRAFFIC=15kHzである。SPRACH及び他のアップリンクチャネルの双方について同じサブキャリア周波数間隔を用いることにより、SPRACHサブキャリアは、アップリンクの他のチャネル(例えば、PUSCH)のサブキャリアに対して直交的となり、これが転じて、SRACHプリアンブル送信信号とアップリンクトラフィック送信信号との間の干渉を、完全にまでは排除しないとしても実質的に排除する。
旧来のRACHプリアンブルと同様に、SRACHプリアンブルは、時間長TCPを有するサイクリックプレフィクス(CP)と、時間長TSEQを有するシーケンス(例えば、ZCシーケンス)とを含む。SRACHプリアンブルのためのシーケンスは、ここではSRACHシーケンスとして言及される。SRACHシーケンスは、ここでは基本SRACHシーケンスとして言及される同じSRACHシーケンスの1回以上の反復を含む。1つの通常のトラフィックシンボル時間(例えば、3GPP LTEでは66.7マイクロ秒(μs))よりもかなり長いサイクル時間あるいは時間長(例えば、3GPP LTEでは0.8ms)を有する3GPP LTEの旧来のRACHプリアンブルとは異なり、SRACHプリアンブルは、1つの通常のトラフィックシンボル時間に等しいサイクル時間あるいは時間長(TCYC)を有する。よって、3GPP LTEを一例として用いると、SRACHは、1/15kHz=66.7μsに等しいサイクル時間(TCYC)を有する。言い換えれば、基本SRACHシーケンスは、TCYCに等しい時間長を有し、その時間長はそれ自体が通常のトラフィックシンボル時間に等しい。
1つの実施形態において、SRACHプリアンブルは、時間ドメインにおいてはSRACHサイクルの1つのインスタンスを、周波数ドメインにおいてはいくつかの定義された数のリソースブロック(RB)(例えば、3GPP LTEでは6RB)を含む。他の実施形態において、SRACHプリアンブルは、SRACHサイクルの複数回の反復を含み、複数のサブフレーム(例えば、3GPP LTEのランダムアクセスコンフィグレーション1〜3のように2又は3個のサブフレーム)にわたり得る。その反復は、基本SRACHシーケンスの複数回の反復の送信を可能とし、それにより、基地局76における受信時の感度及び時間判別性(time discrimination)が向上する。
とりわけ、旧来のRACHサイクルと比較してSRACHサイクルの長さが短いことは、セル78のサイズが旧来のRACHプリアンブルを用いてサポートされるよりも小さいサイズに限定されることを意味する。例えば、3GPP LTEネットワークにおいてSRACHサイクルの長さを66.7μsへ減少させることにより、セル78のサイズは10kmへ限定される。特に、SRACHプリアンブルを使用可能な一義的なセル半径は、3GPP LTEについてはX=1、3GPP LTEの周波数スケーリングバージョンについてはX>1として、0.5・300・66.7/Xメートルであり、300はメートル毎秒での電磁伝播速度であり、係数0.5は双方向の送信時間を計上している。よって、X=1ならば最大セルサイズは10kmであり、例えばX=10ならば最大セルサイズは1kmである。より小さいセルサイズは、特に新しい将来のLTEの世代(及び他のタイプのセルラー通信ネットワーク)にとっては、課題としては見られない。LTEの新しい将来の世代は、より小さいセルサイズを使用し、又は使用することを計画している。例えば、多くの小さい低電力セルを含み得るヘテロジーニアスネットワーク配備が使用されてもよい。また、小さいセルサイズは、(例えば都市での)高いトラフィック負荷をサポートする目的で小規模基地局の高密度配備を使用することが予期される将来の5Gネットワークについて特に有望である。
図8は、本開示の1つの実施形態に係る、SPRACHの周波数ドメイン表現である。この例は、3GPP LTEについてのものである。但し、あらためて言うと、本開示は、それに限定されない。この例において、SPRACHサブキャリアのサブキャリア周波数間隔(ΔfSPRACH)は15kHzであり、これはPUSCHサブキャリアのサブキャリア周波数間隔(ΔfPUSCH)に等しい。さらに、この例において、SPRACHは、各RBが12本のサブキャリアを含む周波数ドメインにおいて、6RBにわたる。よって、SPRACHは、72本のSPRACHサブキャリアからなり(即ち、6RB・12SPRACHサブキャリア/RB=72SPRACHサブキャリア)、1.08MHzの総帯域幅にわたる(即ち、72SPRACHサブキャリア・15kHz/SPRACHサブキャリア=1.08MHz)。この例において、基本SRACHシーケンスは、71ポイントZCシーケンス(即ち、NZC=71)である。但し、当業者により理解されるように、他のタイプのシーケンスが使用されてもよいことに留意されたい。72ポイントではなく71ポイントのシーケンスが使用されることから、SPRACHサブキャリアのうちの1本は未使用である。
重要なこととして、図8の実施形態は一例に過ぎない。例えば、3GPP LTEネットワークの将来の世代又は他のOFDMベースのセルラーネットワークが、周波数ドメインにおいてSPRACHチャネルに6RBより多くの割り当て又はより少ない割り当てを行ってもよい。他の例として、15kHz以外のサブキャリア周波数間隔が使用されてもよい。さらに、SPRACHチャネル及びSRACHプリアンブルが、周波数スケーリング型セルラー通信ネットワーク(例えば、周波数スケーリング型LTEネットワーク)において使用されてもよく、それらネットワークでは、周波数がスケーリングファクタXで乗算され(例えば、SPRACHサブキャリア間隔は15kHz・Xに等しい)、時間はそのスケーリングファクタXで分割される(例えば、SRACHサイクルの長さは66.7μs/Xに等しい)。例えば、20ギガヘルツ(GHz)キャリアについて、スケーリングファクタXは、例えば10であってよい。これが図9及び図10に示されており、中でも図9は周波数スケーリング型ネットワークにおけるアップリンクフレーム構造の1つのスロットを示し、図10は周波数スケーリング型ネットワークにおけるSPRACHを示している。とりわけ、1つの実施形態において、周波数スケーリング型ネットワークにおけるSPRACHは、MをSPRACHサブキャリア数(M>1)、Xをスケーリングファクタ(X>1)として、X・M・15kHzの帯域幅と(アップリンクの他のチャネルのサブキャリア周波数間隔に等しい)X・15kHzのサブキャリア周波数間隔とを有し、基本SRACHシーケンスの長さはM以下である。なお、M=72かつX=1が3GPP LTEネットワークにおけるSPRACHの1つの実施形態である。1つの実施形態において、基本SRACHシーケンスは、NZCをM以下の最大の素数であるものとして、NZCポイントのZCシーケンスである。
図11は、本開示の1つの実施形態に係る図7のセルラー通信ネットワーク74に関するセルサーチ及びランダムアクセス手続を示している。なお、図11及び他のいくつかの図面は“ステップ”を示しているものの、“ステップ”との用語は関連付けられるアクションの実行のための何らの具体的な順序を要するものと解釈されるべきではないことに留意すべきである。実際、特定の順序が必要であると明記されておらず特定の順序が動作のために必要である訳でもなければ、それらステップはいかなる所望の順序で実行されてもよい。さらに、それらステップのいくつかが同時に実行されてもよい。
図示したように、基地局76は、プライマリ及びセカンダリ同期信号(PSS/SSS)並びにシステム情報をブロードキャストする(ステップ2000)。ワイヤレスデバイス80は、セルサーチ手続を実行し、それによりワイヤレスデバイス80はPSS/SSSを検出して、セル78のダウンリンクタイミングへ同期する(ステップ2002)。次いで、ワイヤレスデバイス80は、システム情報を取得し又は読み取る(ステップ2004)。システム情報は、ワイヤレスデバイス80によりランダムアクセスのために使用されるべき物理的な時間及び周波数リソースを識別する情報を含む多様なタイプの情報を含む。より具体的には、システム情報は、SRACHプリアンブル送信のために使用されるべきリソースを識別する(即ち、SPRACHを識別する)情報を含む。
次いで、ワイヤレスデバイス80は、SRACHプリアンブルを送信する(ステップ2006)。SRACHプリアンブルは、SPRACHへマッピングされる論理チャネルであるSRACH上で送信される。基地局76は、ワイヤレスデバイス80により送信されるSRACHプリアンブルを検出し、ワイヤレスデバイス80についてのアップリンクタイミングを判定する(ステップ2008)。この時点から、本手続は旧来のやり方で進行する。具体的には、基地局76は、ワイヤレスデバイス80からのアップリンクについてのタイミング調整値を含むランダムアクセスレスポンスをワイヤレスデバイス80へ送信する(ステップ2010)。次いで、ワイヤレスデバイス80は、ランダムアクセスレスポンスに従って自身のアップリンクタイミングを調整する(ステップ2012)。次いで、ワイヤレスデバイス80及び基地局76は、無線リソース制御(RRC)シグナリングを用いて、基地局76とワイヤレスデバイス80との間の無線リンクの確立を完了させるための情報を交換する(ステップ2014及び2016)。
図12は、本開示の1つの実施形態に従ってワイヤレスデバイス80により送信されることになるSRACHプリアンブルを生成するための処理を示している。この処理は、ワイヤレスデバイス80により実行される。まず、時間ドメインにおいて基本SRACHシーケンスが生成される(ステップ3000)。但し、基本SRACHシーケンスは代替的に周波数ドメインにおいて生成されてもよいことに留意されたい。その場合、ステップ3002はスキップされてよい。基本SRACHシーケンスは、ZCシーケンス又は良好な相互相関、自己相関及び周波数ドメイン特性を有する他のシーケンスのNZC個の複素値からなる。不可欠ではないものの、1つの代替的な実施形態において、基本SRACHシーケンスは、“Complex Spreading Sequences with a Wide Range of Correlation Properties”(Ian Oppermann et al., IEEE Transactions on Communications, Vol. 45, No. 3, March 1997, pages 365-375)において開示されたシーケンスであり、同文書は基本SRACHシーケンスに適したシーケンスについての教示について参照によりここに取り入れられる。既存の3GPP LTE標準とのインターワーキングのために、基本SRACHは、1つの実施形態において、周波数ドメインにおいて6RB(即ち、72SPRACHサブキャリア)であってよく、15kHzのサブキャリア間隔を有する。このケースにおいて、NZC(より一般的には、時間ドメインの基本SRACHシーケンス内の複素値の数)は71である。なお、特にZCシーケンスについては、当該シーケンスについての複素値の個数が素数であることが好ましい。
次いで、離散フーリエ変換(DFT)(例えば、高速フーリエ変換(FFT))を時間ドメインの基本SRACHシーケンスについて実行することにより、時間ドメインの基本SRACHシーケンスが当該基本SRACHシーケンスの周波数ドメイン表現へ変換される(ステップ3002)。FFTにおけるポイント数は、好適には、時間ドメインの基本SRACHシーケンスにおける複素値の数に等しい。よって、例えば、基本SRACHシーケンスがNZCポイントのZCシーケンスである場合、FFTにおけるポイント数はNZCに等しい。FFTの出力周波数ビンの周波数間隔は1/TCYCに等しく、ここでTCYCは基本SRACHシーケンスの1つのサイクルの長さあるいは時間長である。よって、TCYCは、アップリンクの他のトラフィックチャネルについてのシンボル長に等しく、そのためにFFTの出力周波数ビンの周波数間隔は(よって、SPRACHサブキャリア周波数間隔も)アップリンクの他のチャネルのサブキャリア周波数間隔に等しい。1つの実施形態において、TCYC=66.7μsかつNZC=71である。そのため、FFTは71ポイントFFTであり、FFTの出力周波数ビンの周波数間隔は15kHzに等しく(即ち、1/0.0667ms=15kHz)、これが他の3GPP LTEチャネルについての所望のサブキャリア周波数間隔に適合する。
次いで、SPRACHサブキャリアであるDFTの出力は、アップリンク内のSPRACHについての適切な周波数オフセットへマッピングされる(ステップ3004)。より具体的には、アップリンクについてL本のサブキャリアが存在し、Lはアップリンクの帯域幅に依存する。3GPP LTE及び3GPP LTEの周波数スケーリングバージョンにおいて、L=1200・BW/(20・X)である。DFTにより出力されるSPRACHサブキャリアは、アップリンクのL本のサブキャリアの範囲内のサブキャリアの適切なセット(即ち、PRACHに割り当てられるサブキャリア群)へマッピングされる
重要なこととして、時間ドメインの基本SRACHシーケンスの長さ(即ち、サイクル時間TCYC)は、FFTの出力ビンの間の周波数間隔、よってSPRACHサブキャリア周波数間隔がアップリンクの他のチャネル(例えば、PUSCH、物理アップリンク制御チャネル(PUCCH)など)のサブキャリア周波数間隔に等しくなるように選択される。従って、SPRACHサブキャリアは、基地局76における他のアップリンクチャネルのサブキャリアに対し直交的となる。他のアップリンクチャネルのサブキャリアに対するこの直交性が、周波数ドメインにおけるSPRACHの外縁における保護帯域の必要性を排除まではしないとしても低減する。そうした保護帯域は、旧来の3GPP LTE PRACHにとっては必要とされる。保護帯域の排除は、データ/制御サブキャリアとSPRACHサブキャリアとの間の漏洩が無いために可能であり得る。加えて、SPRACHサブキャリアの直交性は、信号対干渉及び雑音比(SINR)並びにシステム性能の改善をもたらすであろう。
マッピング後に、Zポイントの逆離散フーリエ変換(IDFT)(例えば、Zポイントの逆高速フーリエ変換(IFFT))を周波数ドメインサンプルについて実行することにより、周波数ドメインサンプルがZ個の時間ドメインサンプルへ変換される(ステップ3006)。Zの値は、サンプリングレートに依存する。具体的には、Fをサンプリングレートとして、Z=TCYC・fである。例えば、3GPP LTEにおいて、20メガヘルツ)MHz)の帯域幅を用いる際のサンプリングレートは30.72メガサンプル毎秒(Msps)である。よって、TCYC=66.7かつf=30.72MspsならばZは2,048に等しい。IDFTの出力は、適切なSPRACHサブキャリア周波数におけるOFDM変調後の基本PRACHシーケンスの長さTCYCの時間ドメイン表現であり、PRACHサブキャリア周波数間隔はアップリンクの他のチャネルのそれに等しい。
この実施形態においてIDFTにより出力されるZ個の時間ドメインサンプルは、基本SRACHシーケンスの合計Q回の反復を提供するために随意的に反復されてよく、それにより、最終的なSRACHシーケンスが提供される(ステップ3008)。言い換えれば、本実施形態において、SRACHプリアンブルのSRACHシーケンスは、Qを1以上として、基本SRACHシーケンスのQ回の反復である。複数回の反復の使用は、基地局76におけるSRACH処理後の感度(例えば、SINR)及び時間判別性(例えば、時間分解能)を向上させる。例えば、Q=12及びTCYC=66.7μsである場合、基本SRACHシーケンスの反復の全ての合計の長さは約0.8msであり、これは3GPP LTEのコンフィグレーション0についての旧来のRACHシーケンスの長さと等価である。1つの実施形態において、3GPP LTEについてはX=1、3GPP LTEの周波数スケーリングバージョンについてはX>1として、Q=X・12である。反復を用いて、SRACHプリアンブルのSRACHシーケンスをZ・Q個のサンプルについて連続的に生成し、基地局76において実効的に抽出することができる。最後に、基本SRACHシーケンスのQ回の反復の冒頭にCPを挿入することにより、送信用のSRACHプリアンブルが提供される(ステップ3010)。
1つの実施形態において、時間ドメインのSRACHプリアンブルs(t)は、0≦t≦Q・TCYC+TCPとして、次のように定義される:
Figure 0006768775
ここで、βPRACHは、例えば旧来のPRACHの電力を設定するための既存の手続に従って設定され得るSPRACH向けの送信電力(PSPRACH)を確実にする目的の振幅スケーリングファクタである。xu,v(n)は、u番目のルートZCシーケンスのv番目のサイクリックシフトである(3GPP LTE標準の通り又はそれに類似)。φは、ΔfSPRACHの分解能における物理的なRB境界に対して相対的な固定オフセットである(例えば、0又は1)。Kは、SRACHについて1に等しい。TCPは、SRACHプリアンブルのCPの長さである。kは、次の通り定義される:
Figure 0006768775
ここで、パラメータnRA PRBは周波数ドメインにおける位置を制御し、NRB SCはRB別のサブキャリア数であり、NUL RBはアップリンクにおけるRB数である。さらに、u番目のルートZCシーケンスは、0≦n≦NZC−1について次のように定義される。
Figure 0006768775
ここで、uはZC物理ルートシーケンスのインデックスである。1つの実施形態において、SRACHサブキャリア周波数間隔(ΔfSPRACH)は、非周波数スケーリング型ネットワークにおける何らかの値Δfに等しく(例えば、3GPP LTEネットワークにおいて、ΔfSPRACH=Δf=15kHz)、Δfはアップリンクの他のチャネルのサブキャリア間隔に等しい。他の実施形態において、SRACHサブキャリア周波数間隔(ΔfSPRACH)は、周波数スケーリング型ネットワークにおいて、X・Δfに等しく(例えば、10というスケーリングファクタ(X)を有する3GPP LTEネットワークの周波数スケーリングバージョンについて、ΔfSPRACH=X・Δf=10・15kHz=150kHz)、X・Δfは周波数スケーリング型ネットワークにおけるアップリンクの他のチャネルのサブキャリア間隔である。とりわけ、値Kは、非周波数スケーリング型ネットワークについてはΔf/ΔfSPRACH=1に等しく、周波数スケーリング型ネットワークについてはX・Δf/ΔfSPRACH=1に等しい。いずれのケースでも、SPRACHとアップリンクの他のチャネルとの間でサブキャリア間隔の均等性が達成されるように、K=1である。
図13は、本開示の1つの実施形態に係る図12の処理に従ってSRACHプリアンブルを生成するように動作するワイヤレスデバイス80のブロック図である。とりわけ、図13は、ワイヤレスデバイス80のSRACHプリアンブルを生成するように動作する部分のみを示している。ワイヤレスデバイス80は、図13には示していない他のコンポーネントを含む。図13に示したブロックは、ハードウェアで実装されてもよく、又はソフトウェアとハードウェアとの組合せで実装されてもよい。図示したように、ワイヤレスデバイス80は、時間ドメインの基本SRACHシーケンスのDFTを実行するように動作するDFT機能82を含む。上で議論したように、時間ドメインの基本SRACHシーケンスの長さ(TCYC)は、(1/TCYCである)出力周波数ビンの周波数間隔が所望のSPRACHサブキャリア周波数間隔に等しくなるようになされ、その場合、所望のSPRACHサブキャリア周波数間隔はアップリンクの他のチャネルのサブキャリア周波数間隔に等しい。サブキャリアマッピング機能84は、DFTの出力を適切なSPRACHサブキャリアへマッピングする。次いで、IDFT機能86は、サブキャリアマッピング機能84の出力のIDFTを実行して、上で議論したようにZ個の時間ドメインサンプルを提供する。次いで、反復機能88は、上記Z個の時間ドメインサンプルを、合計Q回にわたって反復する。最後に、CP挿入機能90は、CPを挿入してSRACHプリアンブルを完成させる。なお、機能82〜90は、ハードウェアで実装されてもよく、又はハードウェアとソフトウェアとの組合せで実装されてもよい。
図14は、本開示の1つの実施形態に係るワイヤレスデバイス80により送信されるSRACHシーケンスを検出するように動作する基地局76の1つの実施形態を示している。とりわけ、当業者により理解されるように、基地局76は、図14には示していない他のコンポーネントを含む。図示したように、基地局76は、データ処理部92及びアップリンク処理機能94により形成される通常トラフィックパスと、データ処理機能92、SRACHプリアンブル抽出機能95、データ処理機能96、及びSRACH検出機能98により形成されるSRACHパスとを含む。データ処理機能92は、CP除去機能100、周波数シフト機能102及びシンボルFFT機能104を含む。いくつかの実施形態においては、周波数シフト機能102は含まれなくてもよい。CP除去機能100は、受信信号のCPを除去する。次いで、周波数シフト機能102は、受信信号の周波数を通常のサブキャリア間隔の1/2(例えば、3GPP LTEについて、15/2kHz=7.5kHz)だけシフトさせる。次いで、受信信号は、シンボルとして言及される、(3GPP LTEについては1msである)サブフレームの数分の1(例えば、1/14又は1/12)に相当する時間断片へと分割される。次いで、シンボルFFT機能104は、20MHzの3GPP LTE帯域幅についてはシンボルごとに2,048ポイントのFFTを用いて、シンボル別FFTを実行する。次いで、結果として生じる周波数ドメインの信号断片は、さらなる信号処理のためにアップリンク処理機能94へと提供される。
SRACHパスについて、予め決定される数のシンボル(例えば、12)についてシンボルFFT機能104の出力は、SRACHプリアンブル抽出機能95へ入力される。SRACHプリアンブル抽出機能95の詳細は、図6のデバイス56に関して上述したものと同様だが、この例では、(839本のサブキャリアではなく)71本のサブキャリアのみが利用される。SRACHプリアンブル抽出機能95の出力シンボルは、1つ1つデータ処理機能96へ入力される。データ処理機能96の範囲内で、SPRACHサブキャリア選択機能106は、使用されるSPRACHサブキャリアに対応するシンボルFFT機能104の(例えば、71個の)出力を選択する。次いで、相関機能108は、SPRACHサブキャリア選択機能106の出力と既知のZCシーケンスとの相関演算を行うことにより、送信中のワイヤレスデバイス80の一時識別子を抽出する。次いで、IFFT機能110は、2,048ポイントのIFFTを実行して、結果的に時間ドメイン信号を生成し、時間ドメイン信号は次いでSRACH検出機能98により処理される。とりわけ、図14の機能94及び98〜110は、ハードウェアで実装されてもよく、又はハードウェアとソフトウェアとの組合せで実装されてもよい。
上で議論したように、いくつかの実施形態において、基本SRACHシーケンスは、例えば基地局76における感度及び時間判別性を向上させる目的で、Q回反復されて、SRACHプリアンブルのSRACHシーケンスを提供する。しかしながら、いくつかのケースにおいて、基地局76は、基本SRACHシーケンスのQ回全ての反復が送信される前にSRACHプリアンブルを検出することが可能であってもよい。この点において、図15は、本開示の1つの実施形態に係るワイヤレスデバイス80によるSRACHプリアンブルの送信の早期停止を提供するための、基地局76及びワイヤレスデバイス80の動作を示している。図示したように、ワイヤレスデバイス80は、SRACHプリアンブルを送信する(ステップ4000)。SRACHプリアンブルの送信の期間中であって基本SRACHシーケンスのQ回全ての反復が送信される前に、基地局76は、基本SRACHシーケンスを検出する(ステップ4002)。基本SRACHシーケンスを検出すると、基地局76は、SRACHプリアンブルの送信の早期停止を求めるリクエストをワイヤレスデバイス80へ送信する(ステップ4004)。当該リクエストに応じて、ワイヤレスデバイス80は、SRACHシーケンスのQ回全ての反復が送信される前に、SRACHプリアンブルの送信を停止する(ステップ4006)。
複数回の反復に関して、上の図12は、基本SRACHシーケンスの反復が連続的な信号として生成される処理を説明している。図16は、本開示の他の実施形態に従って、基本SRACHシーケンスの各反復についてCPを挿入するためにシンボル別トラフィック処理が使用される、SRACHプリアンブルを生成するための処理を示している。上で議論したように、基本SRACHシーケンスが時間ドメインにおいて生成され(ステップ5000)、次いで、時間ドメインの基本SRACHシーケンスについてDFT(例えば、FFT)を実行することにより、時間ドメインの基本SRACHシーケンスが、基本SRACHシーケンスの周波数ドメイン表現へと変換される(ステップ5002)。次いで、SRACHサブキャリアであるDFTの出力は、アップリンク内のSPRACHについての適切な周波数オフセットへマッピングされる(ステップ5004)。マッピングの後に。ZポイントのIDFT(例えば、ZポイントのIFFT)を周波数ドメインサンプルについて実行することにより、周波数ドメインサンプルがZ個の時間ドメインサンプルへ変換される(ステップ5006)。
本実施形態において、Ncp,qサンプルのCPが、Z個の時間ドメインサンプルへ追加される(ステップ5008)。Ncp,qは、SRACHシーケンスのq番目の反復についてのCP内のサンプルの個数である。とりわけ、Ncp,qは、全ての反復について同一であってもよく又は異なる反復について異なってもよい。重要なこととして、Ncp,qサンプルのCPは、SRACHプリアンブルのCPの一部ではない。むしろ、Ncp,qサンプルは、当該Ncp,qサンプルのCPがSRACHプリアンブルのSRACHシーケンスの一部を実際に形成するように、通常のアップリンクトラフィックシンボル(例えば、PUSCHシンボル)についてなされることと等価な処理で生成される。次いで、SRACHシーケンスについて生成された時間ドメインサンプルの総数がQ・Z以上であるかに関する判定が行われる(ステップ5010)。Qは、1以上の値である(即ち、基本SRACHシーケンスの反復/インスタンスが1つであれば1に等しく、基本SRACHシーケンスの反復/インスタンスが1つより多ければ1より大きい)。時間ドメインサンプルの総数がQ・Z以上でない場合、カウンタqがインクリメントされ(ステップ5012)、処理はステップ5008へ戻り、SRACHシーケンスの反復と、当該反復についてのCPの追加が行われる。時間ドメインサンプルの総数がQ・Z以上になると、SRACHシーケンスの生成は完了する。そして、とりわけ、SRACHプリアンブルのCPがSRACHプリアンブルを完成させるために追加される。
1つの実施形態において、時間ドメインのSRACHプリアンブルs(t,q)は、0≦q<Q、0≦t≦Q・TCYC+TCPとして、次のように定義される:
Figure 0006768775
ここで、βPRACHは、例えば旧来のPRACHの電力を設定するための既存の手続に従って設定され得るSPRACH向けの送信電力(PSPRACH)を確実にする目的の振幅スケーリングファクタである。xu,v(n)は、u番目のルートZCシーケンスのv番目のサイクリックシフトである(3GPP LTE標準の通り又はそれに類似)。φは、ΔfSPRACHの分解能における物理的なRB境界に対して相対的な固定オフセットである(例えば、0又は1)。Kは、SRACHについて1に等しい。TCPは、SRACHプリアンブルのCPの合計長さである。TCP,qは、SRACHプリアンブルを生成するために使用されるq番目のトラフィックシンボルについてのNcp,qサンプルのCPの時間長である。
Figure 0006768775
ここで、パラメータnRA PRBは周波数ドメインにおける位置を制御し、NRB SCはRB別のサブキャリア数であり、NUL RBはアップリンクにおけるRB数である。さらに、u番目のルートZCシーケンスは、0≦n≦NZC−1について次のように定義される。
Figure 0006768775
ここで、uはZC物理ルートシーケンスのインデックスである。1つの実施形態において、SRACHサブキャリア周波数間隔(ΔfSPRACH)は、非周波数スケーリング型ネットワークにおける何らかの値Δfに等しく(例えば、3GPP LTEネットワークにおいて、ΔfSPRACH=Δf=15kHz)、Δfはアップリンクの他のチャネルのサブキャリア間隔に等しい。他の実施形態において、SRACHサブキャリア周波数間隔(ΔfSPRACH)は、周波数スケーリング型ネットワークにおいて、X・Δfに等しく(例えば、10というスケーリングファクタ(X)を有する3GPP LTEネットワークの周波数スケーリングバージョンについて、ΔfSPRACH=X・Δf=10・15kHz=150kHz)、X・Δfは周波数スケーリング型ネットワークにおけるアップリンクの他のチャネルのサブキャリア間隔である。とりわけ、値Kは、非周波数スケーリング型ネットワークについてはΔf/ΔfSPRACH=1に等しく、周波数スケーリング型ネットワークについてはX・Δf/ΔfSPRACH=1に等しい。いずれのケースでも、SPRACHとアップリンクの他のチャネルとの間でサブキャリア間隔の均等性が達成されるように、K=1である。とりわけ、上のs(t,q)についての等式において、追加的な項Σ q=0CP,qは、CPサンプルの追加に起因するZ個の時間ドメインサンプルのブロックの不連続性を補償するために追加される位相シフトである。
図17は、本開示の1つの実施形態に係る、図7の基地局76のブロック図である。本説明は、他のタイプの無線アクセスノード(即ち、セルラー通信ネットワーク74の無線アクセスネットワーク内のノード)にも等しく適用可能である。図示したように、基地局76は、1つ以上のプロセッサ114、メモリ116及びネットワークインタフェース118を含むベースバンドユニット112と、1つ以上のアンテナ124へ連結される送受信機122を含む無線ユニット120と、を含む。1つの実施形態において、上述した基地局76のSRACH処理の機能性は、プロセッサ114により実行されるソフトウェアの形式で、少なくとも部分的にベースバンドユニット112内に実装され、それらプロセッサは、ベースバンドユニット112内にあり若しくはベースバンドユニット112に関連付けられ、又は、それらプロセッサは2つ以上のネットワークノード(例えば、ベースバンドユニット112及び他のネットワークノード)をまたいで分散されてもよい。他の例において、プロセッサ114は、上述したSRACH処理の機能性のいくつか又は全てを提供する1つ以上のハードウェアコンポーネント(例えば、ASIC(Application Specific Integrated Circuits))を含む。他の実施形態において、プロセッサ114は、1つ以上のハードウェアコンポーネント(例えば、CPU(Central Processing Units))を含み、上述したSRACH処理の機能性のいくつか又は全てが、例えばメモリ116内に記憶されるソフトウェアで実装され、プロセッサ114により実行される。
図18は、本開示の1つの実施形態に係る、図7のワイヤレスデバイス80のブロック図である。図示したように、ワイヤレスデバイス80は、プロセッサ126、メモリ128及び1つ以上のアンテナ132へ連結される送受信機130を含む。プロセッサ126は、例えば1つ以上のCPU又は1つ以上のASICなどといった1つ以上のハードウェア処理コンポーネントを含む。1つの実施形態において、上述したワイヤレスデバイス80のSRACH処理の機能性は、少なくとも部分的にプロセッサ126内に実装される。例えば、1つの実施形態において、プロセッサ126は、上述したSRACH処理の機能性のいくつか又は全てを提供する1つ以上のハードウェアコンポーネント(例えば、1つ以上のASIC)を含む。他の実施形態において、プロセッサ126は、1つ以上のハードウェアコンポーネント(例えば、CPU又はそれ自体複数のプロセッサからなるもの)を含み、上述したSRACH処理の機能性のいくつか又は全てが、例えばメモリ128内に記憶されるソフトウェアで実装され、プロセッサ126により実行される。
SRACHプリアンブルの送信及びSRACHシーケンスの受信/検出のためのシステム及び方法がここで開示されている。限定ではなく、具体的な恩恵又は利点に関し、ここで説明した実施形態の少なくともいくつかの非限定的な恩恵及び利点は次の通りである。上で議論したように、SPRACHのサブキャリア周波数間隔は、アップリンクの他のチャネルのサブキャリア周波数間隔に等しい。結果として、SPRACHサブキャリアは、アップリンクの他のチャネルのサブキャリアに対し直交的となる。他のアップリンクチャネルのサブキャリアに対するこの直交性が、改善されたSINR及びシステム性能を提供する。加えて、旧来の3GPP LTEのRACHより小さいサブキャリア周波数間隔よりもむしろ、他のアップリンクチャネルと同じサブキャリア周波数間隔を使用することで、スーパーFFT/IFFTの必要性を排除することによって、送信側でのSRACHプリアンブル生成及び受信側のSRACHシーケンス検出/受信の複雑さが実質的に低減される。他の例として、他のアップリンクチャネル(例えば、PUSCH)を生成するために利用されるソフトウェア及び/又はハードウェアを、SPRACHを生成するために使用することができる。
本開示を通じて、以下の頭字語が使用されている。
・3GPP 3rd Generation Partnership Project
・4G 4th Generation
・5G 5th Generation
・ASIC Application Specific Integrated Circuit
・CP Cyclic Prefix
・CPU Central Processing Unit
・DFT Discrete Fourier Transform
・DRS Demodulation Reference Signal
・eNB Evolved Node B
・FFT Fast Fourier Transform
・GHz Gigahertz
・IDFT Inverse Discrete Fourier Transform
・IFFT Inverse Fast Fourier Transform
・ISI Inter-Symbol Interference
・kHz Kilohertz
・km Kilometer
・LTE Long Term Evolution
・MHz Megahertz
・ms Millisecond
・Msps Mega samples per Second
・OFDM Orthogonal Frequency Division Multiplexing
・PRACH Physical Random Access Channel
・PSS Primary Synchronization Signal
・PUCCH Physical Uplink Control Channel
・PUSCH Physical Uplink Shared Channel
・RACH Random Access Channel
・RB Resource Block
・RRC Radio Resource Control
・SINR Signal-to-Interference plus Noise Ratio
・SPRACH Simple Physical Random Access Channel
・SRACH Simple Random Access Channel
・SRS Sounding Reference Signal
・SSS Secondary Synchronization Signal
・UE User Equipment
・μs Microsecond
・ZC Zadoff-Chu
当業者は、本開示の実施形態に対する改善及び修正を認識するであろう。そうした全ての改善及び修正は、ここで開示された概念及び後に続く特許請求の範囲のスコープ内にあるものと見なされる。

Claims (23)

  1. セルラー通信ネットワーク(74)においてランダムアクセスを実行するための、ワイヤレスデバイス(80)の動作方法であって、
    前記ワイヤレスデバイス(80)から前記セルラー通信ネットワーク(74)内の無線アクセスノード(76)へ、アップリンクにおいて、当該アップリンクの1つ以上の他のチャネルにおけるサブキャリア周波数間隔に等しいサブキャリア周波数間隔を有する複数のサブキャリアを含む物理ランダムアクセスチャネル上で、ランダムアクセスプリアンブルを送信することと、
    前記ランダムアクセスプリアンブルの送信に応じて、前記無線アクセスノード(76)からランダムアクセスレスポンスを受信することと、を含み、
    前記ランダムアクセスプリアンブルを送信することは、
    前記物理ランダムアクセスチャネルにおけるサブキャリア数以下の長さを有する基本ランダムアクセスシーケンスを生成することと、
    前記基本ランダムアクセスシーケンスを時間ドメインから周波数ドメインへと変換することにより、前記基本ランダムアクセスシーケンスの周波数ドメイン表現を提供することと、
    前記基本ランダムアクセスシーケンスの前記周波数ドメイン表現を、前記アップリンクのシステム帯域幅内の前記物理ランダムアクセスチャネルについての適切な周波数オフセットへとマッピングすることにより、前記基本ランダムアクセスシーケンスのマッピング後周波数ドメイン表現を提供することと、
    前記基本ランダムアクセスシーケンスの前記マッピング後周波数ドメイン表現を周波数ドメインから時間ドメインへと変換することにより、前記物理ランダムアクセスチャネルの1つのシンボルピリオドについての前記ランダムアクセスプリアンブルのためのランダムアクセスシーケンスのZ個のサンプルを提供することと、を含む方法。
  2. 前記セルラー通信ネットワーク(74)は、LTE(Long Term Evolution)セルラー通信ネットワークである、請求項1に記載の方法。
  3. 前記アップリンクの前記1つ以上の他のチャネルは、物理アップリンク共有チャネルを含む、請求項1又は2に記載の方法。
  4. 前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおけるサブキャリアの双方のサブキャリア周波数間隔は、15キロヘルツである、請求項1又は2に記載の方法。
  5. 前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおけるサブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15キロヘルツである、請求項1又は2に記載の方法。
  6. 前記ランダムアクセスプリアンブルを送信することは、前記ランダムアクセスプリアンブルのための前記ランダムアクセスシーケンスの前記Z個のサンプルを、前記物理ランダムアクセスチャネルの1つ以上の追加的なシンボルピリオド分反復すること、をさらに含む、請求項1〜5のいずれか1項に記載の方法。
  7. 前記ランダムアクセスプリアンブルのための前記ランダムアクセスシーケンスのサンプル数Zは、前記基本ランダムアクセスシーケンスの時間長と前記アップリンクの前記システム帯域幅に依存するシステムサンプルレートとの積として定義され、
    前記ランダムアクセスプリアンブルを送信することは、前記ランダムアクセスプリアンブルのための前記ランダムアクセスシーケンスの前記Z個のサンプルを、Qを2以上として、前記物理ランダムアクセスチャネルのQ個のシンボルピリオド分反復すること、をさらに含む、
    請求項1〜5のいずれか1項に記載の方法。
  8. 前記ランダムアクセスプリアンブルを送信することは、
    前記物理ランダムアクセスチャネルの前記1つのシンボルピリオドについて、前記ランダムアクセスプリアンブルのための前記ランダムアクセスシーケンスの前記Z個のサンプルの冒頭に、ある数のサイクリッププレフィクスサンプルを挿入することと、前記数のサイクリックプレフィクスサンプルは、前記ランダムアクセスプリアンブルのためのサイクリックプレフィクスよりもむしろ、前記ランダムアクセスプリアンブルの前記ランダムアクセスシーケンスの一部であることと、
    前記物理ランダムアクセスチャネルの第2のシンボルピリオドについて、前記ランダムアクセスプリアンブルのための前記ランダムアクセスシーケンスの前記Z個のサンプルを反復することと、
    前記物理ランダムアクセスチャネルの前記第2のシンボルピリオドについて、前記ランダムアクセスプリアンブルのための前記ランダムアクセスシーケンスの前記Z個のサンプルの冒頭に、ある数のサイクリッププレフィクスサンプルを挿入することと、
    をさらに含む、請求項1〜5のいずれか1項に記載の方法。
  9. 前記ランダムアクセスプリアンブルの送信中に、
    前記ランダムアクセスプリアンブルの送信の早期停止を求めるリクエストを前記無線アクセスノード(76)から受信することと、
    前記リクエストの受信に応じて、前記ランダムアクセスプリアンブルの送信を停止することと、
    をさらに含む、請求項又はに記載の方法。
  10. 前記物理ランダムアクセスチャネルの帯域幅は、1.08メガヘルツであり、前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおける前記サブキャリアの双方のサブキャリア周波数間隔は、15キロヘルツであり、前記ランダムアクセスシーケンスの長さは72以下である、請求項のいずれか1項に記載の方法。
  11. 前記基本ランダムアクセスシーケンスはZadoff−Chu(ZC)シーケンスであり、前記ランダムアクセスシーケンスの長さは71である、請求項10に記載の方法。
  12. 前記物理ランダムアクセスチャネルの帯域幅はX・1.08メガヘルツであり、前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおける前記サブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15キロヘルツであり、前記基本ランダムアクセスシーケンスの長さは72以下である、請求項のいずれか1項に記載の方法。
  13. 前記基本ランダムアクセスシーケンスは、Zadoff−Chu(ZC)シーケンスであり、前記基本ランダムアクセスシーケンスの長さは71である、請求項12に記載の方法。
  14. 前記物理ランダムアクセスチャネルの帯域幅はX・M・15キロヘルツであり、前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおける前記サブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15キロヘルツであり、前記基本ランダムアクセスシーケンスの長さはM以下である、請求項のいずれか1項に記載の方法。
  15. 前記基本ランダムアクセスシーケンスは、Zadoff−Chu(ZC)シーケンスであり、前記基本ランダムアクセスシーケンスの長さはM以下の最大の素数である、請求項14に記載の方法。
  16. 送受信機(130)と、
    前記送受信機(130)に関連付けられるプロセッサ(126)と、
    を備えるワイヤレスデバイス(80)であって、
    前記プロセッサ(126)は、
    前記送受信機(130)を介して、前記ワイヤレスデバイス(80)からセルラー通信ネットワーク(74)内の無線アクセスノード(76)へ、アップリンクにおいて、当該アップリンクの1つ以上の他のチャネルにおけるサブキャリア周波数間隔に等しいサブキャリア周波数間隔を有する複数のサブキャリアを含む物理ランダムアクセスチャネル上で、ランダムアクセスプリアンブルを送信し、
    前記送受信機(130)を介して、前記ランダムアクセスプリアンブルの送信に応じて、前記無線アクセスノード(76)からランダムアクセスレスポンスを受信する、ように構成され、
    前記ランダムアクセスプリアンブルを送信するために、前記プロセッサ(126)は、
    前記物理ランダムアクセスチャネルにおけるサブキャリア数以下の長さを有する基本ランダムアクセスシーケンスを生成し、
    前記基本ランダムアクセスシーケンスを時間ドメインから周波数ドメインへと変換することにより、前記基本ランダムアクセスシーケンスの周波数ドメイン表現を提供し、
    前記基本ランダムアクセスシーケンスの前記周波数ドメイン表現を、前記アップリンクのシステム帯域幅内の前記物理ランダムアクセスチャネルについての適切な周波数オフセットへとマッピングすることにより、前記基本ランダムアクセスシーケンスのマッピング後周波数ドメイン表現を提供し、
    前記基本ランダムアクセスシーケンスの前記マッピング後周波数ドメイン表現を周波数ドメインから時間ドメインへと変換することにより、前記物理ランダムアクセスチャネルの1つのシンボルピリオドについての前記ランダムアクセスプリアンブルのランダムアクセスシーケンスのサンプルを提供する、ように構成される、
    ワイヤレスデバイス(80)。
  17. 前記セルラー通信ネットワーク(74)は、LTE(Long Term Evolution)セルラー通信ネットワークである、請求項16に記載のワイヤレスデバイス(80)。
  18. 前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおけるサブキャリアの双方のサブキャリア周波数間隔は、15キロヘルツである、請求項16又は17に記載のワイヤレスデバイス(80)。
  19. 前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおけるサブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15キロヘルツである、請求項16又は17に記載のワイヤレスデバイス(80)。
  20. 前記ランダムアクセスプリアンブルを送信することは、前記ランダムアクセスプリアンブルの前記ランダムアクセスシーケンスの前記サンプルを、前記物理ランダムアクセスチャネルの1つ以上の追加的なシンボルピリオドにわたって反復すること、をさらに含む、請求項16〜19のいずれか1項に記載のワイヤレスデバイス(80)。
  21. 前記プロセッサ(126)は、前記ランダムアクセスプリアンブルの送信中に、
    前記送受信機(130)を介して、前記ランダムアクセスプリアンブルの送信の早期停止を求めるリクエストを前記無線アクセスノード(76)から受信し、
    前記リクエストの受信に応じて、前記ランダムアクセスプリアンブルの送信を停止する、
    ようにさらに構成される、請求項20に記載のワイヤレスデバイス(80)。
  22. 前記物理ランダムアクセスチャネルの帯域幅は、1.08メガヘルツであり、前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおける前記サブキャリアの双方のサブキャリア周波数間隔は、15キロヘルツであり、前記基本ランダムアクセスシーケンスの長さは72以下である、請求項1621のいずれか1項に記載のワイヤレスデバイス(80)。
  23. 前記物理ランダムアクセスチャネルの帯域幅はX・1.08メガヘルツであり、前記物理ランダムアクセスチャネルにおける前記複数のサブキャリア及び前記アップリンクの前記1つ以上の他のチャネルにおける前記サブキャリアの双方のサブキャリア周波数間隔は、X>1として、X・15キロヘルツであり、前記基本ランダムアクセスシーケンスの長さは72以下である、請求項1621のいずれか1項に記載のワイヤレスデバイス(80)。
JP2018239961A 2018-12-21 2018-12-21 シンプルrach(srach) Active JP6768775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018239961A JP6768775B2 (ja) 2018-12-21 2018-12-21 シンプルrach(srach)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239961A JP6768775B2 (ja) 2018-12-21 2018-12-21 シンプルrach(srach)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017509013A Division JP2017527212A (ja) 2014-08-18 2014-08-18 シンプルrach(srach)

Publications (2)

Publication Number Publication Date
JP2019075806A JP2019075806A (ja) 2019-05-16
JP6768775B2 true JP6768775B2 (ja) 2020-10-14

Family

ID=66543402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239961A Active JP6768775B2 (ja) 2018-12-21 2018-12-21 シンプルrach(srach)

Country Status (1)

Country Link
JP (1) JP6768775B2 (ja)

Also Published As

Publication number Publication date
JP2019075806A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
US10798747B2 (en) Simple RACH (SRACH)
JP6031137B2 (ja) 無線通信システムにおける距離範囲拡大のための構成可能なランダム・アクセス・チャネル構造
US10743351B2 (en) Method and wireless device for transmitting random-access preamble by means of single-tone method
KR101817290B1 (ko) Lte 통신 시스템의 물리 랜덤 액세스 채널 프리앰블 감지 방법 및 장치
RU2336640C2 (ru) Устройство и способ назначения канала регулирования диапазона и передачи и приема сигнала регулирования диапазона в ofdm-системе
KR101994424B1 (ko) 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
KR20140109633A (ko) 빔포밍을 사용하는 무선 통신 시스템에서 상향링크 랜덤 액세스 슬롯을 송수신하는 방법 및 장치
WO2008052032A2 (en) Random access structure for optimal cell coverage
US9007887B2 (en) Wireless communication system and communication method therefor
KR101790530B1 (ko) 고주파 대역을 지원하는 무선 접속 시스템에서 단계별 상향링크 동기 신호 검출 방법 및 장치
WO2017143880A1 (zh) 一种数据传输方法和装置
JP6768775B2 (ja) シンプルrach(srach)
US8305872B2 (en) Synchronization in OFDM using polynomial cancellation coding
AGARWAL DETECTION OF RANDOM ACCESS IN LTE
KR101430486B1 (ko) 이동 통신 시스템에서의 데이터 생성 및 전송 방법
Shukur et al. Implementing primary synchronization channel in mobile cell selection 4G LTE-A network
KR20170124088A (ko) 이동 통신 시스템에서 초기 동기 신호 송수신 방법 및 장치
Reddy LTE Synchronization Algorithms

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R150 Certificate of patent or registration of utility model

Ref document number: 6768775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150