JP6767414B2 - Motor cooling control system - Google Patents

Motor cooling control system Download PDF

Info

Publication number
JP6767414B2
JP6767414B2 JP2018050975A JP2018050975A JP6767414B2 JP 6767414 B2 JP6767414 B2 JP 6767414B2 JP 2018050975 A JP2018050975 A JP 2018050975A JP 2018050975 A JP2018050975 A JP 2018050975A JP 6767414 B2 JP6767414 B2 JP 6767414B2
Authority
JP
Japan
Prior art keywords
field winding
winding temperature
temperature
field
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050975A
Other languages
Japanese (ja)
Other versions
JP2019165536A (en
Inventor
松崎 光洋
光洋 松崎
順治 水田
順治 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Plant Engineering Corp
Original Assignee
Mitsubishi Electric Plant Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Plant Engineering Corp filed Critical Mitsubishi Electric Plant Engineering Corp
Priority to JP2018050975A priority Critical patent/JP6767414B2/en
Publication of JP2019165536A publication Critical patent/JP2019165536A/en
Application granted granted Critical
Publication of JP6767414B2 publication Critical patent/JP6767414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モータ冷却制御システムに関し、特に、インバータで駆動されるファンの回転速度を制御するために使用される界磁巻線温度を算出する機能を備えたモータ冷却制御システムに関するものである。 The present invention relates to a motor cooling control system, and more particularly to a motor cooling control system having a function of calculating a field winding temperature used for controlling the rotation speed of a fan driven by an inverter.

従来のモータ冷却制御システムとして、省エネルギーを実現するための技術がある(例えば、特許文献1、2参照)。特許文献1に開示された従来のモータ冷却制御システムは、圧延用電動機の主回路電流と界磁電流の値から電動機の固定子巻線温度を算出し、圧延用電動機を冷却しているファンの風量を適切に制御することで、冷却ファンの省エネルギー化を図っている。具体的には、等価RMSを管理することにより巻線温度を算出して、巻線の加熱を防止しつつ、風量制御による省エネルギー化を図っている。 As a conventional motor cooling control system, there is a technique for realizing energy saving (see, for example, Patent Documents 1 and 2). The conventional motor cooling control system disclosed in Patent Document 1 calculates the stator winding temperature of the electric motor from the values of the main circuit current and the field current of the electric motor for rolling, and cools the electric motor for rolling. By properly controlling the air volume, the cooling fan is designed to save energy. Specifically, the winding temperature is calculated by managing the equivalent RMS to prevent the winding from being heated, and energy saving is achieved by controlling the air volume.

また、特許文献2に開示された従来の界磁巻線温度演算装置は、巻線の両端の電圧値と、巻線に流れる電流値とを検出して巻線抵抗値を計算するVA法を適用し、巻線の温度を算出する方法が開示されている。このVA法は、
界磁巻線電圧÷界磁電流=界磁巻線抵抗∝界磁巻線温度
の原理により界磁巻線温度を算出するものである。
Further, the conventional field winding temperature calculation device disclosed in Patent Document 2 uses a VA method for calculating a winding resistance value by detecting a voltage value across a winding and a current value flowing through the winding. A method of applying and calculating the winding temperature is disclosed. This VA method
The field winding temperature is calculated based on the principle of field winding voltage ÷ field current = field winding resistance ∝ field winding temperature.

特開2004−180454号公報Japanese Unexamined Patent Publication No. 2004-180454 特開2004−180414号公報Japanese Unexamined Patent Publication No. 2004-180414

しかしながら、従来技術には、以下のような課題がある。
電動機の温度管理は、最も重要な管理指標の1つである。さらに、省エネルギー化を実現するための冷却ファンの風量を決定する上では、固定子巻線温度のみならず、界磁巻線温度の管理も、重要である。すなわち、固定子巻線温度の管理と界磁巻線温度の管理は、電動機を保護する上で重要な役割を果たす。
However, the prior art has the following problems.
Motor temperature control is one of the most important control indicators. Further, in determining the air volume of the cooling fan for realizing energy saving, it is important to control not only the stator winding temperature but also the field winding temperature. That is, the control of the stator winding temperature and the control of the field winding temperature play an important role in protecting the motor.

制御対象となる電動機が大型機の場合には、固定子巻線に、温度センサが組み込まれている。従って、この温度センサの検出結果に基づいて、固定子巻線の温度管理を行うことができる。しかしながら、界磁巻線(回転子)には、構造上、温度センサを組み込むことが困難である。 When the motor to be controlled is a large motor, a temperature sensor is incorporated in the stator winding. Therefore, the temperature of the stator winding can be controlled based on the detection result of this temperature sensor. However, it is structurally difficult to incorporate a temperature sensor into the field winding (rotor).

従って、圧延機など、トルク変動の大きな用途、すなわち界磁電流・界磁巻線電圧の変動が大きな電動機においては、これらから界磁巻線抵抗、すなわち界磁巻線温度を精度よく求めることが困難である。このため、このような用途に対する界磁巻線の温度管理は、固定子巻線温度と同程度と想定して行なわれている。 Therefore, in applications with large torque fluctuations such as rolling mills, that is, electric motors with large fluctuations in field current and field winding voltage, it is necessary to accurately obtain the field winding resistance, that is, the field winding temperature. Have difficulty. Therefore, the temperature control of the field winding for such an application is performed on the assumption that it is about the same as the temperature of the stator winding.

ここで、温度センサを組み込むことなしに界磁巻線温度を算出する手法として、特許文献2に開示されたVA法を適用することが考えられる。しかしながら、特許文献2による巻線温度を求める方法においては、界磁巻線電圧値および界磁電流値にばらつきがある場合には、許容範囲外の検出値を除外して界磁巻線温度を算出している。 Here, it is conceivable to apply the VA method disclosed in Patent Document 2 as a method for calculating the field winding temperature without incorporating a temperature sensor. However, in the method of obtaining the winding temperature according to Patent Document 2, when the field winding voltage value and the field current value vary, the field winding temperature is determined by excluding the detected values outside the permissible range. It is calculated.

ここで、例えば、鉄鋼の圧延処理における電動機の温度管理を考えると、以下のような問題がある。すなわち、このような圧延処理では、温度の高い、つまり負荷の大きい圧延中における界磁巻線電圧値および界磁電流値のばらつきは、大きい。従って、このようなばらつきの大きな検出値を除外すると、実用的な界磁巻線温度の算出を行うことができないこととなる。 Here, for example, considering the temperature control of the electric motor in the rolling process of steel, there are the following problems. That is, in such a rolling process, the variation of the field winding voltage value and the field current value during rolling at a high temperature, that is, with a large load is large. Therefore, if such a detected value having a large variation is excluded, it is impossible to calculate the field winding temperature practically.

換言すると、比較的ばらつきの小さいアイドリング中、つまり温度が低く、負荷の小さい状態では、VA法を用いて界磁巻線温度を所望の精度で算出できる。しかしながら、負荷運転中、つまり負荷が大きい状態では、VA法を用いて界磁巻線温度を所望の精度で算出することができないといった課題がある。 In other words, during idling with relatively small variation, that is, when the temperature is low and the load is small, the field winding temperature can be calculated with desired accuracy using the VA method. However, there is a problem that the field winding temperature cannot be calculated with a desired accuracy by using the VA method during load operation, that is, in a state where the load is large.

このため、VA法を適用する場合に、圧延処理を行っている負荷運転中においては、温度の低い一部の状態において途切れ途切れに界磁巻線温度を算出することしかできず、圧延処理中の界磁巻線温度を適切に表示することができなかった。 Therefore, when the VA method is applied, the field winding temperature can only be calculated intermittently in some states where the temperature is low during the load operation during the rolling process, and the rolling process is in progress. The field winding temperature of was not properly displayed.

本発明は、前記のような課題を解決するためになされたものであり、現状のシステムに比べて、省エネルギー効率をさらに高めた冷却ファンの駆動制御を可能とするように、界磁巻線温度を算出できる機能を備えたモータ冷却制御システムを得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and the field winding temperature is such that the drive control of the cooling fan with further improved energy saving efficiency as compared with the current system is possible. The purpose is to obtain a motor cooling control system having a function capable of calculating.

本発明に係るモータ冷却制御システムは、固定子巻線および界磁巻線を有し、アイドリング状態を挟みながら連続運転される主機電動機の冷却制御を行うモータ冷却制御システムであって、インバータと、インバータにより駆動されるファンモータと、ファンモータにより駆動されて冷却風を出力して、主機電動機の固定子巻線および界磁巻線が許容範囲内の温度を保つように冷却を行うファンと、固定子巻線に関する固定子電流の計測結果に基づいて、固定子巻線温度を算出する第1の演算部と、界磁巻線に関する界磁電流および界磁巻線電圧の計測結果に基づいて、界磁巻線温度を算出する第2の演算部と、固定子巻線温度および界磁巻線温度に基づいて、固定子巻線および界磁巻線が許容範囲内の温度を保つのに必要な風量をファンが発生するようにインバータを制御する出力周波数を特定する演算制御部と、を備え、第2の演算部は、アイドリング状態においては、VA法を用いて、アイドリング状態において計測された界磁電流および界磁巻線電圧から抵抗値を算出することで界磁巻線温度を算出し、アイドリング状態の後に行われる負荷運転中においては、アイドリング状態において算出した界磁巻線温度を初期値として、負荷運転条件に応じてあらかじめ記憶された補正量を初期値に対して加算することで、負荷運転時における界磁巻線温度を算出するものである。 The motor cooling control system according to the present invention is a motor cooling control system that has a stator winding and a field winding and controls the cooling of a main engine motor that is continuously operated while sandwiching an idling state. A fan motor driven by an inverter, a fan driven by the fan motor that outputs cooling air to cool the stator windings and field windings of the main engine so that the temperatures are kept within the permissible range. Based on the measurement result of the field current and the field winding voltage related to the field winding, the first calculation unit that calculates the stator winding temperature based on the measurement result of the stator current related to the stator winding. , A second calculation unit that calculates the field winding temperature, and based on the stator winding temperature and the field winding temperature, to keep the temperature of the stator winding and the field winding within the permissible range. It is equipped with an arithmetic control unit that specifies the output frequency that controls the inverter so that the fan generates the required air volume, and the second arithmetic unit is measured in the idling state using the VA method in the idling state. The field winding temperature is calculated by calculating the resistance value from the field current and the field winding voltage, and the field winding temperature calculated in the idling state is used during the load operation performed after the idling state. As the initial value, the field winding temperature during the load operation is calculated by adding the correction amount stored in advance according to the load operation condition to the initial value.

本発明によれば、電動機の負荷状況に応じて、界磁巻線温度の算出方法を切り替えることで、界磁巻線温度を高精度に算出できる構成を備えている。この結果、現状のシステムに比べて、省エネルギー効率をさらに高めた冷却ファンの駆動制御を可能とするように、界磁巻線温度を算出できる機能を備えたモータ冷却制御システムを得ることができる。 According to the present invention, the field winding temperature can be calculated with high accuracy by switching the calculation method of the field winding temperature according to the load condition of the electric motor. As a result, it is possible to obtain a motor cooling control system having a function of calculating the field winding temperature so as to enable drive control of the cooling fan with further improved energy saving efficiency as compared with the current system.

本発明の実施の形態1におけるモータ冷却制御システムの構成図である。It is a block diagram of the motor cooling control system in Embodiment 1 of this invention. 本発明の実施の形態1における省エネ演算制御部および回転子温度演算表示部によるインバータの出力周波数を演算する構成をまとめたブロック図である。It is a block diagram which summarized the structure which calculates the output frequency of the inverter by the energy saving calculation control unit and the rotor temperature calculation display unit in Embodiment 1 of this invention. 本発明の実施の形態1における界磁電流および界磁巻線電圧の測定に関する説明図である。It is explanatory drawing concerning the measurement of the field current and the field winding voltage in Embodiment 1 of this invention. 本発明の実施の形態1における界磁電流、界磁巻線電圧の測定結果、および算出された界磁巻線温度を示した説明図である。It is explanatory drawing which showed the measurement result of the field current, the field winding voltage, and the calculated field winding temperature in Embodiment 1 of this invention.

以下、本発明のモータ冷却制御システムの好適な実施の形態につき図面を用いて説明する。
なお、本実施の形態においては、製鉄、製紙等に用いられる圧延設備等の比較的大型の直流モータあるいは交流モータを冷却するためのモータ冷却制御システムについて説明する。ただし、本願発明は、このような適用例に限らず、入出力トルク変動が小さくなる期間を有して運転される同期機について適用することも可能である。
Hereinafter, preferred embodiments of the motor cooling control system of the present invention will be described with reference to the drawings.
In this embodiment, a motor cooling control system for cooling a relatively large DC motor or AC motor such as rolling equipment used for iron making, paper making, etc. will be described. However, the present invention is not limited to such an application example, and can be applied to a synchronous machine that is operated with a period in which input / output torque fluctuations are small.

実施の形態1.
図1は、本発明の実施の形態1におけるモータ冷却制御システムの構成図である。図1に示すモータ冷却制御システムは、主機電動機11、ファン12、ファンモータ13、インバータ14、省エネ演算制御部20、および回転子温度演算表示部30を備えて構成されている。
Embodiment 1.
FIG. 1 is a configuration diagram of a motor cooling control system according to the first embodiment of the present invention. The motor cooling control system shown in FIG. 1 includes a main motor motor 11, a fan 12, a fan motor 13, an inverter 14, an energy-saving calculation control unit 20, and a rotor temperature calculation display unit 30.

主機電動機11は、固定子巻線を有する固定子と、界磁巻線を有する回転子とを備えて構成されている。ファン12は、主機電動機11に冷却風を供給する。従って、主機電動機11は、ファン12からの冷却風量の供給を受けて、固定子巻線および界磁巻線を冷却させながら、駆動することとなる。ファンモータ13は、ファン12に回転動力を与えるモータである。インバータ14は、ファンモータ13の電源駆動装置である。 The main motor motor 11 is configured to include a stator having a stator winding and a rotor having a field winding. The fan 12 supplies cooling air to the main motor motor 11. Therefore, the main motor motor 11 receives the supply of the cooling air volume from the fan 12 and drives the stator winding and the field winding while cooling them. The fan motor 13 is a motor that gives rotational power to the fan 12. The inverter 14 is a power supply driving device for the fan motor 13.

省エネ演算制御部20は、固定子巻線温度演算部21および省エネ制御出力部22を備えて構成されている。また、回転子温度演算表示部30は、界磁巻線温度演算部31、温度表示部32およびパラメータ記憶部33を備えて構成されている。 The energy-saving calculation control unit 20 includes a stator winding temperature calculation unit 21 and an energy-saving control output unit 22. Further, the rotor temperature calculation display unit 30 includes a field winding temperature calculation unit 31, a temperature display unit 32, and a parameter storage unit 33.

固定子巻線温度演算部21は、主機電動機11の負荷電流情報として固定子巻線電流を得て、固定子巻線温度を算出する。一方、界磁巻線温度演算部31は、主機電動機11の界磁電流および界磁巻線電圧に関する情報を得て、界磁巻線温度を算出する。そして、省エネ制御出力部22は、固定子巻線温度演算部21で算出された固定子巻線温度、および界磁巻線温度演算部31で算出された界磁巻線温度に基づいて、インバータ14の出力周波数を演算し、インバータ14に当該周波数を指令する。 The stator winding temperature calculation unit 21 obtains the stator winding current as the load current information of the main motor motor 11 and calculates the stator winding temperature. On the other hand, the field winding temperature calculation unit 31 obtains information on the field current and the field winding voltage of the main motor motor 11 and calculates the field winding temperature. Then, the energy-saving control output unit 22 is an inverter based on the stator winding temperature calculated by the stator winding temperature calculation unit 21 and the field winding temperature calculated by the field winding temperature calculation unit 31. The output frequency of 14 is calculated, and the frequency is instructed to the inverter 14.

温度表示部32は、界磁巻線温度演算部31で算出された界磁巻線温度を表示する。なお、温度表示部32は、必要に応じて、固定子巻線温度演算部21で算出された固定子巻線温度を表示することも可能である。なお、温度表示部32は、省略してもよい。 The temperature display unit 32 displays the field winding temperature calculated by the field winding temperature calculation unit 31. The temperature display unit 32 can also display the stator winding temperature calculated by the stator winding temperature calculation unit 21, if necessary. The temperature display unit 32 may be omitted.

パラメータ記憶部33は、界磁電流と温度の補正量ΔTfとの関係を、インバータ14の出力周波数をパラメータとしてあらかじめ記憶している。 The parameter storage unit 33 stores in advance the relationship between the field current and the temperature correction amount ΔTf with the output frequency of the inverter 14 as a parameter.

次に、省エネ演算制御部20内の固定子巻線温度演算部21および省エネ制御出力部22と、回転子温度演算表示部30内の界磁巻線温度演算部31が連動して、最終的にインバータ14の出力周波数を決定する流れについて、詳細に説明する。図2は、本発明の実施の形態1における省エネ演算制御部20および回転子温度演算表示部30によるインバータ14の出力周波数を演算する構成をまとめたブロック図である。 Next, the stator winding temperature calculation unit 21 and the energy-saving control output unit 22 in the energy-saving calculation control unit 20 and the field winding temperature calculation unit 31 in the rotor temperature calculation display 30 are interlocked to finally complete the operation. The flow of determining the output frequency of the inverter 14 will be described in detail. FIG. 2 is a block diagram summarizing the configuration in which the output frequency of the inverter 14 is calculated by the energy-saving calculation control unit 20 and the rotor temperature calculation display unit 30 according to the first embodiment of the present invention.

図2に示したブロック図において、固定子巻線温度演算部21は、負荷電流である固定子巻線電流Iaに基づいて、等価RMS(Root Mean Square)を計算し、刻々と変化する等価RMSの値から固定子巻線の温度上昇値を計算することで、固定子巻線温度Taを算出する。なお、固定子巻線温度演算部21により固定子巻線温度Taを算出する具体的な手法は、本願の出願人による先願である特許文献1に詳述されており、説明を省略する。 In the block diagram shown in FIG. 2, the stator winding temperature calculation unit 21 calculates an equivalent RMS (Root Main Square) based on the stator winding current Ia, which is a load current, and the equivalent RMS that changes every moment. The stator winding temperature Ta is calculated by calculating the temperature rise value of the stator winding from the value of. A specific method for calculating the stator winding temperature Ta by the stator winding temperature calculation unit 21 is described in detail in Patent Document 1 which is a prior application by the applicant of the present application, and the description thereof will be omitted.

一方、界磁巻線温度演算部31は、界磁電流If、界磁巻線電圧Vf’、およびアイドリング情報を取得する。ここで、「アイドリング情報」とは、主機電動機11が圧延処理を行っていない期間、すなわち負荷運転中でない期間を示す情報を意味している。 On the other hand, the field winding temperature calculation unit 31 acquires the field current If, the field winding voltage Vf', and idling information. Here, the "idling information" means information indicating a period during which the main motor motor 11 is not rolling, that is, a period during which the load operation is not in progress.

図3は、本発明の実施の形態1における界磁電流Ifおよび界磁巻線電圧Vf’の測定に関する説明図である。界磁電流Ifは、界磁巻線に供給される電流値として計測される。また、界磁巻線電圧Vf’は、スリップリングを介して、界磁巻線抵抗Rf、ブラシ抵抗Rb1、Rb2、ケーブル抵抗Rc1、Rc2を考慮した電圧値として計測される。 FIG. 3 is an explanatory diagram relating to the measurement of the field current If and the field winding voltage Vf'in the first embodiment of the present invention. The field current If is measured as a current value supplied to the field winding. Further, the field winding voltage Vf'is measured via a slip ring as a voltage value in consideration of the field winding resistance Rf, the brush resistors Rb1, Rb2, and the cable resistors Rc1 and Rc2.

図4は、本発明の実施の形態1における界磁電流If、界磁巻線電圧Vf’の測定結果、および算出された界磁巻線温度Tfを示した説明図である。図4に示すように、主機電動機11は、圧延処理が繰り返され、その結果、圧延処理間にアイドリング中の状態が存在する。 FIG. 4 is an explanatory diagram showing the measurement results of the field current If, the field winding voltage Vf', and the calculated field winding temperature Tf in the first embodiment of the present invention. As shown in FIG. 4, the main motor motor 11 is repeatedly rolled, and as a result, there is a state of idling during the rolling process.

界磁電流Ifおよび界磁巻線電圧Vf’は、圧延処理中においては、電流、電圧にノイズやリップル成分が含まれ、脈動が非常に大きく、絶縁アンプおよびローパスフィルタ(LPF)を設けて、その成分を除去する必要がある(図3参照)。従って、界磁電流Ifおよび界磁巻線電圧Vf’の正確な瞬時値を得ることは困難である。一方、アイドリング中においては、界磁電流Ifおよび界磁巻線電圧Vf’は、圧延処理中と比較して安定しており、絶縁アンプおよびローパスフィルタを通過した後であっても、所望の精度で瞬時値を得ることができる。 During the rolling process, the field current If and the field winding voltage Vf'contain noise and ripple components in the current and voltage, and the pulsation is very large. An insulating amplifier and a low-pass filter (LPF) are provided. The component needs to be removed (see Figure 3). Therefore, it is difficult to obtain accurate instantaneous values of the field current If and the field winding voltage Vf'. On the other hand, during idling, the field current If and the field winding voltage Vf'are stable as compared with those during the rolling process, and the desired accuracy is obtained even after passing through the insulating amplifier and the low-pass filter. You can get the instantaneous value with.

そこで、本実施の形態1に係る界磁巻線温度演算部31は、アイドリング中に取得した界磁電流Ifおよび界磁巻線電圧Vf’に基づいて、既知のVA法により界磁巻線の抵抗値を算出し、さらに算出した抵抗値から界磁巻線温度Tfを算出する。換言すると、本願発明は、比較的安定領域にあるアイドリング時(すなわち、圧延をしていない=界磁および固定子電流の変化が小さい=温度変化が少ない時)に、VA法により界磁巻線温度Tfを算出する点に技術的特徴を有している。 Therefore, the field winding temperature calculation unit 31 according to the first embodiment of the present embodiment uses a known VA method to obtain a field winding based on the field current If and the field winding voltage Vf'acquired during idling. The resistance value is calculated, and the field winding temperature Tf is calculated from the calculated resistance value. In other words, the present invention presents the field winding by the VA method when idling in a relatively stable region (that is, when not rolling = small change in field and stator current = small temperature change). It has a technical feature in that the temperature Tf is calculated.

なお、界磁巻線温度演算部31は、外部信号として、圧延処理を行うシステム側から、圧延処理が完了したことを示す信号を「圧延処理を行っていないことを示す信号」として取得することができる。また、界磁巻線温度演算部31は、外部信号を受信する代わりに、固定子巻線電流Ia、界磁電流Ifが許容範囲内に収まる安定した状態が、あらかじめ決められた時間継続することで、アイドリング中であると判断することもできる。 The field winding temperature calculation unit 31 acquires, as an external signal, a signal indicating that the rolling process is completed from the system side that performs the rolling process as a "signal indicating that the rolling process is not performed". Can be done. Further, instead of receiving the external signal, the field winding temperature calculation unit 31 maintains a stable state in which the stator winding current Ia and the field current If are within the permissible range for a predetermined time. It can also be determined that the vehicle is idling.

図2の説明に戻り、省エネ制御出力部22は、固定子巻線温度演算部21で算出された固定子巻線温度Taと、界磁巻線温度演算部31で算出された界磁巻線温度Tfとを取得し、工程221〜工程224を行うことで、省エネ効果を実現する風量を出力するためのインバータ14の出力周波数を算出する。 Returning to the description of FIG. 2, the energy-saving control output unit 22 has the stator winding temperature Ta calculated by the stator winding temperature calculation unit 21 and the field winding calculated by the field winding temperature calculation unit 31. By acquiring the temperature Tf and performing steps 221 to 224, the output frequency of the inverter 14 for outputting the air volume that realizes the energy saving effect is calculated.

具体的には、省エネ制御出力部22は、工程221において、固定子巻線温度演算部21で算出された固定子巻線温度Taと、界磁巻線温度演算部31で算出された界磁巻線温度Tfとを比較する。そして、省エネ制御出力部22は、界磁巻線温度Tfが固定子巻線温度Ta以上の場合には、工程222の処理に進み、界磁巻線温度Tfが固定子巻線温度Ta未満の場合には、工程223に進む。これは、常に温度の高い方を選択して適正な風量を決めるためのものである。 Specifically, in step 221 the energy-saving control output unit 22 has the stator winding temperature Ta calculated by the stator winding temperature calculation unit 21 and the field calculated by the field winding temperature calculation unit 31. Compare with winding temperature Tf. Then, when the field winding temperature Tf is equal to or higher than the stator winding temperature Ta, the energy-saving control output unit 22 proceeds to the process of step 222, and the field winding temperature Tf is less than the stator winding temperature Ta. In that case, the process proceeds to step 223. This is to always select the one with the higher temperature to determine the appropriate air volume.

主機電動機11の寿命に大きく影響を与えるのは、絶縁物に加わる最高温度である。従って、省エネ制御出力部22は、工程221の判断処理を実行することで、より高い巻線温度に基づいて、インバータ14の出力周波数を算出することとなる。 It is the maximum temperature applied to the insulation that greatly affects the life of the main motor motor 11. Therefore, the energy-saving control output unit 22 calculates the output frequency of the inverter 14 based on the higher winding temperature by executing the determination process of the step 221.

工程222に進んだ場合には、省エネ制御出力部22は、主機電動機11の温度として界磁巻線温度Tfを使用し、インバータ14の出力周波数を算出する。一方、工程223に進んだ場合には、省エネ制御出力部22は、主機電動機11の温度として固定子巻線温度Taを使用し、インバータ14の出力周波数を算出する。そして、最終的に、工程224において、省エネ制御出力部22は、インバータ14に対して出力周波数fを指令する出力処理を実行する。 When the process proceeds to step 222, the energy-saving control output unit 22 uses the field winding temperature Tf as the temperature of the main motor motor 11 and calculates the output frequency of the inverter 14. On the other hand, when the process proceeds to step 223, the energy-saving control output unit 22 uses the stator winding temperature Ta as the temperature of the main motor motor 11 and calculates the output frequency of the inverter 14. Finally, in step 224, the energy-saving control output unit 22 executes an output process for instructing the output frequency f to the inverter 14.

なお、省エネ演算制御部20は、温度上昇許容値があらかじめ設定されていれば、必要十分な風量となるように、インバータ14の出力周波数を制御できる。この結果、本実施の形態1に係るモータ冷却制御システムは、変化する負荷に対応して、時々刻々必要十分な風量を実現することによって、電力量を抑制した省エネルギー制御を実現できる。 The energy-saving calculation control unit 20 can control the output frequency of the inverter 14 so that the necessary and sufficient air volume is obtained if the temperature rise allowable value is set in advance. As a result, the motor cooling control system according to the first embodiment can realize energy-saving control in which the amount of electric power is suppressed by realizing the necessary and sufficient air volume every moment in response to the changing load.

ここで、インバータ14の出力周波数を求めるために、固定子巻線および界磁巻線の温度上昇を精度よく算出する必要がある。しかしながら、温度上昇は、過去の温度上昇の履歴の影響を大きく受け、現時点の負荷が同じでも、以前の温度上昇が高いか低いかによって現時点の温度上昇が異なる。このため、このような温度上昇の履歴の影響を加味する必要がある。 Here, in order to obtain the output frequency of the inverter 14, it is necessary to accurately calculate the temperature rise of the stator winding and the field winding. However, the temperature rise is greatly affected by the history of past temperature rises, and even if the current load is the same, the current temperature rise differs depending on whether the previous temperature rise is high or low. Therefore, it is necessary to take into account the influence of the history of such temperature rise.

そこで、本実施の形態1に係る固定子巻線温度演算部21および界磁巻線温度演算部31は、特許文献1に記載された等価RMSという演算値を用いることにより、過去の温度上昇の履歴を加味して、温度上昇を算出し、算出結果に基づいて、インバータ14の出力周波数の計算を行っている。 Therefore, the stator winding temperature calculation unit 21 and the field winding temperature calculation unit 31 according to the first embodiment use the calculated value of the equivalent RMS described in Patent Document 1 to increase the temperature in the past. The temperature rise is calculated in consideration of the history, and the output frequency of the inverter 14 is calculated based on the calculation result.

さらに、本実施の形態1に係る省エネ制御出力部22は、界磁巻線温度Tfと固定子巻線温度Taのうち、高い方の巻線温度を使用してインバータ14の出力周波数を計算することで、界磁巻線温度Tfを考慮していない場合と比較して、より適切な風量制御を実現することができる。この結果、電動機の寿命を考慮し、省エネルギー効率をさらに高めた冷却ファンの駆動制御を可能とするように、界磁巻線電流温度を算出できる機能を備えたモータ冷却制御システムを得ることができる。 Further, the energy-saving control output unit 22 according to the first embodiment calculates the output frequency of the inverter 14 by using the higher winding temperature of the field winding temperature Tf and the stator winding temperature Ta. As a result, more appropriate air volume control can be realized as compared with the case where the field winding temperature Tf is not taken into consideration. As a result, it is possible to obtain a motor cooling control system having a function of calculating the field winding current temperature so as to enable drive control of the cooling fan with further improved energy saving efficiency in consideration of the life of the electric motor. ..

上述した手法によれば、アイドリング中において、界磁巻線温度Tfの算出値を得ることができる。ただし、図4に示したように、負荷運転中に相当する圧延処理は、アイドリング状態を挟んで繰り返し実行される。従って、あるアイドリング期間後に実行される圧延処理により、界磁巻線温度は、それ以前のアイドリング期間で算出した値よりも高くなることも考えられる。 According to the above-mentioned method, the calculated value of the field winding temperature Tf can be obtained during idling. However, as shown in FIG. 4, the rolling process corresponding to the load operation is repeatedly executed with the idling state in between. Therefore, it is conceivable that the field winding temperature will be higher than the value calculated in the previous idling period due to the rolling process executed after a certain idling period.

このような場合には、アイドリング状態とアイドリング状態の間をつなぐために、アイドリング中に算出した界磁巻線温度を初期値として、圧延処理の運転状況に合わせて、順次補正量ΔTfを初期値に加算することで、圧延処理中の界磁巻線温度Tfを算出することが考えられる。 In such a case, in order to connect the idling state and the idling state, the field winding temperature calculated during idling is used as the initial value, and the correction amount ΔTf is sequentially set to the initial value according to the operating condition of the rolling process. It is conceivable to calculate the field winding temperature Tf during the rolling process by adding to.

このような圧延処理中における界磁巻線温度の補正方法としては、以下のような手法が考えられる。第1の手法として、界磁巻線温度演算部31は、圧延処理中においては、変動が大きい界磁電流Ifの時系列データから、電流二乗平方根平均値(RMS)としてIfrmseqを演算し、界磁巻線温度Tfを算出することが考えられる。なお、この第1の手法は、本願の出願人による先願である特許文献1に詳述された技術を適用可能であり、説明を省略する。 As a method of correcting the field winding temperature during such a rolling process, the following method can be considered. As the first method, the field winding temperature calculation unit 31 calculates Ifrmseq as the root mean square value (RMS) of the field current If, which has a large fluctuation during the rolling process, and calculates the field. It is conceivable to calculate the magnetic winding temperature Tf. In addition, this first method can apply the technique detailed in Patent Document 1 which is the prior application by the applicant of the present application, and the description thereof will be omitted.

また、第2の手法としては、インバータ14の出力周波数をある固定値にした際の、界磁電流と温度の補正量ΔTfとの関係を、出力周波数をパラメータとしてあらかじめデータ収集し、パラメータ記憶部33にテーブルとして記憶させておくことが考えられる。
すなわち、特許文献1に詳述された技術により、ΔTfは、Ifrmseqより得られ、また、Ifrmseqは、Ifと熱時定数の関数として得られるが、

Figure 0006767414
の関係があり、熱時定数は、熱伝達率、熱容量、および冷却風と接する部分の表面積により決まる値である。 Further, as a second method, the relationship between the field current and the temperature correction amount ΔTf when the output frequency of the inverter 14 is set to a certain fixed value is collected in advance with the output frequency as a parameter, and the parameter storage unit is used. It is conceivable to store it in 33 as a table.
That is, according to the technique detailed in Patent Document 1, ΔTf is obtained from Ifrmseq, and Ifrmseq is obtained as a function of If and the thermal time constant.
Figure 0006767414
The thermal time constant is a value determined by the heat transfer coefficient, the heat capacity, and the surface area of the part in contact with the cooling air.

ここで、冷却対象の熱容量および表面積は、一定だが、熱伝達率は、冷却風量により変化する。つまり、Ifrmseqは、Ifおよび冷却風量の関数となる。したがって、ΔTfを、Ifおよび冷却風量をパラメータとする数値表として、あらかじめ記憶部に格納しておくことができる。なお、前述のとおり、界磁電流は大きく変動するので、圧延処理中のIfrmseqの最大値を用いてΔTfを求めることで、冷却システムの信頼性を高めることもできる。 Here, the heat capacity and surface area of the object to be cooled are constant, but the heat transfer coefficient changes depending on the amount of cooling air. That is, Ifrmseq is a function of If and the cooling air volume. Therefore, ΔTf can be stored in advance in the storage unit as a numerical table with If and the cooling air volume as parameters. As described above, since the field current fluctuates greatly, the reliability of the cooling system can be improved by obtaining ΔTf using the maximum value of Ifrmseq during the rolling process.

この場合、界磁巻線温度演算部31は、圧延処理中におけるインバータ14の出力周波数、および圧延処理中に電流二乗平方根平均値(RMS)として算出した界磁電流Ifrmseqに対応する補正量ΔTfを、パラメータ記憶部33内のテーブルから抽出する。 In this case, the field winding temperature calculation unit 31 sets the correction amount ΔTf corresponding to the output frequency of the inverter 14 during the rolling process and the field current Ifrmseq calculated as the root mean square value (RMS) during the rolling process. , Extract from the table in the parameter storage unit 33.

さらに、界磁巻線温度演算部31は、圧延処理の直前のアイドリング中に算出した界磁巻線温度に対して、補正量ΔTfを加算することで、圧延処理中の界磁巻線温度Tfを算出する。 Further, the field winding temperature calculation unit 31 adds a correction amount ΔTf to the field winding temperature calculated during idling immediately before the rolling process, so that the field winding temperature Tf during the rolling process is added. Is calculated.

以上のように、実施の形態1によれば、アイドリング中においては、高精度に測定可能な界磁電流および界磁巻線電圧に基づいて、VA法を用いて高精度に主機電動機の界磁巻線温度を算出し、負荷運転中においては、界磁電流等価RMSを利用してアイドリングとアイドリングの間を補正して高精度に主機電動機の界磁巻線温度を算出できる構成を備えている。この結果、現在の技術である主機冷却ファンの省エネシステムに関して、さらなる電動機の寿命を考慮し、界磁巻線温度のオンライン管理を実現することによって、より一層の省エネ効率を高めることができる。 As described above, according to the first embodiment, during idling, the field of the main motor is highly accurate by using the VA method based on the field current and the field winding voltage that can be measured with high accuracy. The winding temperature is calculated, and during load operation, the field current equivalent RMS is used to correct between idling and the field winding temperature of the main motor can be calculated with high accuracy. .. As a result, regarding the energy saving system of the main engine cooling fan, which is the current technology, the energy saving efficiency can be further improved by realizing the online control of the field winding temperature in consideration of the life of the electric motor.

特に、アイドリング中であれば、二乗平方根平均値による加工値を用いることなく、比較的変動の少ない実測値を用いることができ、冷却ファンの省エネ制御を高精度に実現できる。さらに、アイドリング中および負荷運転中のいずれの場合も、界磁巻線温度を考慮して冷却ファンの駆動周波数制御を行うことができる。このため、固定子巻線温度だけを考慮していた場合と比較して、より優れた省エネ効果を実現できる風量制御を行うことが可能となる。 In particular, during idling, the measured value with relatively little fluctuation can be used without using the processed value based on the root mean square value, and the energy saving control of the cooling fan can be realized with high accuracy. Further, the drive frequency of the cooling fan can be controlled in consideration of the field winding temperature during both idling and load operation. Therefore, it is possible to control the air volume that can realize a more excellent energy saving effect as compared with the case where only the stator winding temperature is considered.

換言すると、本願発明は、固定子巻線温度と界磁巻線温度とを比較し、より高い温度を選択して冷却風量を特定できる構成を備えている。この結果、経時的に変化する負荷に対応して、いずれの巻線も設定された許容温度上昇値以内とした上で、系全体として省エネルギーを図った風量制御を実現でき、精度のよい省エネルギー効率を達成できる。 In other words, the present invention has a configuration in which the stator winding temperature and the field winding temperature can be compared and a higher temperature can be selected to specify the cooling air volume. As a result, it is possible to realize air volume control that saves energy for the entire system while keeping all windings within the set allowable temperature rise value in response to the load that changes over time, resulting in accurate energy saving efficiency. Can be achieved.

さらに、VA法では所望の精度で界磁巻線温度を計測できない負荷運転時には、界磁電流等価RMSを利用してアイドリングとアイドリングの間を補正することで、高精度に界磁巻線温度の算出を行うことができる。なお、界磁巻線の入力部では、ノイズを除去するために、一例として10Hz程度のローパスフィルタを採用することで、界磁巻線温度の算出精度をさらに向上させることが可能となる。 Furthermore, during load operation where the field winding temperature cannot be measured with the desired accuracy by the VA method, the field winding temperature can be adjusted with high accuracy by correcting the gap between idling using the field current equivalent RMS. Calculations can be made. In addition, in the input section of the field winding, by adopting a low-pass filter of about 10 Hz as an example in order to remove noise, it is possible to further improve the calculation accuracy of the field winding temperature.

11 主機電動機、12 ファン、13 ファンモータ、14 インバータ、20 省エネ演算制御部、21 固定子巻線温度演算部(第1の演算部)、22 省エネ制御出力部(演算制御部)、30 回転子温度演算表示部、31 界磁巻線温度演算部(第2の演算部)、32 温度表示部、33 パラメータ記憶部。 11 Main motor, 12 Fan, 13 Fan motor, 14 Inverter, 20 Energy saving calculation control unit, 21 Stator winding temperature calculation unit (1st calculation unit), 22 Energy saving control output unit (Calculation control unit), 30 Rotor Temperature calculation display unit, 31 field winding temperature calculation unit (second calculation unit), 32 temperature display unit, 33 parameter storage unit.

Claims (5)

固定子巻線および界磁巻線を有し、アイドリング状態を挟みながら連続運転される主機電動機の冷却制御を行うモータ冷却制御システムであって、
インバータと、
前記インバータにより駆動されるファンモータと、
前記ファンモータにより駆動されて冷却風を出力して、前記主機電動機の前記固定子巻線および前記界磁巻線が許容範囲内の温度を保つように冷却を行うファンと、
前記固定子巻線に関する固定子電流の計測結果に基づいて、固定子巻線温度を算出する第1の演算部と、
前記界磁巻線に関する界磁電流および界磁巻線電圧の計測結果に基づいて、界磁巻線温度を算出する第2の演算部と、
前記固定子巻線温度および前記界磁巻線温度に基づいて、前記固定子巻線および前記界磁巻線が前記許容範囲内の温度を保つのに必要な風量を前記ファンが発生するように前記インバータを制御する出力周波数を特定する演算制御部と、
を備え、
前記第2の演算部は、
前記アイドリング状態においては、VA法を用いて、前記アイドリング状態において計測された前記界磁電流および前記界磁巻線電圧から抵抗値を算出することで前記界磁巻線温度を算出し、
前記アイドリング状態の後に行われる負荷運転中においては、前記アイドリング状態において算出した界磁巻線温度を初期値として、負荷運転条件に応じてあらかじめ記憶された補正量を前記初期値に対して加算することで、前記負荷運転時における前記界磁巻線温度を算出する
モータ冷却制御システム。
A motor cooling control system that has a stator winding and a field winding and controls the cooling of the main motor that is continuously operated while sandwiching the idling state.
With an inverter
The fan motor driven by the inverter and
A fan driven by the fan motor to output cooling air to cool the stator winding and the field winding of the main motor so that the temperature is maintained within an allowable range.
A first calculation unit that calculates the stator winding temperature based on the measurement result of the stator current related to the stator winding, and
A second calculation unit that calculates the field winding temperature based on the measurement results of the field current and the field winding voltage related to the field winding, and
Based on the stator winding temperature and the field winding temperature, the fan generates an air volume required for the stator winding and the field winding to maintain a temperature within the allowable range. An arithmetic control unit that specifies the output frequency that controls the inverter,
With
The second arithmetic unit is
In the idling state, the field winding temperature is calculated by calculating the resistance value from the field current and the field winding voltage measured in the idling state by using the VA method.
During the load operation performed after the idling state, the field winding temperature calculated in the idling state is used as the initial value, and the correction amount stored in advance according to the load operation condition is added to the initial value. A motor cooling control system that calculates the field winding temperature during the load operation.
前記第2の演算部は、前記アイドリング状態になったことを示す信号を外部信号として受信するか、または、前記界磁電流の計測結果の時系列データが、許容変動量内に収まったと判断することで、前記アイドリング状態であると判断する
請求項1に記載のモータ冷却制御システム。
The second calculation unit receives a signal indicating that the idling state has been reached as an external signal, or determines that the time-series data of the measurement result of the field current is within the permissible fluctuation amount. The motor cooling control system according to claim 1, wherein the idling state is determined.
前記第2の演算部は、前記負荷運転中においては、前記界磁電流の計測結果の時系列データから算出した電流二乗平方根平均値を用いて前記界磁巻線温度を算出する
請求項1または2に記載のモータ冷却制御システム。
The second calculation unit calculates the field winding temperature using the current squared square root mean value calculated from the time-series data of the measurement result of the field current during the load operation. 2. The motor cooling control system according to 2.
前記第2の演算部は、前記負荷運転中においては、冷却風量および前記出力周波数の少なくともいずれか一方、および前記界磁電流の計測結果の時系列データから算出した電流二乗平方根平均値、を用いて前記界磁巻線温度を算出する
請求項1または2に記載のモータ冷却制御システム。
During the load operation, the second calculation unit uses at least one of the cooling air volume and the output frequency, and the current squared square root mean value calculated from the time series data of the measurement result of the field current. The motor cooling control system according to claim 1 or 2, wherein the field winding temperature is calculated.
前記演算制御部は、
前記固定子巻線温度と前記界磁巻線温度とを比較し、
前記界磁巻線温度が固定子巻線温度よりも高い場合には、前記界磁巻線温度に基づいて前記出力周波数を特定し、
前記界磁巻線温度が固定子巻線温度以下の場合には、前記固定子巻線温度に基づいて前記出力周波数を特定する
請求項1から3のいずれか1項に記載のモータ冷却制御システム。
The arithmetic control unit
Comparing the stator winding temperature with the field winding temperature,
When the field winding temperature is higher than the stator winding temperature, the output frequency is specified based on the field winding temperature.
The motor cooling control system according to any one of claims 1 to 3, wherein when the field winding temperature is equal to or lower than the stator winding temperature, the output frequency is specified based on the stator winding temperature. ..
JP2018050975A 2018-03-19 2018-03-19 Motor cooling control system Active JP6767414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018050975A JP6767414B2 (en) 2018-03-19 2018-03-19 Motor cooling control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050975A JP6767414B2 (en) 2018-03-19 2018-03-19 Motor cooling control system

Publications (2)

Publication Number Publication Date
JP2019165536A JP2019165536A (en) 2019-09-26
JP6767414B2 true JP6767414B2 (en) 2020-10-14

Family

ID=68066201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050975A Active JP6767414B2 (en) 2018-03-19 2018-03-19 Motor cooling control system

Country Status (1)

Country Link
JP (1) JP6767414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234580B (en) * 2020-10-22 2022-07-22 山东臣乔电气科技股份有限公司 Motor protector and control method thereof

Also Published As

Publication number Publication date
JP2019165536A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP4501433B2 (en) DC motor coil temperature estimation method and apparatus
EP2058941B1 (en) Motor control device, control method, and control program
US9581989B2 (en) Control device of machine tool which estimates overheating of motor
US7755230B2 (en) Rotary electric machine having cooling device and electric generating system including the machine
US11408839B2 (en) Processing device
US7719218B2 (en) Motor control apparatus
JP2001268989A (en) Synchronous motor and motor vehicle comprising it and its controlling method
JP6767414B2 (en) Motor cooling control system
US20240014765A1 (en) Parameter setting device for setting parameter of electric motor model
US20080050058A1 (en) Method and Device for Monitoring a Temperature of a Bearing of a Rotating Shaft
EP1771939A1 (en) Motor controller
CN106341073A (en) Motor Control Device For Estimating Temperature Of Windings, And Method For Calculating Allowable Duty Cycle Time For Machine
JP2011244636A (en) Rotary electric machine control apparatus
US20140358458A1 (en) Systems and methods for estimating input power of an electric motor
US6879130B2 (en) Controller for induction motor
JP4924066B2 (en) Motor control device and motor control method
KR100544779B1 (en) Motor Cooling Control System
CN104412506B (en) motor control
WO2022085545A1 (en) Temperature estimation device for estimating temperature of temperature detector of electric motor
JP3338855B2 (en) Monitoring method of temperature rise of cage induction motor
US20190058433A1 (en) Method for selecting a frequency converter for a refrigerant compressor unit
JP2005185071A (en) Rotational speed controller of single-phase induction motor
JP2021002897A (en) Motor controller, motor system, calculation method of rotor winding secondary resistance value and rotor winding temperature estimation method
JPH0731189A (en) Motor protector
RU2121209C1 (en) Device for automatic control of electrical machine temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R150 Certificate of patent or registration of utility model

Ref document number: 6767414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250