JP6767148B2 - Crack growth suppression resin composition and crack growth suppression method - Google Patents
Crack growth suppression resin composition and crack growth suppression method Download PDFInfo
- Publication number
- JP6767148B2 JP6767148B2 JP2016074305A JP2016074305A JP6767148B2 JP 6767148 B2 JP6767148 B2 JP 6767148B2 JP 2016074305 A JP2016074305 A JP 2016074305A JP 2016074305 A JP2016074305 A JP 2016074305A JP 6767148 B2 JP6767148 B2 JP 6767148B2
- Authority
- JP
- Japan
- Prior art keywords
- crack growth
- resin composition
- filler
- growth suppressing
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims description 116
- 238000000034 method Methods 0.000 title claims description 30
- 206010053759 Growth retardation Diseases 0.000 title description 5
- 239000000945 filler Substances 0.000 claims description 65
- 229910000831 Steel Inorganic materials 0.000 claims description 58
- 239000010959 steel Substances 0.000 claims description 57
- 229920005989 resin Polymers 0.000 claims description 49
- 239000011347 resin Substances 0.000 claims description 49
- 239000003822 epoxy resin Substances 0.000 claims description 33
- 229920000647 polyepoxide Polymers 0.000 claims description 33
- 229920001187 thermosetting polymer Polymers 0.000 claims description 31
- 238000002156 mixing Methods 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 23
- 239000006253 pitch coke Substances 0.000 claims description 16
- 239000000835 fiber Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 7
- 239000004917 carbon fiber Substances 0.000 claims description 7
- 230000003014 reinforcing effect Effects 0.000 claims description 7
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 6
- 239000000454 talc Substances 0.000 claims description 5
- 229910052623 talc Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000013329 compounding Methods 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 241000255925 Diptera Species 0.000 claims 1
- 229910052629 lepidolite Inorganic materials 0.000 claims 1
- 238000000576 coating method Methods 0.000 description 47
- 239000011248 coating agent Substances 0.000 description 45
- 239000000463 material Substances 0.000 description 39
- 239000012798 spherical particle Substances 0.000 description 36
- 238000001723 curing Methods 0.000 description 35
- 239000012765 fibrous filler Substances 0.000 description 31
- 239000003795 chemical substances by application Substances 0.000 description 29
- 238000010276 construction Methods 0.000 description 24
- 239000000203 mixture Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 19
- 230000008439 repair process Effects 0.000 description 17
- 239000000047 product Substances 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 9
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 9
- 230000002787 reinforcement Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000002966 varnish Substances 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 6
- 239000004568 cement Substances 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000009974 thixotropic effect Effects 0.000 description 3
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- -1 glycidyl ester Chemical class 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011414 polymer cement Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- AGXAFZNONAXBOS-UHFFFAOYSA-N 2-[[3-(oxiran-2-ylmethyl)phenyl]methyl]oxirane Chemical compound C=1C=CC(CC2OC2)=CC=1CC1CO1 AGXAFZNONAXBOS-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 241000842539 Rhagades Species 0.000 description 1
- 206010040849 Skin fissures Diseases 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007718 adhesive strength test Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000009715 pressure infiltration Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003829 resin cement Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Images
Landscapes
- Working Measures On Existing Buildindgs (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、亀裂進展抑制樹脂組成物及びそれを用いた亀裂進展抑制方法に関する。
より詳しくは、本発明は、鋼構造物等に発生した亀裂の進展を抑制する亀裂進展抑制樹脂組成物及びそれを用いた亀裂進展抑制方法に関する。
The present invention relates to a crack growth suppressing resin composition and a crack growth suppressing method using the same.
More specifically, the present invention relates to a crack growth suppressing resin composition for suppressing the growth of cracks generated in a steel structure or the like, and a crack growth suppressing method using the same.
我が国の高度経済成長期に建築され、建築後50年以上が経過しつつある建築物等のインフラ整備に対して、近年、その老朽化の進展が懸念されている。しかしながら、これらの建築物の多くは我が国の基盤インフラを担っていることもあり、安易な建替えや取り壊し、或いはインフラ機能を停止させての本格的な補修補強等の工事ができないことが多い。これら建築物に対して、簡便な補修や補強施工を可能とし、且つ充分な機能を発現する材料の提供が求められており、通常、セメントによる補修方法や樹脂組成物による補修、さらには作業現場での貼り付けが可能な繊維強化型プリプレグ等の材料が提案され、使用され始めている。 In recent years, there have been concerns about the progress of aging of infrastructure development such as buildings that were built during the period of high economic growth in Japan and more than 50 years have passed since the construction. However, many of these buildings are responsible for Japan's infrastructure, and in many cases it is not possible to easily rebuild or demolish them, or to stop the infrastructure functions for full-scale repair and reinforcement work. For these buildings, it is required to provide materials that enable simple repair and reinforcement work and exhibit sufficient functions. Usually, repair methods using cement, repairs using resin compositions, and even work sites are required. Materials such as fiber-reinforced prepregs that can be attached in the field have been proposed and are beginning to be used.
セメントを用いた補修工事は、主にコンクリートを用いた土木建築で検討されている。しかしながら、セメントは下地との接着性が問題となるため、垂直に塗工する場合や、天井に塗工する場合は、別途にセメントを密着させるための鉄筋や金網等の付属付帯物の施工が必要となり、工事が複雑になるという問題点を有している(例えば、非特許文献1)。
このため、垂直塗工や天井部への塗工においては自重で垂れてきたり剥がれたりすることのない、軽量で且つ接着性に優れる塗工型材料が望まれている。
Repair work using cement is mainly being studied in civil engineering and construction using concrete. However, since cement has a problem of adhesiveness to the base, when applying vertically or when applying to the ceiling, it is necessary to separately install accessories such as reinforcing bars and wire mesh to make the cement adhere. It is necessary and has a problem that the construction becomes complicated (for example, Non-Patent Document 1).
Therefore, in vertical coating and coating on the ceiling, a coating type material that is lightweight and has excellent adhesiveness is desired because it does not drip or peel off due to its own weight.
これらの問題点に対して、発生した亀裂部に直接樹脂を注入して亀裂を塞いでしまう工法が開発されている(例えば、特許文献1や非特許文献2)。しかしながら、微細で空隙間の小さな亀裂に樹脂を浸透させるためには、作業現場での高圧注入工法が必要となる他、用いる樹脂の粘度を非常に低くして流れの良い樹脂にしなければならないため、樹脂自身へのフィラー添加や強化策ができず、単に亀裂の孔を埋めるだけで補強強化は得られない。したがって、補修後により大きな力が加わると、注入した樹脂自体が破壊して新たな亀裂の発生原因となる可能性がある。また、この補修工法は主にコンクリートを対象としたものであって、鋼構造物等の補修には必ずしも好ましい工法とはいえない。 To solve these problems, a construction method has been developed in which a resin is directly injected into a cracked portion to close the crack (for example, Patent Document 1 and Non-Patent Document 2). However, in order to allow the resin to penetrate into the fine cracks between the voids, a high-pressure injection method is required at the work site, and the viscosity of the resin used must be extremely low to make the resin flow well. , Filler cannot be added to the resin itself or strengthening measures cannot be taken, and reinforcement and strengthening cannot be obtained simply by filling the crack holes. Therefore, if a larger force is applied after the repair, the injected resin itself may break and cause new cracks. Further, this repair method mainly targets concrete, and is not necessarily a preferable method for repairing steel structures and the like.
更に、以上の問題点を克服すべく、最近、繊維強化されたプリプレグを建築構造物の表面に貼り付けて、剛性を維持した補修工法が開発されている(例えば、非特許文献3)。この方法は、従来航空機の尾翼等に発生した亀裂進展の抑制防止を目的として開発された工法(例えば、非特許文献4)を建築土木分野へ応用したものであり、補修対象とする構造部材と貼り付ける繊維強化されたプリプレグの引張弾性率値から設計することによって、構造部材等に発生した亀裂の進展を抑制する効果が簡便に得られることを可能とする(例えば、非特許文献5)。 Further, in order to overcome the above problems, a repair method has recently been developed in which a fiber-reinforced prepreg is attached to the surface of a building structure to maintain rigidity (for example, Non-Patent Document 3). This method is an application of a construction method (for example, Non-Patent Document 4) developed for the purpose of suppressing and preventing crack growth that has occurred in the tail wing of an aircraft, etc., in the field of construction and civil engineering, and is used as a structural member to be repaired. By designing from the tensile elastic modulus value of the fiber-reinforced prepreg to be attached, it is possible to easily obtain the effect of suppressing the growth of cracks generated in the structural member or the like (for example, Non-Patent Document 5).
しかしながら、航空機の尾翼等と異なり、建築物の構造は必ずしも平面ばかりではなく、凹凸部やリブ部などが存在するため、作業現場で大きなシートを貼り付ける繊維強化されたプリプレグの貼り付け工法は必ずしも好ましくない場合があり、改良を求められている。 However, unlike the tail of an aircraft, the structure of a building is not always flat, but there are irregularities and ribs, so the fiber-reinforced prepreg pasting method for pasting large sheets at work sites is not always necessary. It may not be preferable and improvement is required.
特許文献2は、繊維強化されたプリプレグシートを鋼構造物の形状や発生亀裂の状況に併せて加工して貼り付けることによって前記の問題点を克服しようとしたものである。しかしながら、作業現場での細かい作業は高コストや安全面において必ずしも好ましい方策とはいえない。 Patent Document 2 attempts to overcome the above-mentioned problems by processing and attaching a fiber-reinforced prepreg sheet according to the shape of a steel structure and the state of generated cracks. However, detailed work at the work site is not always a preferable measure in terms of high cost and safety.
また、これらの工法は、繊維強化されたプリプレグを下地に貼り付けるに際して、好ましい接着剤を用いる必要があり、この接着剤の選定次第では貼り付け施工後に繊維強化されたプリプレグが剥がれてしまい、充分な亀裂進展抑制効果を得られない等の問題が発生している。 In addition, in these construction methods, it is necessary to use a preferable adhesive when attaching the fiber-reinforced prepreg to the base, and depending on the selection of this adhesive, the fiber-reinforced prepreg will be peeled off after the application, which is sufficient. There is a problem that the effect of suppressing crack growth cannot be obtained.
特許文献3及び特許文献4では、このような問題点に対して、樹脂にナノフィラーを添加することによって、亀裂内部にフィラーを浸透させることによって亀裂進展の抑制を図ろうとしたものであるが、文献2や文献3同様、作業現場での高圧浸透機器の使用や、ナノフィラーが亀裂へ浸透して亀裂抑制効果をどの程度得るかの検証が充分でない。 In Patent Document 3 and Patent Document 4, in order to solve such a problem, the crack growth is suppressed by infiltrating the filler inside the crack by adding the nanofiller to the resin. Similar to Documents 2 and 3, it is not sufficient to verify the use of high-pressure infiltration equipment at work sites and the extent to which nanofillers permeate into cracks to obtain a crack suppressing effect.
特許文献5では、これまでの提案材料の長所と問題点を克服すべく、ポリマーセメント比を調整することにより、鋼構造物とモルタル層のせん断力に対する剛性がほぼ等しくなる厚さとなるような吹き付け型の補修材料を提案している。 In Patent Document 5, in order to overcome the advantages and problems of the proposed materials so far, by adjusting the polymer cement ratio, the thickness is such that the rigidity of the steel structure and the mortar layer with respect to the shear force becomes almost equal. We are proposing mold repair materials.
しかしながら、特許文献5の方法は剛性を得ることは可能であっても、セメントという脆性材料を用いるため、例えば常に振動等に晒される鋼橋等の建築物では吹付け材料自体の強度や、吹付け材料と補強を必要とする被鋼構造物との接着強度の面で、必ずしも充分とはいえない要素を有している。 However, although the method of Patent Document 5 can obtain rigidity, since it uses a brittle material called cement, for example, in a building such as a steel bridge that is constantly exposed to vibrations, the strength of the spraying material itself and the blowing material itself It has elements that are not always sufficient in terms of adhesive strength between the attachment material and the structure to be steel that requires reinforcement.
また、特許文献6及び7では、これまでの提案材料の長所と問題点を克服すべく、熱硬化性樹脂に繊維状フィラーを添加した複合材料系にすることによって、建物外壁や建物基礎等に簡便に塗工による補強を行う方法を提案している。しかしながら、この方法では、繊維状フィラーの配向によっては著しい強度や弾性率の偏向性が生じてしまい、対象とする建築物に対して、必ずしもバランス良い補強が得られない可能性が生ずるばかりでなく、当該方法で提案されているガラス繊維やロックウール繊維は無機系フィラーである為に比重が高く、例えば外壁に垂直に厚さをもって塗工する場合などに、自重によって垂れてきたりするなど、実施工性の面での不具合が生じやすく、必ずしも充分とは言えない問題点を有している。 Further, in Patent Documents 6 and 7, in order to overcome the advantages and problems of the proposed materials so far, a composite material system in which a fibrous filler is added to a thermosetting resin is used for building outer walls, building foundations, etc. We are proposing a simple method for reinforcement by coating. However, in this method, depending on the orientation of the fibrous filler, significant strength and elastic modulus deflection may occur, and not only may it not always be possible to obtain well-balanced reinforcement for the target building. Since the glass fiber and rock wool fiber proposed by this method are inorganic fillers, they have a high specific gravity. For example, when coating with a thickness perpendicular to the outer wall, they may hang down due to their own weight. Problems in terms of workability are likely to occur, and there is a problem that is not always sufficient.
以上の通り、鋼建築構造物等に発生した疲労亀裂に対して、樹脂組成物やセメント系材料の塗工、或いは強化物の貼り付けによる一時的な亀裂の進展抑制を図った研究事例は存在するものの、簡便で、施工時の作業負担の少ない施工方法で、実用性を備えた亀裂進展の大幅な抑制向上を実現した事例は見られない。 As described above, there are research cases in which for fatigue cracks generated in steel building structures, etc., the growth of cracks is temporarily suppressed by coating resin compositions or cement-based materials, or by attaching reinforcing materials. However, there have been no cases in which a practical method of significantly suppressing and improving crack growth was achieved by a simple construction method that reduces the work load during construction.
本発明の課題は、従来のセメントやポリマーセメント、樹脂組成物又は繊維強化型プリプレグでは実現できなかった簡便な施工方法と力学物性を実現する塗工型の補修材料を提供することである。ここで、塗工とは、補修材料を、各種作業現場において塗布することをいう。
本発明の課題は、より具体的には、老朽化した鋼建築構造物等の鋼材に発生した亀裂の進展抑制に対して、簡便で、施工時の作業負担の少ない修復補強工法を可能とする亀裂進展抑制樹脂組成物及びそれを用いた亀裂進展抑制方法を提供することである。
An object of the present invention is to provide a coating type repair material that realizes a simple construction method and mechanical properties that cannot be realized by conventional cement, polymer cement, resin composition or fiber reinforced prepreg. Here, the coating means applying the repair material at various work sites.
More specifically, the object of the present invention is to enable a repair and reinforcement method that is simple and has a small work load during construction, in order to suppress the growth of cracks generated in steel materials such as aged steel building structures. The present invention provides a crack growth suppressing resin composition and a crack growth suppressing method using the same.
本発明の発明者は上記課題について改善すべく鋭意検討した結果、常温硬化型の熱硬化性樹脂と適切なフィラー形状に選定された繊維状フィラー及び非球状状フィラーを、適切な配合比率で混合し、硬化後の樹脂組成物の引張弾性率と硬化後の樹脂組成物と一般構造用鋼材とのせん断強度を特定の強度以上のものとすることにより、垂直塗工による硬化接着が可能で且つ優れた亀裂進展抑制を可能にする亀裂進展抑制樹脂組成物を実現した。
即ち、本発明の発明者は、常温硬化型の熱硬化性樹脂及びフィラーを含有する樹脂組成物であって、前記樹脂組成物は、前記フィラーとして、繊維状フィラー及び非球状粒子フィラーの両方を含有し、前記樹脂組成物は、硬化前粘度が25℃で5〜2000Pa・sであり、常温硬化型の熱硬化性樹脂100重量部に対して繊維状フィラーと非球状粒子フィラーとを式(I)
非球状粒子フィラーの配合量/繊維状フィラーの配合量=1〜10・・・式(I)
の配合比で合計20〜150重量部含有し、非球状粒子フィラーの平均粒子径が1〜80μmである、鋼構造物の亀裂箇所に塗布し硬化させることで前記鋼構造物を補強する亀裂進展抑制樹脂組成物とすることにより、本発明を完成するに至ったのである。
As a result of diligent studies to improve the above problems, the inventor of the present invention mixes a room temperature curable thermosetting resin with a fibrous filler and a non-spherical filler selected in an appropriate filler shape in an appropriate blending ratio. However, by setting the tensile elasticity of the cured resin composition and the shear strength between the cured resin composition and the general structural steel material to a specific strength or higher, curing adhesion by vertical coating is possible. We have realized a crack growth suppressing resin composition that enables excellent crack growth suppression.
That is, the inventor of the present invention is a resin composition containing a room temperature curable thermosetting resin and a filler, and the resin composition contains both a fibrous filler and a non-spherical particle filler as the filler. The resin composition contained is a pre-curing viscosity of 5 to 2000 Pa · s at 25 ° C., and a fibrous filler and a non-spherical particle filler are formulated with respect to 100 parts by weight of a room temperature curable thermosetting resin. I)
Blending amount of non-spherical particle filler / blending amount of fibrous filler = 1 to 10 ... Formula (I)
20 to 150 parts by weight in total, and the average particle size of the non-spherical particle filler is 1 to 80 μm. Crack growth to reinforce the steel structure by applying and hardening to the cracked part of the steel structure. The present invention has been completed by using the inhibitory resin composition.
本願発明は、以下の(1)〜(10)に存する。
(1) 常温硬化型の熱硬化性樹脂及びフィラーを含有する樹脂組成物であって、
前記樹脂組成物は、前記フィラーとして、繊維状フィラー及び非球状粒子フィラーの両方を含有し、
前記樹脂組成物は、粘度が25℃で5〜2000Pa・sであり、常温硬化型の熱硬化性樹脂100重量部に対して繊維状フィラーと非球状粒子フィラーとを式(I)
非球状粒子フィラーの配合量/繊維状フィラーの配合量=1〜10・・・式(I)
の配合比で合計20〜150重量部含有し、
非球状粒子フィラーの平均粒子径が1〜80μmである、鋼構造物の亀裂箇所に塗布し硬化させることで前記鋼構造物を補強する亀裂進展抑制樹脂組成物。
(2) 粘度が25℃で50〜2000Pa・sである樹脂組成物である上記(1)に記載の亀裂進展抑制樹脂組成物。
(3) 繊維状フィラーが、繊維長3mm以上の炭素短繊維及び/又はガラス短繊維である上記(1)又は(2)に記載の亀裂進展抑制樹脂組成物。
(4) 非球状粒子フィラーが、ピッチコークス粉砕品、タルク、マイカ及びクレーからなる群から選択される1又は2以上のフィラーからなる上記(1)〜(3)のいずれか1つに記載の亀裂進展抑制樹脂組成物。
(5) 非球状粒子フィラーが石炭系の針状結晶を有するピッチコークス粉砕品である上記(1)〜(4)のいずれか1つに記載の亀裂進展抑制樹脂組成物。
The invention of the present application exists in the following (1) to (10).
(1) A resin composition containing a room temperature curable thermosetting resin and a filler.
The resin composition contains both a fibrous filler and a non-spherical particle filler as the filler.
The resin composition has a viscosity of 5 to 2000 Pa · s at 25 ° C., and a fibrous filler and a non-spherical particle filler are mixed with 100 parts by weight of a room temperature curable thermosetting resin according to the formula (I).
Blending amount of non-spherical particle filler / blending amount of fibrous filler = 1 to 10 ... Formula (I)
Contains a total of 20 to 150 parts by weight in the compounding ratio of
A crack growth suppressing resin composition that reinforces the steel structure by applying and curing the non-spherical particle filler to the cracked portion of the steel structure having an average particle diameter of 1 to 80 μm.
(2) The crack growth suppressing resin composition according to (1) above, which is a resin composition having a viscosity of 50 to 2000 Pa · s at 25 ° C.
(3) The crack growth suppressing resin composition according to (1) or (2) above, wherein the fibrous filler is a carbon short fiber and / or a glass short fiber having a fiber length of 3 mm or more.
(4) The above-mentioned (1) to (3), wherein the non-spherical particle filler comprises one or more fillers selected from the group consisting of crushed pitch coke, talc, mica and clay. Crack growth suppressing resin composition.
(5) The crack growth suppressing resin composition according to any one of (1) to (4) above, wherein the non-spherical particle filler is a pulverized pitch coke product having coal-based acicular crystals.
(6) 常温硬化型の熱硬化性樹脂が、常温硬化可能な2液混合型のエポキシ系樹脂である上記(1)〜(5)のいずれか1つに記載の亀裂進展抑制樹脂組成物。
(7) 更にシランカップリング剤を含有する上記(1)〜(6)のいずれか1つに記載の亀裂進展抑制樹脂組成物。
(8) 亀裂を有する鋼の表面において、亀裂の全部又は一部を覆って厚さ1mm以上で硬化した、上記(1)〜(7)のいずれか1つに記載の亀裂進展抑制樹脂組成物。
(9) 上記(1)〜(8)のいずれか1つに記載の亀裂進展抑制樹脂組成物を、鋼構造物の亀裂箇所に1mm以上の厚さで塗布して鋼構造物の亀裂進展を抑制する亀裂進展抑制方法。
(10) 亀裂進展樹脂組成物と鋼構造物との接面にプライマーを塗布した後、亀裂進展抑制樹脂組成物を塗布する上記(9)の亀裂進展抑制方法。
(6) The crack growth suppressing resin composition according to any one of (1) to (5) above, wherein the room temperature curable thermosetting resin is a two-component mixed type epoxy resin that can be cured at room temperature.
(7) The crack growth suppressing resin composition according to any one of (1) to (6) above, which further contains a silane coupling agent.
(8) The crack growth suppressing resin composition according to any one of (1) to (7) above, which covers all or part of the cracks and hardens to a thickness of 1 mm or more on the surface of the steel having cracks. ..
(9) The crack growth suppressing resin composition according to any one of (1) to (8) above is applied to the crack portion of the steel structure with a thickness of 1 mm or more to prevent the crack growth of the steel structure. Rhagades growth suppression method.
(10) The method for suppressing crack growth according to (9) above, wherein a primer is applied to the contact surface between the crack growth resin composition and the steel structure, and then the crack growth suppression resin composition is applied.
本発明の亀裂進展抑制樹脂組成物によれば、簡便で、施工時の作業負担の少ない方法により、鋼建築構造物に発生した疲労亀裂に対する亀裂進展抑制が可能となる。
本発明の亀裂進展抑制樹脂組成物は、亀裂を有する鋼表面において、亀裂の一部又は全部を覆って一定の厚さで塗布され、硬化することにより亀裂箇所に固着し、鋼材の亀裂が進展することを抑制する力を生じる。
本発明の亀裂進展抑制樹脂組成物は、同じ組成の樹脂組成物で、鋼材に塗布・盛り付けする厚さ及び形状を変化させることにより、鋼材を補強する部分の断面積及び接着面積等を変化させることができる。従って、同じ組成の樹脂組成物で、異なる鋼材の亀裂が進展する力に抗する力を生じることができる。
According to the crack growth suppressing resin composition of the present invention, it is possible to suppress crack growth for fatigue cracks generated in a steel building structure by a simple method with less work load during construction.
The crack growth suppressing resin composition of the present invention is applied to a steel surface having cracks to cover a part or all of the cracks to a certain thickness, and by hardening, the resin composition adheres to the cracks and the cracks of the steel material grow. It produces a force that suppresses doing.
The crack growth suppressing resin composition of the present invention is a resin composition having the same composition, and by changing the thickness and shape of coating and serving on the steel material, the cross-sectional area and the adhesive area of the portion for reinforcing the steel material are changed. be able to. Therefore, resin compositions having the same composition can generate a force that opposes the force of crack growth of different steel materials.
〔亀裂進展抑制樹脂組成物〕
本発明の亀裂進展抑制樹脂組成物は、鋼構造物の亀裂箇所に塗布し、硬化させることで亀裂を有する鋼構造物を補強するために用いる。
本発明の亀裂進展抑制樹脂組成物は、常温硬化型の熱硬化性樹脂、繊維状フィラー及び非球状粒子フィラーを含有する。後述する通り、繊維状フィラーと、非球状粒子フィラーとの配合比は、所定の値の範囲内のものである。
本発明の亀裂進展抑制樹脂組成物は、硬化前常温において粘度が25℃で5〜2000Pa・sである。本発明の亀裂進展抑制樹脂組成物は、好ましくは粘度が25℃で50〜2000Pa・sの状態である。 本発明の亀裂進展抑制樹脂組成物の粘度が前記範囲であることで、前記樹脂組成物は、塗工時に塗布した前記樹脂組成物が適度に形状を変えることができると同時に型が崩れるまでに一定の時間を要するため、成形が容易になる。
また、本発明の趣旨を逸脱しない範囲において、前記樹脂組成物は、2000Pa・sよりも高粘度で、流動性を有さず粘度が測定できないものであっても良い。
本発明の亀裂進展抑制樹脂組成物は、硬化前に増粘することにより、粘度が25℃で5〜2000Pa・sになるものであってもよい。
[Crack growth suppressing resin composition]
The crack growth suppressing resin composition of the present invention is used to reinforce a steel structure having cracks by applying it to a cracked portion of the steel structure and curing it.
The crack growth suppressing resin composition of the present invention contains a room temperature curable thermosetting resin, a fibrous filler, and a non-spherical particle filler. As will be described later, the blending ratio of the fibrous filler and the non-spherical particle filler is within a predetermined value range.
The crack growth suppressing resin composition of the present invention has a viscosity of 5 to 2000 Pa · s at 25 ° C. at room temperature before curing. The crack growth suppressing resin composition of the present invention is preferably in a state of a viscosity of 50 to 2000 Pa · s at 25 ° C. When the viscosity of the crack growth suppressing resin composition of the present invention is within the above range, the resin composition can be appropriately changed in shape and at the same time lose its shape when applied at the time of coating. Since it takes a certain amount of time, molding becomes easy.
Further, the resin composition may have a viscosity higher than 2000 Pa · s, have no fluidity, and the viscosity cannot be measured, as long as the gist of the present invention is not deviated.
The crack growth suppressing resin composition of the present invention may have a viscosity of 5 to 2000 Pa · s at 25 ° C. by thickening before curing.
〔常温硬化型の熱硬化性樹脂〕
本発明の亀裂進展抑制樹脂組成物に係る常温硬化型の熱硬化性樹脂には、常温硬化が可能な熱硬化性樹脂が用いられる。前記熱硬化性樹脂には、例えば、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエステル樹脂等が挙げられる。
前記熱硬化性樹脂は、塗布面への接着性や硬化物の強度等の条件を満たすのであれば特に制限はない。
前記熱硬化性樹脂は、鋼材である塗布面との接着性及び硬化物の強度の観点から、エポキシ樹脂が好適に用いられる。
前記エポキシ樹脂は、液状であり、1分子中に2個以上のエポキシ基を有する化合物が好ましい。前記エポキシ樹脂は、例えば、ポリオールから得られるグリシジルエーテル型エポキシ樹脂、活性水素を複数有するアミンより得られるグリシジルアミン型エポキシ樹脂、ポリカルボン酸より得られるグリシジルエステル型エポキシ樹脂や、分子内に複数の2重結合を有する化合物を酸化して得られるポリエポキシドなどが用いられる。かかるエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、トリグリシジル−p−アミノフェノール、N,N,N’,N’−テトラグリシジル−4,4’−メチレンジアニリンなどのグリシジルアミン型エポキシ樹脂、レゾルシンジグリシジルエーテル、トリグリシジルイソシアヌレート等を挙げることができるが、性能並びに経済性上、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、クレゾールノボラック型のグリシジルエーテル型エポキシ樹脂等の2官能以上の液状エポキシ樹脂が好ましい。
本発明の亀裂進展抑制樹脂組成物は、例えば、施工前にエポキシ樹脂に硬化剤を配合する2液型であり、主剤と硬化剤を混合した直後に粘度が25℃で5〜2000Pa・sである。このとき、主剤となる熱硬化性樹脂の粘度は25℃で0.5〜30Pa・sの範囲にあることが望ましく、より好ましくは0.7〜20Pa・sである。粘度が0.5Pa・s以下であると、亀裂進展抑制樹脂組成物としたときに塗工時に垂れやすくなるほか、必要な強度が得られない等の問題がある。また、粘度が30Pa・s以上であるとフィラーの混練がし難くなるほか、亀裂進展抑制樹脂組成物の粘度が高すぎて塗工が出来なくなる問題が起きる。
なお、本発明の実施例に係る亀裂進展抑制樹脂組成物の粘度の測定は、JIS K 7233 エポキシ樹脂及び硬化剤の粘度試験方法に準じて行うことができる。
[Room temperature curable thermosetting resin]
As the room temperature curable thermosetting resin according to the crack growth suppressing resin composition of the present invention, a thermosetting resin capable of room temperature curing is used. Examples of the thermosetting resin include epoxy resin, polyurethane resin, acrylic resin, polyester resin and the like.
The thermosetting resin is not particularly limited as long as it satisfies the conditions such as adhesiveness to the coated surface and strength of the cured product.
As the thermosetting resin, an epoxy resin is preferably used from the viewpoint of adhesiveness to a coated surface which is a steel material and strength of a cured product.
The epoxy resin is liquid, and a compound having two or more epoxy groups in one molecule is preferable. The epoxy resin includes, for example, a glycidyl ether type epoxy resin obtained from a polyol, a glycidyl amine type epoxy resin obtained from an amine having a plurality of active hydrogens, a glycidyl ester type epoxy resin obtained from a polycarboxylic acid, and a plurality of glycidyl ester type epoxy resins in the molecule. Polyepoxydo obtained by oxidizing a compound having a double bond is used. Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, bisphenol S type epoxy resins and other bisphenol type epoxy resins, epoxy resins having a biphenyl skeleton, and epoxy resins having a naphthalene skeleton. , Epoxy resin having a dicyclopentadiene skeleton, phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, triglycidyl-p-aminophenol, N, N, N', N'-tetraglycidyl-4 , 4'-Glysidylamine type epoxy resin such as methylenedianiline, resorcindiglycidyl ether, triglycidyl isocyanurate, etc. can be mentioned, but in terms of performance and economy, bisphenol A type, bisphenol F type, bisphenol AD type, etc. A bifunctional or higher liquid epoxy resin such as a cresol novolac type glycidyl ether type epoxy resin is preferable.
The crack growth suppressing resin composition of the present invention is, for example, a two-component type in which a curing agent is mixed with an epoxy resin before construction, and immediately after mixing the main agent and the curing agent, the viscosity is 5 to 2000 Pa · s at 25 ° C. is there. At this time, the viscosity of the thermosetting resin as the main agent is preferably in the range of 0.5 to 30 Pa · s at 25 ° C., and more preferably 0.7 to 20 Pa · s. If the viscosity is 0.5 Pa · s or less, there are problems that the crack growth suppressing resin composition tends to drip during coating and that the required strength cannot be obtained. Further, if the viscosity is 30 Pa · s or more, it becomes difficult to knead the filler, and the viscosity of the crack growth suppressing resin composition is too high, which causes a problem that coating cannot be performed.
The viscosity of the crack growth suppressing resin composition according to the embodiment of the present invention can be measured according to the viscosity test method of JIS K 7233 epoxy resin and curing agent.
本発明の亀裂進展抑制樹脂組成物が主剤と硬化剤を混合して用いられる場合、本発明に用いる硬化剤は、常温での硬化が可能であるものであれば酸無水物系やアミン系等、特に制限されないが、作業現場での可使時間や使用環境等を考慮するとアミン系硬化剤が好ましい。
アミン系硬化剤は、例えば、ジエチレントリアミンといった脂肪族ポリアミンやイソホロンジアミンといった脂環式ポリアミン、ジアミノジフェノルスルフォンといった芳香族アミン、およびこれらの変性物が挙げられる。
アミン系硬化剤としては、特に粘度が0.01〜2Pa・sの範囲にある液状の脂肪族ポリアミンおよびその変性物が、常温で短時間硬化が可能であり、実施工時に容易に混合できるため、好適に用いることができる。また、硬化剤の配合比について特に制限はないが、主剤となるエポキシ樹脂の当量100部に対して、硬化剤の割合が20〜100部になるようなアミン価を有するものが好ましい。
When the crack growth suppressing resin composition of the present invention is used by mixing a main agent and a curing agent, the curing agent used in the present invention is an acid anhydride type, an amine type, etc. as long as it can be cured at room temperature. Although not particularly limited, an amine-based curing agent is preferable in consideration of the pot life at the work site, the usage environment, and the like.
Examples of the amine-based curing agent include aliphatic polyamines such as diethylenetriamine, alicyclic polyamines such as isophoronediamine, aromatic amines such as diaminodiphenolsulphon, and modified products thereof.
As the amine-based curing agent, a liquid aliphatic polyamine having a viscosity in the range of 0.01 to 2 Pa · s and a modified product thereof can be cured at room temperature for a short time and can be easily mixed at the time of implementation. , Can be preferably used. The compounding ratio of the curing agent is not particularly limited, but those having an amine value such that the ratio of the curing agent is 20 to 100 parts with respect to 100 parts equivalent of the epoxy resin as the main agent are preferable.
塗工型で且つ、亀裂進展を抑制するに充分な引張弾性率を得るために、本発明者は、常温硬化型の熱硬化樹脂に対して最適となる繊維状フィラーと非球状粒子フィラーの配合比率を見出した。これらのフィラーの配合比率は、得られる樹脂組成物の粘度を高めるため、単に配合後の樹脂組成物の強化効果が得られるだけではなく、塗工時のダレ防止などの施工面でのメリットを得ることも可能とする。 In order to obtain a tensile elastic modulus that is a coating type and sufficient to suppress crack growth, the present inventor has formulated a fibrous filler and a non-spherical particle filler that are optimal for a thermosetting resin that is cured at room temperature. Found the ratio. Since the blending ratio of these fillers increases the viscosity of the obtained resin composition, not only the effect of strengthening the resin composition after blending can be obtained, but also there are advantages in terms of construction such as prevention of sagging during coating. It is also possible to obtain.
〔繊維状フィラー〕
本発明に係る繊維状フィラーは、炭素繊維、ガラス繊維、ロックウールファイバー等の無機繊維、ポリマーから構成される有機繊維を用いることができ、これらの混合物も用いることができる。中でも炭素繊維及びガラス繊維、又はこれらの混合物は、製造時のハンドリングの面でより好ましい。
また、本発明に係る繊維状フィラーとしてさらに好ましくは、引張弾性率の発現性上、3mm以上の長さを有し、且つ1本あたりの繊維直径が30μm未満の炭素繊維、ガラス繊維のチョップドストランド繊維を用いることができる。なお、本発明に係る繊維状フィラーを限定するものではないが、前記繊維状フィラー表面はマトリックス材料との親和性を向上させる表面処理、例えばエポキシ系樹脂サイジング等によるサイジング処理やシランカップリング剤等による表面処理が施されたものが好ましい。
[Fibrous filler]
As the fibrous filler according to the present invention, inorganic fibers such as carbon fibers, glass fibers and rock wool fibers, and organic fibers composed of polymers can be used, and mixtures thereof can also be used. Among them, carbon fiber and glass fiber, or a mixture thereof, are more preferable in terms of handling during production.
Further, the fibrous filler according to the present invention is more preferably a chopped strand of carbon fiber or glass fiber having a length of 3 mm or more and a fiber diameter of less than 30 μm per fiber in terms of the development of tensile elastic modulus. Fiber can be used. Although the fibrous filler according to the present invention is not limited, the surface of the fibrous filler is surface-treated to improve the affinity with the matrix material, for example, a sizing treatment by epoxy resin sizing or the like, a silane coupling agent or the like. It is preferable that the surface is treated with.
〔非球状粒子フィラー〕
本発明に係る非球状粒子フィラーは、ピッチコークス粉砕品、タルク、マイカ、クレー、炭酸カルシウム、カーボンブラック、黒鉛粉砕物、ワラストナイト、破砕シリカ粉、樹脂系微粒子等を用いることができ、これらの混合物も用いることができる。
中でも、本発明に係る非球状粒子フィラーとしては、ピッチコークス粉砕品、タルク、マイカ等の非球状フィラーはその粒子形状が鱗片状であることから、本発明の亀裂進展抑制樹脂組成物に必要とする引張弾性率を発現しやすいために好ましい。本発明に係る非球状粒子フィラーは、更に好ましくは、鱗片状を有し、それ自身の弾性率も高く、且つ炭素系元素で構成される樹脂組成物との相溶性に優れるピッチコークス粉砕品である。
特に、石炭系タールを原料とする針状結晶性を有するピッチコークス粉砕品は、粉砕粒子の強度や弾性率が高く、且つその組成のほとんどが炭素であるため、他の無機系フィラーの場合と異なり相溶化剤等を用いなくとも強度や弾性率の発現を得ることができ、また粉砕時に容易に鱗片状になるために、本発明に係る非球状粒子フィラーとして最も好ましい非球状粒子フィラーである。
[Non-spherical particle filler]
As the non-spherical particle filler according to the present invention, crushed pitch coke, talc, mica, clay, calcium carbonate, carbon black, crushed graphite, wallastnite, crushed silica powder, resin-based fine particles and the like can be used. A mixture of can also be used.
Among them, as the non-spherical particle filler according to the present invention, the non-spherical particle filler such as pitch coke crushed product, talc, mica and the like has a scaly particle shape, and is therefore required for the crack growth suppressing resin composition of the present invention. It is preferable because it easily develops the tensile elastic modulus. The non-spherical particle filler according to the present invention is more preferably a pitch coke pulverized product having a scaly shape, a high elastic modulus of its own, and excellent compatibility with a resin composition composed of carbon-based elements. is there.
In particular, the pitch coke crushed product having acicular crystalline material made from coal-based tar has high strength and elastic modulus of the crushed particles, and most of the composition is carbon, so that it is different from the case of other inorganic fillers. Unlike the non-spherical particle filler according to the present invention, it is the most preferable non-spherical particle filler because it can exhibit strength and elastic modulus without using a compatibilizer or the like and easily becomes scaly when pulverized. ..
本発明の亀裂進展抑制樹脂組成物に含有させて用いる非球状粒子フィラーは、平均粒子径が1〜80μm、好ましくは、1〜50μm、より好ましくは、1〜30μmで、より更に好ましくは、平均粒子径5〜20μmである。
平均粒子径が1μmより小さな非球状フィラーは熱硬化型樹脂混合物との混合時に著しく粘度を高めてしまうため、塗工が困難となり好ましくない。また、平均粒子径が80μmより大きな非球状フィラーは熱硬化型樹脂混合物の強度が得られず、好ましくない。
なお、本発明における非球状粒子フィラーの平均粒径とは、レーザー回折・散乱式の粒子径分布測定装置によって測定された非球状粒子フィラーのメジアン径(D50)である。
The non-spherical particle filler used in the crack growth suppressing resin composition of the present invention has an average particle diameter of 1 to 80 μm, preferably 1 to 50 μm, more preferably 1 to 30 μm, and even more preferably an average. The particle size is 5 to 20 μm.
A non-spherical filler having an average particle size of less than 1 μm is not preferable because it makes coating difficult because it significantly increases the viscosity when mixed with a thermosetting resin mixture. Further, a non-spherical filler having an average particle diameter of more than 80 μm is not preferable because the strength of the thermosetting resin mixture cannot be obtained.
The average particle size of the non-spherical particle filler in the present invention is the median diameter (D 50 ) of the non-spherical particle filler measured by a laser diffraction / scattering type particle size distribution measuring device.
〔フィラー配合量〕
本発明の亀裂進展抑制樹脂組成物は、常温速硬化型の熱硬化性樹脂100重量部に対して、繊維状フィラーと非球状粒子フィラーが合計で20〜150重量部、好ましくは40〜120重量部配合される。常温で硬化する熱硬化性樹脂100部に対して、繊維状フィラーと非球状粒子フィラーの配合量が20重量部よりも少なくなると、補強効果を得るための引張弾性率が得られず、逆に、配合量が150重量部よりも多くなると、樹脂組成物内に発生する空隙が多くなるため、亀裂進展抑制樹脂組成物自身の強度の低下が生じてしまう。
[Filler content]
In the crack growth suppressing resin composition of the present invention, a total of 20 to 150 parts by weight, preferably 40 to 120 parts by weight of the fibrous filler and the non-spherical particle filler is added to 100 parts by weight of the room temperature fast-curing thermosetting resin. Partially mixed. If the blending amount of the fibrous filler and the non-spherical particle filler is less than 20 parts by weight with respect to 100 parts of the thermosetting resin that cures at room temperature, the tensile elastic modulus for obtaining the reinforcing effect cannot be obtained, and conversely. If the blending amount is more than 150 parts by weight, the number of voids generated in the resin composition increases, so that the strength of the crack growth suppressing resin composition itself is lowered.
また、本発明の亀裂進展抑制樹脂組成物は、常温硬化型の熱硬化性樹脂に配合される繊維状フィラーと非球状粒子フィラーの配合比を、下式(I)で1〜10、より好ましくは2〜8となるようにする。配合比が1未満であると、補強効果を得るために十分な引張弾性率が得られず、10を超えると補強効果を得るために十分な引張弾性率だけでなく、引張強度も得られなくなってしまう。
非球状粒子フィラーの配合量/繊維状フィラーの配合量・・・式(I)
Further, in the crack growth suppressing resin composition of the present invention, the blending ratio of the fibrous filler and the non-spherical particle filler blended in the room temperature curable thermosetting resin is more preferably 1 to 10 according to the following formula (I). Should be 2-8. If the compounding ratio is less than 1, a sufficient tensile elastic modulus for obtaining the reinforcing effect cannot be obtained, and if it exceeds 10, not only a sufficient tensile elastic modulus for obtaining the reinforcing effect but also a tensile strength cannot be obtained. It ends up.
Blending amount of non-spherical particle filler / blending amount of fibrous filler ... Formula (I)
本発明では、熱硬化性樹脂と繊維状フィラー及び/又は非球状粒子フィラーとの配合比は、熱硬化性樹脂100部に対して、繊維状フィラーが3〜30重量部、非球状粒子フィラーが10〜120重量部であることが好ましく、より好ましくは、繊維状フィラーが5〜20重量部、非球状粒子フィラーが20〜100重量部であることが好ましい。
繊維状フィラー及び非球状粒子フィラーの配合量が本発明の範囲内であれば施工上の問題や得られる弾性率や強度等の力学物性には問題は生じないが、前記配合比率に設計することより亀裂進展抑制効果を高めることが可能となる。
In the present invention, the blending ratio of the thermosetting resin and the fibrous filler and / or the non-spherical particle filler is 3 to 30 parts by weight of the fibrous filler and 3 to 30 parts by weight of the non-spherical particle filler with respect to 100 parts of the thermosetting resin. The amount is preferably 10 to 120 parts by weight, more preferably 5 to 20 parts by weight of the fibrous filler, and 20 to 100 parts by weight of the non-spherical particle filler.
If the blending amount of the fibrous filler and the non-spherical particle filler is within the range of the present invention, there will be no problem in construction or mechanical properties such as elastic modulus and strength obtained, but the blending ratio should be designed. It is possible to further enhance the effect of suppressing crack growth.
〔亀裂進展抑制樹脂組成物〕
本発明に係る実施形態のうちの一つとして、チョップド型の繊維状フィラーと非球状粒子フィラーを、常温硬化できる熱硬化性樹脂に混合することによって、接着剤等を用いることなく、現場で簡単に垂直部への塗工を可能とし、且つ鋼構造物に発生した亀裂の進展を抑制する引張弾性率を発現できる亀裂進展抑制樹脂組成物を実現した。
以下、その実施形態について具体的に説明する。
[Crack growth suppressing resin composition]
As one of the embodiments according to the present invention, by mixing a chopped type fibrous filler and a non-spherical particle filler with a thermosetting resin that can be cured at room temperature, it is easy to do on-site without using an adhesive or the like. We have realized a crack growth suppressing resin composition that enables coating on vertical portions and can exhibit a tensile elastic modulus that suppresses the growth of cracks generated in a steel structure.
Hereinafter, the embodiment will be specifically described.
また、本発明では亀裂進展抑制樹脂組成物の物性を損なわない範囲内で、マトリックス樹脂に用いる熱硬化性樹脂以外の熱硬化性樹脂や無機フィラー、有機フィラーの併用混合、さらには分散性や接着性向上のためのシランカップリング剤、紫外線防止剤、熱劣化防止剤、酸化防止剤、流動調整剤等の添加剤を併用混合しても良い。 Further, in the present invention, as long as the physical properties of the crack growth suppressing resin composition are not impaired, a thermosetting resin other than the thermosetting resin used for the matrix resin, an inorganic filler, and an organic filler are mixed in combination, and further, dispersibility and adhesion are achieved. Additives such as a silane coupling agent, an ultraviolet inhibitor, a thermal deterioration inhibitor, an antioxidant, and a flow conditioner for improving the properties may be mixed in combination.
本発明の亀裂進展抑制樹脂組成物は、熱硬化性樹脂(主剤)と硬化剤が別々に提供され、作業者が作業直前に両者を混合する二液型の樹脂組成物であってもよい。二液型とすることによって、反応性の高い硬化剤を用いることができ、現場での短時間の施工が可能となる他、主剤と硬化剤を別々に保管するため、保管条件に特に制限なく長期保管でき、必要に応じて速やかに施工を行うことができる。 The crack growth suppressing resin composition of the present invention may be a two-component resin composition in which a thermosetting resin (main agent) and a curing agent are separately provided and the operator mixes both immediately before the work. By using the two-component type, a highly reactive curing agent can be used, which enables short-time construction on site, and since the main agent and curing agent are stored separately, there are no particular restrictions on storage conditions. It can be stored for a long period of time and can be installed promptly as needed.
〔製造方法〕
本発明を限定するものではないが、本発明の亀裂進展抑制樹脂組成物の製造においては、一般のヘリカルミキサーやヘンシェルミキサー、ダルトン型ミキサー、遠心分離ミキサー等の混合機を使用することが好ましい。これらの混合において減圧すると、混合物に内包される気泡が除去できるため、より好ましい。
〔Production method〕
Although not limited to the present invention, in the production of the crack growth suppressing resin composition of the present invention, it is preferable to use a mixer such as a general helical mixer, Henschel mixer, Dalton type mixer, or centrifugal mixer. It is more preferable to reduce the pressure in these mixings because the bubbles contained in the mixture can be removed.
また、本発明を限定するものではないが、本発明の亀裂進展抑制樹脂組成物は、野外の施工現場での塗工作業性の簡便さより、樹脂と硬化剤は塗工作業直前に混合することが好ましい。例えば、本発明の亀裂進展抑制樹脂組成物は、主剤樹脂ワニス又は硬化剤へ繊維状及び粒子状フィラーを事前に混合した混合物を準備し、塗工作業直前にその混合物に必要量の主剤樹脂ワニス又は硬化剤を添加混合して用いることが好ましい。なお、その際、事前に準備する混合物は、主剤と繊維状フィラーと粒子状フィラーを混合したものでもよく、どちらか一方を混合し、且つ用いる硬化剤にもう一方のフィラーを混合したものを準備する方法でもよい。
施工時の簡便性を考えれば、主剤樹脂ワニスと繊維状フィラーと粒子状フィラーを混合した混合ワニスを準備し、塗工作業直前に硬化剤を混合する方法が好ましい。
一方、硬化剤と繊維状フィラーと非球状粒子フィラーを混合した混合ワニスを準備し、塗工作業直前に主事樹脂ワニスを混合する方法も好適に用いられるが、主体となる混合物を粘度の高いものとし、粘度が低い方を添加する方式の方が実施工上的にはハンドリング性がよいため更に好ましい。
施工現場での混合方法については特に制限するものではないが、ドラム缶装着型の混合機や、ハンディタイプの混合機で混合する方法が、簡便で、施工時の作業負担が少ないという観点から好ましい。ドラム缶装着型の混合機の例としては、清健製マゼール等が、ハンディタイプの混合機の例としては、ハンディタイプの大塚刷毛製マザール等が挙げられる。
Further, although not limiting the present invention, in the crack growth suppressing resin composition of the present invention, the resin and the curing agent should be mixed immediately before the coating work because of the ease of coating workability at the outdoor construction site. Is preferable. For example, in the crack growth suppressing resin composition of the present invention, a mixture of a base resin varnish or a curing agent mixed with fibrous and particulate fillers in advance is prepared, and the required amount of the base resin varnish is added to the mixture immediately before the coating operation. Alternatively, it is preferable to add and mix a curing agent. At that time, the mixture prepared in advance may be a mixture of the main agent, the fibrous filler and the particulate filler, one of which is mixed, and the curing agent to be used is mixed with the other filler. It may be a method of doing.
Considering the convenience at the time of construction, it is preferable to prepare a mixed varnish in which the main resin varnish, the fibrous filler and the particulate filler are mixed, and mix the curing agent immediately before the coating work.
On the other hand, a method of preparing a mixed varnish in which a curing agent, a fibrous filler and a non-spherical particle filler are mixed and mixing the main resin varnish immediately before the coating work is also preferably used, but the main mixture has a high viscosity. The method of adding the one having a lower viscosity is more preferable because it has better handleability in terms of implementation work.
The mixing method at the construction site is not particularly limited, but a method of mixing with a drum can-mounted mixer or a handy type mixer is preferable from the viewpoint of simplicity and less work load during construction. An example of a drum-mounted mixer is Maazel made by Seiken, and an example of a handy type mixer is a handy type Maazel made by Otsuka Brush.
本発明の亀裂進展抑制樹脂組成物を限定するものではないが、主剤樹脂ワニスと硬化剤を混合した混合物については、粘度が25℃で5〜2000Pa・sであり、より好ましくは、粘度が25℃で50〜2000Pa・sであることが、壁や天井等での塗工を簡便なものにするために好ましい。このため、塗工時の垂れ防止やハンドリング性の点で、混合直後の粘度が25℃で10〜2000Pa・sであることが好ましく、30〜1500Pa・sであることがより好ましく、50〜1000Pa・sであることが更にさらに好ましい。
また、本発明の趣旨を逸脱しない範囲において、前記混合物は、2000Pa・sよりも高粘度で、流動性を有さず粘度が測定できないものであっても良い。
本発明の亀裂進展抑制樹脂組成物は、熱硬化性樹脂及びフィラーを含有する樹脂組成物であるという性質上、チキソトロピー性(揺変性)を有する場合がある。
本発明の亀裂進展抑制樹脂組成物を限定するものではないが、建築補修用エポキシ樹脂樹脂の規格JIS A 6024:2008における中粘度形のチキソトロピー性(揺変性)のチキソトロピックインデックスが、5±1となっていることから、本発明の亀裂進展抑制樹脂組成物は、同規格における測定において、4以上、好ましくは5以上のチキソトロピックインデックスを示すものであっても良い。チキソトロピックインデックスが前記範囲であることで、本発明の亀裂進展抑制樹脂組成物は、塗工時に塗布した前記樹脂組成物が型崩れしにくく、塗工・成形が容易になる。
また、本発明の亀裂進展抑制樹脂組成物の硬化時間は施工作業上、10分〜5時間程度であることが好ましく、30分〜3時間程度であることがより好ましい。また、良好な硬化状態の容易な確認方法として、主剤樹脂ワニスと硬化剤を混合した直後の混合物を水平面に対して20mmの厚さに塗工した後、2時間後の厚さの変化が2mm以内で硬化していることが好ましい。
The crack growth suppressing resin composition of the present invention is not limited, but the mixture of the main resin varnish and the curing agent has a viscosity of 5 to 2000 Pa · s at 25 ° C., more preferably 25. It is preferable that the temperature is 50 to 2000 Pa · s in order to simplify coating on walls, ceilings and the like. Therefore, in terms of preventing dripping during coating and handling, the viscosity immediately after mixing is preferably 10 to 2000 Pa · s at 25 ° C., more preferably 30 to 1500 Pa · s, and 50 to 1000 Pa · s. -S is even more preferable.
Further, as long as the gist of the present invention is not deviated, the mixture may have a viscosity higher than 2000 Pa · s, have no fluidity, and the viscosity cannot be measured.
The crack growth suppressing resin composition of the present invention may have thixotropy (sway denaturation) due to the nature of being a resin composition containing a thermosetting resin and a filler.
Although the crack growth suppressing resin composition of the present invention is not limited, the thixotropic index of medium-viscosity thixotropy (sway modification) in the standard JIS A 6024: 2008 of epoxy resin resin for building repair is 5 ± 1. Therefore, the crack growth suppressing resin composition of the present invention may exhibit a thixotropic index of 4 or more, preferably 5 or more in the measurement according to the same standard. When the thixotropic index is in the above range, the crack growth suppressing resin composition of the present invention does not easily lose its shape when applied at the time of coating, and coating / molding becomes easy.
Further, the curing time of the crack growth suppressing resin composition of the present invention is preferably about 10 minutes to 5 hours, more preferably about 30 minutes to 3 hours in terms of construction work. In addition, as an easy method for confirming a good cured state, the mixture immediately after mixing the main resin varnish and the curing agent is applied to a thickness of 20 mm with respect to the horizontal plane, and then the change in thickness 2 hours later is 2 mm. It is preferable that it is cured within.
本発明の亀裂進展抑制樹脂組成物を限定するものではないが、本発明の亀裂進展抑制樹脂組成物は、例えば一般構造材圧延鋼材SS400との接着性を示す引張せん断強度が1MPa以上であることが好ましい。これ未満の引張せん断強度であっても特に著しい支障を生ずるものではないが、塗工後のはく離が生じ難い方が長期耐久性などの面で優れる場合がある。
〔塗工方法〕
本発明の亀裂進展抑制樹脂組成物の塗工方法は、粘度が25℃で5〜2000Pa・sである材料を塗布することができる方法であれば特に制限はなく、一般に用いられている方法を用いることができる。
本発明の亀裂進展抑制樹脂組成物は、鋼構造物の亀裂箇所に、亀裂を覆うか、又は、亀裂を横断して塗布され、硬化することにより、亀裂進展抑制効果を生じる。
塗布する厚さは、塗工が可能であり、硬化後に十分な強度が保たれる限りにおいて、特に制限がない。本発明の亀裂進展抑制樹脂組成物を、鋼構造物の亀裂箇所に1mm以上、好ましくは20mm以上の厚さで塗布することにより、鋼構造物の亀裂進展を抑制する効果が高いものとなる。
また、本発明の亀裂進展抑制樹脂組成物を塗布する厚さを鋼構造物の鋼材に応じて変化させ、硬化後の樹脂組成物の断面積及び形状、接着面の面積を変化させることにより、異なる形状・種類の鋼材の亀裂進展抑制を行うことができる。
本発明の亀裂進展抑制樹脂組成物は、亀裂を有する鋼構造物の鋼の表面において、亀裂の全部若しくは一部を覆って厚さ1mm以上で硬化するように塗工される。このように塗工されることにより、本発明の亀裂進展抑制樹脂組成物は、亀裂が進展する力に抗するための応力を生じることができ、亀裂進展抑制効果を生じる。
硬化方法は、常温硬化が可能であるが、必要に応じて加熱する等、一般的に用いられる方法を用いることができる。
Although the crack growth suppressing resin composition of the present invention is not limited, the crack growth suppressing resin composition of the present invention has, for example, a tensile shear strength of 1 MPa or more indicating adhesiveness to a general structural material rolled steel SS400. Is preferable. Even if the tensile shear strength is less than this, it does not cause a particularly significant hindrance, but it may be better in terms of long-term durability that peeling after coating is less likely to occur.
[Coating method]
The coating method of the crack growth suppressing resin composition of the present invention is not particularly limited as long as it can coat a material having a viscosity of 5 to 2000 Pa · s at 25 ° C., and a generally used method can be used. Can be used.
The crack growth suppressing resin composition of the present invention produces a crack growth suppressing effect by covering the cracks or applying the resin composition across the cracks to the cracked portions of the steel structure and hardening the cracks.
The thickness to be applied is not particularly limited as long as it can be applied and sufficient strength is maintained after curing. By applying the crack growth suppressing resin composition of the present invention to a crack portion of a steel structure with a thickness of 1 mm or more, preferably 20 mm or more, the effect of suppressing crack growth of the steel structure is high.
Further, the thickness of the crack growth suppressing resin composition of the present invention is changed according to the steel material of the steel structure, and the cross-sectional area and shape of the cured resin composition and the area of the adhesive surface are changed. It is possible to suppress crack growth of steel materials of different shapes and types.
The crack growth suppressing resin composition of the present invention is applied on the steel surface of a steel structure having cracks so as to cover all or part of the cracks and cure with a thickness of 1 mm or more. By coating in this way, the crack growth suppressing resin composition of the present invention can generate a stress for resisting the force of crack growth, and produces a crack growth suppressing effect.
As the curing method, normal temperature curing is possible, but a generally used method such as heating as needed can be used.
なお、補修材の塗布に際しては密着性を向上させるために別途プライマーを使用してもよい。プライマーの種類は補修を行う鋼構造体の材質や補修材の樹脂種に応じて適宜選択されるが、例えばエポキシ樹脂系や、シランカップリング剤系のプライマーが好ましく挙げられる。 When applying the repair material, a primer may be used separately in order to improve the adhesion. The type of primer is appropriately selected depending on the material of the steel structure to be repaired and the resin type of the repair material. For example, an epoxy resin-based primer or a silane coupling agent-based primer is preferable.
以下、本発明の実施例に係る亀裂進展抑制樹脂組成物について実施例と比較例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Hereinafter, the crack growth suppressing resin composition according to the examples of the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.
機械物性(引張曲げ、引張弾性率)の測定
本発明の実施例に係る亀裂進展抑制樹脂組成物の引張曲げ強度及び引張弾性率の測定は、JIS K 7162/1B プラスチック引張特性の試験方法に準じて行った。
Measurement of mechanical properties (tensile bending, tensile elastic modulus) The tensile bending strength and tensile elastic modulus of the crack growth suppressing resin composition according to the embodiment of the present invention shall be in accordance with the JIS K 7162 / 1B plastic tensile property test method. I went.
せん断接着強度の測定
本発明の実施例に係る亀裂進展抑制樹脂組成物と一般構造用圧延用鋼材SS400との引張せん断強度による接着強度の評価測定は、JIS K 6850 接着剤−剛性被着材の引張せん断接着強さ試験方法に準じて行った。
Measurement of Shear Adhesive Strength The evaluation measurement of the adhesive strength based on the tensile shear strength between the crack growth suppressing resin composition and the general structural rolling steel material SS400 according to the embodiment of the present invention is the measurement of JIS K 6850 adhesive-rigid adherend. The tensile shear adhesive strength test method was followed.
亀裂進展抑制効果の評価
中心部に、長さlmmの亀裂が生じた、巾Lmm、長さHmm、厚みtmmのSS400鋼材に対して、巾Lmm、長さ2×hmm、厚み2×tmmの補強塗工を行った塗工修復モデルを作製し(図1)、各材料の引張強度及び引張弾性率、せん断強度の実測値を用いてシミュレーション及び測定を行い、下記条件1〜条件3を満たすものを、亀裂進展抑制効果を有するものとした。下記条件1〜条件3を満たすものであれば、実用上、鋼構造物に発生した亀裂の進展を抑制することができる。
(条件1)
下記参考文献1及び2を参考に、式1の算出値が0.5〜3の範囲に収まる。
(式1)
[(L−l)×SS400の引張弾性率×t]
/[L×塗工材料の引張弾性率×2t]
(条件2)
変形歪み0.1%時の塗工材料に発生する内部応力(=「引張弾性率」×0.001)が塗工材料の引張強度以下である。
(条件3)
塗工材料と鋼材の界面の接着強度が、変形歪み0.1%時の塗工材料に発生する内部応力(=「引張弾性率」×0.001)以上である。
参考文献1 "Bonded repair of aircraft structures", edited by A.A. Baker and R. Jones(Engineering application of fracture mechanics, 7) M. Nijhoff , Distributors for the United States and Canada, Kluwer Academic, 1988
参考文献2 M.Sato et al., Adv. Comp. Mater., Vol.11, No.1, p51−59(2022).
Evaluation of crack growth suppressing effect Reinforcement of width L mm, length 2 x hmm, thickness 2 x tmm for SS400 steel material with width L mm, length H mm, and thickness t mm in which a crack with a length of l mm occurred at the center. A coated restoration model is prepared (Fig. 1), and simulations and measurements are performed using the measured values of tensile strength, tensile elastic modulus, and shear strength of each material, and the following conditions 1 to 3 are satisfied. Has a crack growth suppressing effect. Practically, if the following conditions 1 to 3 are satisfied, the growth of cracks generated in the steel structure can be suppressed.
(Condition 1)
With reference to References 1 and 2 below, the calculated value of Equation 1 falls within the range of 0.5 to 3.
(Equation 1)
[(L-l) x SS400 tensile elastic modulus x t]
/ [L x tensile modulus of coating material x 2t]
(Condition 2)
The internal stress (= "tensile elastic modulus" x 0.001) generated in the coating material when the deformation strain is 0.1% is equal to or less than the tensile strength of the coating material.
(Condition 3)
The adhesive strength at the interface between the coating material and the steel material is equal to or greater than the internal stress (= "tensile elastic modulus" x 0.001) generated in the coating material when the deformation strain is 0.1%.
Reference 1 "Bounded repair of aircraft strokes", edited by A. et al. A. Baker and R. Jones (Engineering application of fraction mechanicals, 7) M.D. Nijoff, Distributors for the United States and Canada, Krower Academic, 1988
Reference 2 M. Sato et al. , Adv. Comp. Mater. , Vol. 11, No. 1, p51-59 (2022).
塗工後塗工物の実施工性の評価
垂直に立てかけたSS400製の鋼材板の中心に亀裂進展抑制樹脂組成物を塗工し、24時間後の塗工物の下方向へのダレ量を実際に測定することにより評価を行った。
補強塗工の長さの基準となるhは、例えば100mmのものを用いて測定を行った。
Evaluation of workability of the coated product after coating The crack growth suppressing resin composition is applied to the center of the SS400 steel plate that is erected vertically, and the amount of downward sagging of the coated product after 24 hours is measured. Evaluation was performed by actual measurement.
The h, which is a reference for the length of the reinforcing coating, was measured using, for example, 100 mm.
非球状粒子フィラーの粒子径測定
本発明に係る非球状粒子フィラーの粒子径は、レーザー回折式粒子径分布測定計(マイクロトラックMT3300EX 日機装社製)により体積基準粒子径の測定を行い、メジアン径(D50)を平均粒子径として求めた。
Particle size measurement of non-spherical particle filler The particle size of the non-spherical particle filler according to the present invention is measured by measuring the volume-based particle size with a laser diffraction type particle size distribution meter (Microtrac MT3300EX manufactured by Nikkiso Co., Ltd.). D50) was determined as the average particle size.
〔実施例1〜5、比較例1〜4〕
新日鉄住金化学株式会社製のエポキシ樹脂YD−128(ビスフェノールA型液状エポキシ樹脂、粘度12Pa・s)と株式会社T&K TOKA製硬化剤FXD821−F(変性脂環式ポリアミン硬化剤、粘度0.065Pa・s)を、100対45で混合した樹脂組成物に対して、繊維状フィラーとして日本グラファイトファイバー株式会社製炭素繊維80NT(繊維長6mmおよび25mm品)または、オーシーヴィー津株式会社製ガラス繊維EC13−3MM995(繊維長3mm)を、非球状粒子フィラーとして新日鉄住金化学株式会社製ピッチコークス粉A(平均粒子径15μm)または、日本タルク株式会社製のタルクK−1(平均粒子径8μm)を表1および表2に示す配合に従い株式会社シンキー製の自転公転型のミキサーを用いて常温条件下で配合し、塗工型の亀裂進展抑制樹脂組成物A〜Iを製造した。製造した塗工型の亀裂進展抑制樹脂組成物A〜Iは、それぞれ引張試験により強度および弾性率を測定するとともに、一般構造用圧延鋼材SS400を用いたせん断接着強度および、塗工後塗工物の実施工性を評価した。
引張試験用の試験片は、亀裂進展抑制樹脂組成物A〜Iをトレーの上で平板上に伸ばして、そのまま常温下で一晩放置して硬化した平板から切削加工にて作製しており、残留応力等の影響を排除して物性試験を行うべく、硬化した平板をそのままの常温条件下で約一晩放置して平準化を行った。
一方、せん断接着強度測定試験片は、亀裂進展抑制樹脂組成物A〜Iを厚さ0.75mmで50mmの長さで塗工した一般構造用圧延鋼材SS400(幅32mm×長さ100mm×厚さ3mm)を2枚重ねとすることにより接着し、引張試験用の平板同様にそのまま常温下で一晩放置することにより試験片を作製した。表1に実施例の、表2に比較例の評価結果を示す。
樹脂組成物A〜Iの亀裂進展抑制効果については、シミュレーションおよび測定から硬化後の樹脂組成物が、引張強度が、30MPa以上、引張弾性率が、5GPa以上、せん断接着強度が、1MPa以上を全て満たす場合を亀裂進展抑制効果:有(○)、これらの何れかの値が満たないものを、亀裂進展抑制効果:無(×)とした。
また、塗工後塗工物の実施工性については、亀裂進展抑制樹脂組成物A〜Iを巾10mm、長さ500mmのSS400製鋼材片の中央部に上下長さ方向100mm、塗工厚み20mmの仕様にて塗工し、塗工後24時間経過時の塗工物のダレ量が20mm以内であれば○、20mm以上で×とした。
[Examples 1 to 5, Comparative Examples 1 to 4]
Epoxy resin YD-128 (bisphenol A type liquid epoxy resin, viscosity 12 Pa · s) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and FXD821-F (modified alicyclic polyamine hardener, viscosity 0.065 Pa · s) manufactured by T & K TOKA Co., Ltd. Carbon fiber 80NT manufactured by Nippon Graphite Fiber Co., Ltd. (fiber lengths 6 mm and 25 mm) or glass fiber EC13- manufactured by OCV Tsu Co., Ltd. as a fibrous filler with respect to the resin composition obtained by mixing s) at a ratio of 100:45. Table 1 shows pitch coke powder A (average particle diameter 15 μm) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. or talc K-1 (average particle diameter 8 μm) manufactured by Nippon Steel Co., Ltd. using 3MM995 (fiber length 3 mm) as a non-spherical particle filler. And, according to the formulation shown in Table 2, they were blended under normal temperature conditions using a rotation / revolution type mixer manufactured by Shinky Co., Ltd. to produce coating type crack growth suppressing resin compositions A to I. The strength and elastic modulus of the manufactured coating mold crack growth suppressing resin compositions A to I are measured by tensile tests, and the shear adhesive strength using the rolled steel material SS400 for general structure and the post-coating coated product are obtained. The workability of the above was evaluated.
The test piece for the tensile test is prepared by cutting the crack growth suppressing resin compositions A to I from the cured flat plate by stretching the crack growth suppressing resin compositions A to I on a flat plate and leaving it as it is at room temperature overnight. In order to eliminate the influence of residual stress and the like and perform a physical property test, the cured flat plate was left as it was under normal temperature conditions for about overnight to perform leveling.
On the other hand, the shear adhesive strength measurement test piece is a general structural rolled steel material SS400 (width 32 mm × length 100 mm × thickness) coated with crack growth suppressing resin compositions A to I with a thickness of 0.75 mm and a length of 50 mm. A test piece was prepared by stacking two 3 mm) sheets to bond them and leaving them to stand overnight at room temperature in the same manner as a flat plate for a tensile test. Table 1 shows the evaluation results of Examples, and Table 2 shows the evaluation results of Comparative Examples.
Regarding the crack growth suppressing effect of the resin compositions A to I, the resin composition after curing from simulation and measurement has a tensile strength of 30 MPa or more, a tensile elastic modulus of 5 GPa or more, and a shear bond strength of 1 MPa or more. When satisfied, the crack growth suppressing effect: Yes (○), and when any of these values was not satisfied, the crack growth suppressing effect: No (×).
Regarding the workability of the coated product after coating, the crack growth suppressing resin compositions A to I were placed in the center of the SS400 steel piece having a width of 10 mm and a length of 500 mm in the vertical length direction of 100 mm and a coating thickness of 20 mm. If the amount of sagging of the coated material within 24 hours after coating was within 20 mm, it was evaluated as ◯, and if it was 20 mm or more, it was evaluated as ×.
〔実施例6、比較例5〜6〕
新日鉄住金化学株式会社製のエポキシ樹脂YD−128と株式会社T&K TOKA製硬化剤FXD821−Fを100対45で混合した樹脂組成物100重量部に対して、日本グラファイトファイバー株式会社製炭素繊維80NT(繊維長6mm)、新日鉄住金化学株式会社製ピッチコークス粉A〜Cを用いて、表3に示す配合により混合機にて塗工型の亀裂進展抑制樹脂組成物J〜Lを製造し、実施例1〜5、比較例1〜4と同様にしてそれぞれの強度、弾性率及びせん断接着強度を評価した。なお、新日鉄住金化学株式会社製ピッチコークス粉A〜Cとは、その粒子径の効果を確認するため、微粉砕によって3種類の粒度に調整されたピッチコークス粉であり、塊状のピッチコークスを平均粒子径15μmに微粉砕したものをピッチコークス粉A、微粉砕時に粉塵として回収された最大粒子径が1μm未満の微粉分をピッチコークス粉B、粗粉砕程度(平均粒子径500μm程度)に留めたものをピッチコークス粉Cとした。また、亀裂進展抑制用樹脂組成物J〜Lの亀裂進展抑制効果および塗工後塗工物の実施工性については、実施例1〜5、比較例1〜4と同様にして評価を行った。表3に実施例及び比較例の評価結果を示す。
比較例5では混合物の粘度が高すぎ、試験片を作製できなかった。
比較例6では容易に破断してしまい、弾性率の測定ができなかった。
[Example 6, Comparative Examples 5 to 6]
For 100 parts by weight of the resin composition obtained by mixing the epoxy resin YD-128 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and the curing agent FXD821-F manufactured by T & K TOKA Co., Ltd. at a ratio of 100:45, carbon fiber 80NT manufactured by Nippon Graphite Fiber Co., Ltd. ( Using pitch coke powders A to C manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. with a fiber length of 6 mm), coating-type crack growth-suppressing resin compositions J to L were produced by a mixer according to the formulation shown in Table 3, and examples were obtained. The respective strengths, elastic ratios and shear bond strengths were evaluated in the same manner as in 1 to 5 and Comparative Examples 1 to 4. The pitch coke powders A to C manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd. are pitch coke powders adjusted to three types of particle size by fine grinding in order to confirm the effect of the particle size, and the average of massive pitch cokes. Pitch coke powder A was finely pulverized to a particle size of 15 μm, and fine powder having a maximum particle size of less than 1 μm recovered as dust during fine pulverization was limited to pitch coke powder B and coarsely pulverized (average particle size about 500 μm). It was designated as pitch coke powder C. Further, the crack growth suppressing effect of the crack growth suppressing resin compositions J to L and the workability of the coated product after coating were evaluated in the same manner as in Examples 1 to 5 and Comparative Examples 1 to 4. .. Table 3 shows the evaluation results of Examples and Comparative Examples.
In Comparative Example 5, the viscosity of the mixture was too high to prepare a test piece.
In Comparative Example 6, it broke easily and the elastic modulus could not be measured.
〔実施例7〕
実施例4の亀裂進展抑制樹脂組成物を、試験片にエポキシ樹脂系プライマーを塗布した以外は、実施例1〜6、比較例1〜6と同様にしてせん断接着強度と塗工後塗工物の実施工性の状況評価を行った。表4にその評価結果を示す。
[Example 7]
The crack growth suppressing resin composition of Example 4 was applied to the test piece in the same manner as in Examples 1 to 6 and Comparative Examples 1 to 6, except that the test piece was coated with an epoxy resin primer. The status of implementation workability was evaluated. Table 4 shows the evaluation results.
〔実施例8〕
実施例4の亀裂進展抑制樹脂組成物にモメンティブ・パフォーマンス・マテリアルズ製グリシジル系シランカップリング剤A−187を樹脂組成物100重量部に対して1重量部を添加したこと以外は、実施例1〜6、比較例1〜6と同様にしてせん断接着強度と塗工後塗工物の実施工性の状況評価を行った。表4にその評価結果を示す。
[Example 8]
Example 1 except that 1 part by weight of a glycidyl-based silane coupling agent A-187 manufactured by Momentive Performance Materials was added to 100 parts by weight of the resin composition to the crack growth suppressing resin composition of Example 4. In the same manner as in Comparative Examples 1 to 6, the shear adhesive strength and the workability of the coated product after coating were evaluated. Table 4 shows the evaluation results.
表1〜4の結果より、本発明の亀裂進展抑制樹脂組成物は実施工性が良好であり、亀裂進展抑制効果も得られているが、比較例の樹脂組成物では塗工物の実施工性に何らかの問題があるうえに亀裂進展抑制効果も得られていない。これより、本発明の効果は明瞭である。 From the results shown in Tables 1 to 4, the crack growth suppressing resin composition of the present invention has good workability and a crack growth suppressing effect, but the resin composition of the comparative example is used for the coating product. In addition to having some problem in sex, the effect of suppressing crack growth has not been obtained. From this, the effect of the present invention is clear.
本発明は、鋼建築構造物等の補修等の建築・建設分野で用いることができる。 The present invention can be used in the field of construction / construction such as repair of steel building structures.
Claims (7)
前記樹脂組成物は、前記フィラーとして、繊維長3mm以上の炭素短繊維及び鱗片状フィラーの両方を含有し、
前記樹脂組成物は、粘度が25℃で50〜2000Pa・sであり、常温硬化型の熱硬化性樹脂100重量部に対して炭素短繊維と鱗片状フィラーとを式(I)
鱗片状フィラーの配合量/炭素短繊維の配合量=1〜10・・・式(I)
の配合比で合計20〜150重量部含有し、
鱗片状フィラーの平均粒子径が1〜80μmである、鋼構造物の亀裂箇所に塗布し硬化させることで前記鋼構造物を補強する亀裂進展抑制樹脂組成物。 A resin composition containing a room temperature curable thermosetting resin and a filler.
The resin composition, as the filler, contain both fiber length 3mm or more short carbon fibers and lepidolite flake filler,
The resin composition has a viscosity of 50 to 2000 Pa · s at 25 ° C., and a carbon short fiber and a scaly filler are mixed with 100 parts by weight of a room temperature curable thermosetting resin according to the formula (I).
Blending amount of scaly filler / blending amount of short carbon fibers = 1-10 ... Formula (I)
Contains a total of 20 to 150 parts by weight in the compounding ratio of
A crack growth suppressing resin composition for reinforcing a steel structure by applying the scaly filler to a cracked portion of the steel structure and curing the scaly filler having an average particle size of 1 to 80 μm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015127725 | 2015-06-25 | ||
JP2015127725 | 2015-06-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017008296A JP2017008296A (en) | 2017-01-12 |
JP6767148B2 true JP6767148B2 (en) | 2020-10-14 |
Family
ID=57762737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016074305A Active JP6767148B2 (en) | 2015-06-25 | 2016-04-01 | Crack growth suppression resin composition and crack growth suppression method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6767148B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018104543A (en) * | 2016-12-26 | 2018-07-05 | 新日鉄住金化学株式会社 | Crack propagation inhibition resin composition and cured article thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2671030C2 (en) * | 2017-04-14 | 2018-10-29 | Василий Сигизмундович Марцинковский | Method of restoration of worn surfaces of metal parts |
JP2019196583A (en) * | 2018-05-07 | 2019-11-14 | 日本製鉄株式会社 | Repair structure of bridge |
RU2698001C1 (en) * | 2018-09-26 | 2019-08-21 | Василий Сигизмундович Марцинковский | Method of reconditioning worn-out surfaces of parts of machines from stainless steel |
JP7272849B2 (en) * | 2019-04-10 | 2023-05-12 | 株式会社槌屋 | Adhesive containing carbon fiber |
RU2718599C1 (en) * | 2019-08-27 | 2020-04-08 | Василий Сигизмундович Марцинковский | Method of reduction and simultaneous hardening of parts from sheet steel subjected to abrasive wear during operation (versions) |
RU2740935C1 (en) * | 2020-07-14 | 2021-01-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный аграрный университет имени В.Я. Горина" | Method for plunger recovery by combined treatment |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5139261B2 (en) * | 1972-03-10 | 1976-10-27 | ||
JPS5523877B2 (en) * | 1972-10-03 | 1980-06-25 | ||
JPS5523878B2 (en) * | 1973-02-05 | 1980-06-25 | ||
JPS62243616A (en) * | 1986-04-17 | 1987-10-24 | Nitto Electric Ind Co Ltd | Epoxy resin composition for forming thick film |
JPS6350316A (en) * | 1986-08-21 | 1988-03-03 | Yahashi Kogyo Kk | Method for forming hexagonal and plate-shaped calcium carbonate grain |
JPH09235888A (en) * | 1995-12-27 | 1997-09-09 | Sanyu Resin Kk | Resin composition for injection, and injection method |
KR20000068004A (en) * | 1996-07-23 | 2000-11-25 | 시바 스폐셜티 케미칼스 홀딩 인코포레이티드 | Metal surface treatment |
JP5294846B2 (en) * | 2005-05-12 | 2013-09-18 | ヘンペル エイ/エス | Method for fixing crack-resistant epoxy coating film and coating composition suitable for the method |
-
2016
- 2016-04-01 JP JP2016074305A patent/JP6767148B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018104543A (en) * | 2016-12-26 | 2018-07-05 | 新日鉄住金化学株式会社 | Crack propagation inhibition resin composition and cured article thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2017008296A (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6767148B2 (en) | Crack growth suppression resin composition and crack growth suppression method | |
US11155707B2 (en) | Anti-fatigue cold mixed epoxy resin material, preparation method and application thereof | |
KR101717128B1 (en) | Epoxy Base Waterproof Paint Composition and Surface coating method of concrete structure and water treatment facility using thereof | |
JP6923873B2 (en) | Reinforcement method and reinforcement structure | |
KR100603898B1 (en) | Repairing and strengthening polymer composition having elastic moduluscomparable to concrete for air and under water structures | |
KR100770605B1 (en) | A composition for protecting slip on road | |
KR100787646B1 (en) | Mortar composition for reinforcement of underwater concrete structure and method for reinforcement of concrete structure using thereof | |
JP2019116585A (en) | Epoxy resin composition for reinforcement and cured product of the same | |
JP2018104542A (en) | Epoxy resin composition and cured article thereof | |
CN105884257A (en) | High-strength rapid-hardening type epoxy resin mortar and preparation method thereof | |
KR102484942B1 (en) | Method and material for repairing concrete cracks | |
CN109593504A (en) | Double-component polyurethane repair adhesive and preparation method thereof | |
JPH0811791B2 (en) | Coating material for prestressed concrete tendons | |
JP6952464B2 (en) | Crack growth suppression resin composition and its cured product | |
JP2002121901A (en) | Reinforcing/repairing method for concrete structure having cracks and infiltration type adhesive composition for it | |
JP2011016681A (en) | Rapid hardening polymer cement mortar composition for repair and method for applying the same | |
JP4475687B2 (en) | Two-component epoxy resin adhesive for concrete structures, and repair and reinforcement methods for concrete structures using the same | |
CN108424741A (en) | A kind of epoxy bonds glue of waterproof antirust and its application | |
JP3661358B2 (en) | Liquid epoxy resin composition and method for repairing and reinforcing concrete structures | |
JP2019196583A (en) | Repair structure of bridge | |
KR100801312B1 (en) | Pavement for manhole repair by use of coal digestion pitch | |
CN106587725A (en) | High-strength vibration reduction epoxy mortar used for large equipment foundation and preparation method thereof | |
JPH1121335A (en) | Liquid epoxy resin composition, and repairation and reinforcement of concrete structure | |
JPS61151227A (en) | Vibration-damping material | |
JP5198979B2 (en) | Concrete adhesive epoxy resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6767148 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |