JP6766974B2 - Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene. - Google Patents

Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene. Download PDF

Info

Publication number
JP6766974B2
JP6766974B2 JP2020021264A JP2020021264A JP6766974B2 JP 6766974 B2 JP6766974 B2 JP 6766974B2 JP 2020021264 A JP2020021264 A JP 2020021264A JP 2020021264 A JP2020021264 A JP 2020021264A JP 6766974 B2 JP6766974 B2 JP 6766974B2
Authority
JP
Japan
Prior art keywords
film
derived
based resin
plant
linear low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020021264A
Other languages
Japanese (ja)
Other versions
JP2020079118A (en
Inventor
田恵子 金森
田恵子 金森
文 宮坂
文 宮坂
政人 油野
政人 油野
伊藤 克伸
克伸 伊藤
良彦 鈴木
良彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70802344&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6766974(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2020021264A priority Critical patent/JP6766974B2/en
Publication of JP2020079118A publication Critical patent/JP2020079118A/en
Application granted granted Critical
Publication of JP6766974B2 publication Critical patent/JP6766974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

植物由来ポリエチレン系樹脂を含む包装材用シーラントフィルムおよび包装材用積層フィルム、これらのフィルムを用いた包装袋に関する。 The present invention relates to a sealant film for a packaging material containing a plant-derived polyethylene resin, a laminated film for a packaging material, and a packaging bag using these films.

従来、例えば、シャンプーやリンスなどの詰め替えや、食品などの包材として用いられるパウチなどに代表される包装袋は、シーラントフィルムおよび基材フィルムからなる包装材料で構成されており、環境問題や石油など枯渇資源の節約に対応し、これら石油資源の包装材料への使用量低減のため、カーボンニュートラルな材料としてのポリ乳酸系樹脂に、エチレン−α−オレフィン共重合体およびエポキシ基を有する重合体をそれぞれ所定量含有させた生分解性の樹脂組成物を含む包装袋(例えば特許文献1)がある。 Conventionally, packaging bags typified by, for example, refilling shampoos and rinses and pouches used as packaging materials for foods, etc., are composed of packaging materials composed of a sealant film and a base film, which are environmentally problematic and petroleum. In order to save depleted resources and reduce the amount of these petroleum resources used in packaging materials, polylactic acid-based resins as carbon-neutral materials, ethylene-α-olefin copolymers, and polymers having epoxy groups. There is a packaging bag (for example, Patent Document 1) containing a biodegradable resin composition containing a predetermined amount of each.

特開2009−155516号公報JP-A-2009-155516

しかし、このような包装袋では、上述したように、包装袋を構成する樹脂組成物に石油由来原料以外の生分解性樹脂を含有させて石油由来原料の比率を下げているものの、石油系樹脂と比較して引裂強度やヒートシール強度などの加工適性が著しく劣り、生産性を向上させることができないという問題があった。
従って、この発明の目的は、再生可能資源である植物由来のポリエチレン系樹脂を原料に用いて、石油資源の節約を可能とするとともに、二酸化炭素の排出量削減による環境にやさしい包装材用シーラントフィルムおよび包装材用積層フィルム、ならびにこれらのフィルムを用いた加工適性に優れる包装袋を提供することにある。
However, in such a packaging bag, as described above, although the resin composition constituting the packaging bag contains a biodegradable resin other than the petroleum-derived raw material to reduce the ratio of the petroleum-derived raw material, the petroleum-based resin Compared with the above, there is a problem that the processability such as tear strength and heat seal strength is remarkably inferior, and the productivity cannot be improved.
Therefore, an object of the present invention is to use a polyethylene-based resin derived from a plant, which is a renewable resource, as a raw material to enable saving of petroleum resources and an environment-friendly sealant film for packaging materials by reducing carbon dioxide emissions. Another object of the present invention is to provide a laminated film for a packaging material and a packaging bag having excellent processability using these films.

本発明は、植物由来エチレンと石油由来α−オレフィンとが共重合された植物由来の直鎖状低密度ポリエチレン系樹脂を含む単層構成のフィルムからなり、該植物由来の直鎖状低密度ポリエチレン系樹脂は、放射性炭素年代測定14Cの測定値から算定するバイオマス度が80〜100%未満のエチレン−α−オレフィン共重合体であって、密度が0.910〜0.925g/cm3、メルトフローレートが0.5〜4.0 g/10分の物性を有し、前記植物由来の直鎖状低密度ポリエチレン系樹脂を含む単層は、植物由来の直鎖状低密度ポリエチレン系樹脂を5重量%以上90重量%以下含むことを特徴とする包装材用ヒートシール性フィルムである。 The present invention comprises a single-layer film containing a plant-derived linear low-density polyethylene-based resin in which plant-derived ethylene and petroleum-derived α-olefin are copolymerized, and the plant-derived linear low-density polyethylene. The based resin is an ethylene-α-olefin copolymer having a biomass degree of less than 80 to 100% calculated from the measured value of radioactive carbon dating 14C , and has a density of 0.910 to 0.925 g / cm 3 . The single layer containing the plant-derived linear low-density polyethylene-based resin having a melt flow rate of 0.5 to 4.0 g / 10 minutes is a plant-derived linear low-density polyethylene-based resin. Is a heat-sealing film for packaging materials, which comprises 5% by weight or more and 90% by weight or less.

また、本発明は、植物由来エチレンと石油由来α−オレフィンとが共重合された植物由来の直鎖状低密度ポリエチレン系樹脂を含む層を少なくとも1層含む多層構成のフィルムからなり、該植物由来の直鎖状低密度ポリエチレン系樹脂は、放射性炭素年代測定14Cの測定値から算定するバイオマス度が80〜100%未満のエチレン−α−オレフィン共重合体であって、密度が0.910〜0.925g/cm3、メルトフローレートが0.5〜4.0 g/10分の物性を有し、前記植物由来の直鎖状低密度ポリエチレン系樹脂を含む層は、植物由来の直鎖状低密度ポリエチレン系樹脂を5重量%以上90重量%以下含むことを特徴とする包装材用ヒートシール性フィルムである。 The present invention also comprises a multi-layered film containing at least one layer containing a plant-derived linear low-density polyethylene-based resin in which a plant-derived ethylene and a petroleum-derived α-olefin are copolymerized, and the plant-derived film. The linear low-density polyethylene resin of No. 1 is an ethylene-α-olefin copolymer having a biomass degree of less than 80 to 100% calculated from the measured value of radioactive carbon dating 14C, and has a density of 0.910 to 0. The layer containing the plant-derived linear low-density polyethylene-based resin has physical properties of .925 g / cm3 and a melt flow rate of 0.5 to 4.0 g / 10 minutes, and the plant-derived linear low-density polyethylene-based resin is used. A heat-sealing film for packaging materials, which comprises 5% by weight or more and 90% by weight or less of a density polyethylene-based resin.

本発明の包装材料シーラントフィルムにおいて、α−オレフィンが、ブテン−1またはヘキセン−1またはこれらの混合物であってもよい。 In the packaging material sealant film of the present invention, the α-olefin may be butene-1 or hexene-1 or a mixture thereof.

本発明は、少なくとも、基材フィルムと、上記記載の包装材用ヒートシール性フィルムとからなり、前記基材フィルムが、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂のいずれかである包装材用積層フィルムであってもよい。 The present invention comprises at least a base film and the above-mentioned heat-sealing film for packaging materials, and the base film is for a packaging material in which the base film is any one of polypropylene-based resin, polyester-based resin, and polyamide-based resin. It may be a laminated film.

本発明は、上記記載の包装材用積層フィルムを用いてなることを特徴とする容器であってもよい。
本発明は、上記記載の包装材用積層フィルムを用いてなることを特徴とする包装袋であってもよい。
本発明は、上記記載の包装材用積層フィルムを用いてなることを特徴とする蓋材であってもよい。
本発明は、上記記載の包装材用積層フィルムを用いてなることを特徴とするラベルであってもよい。
本発明は、上記記載の包装材用積層フィルムを用いてなることを特徴とするラミネートチューブであってもよい。
本発明は、上記記載の包装材用シーラントフィルムを用いてなることを特徴とする容器であってもよい。
本発明は、上記記載の包装材用シーラントフィルムを用いてなることを特徴とする包装袋であってもよい。
The present invention may be a container characterized by using the above-mentioned laminated film for packaging material.
The present invention may be a packaging bag characterized by using the above-mentioned laminated film for packaging material.
The present invention may be a lid material characterized by using the above-mentioned laminated film for packaging material.
The present invention may be a label characterized by using the above-mentioned laminated film for packaging material.
The present invention may be a laminated tube characterized by using the above-mentioned laminated film for a packaging material.
The present invention may be a container characterized by using the above-mentioned sealant film for packaging material.
The present invention may be a packaging bag characterized by using the above-mentioned sealant film for packaging material.

包装材用シーラントフィルムの構成を、全て石油由来の樹脂組成物に依存する状態から、植物由来のポリエチレン系樹脂を混成することで、石油資源の使用量を削減するとともに、包装材用シーラントフィルム製造の二酸化炭素排出量を抑制することができる。従って、環境負荷を低減させた包装材用シーラントフィルムを提供することができる。従って、石油資源の節約および環境負荷を低減させた包装材用シーラントフィルムを提供することができる。 By mixing plant-derived polyethylene-based resin from a state in which the composition of the sealant film for packaging materials depends entirely on the resin composition derived from petroleum, the amount of petroleum resources used can be reduced and the sealant film for packaging materials can be manufactured. Carbon dioxide emissions can be suppressed. Therefore, it is possible to provide a sealant film for a packaging material having a reduced environmental load. Therefore, it is possible to provide a sealant film for a packaging material that saves petroleum resources and reduces the environmental load.

サトウキビ由来のポリエチレン製造の一例を示すフロー図である。It is a flow chart which shows an example of the production of polyethylene derived from sugar cane. 本願発明のサトウキビ由来の直鎖状低密度ポリエチレン系樹脂からなるフィルムを模式的に示す断面側面図である。FIG. 5 is a cross-sectional side view schematically showing a film made of a linear low-density polyethylene-based resin derived from sugar cane of the present invention. 本願発明の樹脂組成物と、石油由来のポリエチレン系樹脂とを混合した単層構成のフィルムを模式的に示す断面側面図である。FIG. 5 is a cross-sectional side view schematically showing a single-layer film in which the resin composition of the present invention and a polyethylene-based resin derived from petroleum are mixed. 本願発明の中間層を樹脂組成物とした多層構造からなるフィルムを模式的に示す断面側面図である。FIG. 5 is a cross-sectional side view schematically showing a film having a multilayer structure in which the intermediate layer of the present invention is a resin composition. 本願発明の中間層を樹脂組成物および石油由来ポリエチレン系樹脂を混合した層とした多層構造からなるフィルムを模式的に示す断面側面図である。FIG. 5 is a cross-sectional side view schematically showing a film having a multilayer structure in which the intermediate layer of the present invention is a layer in which a resin composition and a polyethylene-based resin derived from petroleum are mixed. 本願発明の積層フィルムの一例を模式的に示す断面側面図である。It is sectional drawing which shows typically an example of the laminated film of this invention. 本願発明の積層フィルムを用いて形成した包装袋の一例としてのスタンディングパウチを示す斜視図である。It is a perspective view which shows the standing pouch as an example of the packaging bag formed by using the laminated film of this invention.

以下、図面を参照しつつ本発明を実施するための最良の形態について説明する。食品や化粧品などに用いられるラミネートチューブなどに例示される容器や、シャンプーやリンスの詰め替えの包材として広く採用されているスタンディングパウチなどに例示される包装袋には、これら容器や包装袋が積層フィルムで構成されている。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. These containers and packaging bags are laminated on containers such as laminated tubes used for foods and cosmetics, and packaging bags such as standing pouches that are widely used as packaging materials for refilling shampoos and conditioners. It is composed of film.

この積層フィルムには、基材フィルムに、ヒートシール材として積層フィルムの内面に使用するシーラントフィルムを積層させるものがあり、基材フィルムの材質として、例えばポリエチレン系樹脂などが用いられるとともに、シーラントフィルムの材質には、積層体として例えば中間層を挟んで直鎖状低密度ポリエチレン系樹脂が用いられている。 Some of these laminated films are made by laminating a sealant film used on the inner surface of the laminated film as a heat sealing material on the base film. As the material of the base film, for example, polyethylene resin or the like is used, and the sealant film is used. As the material of the above, for example, a linear low-density polyethylene-based resin is used as a laminate with an intermediate layer interposed therebetween.

このように、積層フィルムの材質には、プラスチック樹脂であるポリエチレン系樹脂が多く用いられているが、従来、このポリエチレン系樹脂は、出発原料を石油とする石油化学由来により製造されており、例えば、上述した直鎖状低密度ポリエチレン系樹脂は、原油の精製などにより得られたエチレンと、コモノマー種としてのα−オレフィンとを、メタロセン触媒の存在下、気相において、120℃以上などの高温で共重合させたものである。なお、α−オレフィンは、一般式R−CH=CH(式中、Rは炭素数1以上のアルキル基)で表される、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、オクタデセンなど例示することができる。また、メタロセン触媒は特に限定しないが、例えば、シクロペンタジエニル基、置換基を有するシクロペンタジエニル基(置換シクロペンタジエニル基)、インデニル基、置換インデニル基から選ばれる1種類の基と、フルオレニル基、置換フルオレニル基から選ばれる1種類の基が、架橋基により架橋された配位子を有する周期表第4族の遷移金属化合物を挙げることができ、その代表例としてジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−
インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド等のジクロル体および上記メタロセン化合物のジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体等を例示するメタロセン化合物を主成分として含むメタロセン触媒が用いられる。また、メタロセン触媒は、例えば、シクロペンタジエニル基、置換基を有するシクロペンタジエニル基(置換シクロペンタジエニル基)、インデニル基、置換インデニル基から選ばれる1種類の基と、フルオレニル基、置換フルオレニル基から選ばれる1種類の基が、架橋基により架橋された配位子を有する周期表第4族の遷移金属化合物を挙げることができ、その代表例としてジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(4−フェニル−1−インデニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド等のジクロル体および上記メタロセン化合物のジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体などを例示するメタロセン化合物を主成分とするものである。
As described above, polyethylene-based resin, which is a plastic resin, is often used as the material of the laminated film. Conventionally, this polyethylene-based resin is produced from petrochemical origin using petroleum as a starting material, for example. In the above-mentioned linear low-density polyethylene-based resin, ethylene obtained by refining crude oil and α-olefin as a copolymer species are mixed at a high temperature of 120 ° C. or higher in the gas phase in the presence of a metallocene catalyst. It is copolymerized with. The α-olefin is represented by the general formula R-CH = CH 2 (in the formula, R is an alkyl group having 1 or more carbon atoms), such as propylene, 1-butene, 1-pentene, 1-hexene, 1-. Examples thereof include heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-pentene, octadecene and the like. The metallocene catalyst is not particularly limited, and is, for example, one type of group selected from a cyclopentadienyl group, a cyclopentadienyl group having a substituent (substituted cyclopentadienyl group), an indenyl group, and a substituted indenyl group. , A transition metal compound of Group 4 of the periodic table having a ligand in which one kind of group selected from a fluorenyl group and a substituted fluorenyl group has a ligand crosslinked by a cross-linking group can be mentioned, and as a typical example thereof, diphenylmethylene (1). -Cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7) -Dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-
Indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (4-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (4-phenyl-1-indenyl) (2,7-di-t-butyl) A metallocene catalyst containing a dichloro compound such as -9-fluorenyl) zirconium dichloride and a metallocene compound exemplifying the dimethyl form, diethyl form, dihydro form, diphenyl form, dibenzyl form and the like of the metallocene compound as a main component is used. Further, the metallocene catalyst is, for example, one kind of group selected from a cyclopentadienyl group, a cyclopentadienyl group having a substituent (substituted cyclopentadienyl group), an indenyl group, a substituted indenyl group, and a fluorenyl group. One type of group selected from the substituted fluorenyl groups can be a transition metal compound of Group 4 of the periodic table having a ligand crosslinked by a bridging group, and a typical example thereof is diphenylmethylene (1-cyclopentadienyl). Enyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-dimethyl-9) -Fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-indenyl) (9-fluorenyl) zirconium dichloride, diphenyl Dichloro compounds such as methylene (4-phenyl-1-indenyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (4-phenyl-1-indenyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride The main component of the metallocene compound is a metallocene compound such as a dimethyl compound, a diethyl compound, a dihydro compound, a diphenyl compound, or a dibenzyl compound.

しかしながら、石油など枯渇資源の節約志向とともに、二酸化炭素排出量の増加による地球温暖化など環境問題の意識が高まる中で、上述したような石油由来によるポリエチレン系樹脂では、石化製品の製造から廃棄に至るまでの間に、石油原料の持つ固定化した二酸化炭素が大量に排出されてしまうため、上記志向に沿うことができない。 However, with the desire to save depleted resources such as petroleum and the growing awareness of environmental issues such as global warming due to the increase in carbon dioxide emissions, the above-mentioned petroleum-derived polyethylene-based resins have been changed from the production of petroleum products to disposal. In the meantime, a large amount of fixed carbon dioxide contained in petroleum raw materials will be emitted, so the above intention cannot be met.

このような問題を踏まえ、近年、プラスチック類を、カーボンニュートラルで再生可能資源である植物から製造する技術の開発が進んでおり、その中でも、プラスチック類中で最も多く生産されているポリエチレンを、バイオマス系のサトウキビを出発原料として生産する技術が確立した。(加工技術研究会編、コンバーテック2009.9、P63〜67)なお、カーボンニュートラルとは、植物の生育時の二酸化炭素吸収量と、燃焼時の二酸化炭素排出量とが略同一であることをいう。 In light of these problems, in recent years, the development of technology for producing plastics from plants, which are carbon-neutral and renewable resources, has been progressing. Among them, polyethylene, which is the most produced among plastics, is biomass. The technology to produce sugar cane as a starting material has been established. (Edited by Processing Technology Study Group, Convertec 2009.9, P63-67) In addition, carbon neutral means that the amount of carbon dioxide absorbed during plant growth and the amount of carbon dioxide emitted during combustion are approximately the same. Say.

図1は、サトウキビ由来のポリエチレン製造の一例を示すフロー図、図2は本願発明のサトウキビ由来の直鎖状低密度ポリエチレン系樹脂からなるフィルムを模式的に示す断面側面図である。 FIG. 1 is a flow chart showing an example of sugarcane-derived polyethylene production, and FIG. 2 is a cross-sectional side view schematically showing a film made of a linear low-density polyethylene-based resin derived from sugarcane of the present invention.

この図1に示すように、畑より刈り取ったサトウキビをから取り出した糖液を加熱濃縮して結晶化させた粗糖と廃糖密とを遠心分離機で分離する。次いで、廃糖密を適切な濃度まで水で希釈し、酵母菌により発酵させてエタノールを生成する。そして、このバイオエタノールを加熱して触媒存在下で分子内脱水反応により得られたエチレンを、重合触媒により重合させてポリエチレンが得られる。なお、植物由来のエチレンおよびポリエチレンは、石油由来のエチレンおよびポリエチレンと品質同等性が確認されている。 As shown in FIG. 1, the sugar solution taken out from the sugar cane cut from the field is heated and concentrated to crystallize the crude sugar and the molasses densely separated by a centrifuge. The molasses is then diluted with water to an appropriate concentration and fermented with yeast to produce ethanol. Then, this bioethanol is heated and ethylene obtained by an intramolecular dehydration reaction in the presence of a catalyst is polymerized with a polymerization catalyst to obtain polyethylene. It has been confirmed that plant-derived ethylene and polyethylene have the same quality as petroleum-derived ethylene and polyethylene.

そこで、本願発明のフィルムに用いる直鎖状低密度ポリエチレン系樹脂は、上記のような出発原料を植物由来としたエチレンから生成するものであるが、この生成方法としては、石油由来のエチレンから直鎖状低密度ポリエチレン系樹脂を生成する場合と同じように、植物由来エチレンと、α−オレフィンとを、メタロセン触媒の存在下において気相重合法により共重合させることで得ることができる。 Therefore, the linear low-density polyethylene-based resin used for the film of the present invention is produced from ethylene derived from a plant as a starting material as described above, and the production method is directly from ethylene derived from petroleum. It can be obtained by copolymerizing plant-derived ethylene and α-olefin by a vapor phase polymerization method in the presence of a metallocene catalyst, as in the case of producing a chain low-density polyethylene resin.

本願発明では、上記のようにして得られた植物由来の直鎖状低密度ポリエチレン系樹脂を用いて容器や包装袋を構成した積層フィルムを形成するフィルムを製造することにより、積層フィルムに用いられる樹脂組成物(直鎖状低密度ポリエチレン系樹脂など)において、石油由来樹脂組成物の使用比率を低下させて、石油資源の節約を可能とするとともに、二酸化炭素の排出量削減による環境向上に貢献するものである。 In the present invention, it is used as a laminated film by producing a film for forming a laminated film constituting a container or a packaging bag by using the plant-derived linear low-density polyethylene resin obtained as described above. In resin compositions (linear low-density polyethylene-based resins, etc.), the ratio of petroleum-derived resin compositions used can be reduced to save petroleum resources and contribute to environmental improvement by reducing carbon dioxide emissions. Is what you do.

本願では、上記気相重合法にて得られたサトウキビ(サトウキビに限定されず、その他直鎖状低密度ポリエチレン系樹脂の製造原料となる植物であればよい)由来の直鎖状低密度ポリエチレン系樹脂からなる樹脂組成物1を用いて、図2に示すようなフィルムF1とすることができる。 In the present application, a linear low-density polyethylene-based material derived from sugar cane obtained by the above-mentioned vapor phase polymerization method (not limited to sugar cane, as long as it is a plant used as a raw material for producing a linear low-density polyethylene-based resin). A resin composition 1 made of a resin can be used to obtain a film F1 as shown in FIG.

また、上記サトウキビ由来の直鎖状低密度ポリエチレン系樹脂は、石油由来の直鎖状低密度ポリエチレン系樹脂と同様に、コモノマー種がブテン−1(C4)、密度が0.910〜0.925g/cm、メルトフローレート(MFR)が0.5〜4.0g/10分の範囲、より好ましくは0.7〜3.5g/10分とした各物性を有することができ、そのエチレン−α−オレフィン共重合体が用いられる。このようなサトウキビ由来の直鎖状低密度ポリエチレン系樹脂からなる樹脂組成物を石油由来の直鎖状低密度ポリエチレン系樹脂に対して90重量%を上限に適宜割合で含有させるものである。 Further, the linear low-density polyethylene-based resin derived from sugar cane has a copolymer type of butene-1 (C4) and a density of 0.910 to 0.925 g, similarly to the linear low-density polyethylene-based resin derived from petroleum. It can have various physical properties such as / cm 3 and a melt flow rate (MFR) in the range of 0.5 to 4.0 g / 10 minutes, more preferably 0.7 to 3.5 g / 10 minutes, and its ethylene-. An α-olefin copolymer is used. A resin composition made of such a linear low-density polyethylene-based resin derived from sugar cane is contained in an appropriate ratio up to 90% by weight with respect to the linear low-density polyethylene-based resin derived from petroleum.

なお、上記物性評価では、密度(d、単位:g/cm)として、150℃でプレス成形して得られた厚さ1mmのシートを用い、JIS K 6760(1981)に従って測定を行ったものである。また、メルトフローレート(MFR、単位:g/10分)は、JIS K 7210(1995)に準じ、試験温度190℃の条件にて、試験荷重21.18Nで測定したものである。 In the above physical property evaluation, the density (d, unit: g / cm 3 ) was measured according to JIS K 6760 (1981) using a sheet having a thickness of 1 mm obtained by press molding at 150 ° C. Is. The melt flow rate (MFR, unit: g / 10 minutes) was measured at a test load of 21.18 N under the condition of a test temperature of 190 ° C. according to JIS K 7210 (1995).

さらには、上記サトウキビ由来の直鎖状低密度ポリエチレン系樹脂には、放射性炭素年代測定14Cによるバイオマス度が、80〜100%を有する上記エチレン−α−オレフィン共重合体が用いられる。 Further, as the linear low-density polyethylene-based resin derived from sugar cane, the ethylene-α-olefin copolymer having a biomass degree of 80 to 100% by radiocarbon dating 14C is used.

ここで、植物(バイオマス)由来と石油由来の樹脂組成物は、分子量や機械的性質・熱的性質のような物性に差を生じない。そこで、これらを区別するためには、一般的にバイオマス度が用いられている。このバイオマス度では、石油由来の樹脂組成物の炭素には、14C(放射性炭素14、半減期5730年)が含まれていないことから、この14Cの濃度を加速器質量分析により測定し、樹脂組成物において、植物由来樹脂組成物の含有割合の指標にするものである。従って、植物由来の樹脂組成物を用いたフィルムであれば、そのフィルムのバイオマス度を測定すると、植物由来樹脂組成物の含有量に応じたバイオマス度が生じる。 Here, the plant (biomass) -derived and petroleum-derived resin compositions do not have any difference in physical properties such as molecular weight, mechanical properties, and thermal properties. Therefore, in order to distinguish between them, the degree of biomass is generally used. At this biomass degree, the carbon of the petroleum-derived resin composition does not contain 14 C (radiocarbon 14, half-life 5730 years), so the concentration of this 14 C was measured by accelerator mass spectrometry and the resin. It is used as an index of the content ratio of the plant-derived resin composition in the composition. Therefore, in the case of a film using a plant-derived resin composition, when the biomass degree of the film is measured, the biomass degree is generated according to the content of the plant-derived resin composition.

このバイオマス度の測定は、測定対象試料を燃焼して二酸化炭素を発生させ、真空ラインで精製した二酸化炭素を、鉄を触媒として水素で還元し、グラファイトを生成させる。そして、このグラファイトをタンデム加速器をベースとした14C−AMS専用装置(NEC社製)に装着して、14Cの計数、13Cの濃度(13C/12C)、14Cの濃度(14C/12C)の測定を行い、この測定値から標準現代炭素に対する試料炭素の14C濃度の割合を算出する。この測定では、米国国立標準局(NIST)から提供されたシュウ酸(HOxII)を標準試料とした。 In this measurement of biomass degree, the sample to be measured is burned to generate carbon dioxide, and the carbon dioxide purified in the vacuum line is reduced with hydrogen using iron as a catalyst to produce graphite. Then, this graphite was mounted on a 14 C-AMS dedicated device (manufactured by NEC) based on a tandem accelerator, and 14 C count, 13 C concentration ( 13 C / 12 C), and 14 C concentration ( 14). C / 12 C) is measured, and the ratio of the 14 C concentration of sample carbon to standard modern carbon is calculated from this measured value. For this measurement, oxalic acid (HOxII) provided by the National Institute of Standards and Standards (NIST) was used as a standard sample.

本願ではこのような樹脂組成物からなるフィルムの構成にすることで、全て石油由来の樹脂組成物に依存する状態から、この石油由来のポリエチレン系樹脂に、石油由来のポリエチレン系樹脂と性能的に違いがないサトウキビなど植物由来のポリエチレン系樹脂を混
成(置換)することで、フィルム製造および廃棄時の二酸化炭素排出量を抑制することができる。
In the present application, by forming a film composed of such a resin composition, the polyethylene-based resin derived from petroleum can be compared with the polyethylene-based resin derived from petroleum in terms of performance from the state of being completely dependent on the resin composition derived from petroleum. By mixing (replacement) a polyethylene-based resin derived from a plant such as sugar cane that has no difference, it is possible to suppress carbon dioxide emissions during film production and disposal.

また、本願発明の樹脂組成物1は、コモノマー種がブテン−1、密度が0.910〜0.920g/cm,メルトフローレートが0.70〜1.30g/10分のエチレン−α−オレフィン共重合体であるので、石油由来のポリエチレン系樹脂と物性的に違いがないため、既存のフィルム製造工程を用いることができ、包材の加工適性を損ねることなく原料を切替えることができる。 Further, in the resin composition 1 of the present invention, the copolymer species is butene-1, the density is 0.910 to 0.920 g / cm 3 , and the melt flow rate is 0.70 to 1.30 g / 10 minutes of ethylene-α-. Since it is an olefin copolymer, it has no physical difference from the polyethylene-based resin derived from petroleum, so that the existing film manufacturing process can be used, and the raw materials can be switched without impairing the processability of the packaging material.

さらに、本願発明の樹脂組成物1は、放射性炭素年代測定14Cの測定値から算定するバイオマス度を有するエチレン−α−オレフィン共重合体であるので、フィルムを構成するポリエチレン系樹脂の原料由来を、このバイオマス度を指標にして識別でき、フィルムの製造時から廃棄時までの由来原料を確認することができる。 Further, since the resin composition 1 of the present invention is an ethylene-α-olefin copolymer having a biomass degree calculated from the measured value of radiocarbon dating 14C , it is derived from the raw material of the polyethylene-based resin constituting the film. , This degree of biomass can be used as an index for identification, and the raw materials derived from the time of film production to the time of disposal can be confirmed.

次に、本願では、上述した樹脂組成物1と、後述する石油由来ポリエチレン系樹脂2とで、以下のようなフィルムに構成させることができる。図3は樹脂組成物と、石油由来のポリエチレン系樹脂とを混合した単層構成のフィルムを模式的に示す断面側面図、図4は中間層を樹脂組成物とした多層構造からなるフィルムを模式的に示す断面側面図、図5は中間層を樹脂組成物および石油由来ポリエチレン系樹脂を混合した層とした多層構造からなるフィルムを模式的に示す断面側面図である。 Next, in the present application, the above-mentioned resin composition 1 and the petroleum-derived polyethylene-based resin 2 described later can be formed into the following film. FIG. 3 is a cross-sectional side view schematically showing a film having a single-layer structure in which a resin composition and a polyethylene-based resin derived from petroleum are mixed, and FIG. 4 is a schematic view of a film having a multilayer structure with an intermediate layer as a resin composition. FIG. 5 is a cross-sectional side view schematically showing a film having a multilayer structure in which an intermediate layer is a layer in which a resin composition and a polyethylene-based resin derived from petroleum are mixed.

この場合、上記樹脂組成物1を5〜90重量%と、石油由来ポリエチレン系樹脂2を10〜95重量%とを、下記の(A)または(B)あるいは(C)の要領にてフィルムを構成した。まず(A)のフィルムF2として、図3に示すように、樹脂組成物1と、石油由来のポリエチレン系樹脂2とを混合した単層構成にすることができる。 In this case, 5 to 90% by weight of the resin composition 1 and 10 to 95% by weight of the petroleum-derived polyethylene-based resin 2 are used to form a film as described in (A), (B) or (C) below. Configured. First, as the film F2 of (A), as shown in FIG. 3, a single-layer structure in which the resin composition 1 and the polyethylene-based resin 2 derived from petroleum are mixed can be formed.

また、(B)のフィルムF3として、図4に示すように、中間層を樹脂組成物1とし、外層および内層を石油由来ポリエチレン系樹脂2とした多層構成にすることもできる。 Further, as the film F3 of (B), as shown in FIG. 4, a multilayer structure may be formed in which the intermediate layer is the resin composition 1 and the outer layer and the inner layer are the petroleum-derived polyethylene-based resin 2.

さらに、(C)のフィルムF4として、図5に示すように、中間層を樹脂組成物1と、石油由来ポリエチレン系樹脂2とを混合した層とし、外層および内層を石油由来ポリエチレン系樹脂2とした多層構成にすることもできる。 Further, as the film F4 of (C), as shown in FIG. 5, the intermediate layer is a layer in which the resin composition 1 and the petroleum-derived polyethylene-based resin 2 are mixed, and the outer layer and the inner layer are the petroleum-derived polyethylene-based resin 2. It is also possible to have a multi-layered structure.

このような構成にすることで、フィルムF2〜F4を構成するポリエチレン系樹脂2の石油由来の使用比率を低下させることができ、フィルム製造および廃棄時の二酸化炭素排出量を抑制することができる。加えて、(B)あるいは(C)のようなフィルムF3〜F4を構成する内外層に石油由来ポリエチレン系樹脂2を用いることで、既存の製造工程が有する特性でフィルムF3〜F4を製造することができる。 With such a configuration, the proportion of the polyethylene-based resin 2 constituting the films F2 to F4 derived from petroleum can be reduced, and the amount of carbon dioxide emitted during film production and disposal can be suppressed. In addition, by using petroleum-derived polyethylene-based resin 2 for the inner and outer layers constituting the films F3 to F4 such as (B) or (C), the films F3 to F4 can be produced with the characteristics of the existing manufacturing process. Can be done.

次に、本願では、上記フィルムF1〜F4を用いた積層フィルムにすることができる。図6は、積層フィルムの一例を模式的に示す断面側面図、図7は本願発明の積層フィルムを用いて形成した包装袋の一例としてのスタンディングパウチを示す斜視図である。 Next, in the present application, a laminated film using the above films F1 to F4 can be obtained. FIG. 6 is a cross-sectional side view schematically showing an example of a laminated film, and FIG. 7 is a perspective view showing a standing pouch as an example of a packaging bag formed by using the laminated film of the present invention.

まず、積層フィルム3は、この図6に示すように、上記フィルムF1〜F4のいずれかをシーラントフィルム4として、基材フィルム5と積層させる。 First, as shown in FIG. 6, the laminated film 3 is laminated with the base film 5 by using any of the films F1 to F4 as the sealant film 4.

なお、基材フィルム5としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系
樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等の各種樹脂フィルムまたはシートを使用することができる。
The base film 5 includes, for example, a polyethylene resin, a polypropylene resin, a cyclic polyolefin resin, a polystyrene resin, an acrylonitrile-styrene copolymer (AS resin), and an acrylonitrile-butadiene-styrene copolymer (ABS resin). ), Polyvinyl chloride resin, fluororesin, poly (meth) acrylic resin, polycarbonate resin, polyethylene terephthalate, polyester resin such as polyethylene naphthalate, polyamide resin such as various nylons, polyimide resin, polyamide Use various resin films or sheets such as imide resin, polyarylphthalate resin, silicone resin, polysulfone resin, polyphenylene sulfide resin, polyether sulfone resin, polyurethane resin, acetal resin, cellulose resin, etc. Can be done.

このような構成にすることで、ヒートシールに用いるシーラントフィルム4においても、このシーラントフィルム4である各フィルムF1〜F4を構成するポリエチレン系樹脂の石油由来の使用比率を低下させることができ、石油資源の節約とともに、積層フィルム3の製造および廃棄時の二酸化炭素排出量を抑制することができる。 With such a configuration, even in the sealant film 4 used for heat sealing, the ratio of the polyethylene-based resins constituting the films F1 to F4 of the sealant film 4 derived from petroleum can be reduced, and petroleum can be used. In addition to saving resources, it is possible to suppress carbon dioxide emissions during the production and disposal of the laminated film 3.

以上のような積層フィルム3を用い、積層フィルム3からなる2枚の側面シート7、8のシーラントフィルム4面同士を対向して配置し、積層フィルム3の下端部に少なくとも片面にシーラントフィルム4が積層された積層体からなる底面シート9を、シーラントフィルム4面を外面にして中央で山折りして挿入し、ガセット部を有する形式に形成されており、山折りされた底面シート9の両側下端近傍には、略半円形の底面シートの切り欠き部が設けられ、ガセット部が、周縁部を含む船底形の底部シール部でヒートシールされ底部が形成される。 Using the laminated film 3 as described above, the four surfaces of the sealant films 7 and 8 of the two side sheets 7 and 8 made of the laminated film 3 are arranged so as to face each other, and the sealant film 4 is placed on at least one side at the lower end of the laminated film 3. The bottom sheet 9 made of the laminated laminated body is inserted by folding the bottom sheet 9 in the center with the four surfaces of the sealant film as the outer surface, and is formed in a form having a gusset portion. A notch portion of a substantially semicircular bottom sheet is provided in the vicinity, and the gusset portion is heat-sealed by a bottom-shaped bottom seal portion including a peripheral portion to form a bottom portion.

次いで、表裏の2枚の側面シート7、8の両側端縁部を側端縁シール部でヒートシールして胴部が形成され、上端部を残して内容物の充填口とする、図7に示すようなスタンディングパウチ形式に製袋されたパウチ(包装袋6)が形成される。そして、上端部の充填口に設けた上部シール部は、この部分から内容物を充填した後、例えば、脱気シールなどによりヒートシールして密封するものである。なお、図示しないが、胴部の上部などにレーザーにて開封用切れ目線を設けた注出口部を形成させてもよい。 Next, both side edge portions of the two front and back side surface sheets 7 and 8 are heat-sealed with the side edge seal portion to form a body portion, and the upper end portion is left as a filling port for the contents. A pouch (packaging bag 6) made in the standing pouch format as shown is formed. The upper seal portion provided at the filling port at the upper end is filled with the contents from this portion and then heat-sealed by, for example, a degassing seal. Although not shown, a spout portion having a cut line for opening may be formed by a laser on the upper part of the body portion or the like.

このような構成にすることで、包装袋6を構成する積層フィルム3におけるポリエチレン系樹脂の石油由来の使用比率を低下させることができ、石油資源の節約とともに、包装袋6の製造および廃棄時の二酸化炭素排出量を抑制することができる。特にこの包装袋6が、詰め替え用スタンディングパウチであるので、使い捨てとして普及するこのような包装袋を構成するポリエチレン系樹脂の石油由来の使用比率を低下させるとともに、二酸化炭素排出量を大きく抑制することができる。 With such a configuration, it is possible to reduce the ratio of the polyethylene-based resin used in the laminated film 3 constituting the packaging bag 6 derived from petroleum, which saves petroleum resources and at the time of manufacturing and disposing of the packaging bag 6. It is possible to suppress carbon dioxide emissions. In particular, since the packaging bag 6 is a standing pouch for refilling, the ratio of the polyethylene-based resin constituting such a packaging bag, which is widely used as a disposable bag, derived from petroleum is reduced, and carbon dioxide emissions are greatly suppressed. Can be done.

なお、本願発明の樹脂組成物1からなるフィルムF1〜F4や、これらフィルムF1〜F4を用いた積層フィルム3を使用して、上述したスタンディングパウチに例示される包装袋6以外にも、ポリエチレン系樹脂を用いた樹脂組成物1から構成される、例えば、飲食品・化粧品・薬品・雑貨品などの内容物を収容するラミネートチューブ、液体紙容器などを含む容器や、容器の蓋材、あるいは容器のラベルなどを構成することができ、いっそう石油由来の使用比率を低下させるとともに、二酸化炭素排出量を大きく抑制することができる。 In addition to the packaging bag 6 exemplified in the above-mentioned standing pouch, the films F1 to F4 made of the resin composition 1 of the present invention and the laminated film 3 using these films F1 to F4 are used in addition to the polyethylene-based film. A container composed of a resin composition 1 using a resin, for example, a laminated tube for accommodating contents such as food and drink, cosmetics, chemicals, miscellaneous goods, a liquid paper container, a container lid material, or a container. It is possible to further reduce the usage ratio of petroleum-derived materials and greatly reduce carbon dioxide emissions.

次に、本願発明の植物由来ポリエチレン系樹脂(樹脂組成物1)を用いて構成したフィルムの実施例を説明する。 Next, an example of a film constructed by using the plant-derived polyethylene-based resin (resin composition 1) of the present invention will be described.

スクリュー径30mmφ押出機を用いて、サトウキビ由来直鎖状低密度ポリエチレン系樹脂(樹脂組成物1)であるブラスケム社C4LL−LL118(d=0.916、MFR=1.0g/10分)を200℃で溶融混練し、樹脂組成物を得た。次いで、上吹き空冷インフレーション共押出製膜機により、押出し温度200℃、回転数60rpmの加工条件において樹脂組成物を成形することで、厚み50μmの安定して外観の優れる図1に
示すフィルムF1を製膜することができ、そのバイオマス度を測定すると、約88%であった。なお、サトウキビ由来直鎖状低密度ポリエチレン系樹脂に含まれるコモノマー種のブテン−1(C4)は石油由来のものであり、その含有量は1〜15モル%(以下同様)である。
Using an extruder with a screw diameter of 30 mmφ, 200 braskem C4LL-LL118 (d = 0.916, MFR = 1.0 g / 10 minutes), which is a linear low-density polyethylene resin derived from sugar cane (resin composition 1). The resin composition was obtained by melt-kneading at ° C. Next, the resin composition was formed by a top-blown air-cooled inflation coextrusion film forming machine under processing conditions of an extrusion temperature of 200 ° C. and a rotation speed of 60 rpm to obtain a stable film F1 having a thickness of 50 μm and an excellent appearance. A film could be formed, and the biomass degree was measured to be about 88%. The comonomer species butene-1 (C4) contained in the sugar cane-derived linear low-density polyethylene resin is derived from petroleum, and its content is 1 to 15 mol% (the same applies hereinafter).

これに対し、上記フィルムF1の比較例1として、石化由来C4LL直鎖状低密度ポリエチレン系樹脂を用いて、実施例1と同様にして、押出し温度200℃、回転数60rpmの加工条件で厚み50μmのフィルムに成形し、バイオマス度を測定すると、0%であった。 On the other hand, as Comparative Example 1 of the film F1, a petrified C4LL linear low-density polyethylene resin was used, and the thickness was 50 μm under the processing conditions of an extrusion temperature of 200 ° C. and a rotation speed of 60 rpm in the same manner as in Example 1. When it was molded into the film and the biomass degree was measured, it was 0%.

実施例1の樹脂組成物について次の各物性評価試験を行い、得られた結果を以下に記す。

Figure 0006766974
上記結果から、サトウキビ(植物)由来直鎖状低密度ポリエチレン系樹脂(実施例1)は、石化由来直鎖状低密度ポリエチレン系樹脂(比較例1)に比べて、引張破断強度や引裂強さが強く、腰やシール強度は同等の強度を有し、弾性率が低く柔軟であることが分かる。このように、植物由来直鎖状低密度ポリエチレン系樹脂は、石化由来直鎖状低密度ポリエチレン系樹脂と比較して同等以上の物性を有し、石化由来直鎖状低密度ポリエチレン系樹脂の製造加工適性と遜色ないことが実証された。 The following physical property evaluation tests were carried out on the resin composition of Example 1, and the results obtained are described below.
Figure 0006766974
From the above results, the linear low-density polyethylene-based resin derived from sugar cane (plant) (Example 1) has a tensile breaking strength and tear strength as compared with the petrified linear low-density polyethylene-based resin (Comparative Example 1). It can be seen that the strength is strong, the waist and seal strength are the same, the elastic modulus is low, and the material is flexible. As described above, the plant-derived linear low-density polyethylene-based resin has the same or better physical properties as the petrification-derived linear low-density polyethylene-based resin, and the petrification-derived linear low-density polyethylene-based resin can be produced. It was proved to be comparable to processing suitability.

なお、引張破断強度(伸び)は、JIS−Z1702を参考にテンシロン万能試験機を用い、試験速度500mm/min. N=3 JIS−K7127試験片タイプ5(ダンベル片:最小平行巾6mm、チャック間距離80mm)で行った。
弾性率(引張)は、JIS−K7176参考にテンシロン万能試験機を用い、試験速度1mm/min. 1.5mm伸びた時の強度を測定したもので、N=3 JIS−K7127試験片タイプ2参考(短冊:巾15mm、チャック間距離150mm)で行った。
腰は、ループスティフネステスターを用い、ループ長さ60mm、サンプル巾15mm、N=3、押しつぶし距離17mm(目盛り3)で行った。
シール強度は、ヒートシールテスターTP−701Sを用い、片面加熱 1kgf/cm×1.0s PET12μmを評価サンプルの上に載せてシールし、テンシロン万能試験機において試験速度300mm/min. 巾15mm N=3 140℃で行った。
For the tensile breaking strength (elongation), a Tensilon universal tester was used with reference to JIS-Z1702, and the test speed was 500 mm / min. N = 3 JIS-K7127 test piece type 5 (dumbbell piece: minimum parallel width 6 mm, chuck distance 80 mm).
For the elastic modulus (tensile), a Tensilon universal tester was used with reference to JIS-K7176, and the test speed was 1 mm / min. The strength when stretched by 1.5 mm was measured, and was performed with reference to N = 3 JIS-K7127 test piece type 2 (strip: width 15 mm, distance between chucks 150 mm).
The waist was performed using a loop stiffness tester with a loop length of 60 mm, a sample width of 15 mm, N = 3, and a crushing distance of 17 mm (scale 3).
For the sealing strength, a heat seal tester TP-701S was used, and one-sided heating 1 kgf / cm 2 × 1.0 s PET 12 μm was placed on the evaluation sample to seal the seal, and the test speed was 300 mm / min in a Tensilon universal tester. Width 15 mm N = 3 140 ° C.

スクリュー径30mmφ押出機を用いて、サトウキビ由来直鎖状低密度ポリエチレン系樹脂(樹脂組成物1)であるブラスケム社C4LL−LL118(d=0.916、MFR=1.0g/10分)を50重量%と、石油由来直鎖状低密度ポリエチレン系樹脂2である宇部丸善ポリエチレンLDPE−F120N(d=0.920、MFR=1.2g/10分)50重量%を200℃で溶融混練し、樹脂組成物を得た。次いで、上吹き空冷インフレーション共押出製膜機により、押出し温度200℃、回転数60rpmの加工条件において樹脂組成物を厚み130μmの図3に示すフィルムF2に成形し、そのバイオマス度を測定すると、約44%であった。 Using an extruder with a screw diameter of 30 mmφ, 50 brasschem C4LL-LL118 (d = 0.916, MFR = 1.0 g / 10 minutes), which is a linear low-density polyethylene resin derived from sugar cane (resin composition 1). 50% by weight and 50% by weight of Ube Maruzen polyethylene LDPE-F120N (d = 0.920, MFR = 1.2g / 10 minutes), which is a petroleum-derived linear low-density polyethylene resin 2, are melt-kneaded at 200 ° C. A resin composition was obtained. Next, the resin composition was molded into the film F2 shown in FIG. 3 having a thickness of 130 μm under the processing conditions of an extrusion temperature of 200 ° C. and a rotation speed of 60 rpm by a top-blown air-cooled inflation coextrusion film forming machine, and the biomass degree was measured. It was 44%.

第1層用および第3層用樹脂組成物として、スクリュー径30mmφ押出機を用いて、三井化学C6LL−エボリューSP2020(d=0.916、MFR=2.3g/10分)を200℃で溶融混練し、樹脂組成物を得た。同様に第2層用樹脂組成物として、スクリュー径30mmφ押出機を用いて、サトウキビ由来直鎖状低密度ポリエチレン系樹脂であるブラスケム社C4LL−LL118(d=0.916、MFR=1.0g/10分)を200℃で溶融混練し、樹脂組成物を得た。なお、第1層:第2層:第3層の層比は1:1:1とした。次いで、二種三層の上吹き空冷インフレーション共押出製膜機により、押出し温度200℃、回転数60rpmの加工条件において樹脂組成物を厚み130μmの図4に示すフィルムF3に成形し、そのバイオマス度を測定すると、約29%であった。 Mitsui Chemicals C6LL-Evolu SP2020 (d = 0.916, MFR = 2.3 g / 10 minutes) was melted at 200 ° C. using a screw diameter 30 mmφ extruder as the resin composition for the first layer and the third layer. The mixture was kneaded to obtain a resin composition. Similarly, as the resin composition for the second layer, using an extruder having a screw diameter of 30 mmφ, Braskem's C4LL-LL118 (d = 0.916, MFR = 1.0 g /), which is a linear low-density polyethylene resin derived from sugar cane. 10 minutes) was melt-kneaded at 200 ° C. to obtain a resin composition. The layer ratio of the first layer: the second layer: the third layer was 1: 1: 1. Next, the resin composition was formed into a film F3 having a thickness of 130 μm as shown in FIG. 4 under processing conditions of an extrusion temperature of 200 ° C. and a rotation speed of 60 rpm by a two-kind three-layer top-blown air-cooled inflation coextrusion film forming machine, and the degree of biomass thereof. Was measured and was about 29%.

第1層用および第3層用樹脂組成物として、スクリュー径30mmφ押出機を用いて、三井化学C6LL−エボリューSP2020(d=0.916、MFR=2.3g/10分)を200℃で溶融混練し、樹脂組成物を得た。同様に第2層用樹脂組成物として、スクリュー径30mmφ押出機を用いて、サトウキビ由来直鎖状低密度ポリエチレン系樹脂であるブラスケム社C4LL−LL118(d=0.916、MFR=1.0g/10分)50重量部と、宇部丸善ポリエチレンLDPE−F120N(d=0.920、MFR=1.2g/10分)50重量部とを200℃で溶融混練し、樹脂組成物を得た。なお、第1層:第2層:第3層の層比は1:2:1とした。次いで、二種三層の上吹き空冷インフレーション共押出製膜機により、押出し温度200℃、回転数60rpmの加工条件において樹脂組成物を厚み130μmの図5に示すフィルムF4に成形し、このバイオマス度を測定すると、約22%であった。 Mitsui Chemicals C6LL-Evolu SP2020 (d = 0.916, MFR = 2.3 g / 10 minutes) was melted at 200 ° C. using a screw diameter 30 mmφ extruder as the resin composition for the first layer and the third layer. The mixture was kneaded to obtain a resin composition. Similarly, as the resin composition for the second layer, using a screw diameter 30 mmφ extruder, Brasschem's C4LL-LL118 (d = 0.916, MFR = 1.0 g /), which is a linear low-density polyethylene-based resin derived from sugar cane. 10 minutes) 50 parts by weight and 50 parts by weight of Ube Maruzen polyethylene LDPE-F120N (d = 0.920, MFR = 1.2 g / 10 minutes) were melt-kneaded at 200 ° C. to obtain a resin composition. The layer ratio of the first layer: the second layer: the third layer was 1: 2: 1. Next, the resin composition was formed into a film F4 having a thickness of 130 μm as shown in FIG. 5 under processing conditions of an extrusion temperature of 200 ° C. and a rotation speed of 60 rpm by a two-kind three-layer top-blown air-cooled inflation coextrusion film forming machine. Was measured and was about 22%.

外層に厚み25μmの、基材フィルム5としての二軸延伸ナイロンフィルム(ONy、東洋紡ハーデンN−1102)と、実施例4のフィルムF4とを用いて2液硬化型のウレタン系接着剤を使用し、ONy面に該接着剤を約4g/m塗布してポリエチレンのコロナ処理面をドライラミネーション法により貼合し、2層構成の図6に示す積層フィルム3を得、このバイオマス度を測定すると、約18%であった。 A two-component curable urethane-based adhesive was used for the outer layer using a biaxially stretched nylon film (ONy, Toyobo Harden N-1102) as a base film 5 having a thickness of 25 μm and the film F4 of Example 4. , About 4 g / m 2 of the adhesive was applied to the ONy surface, and the corona-treated surface of polyethylene was bonded by a dry lamination method to obtain a laminated film 3 shown in FIG. 6 having a two-layer structure, and the degree of biomass was measured. , About 18%.

そして、この積層フィルム3を使用し、レーザーにて開封用切れ目線を設けた注出口部付詰め替え用スタンディングパウチ(包装袋6)を作成し、この詰め替え用スタンディングパウチに内容物を入れて口部を密封したものについて、内容物の漏れ、転倒、座屈、胴部の折れを観察したが、認められなかった。さらに1mの高さから落下テストを5回行ったが、破袋、漏れなどは全く認められなかった。 Then, using this laminated film 3, a refillable standing pouch (packaging bag 6) with a spout portion provided with a cut line for opening is created by a laser, and the contents are put in the refillable standing pouch and the mouth portion. Leakage, tipping, buckling, and breakage of the torso were observed in the sealed product, but no evidence was observed. Furthermore, a drop test was conducted 5 times from a height of 1 m, but no bag breakage or leakage was observed.

外層に厚み25μmの、基材フィルム5としての二軸延伸ナイロンフィルム(ONy、東洋紡ハーデンN−1102)と、中間層に、片面にアルミニウム蒸着された厚さ12μmのVMPET(金属蒸着フィルムであり、ポリエチレンテレフタレートフィルムにアルミニウムを蒸着したもの)のアルミニウム蒸着面と積層し、さらにVMPETのポリエチレンテレフタレート面に2液硬化型のウレタン系接着剤を約4g/m塗布して、実施例4のフィルムF4のコロナ処理面とをドライラミネーション法により貼合し、3層構成の積層フィルム3を得た。そして、この積層フィルム3を使用し、レーザーにて開封用切れ目線を設けた注出口部付詰め替え用スタンディングパウチ(包装袋6)を作成し、バイオマス度を測定すると、約17%であった。 A biaxially stretched nylon film (ONy, Toyo Boseki Harden N-1102) as a base film 5 having a thickness of 25 μm on the outer layer, and a 12 μm-thick VMPET (metal-deposited film) having aluminum vapor-deposited on one side of the intermediate layer. The film F4 of Example 4 was laminated with an aluminum-deposited surface of (a polyethylene terephthalate film on which aluminum was vapor-deposited), and further coated with a two-component curable urethane-based adhesive at about 4 g / m 2 on the polyethylene terephthalate surface of VMPET. Was bonded to the corona-treated surface of the above by a dry lamination method to obtain a laminated film 3 having a three-layer structure. Then, using this laminated film 3, a refillable standing pouch (packaging bag 6) with a spout portion provided with a cut line for opening was prepared by a laser, and the biomass degree was measured and found to be about 17%.

作成した詰め替え用スタンディングパウチに内容物を入れて口部を密封したものについて、内容物の漏れ、転倒、座屈、胴部の折れを観察したが、認められなかった。さらに1mの高さから落下テストを5回行ったが、破袋、漏れ等は全く認められなかった。 Leakage, tipping, buckling, and breakage of the torso were observed in the prepared refillable standing pouch with the contents sealed in the mouth, but no findings were observed. Furthermore, a drop test was conducted 5 times from a height of 1 m, but no bag breakage or leakage was observed.

上記実施例6の注出口部付詰め替え用スタンディングパウチにおける底材のみを、延伸ポリアミド(ONY)/LLDPE(直鎖状低密度ポリエチレン)からなる石油由来フィルムを用いて作成した詰め替え用スタンディングパウチに内容物を入れて口部を密封したものについて、内容物の漏れ、転倒、座屈、胴部の折れを観察したが、認められなかった。さらに1mの高さから落下テストを5回行ったが、破袋、漏れ等は全く認められなかった。従って、本願発明のスタンディングパウチの底材には、胴部と同じ植物由来を含む積層フィルム3でも、石油由来のフィルムでもどちらを用いてもよい。 Only the bottom material of the refillable standing pouch with the spout of Example 6 is contained in the refillable standing pouch prepared by using a petroleum-derived film made of stretched polyamide (ONY) / LLDPE (linear low density polyethylene). Leakage, tipping, buckling, and breakage of the torso were observed in the case where an object was put in and the mouth was sealed, but none was observed. Furthermore, a drop test was conducted 5 times from a height of 1 m, but no bag breakage or leakage was observed. Therefore, as the bottom material of the standing pouch of the present invention, either the laminated film 3 containing the same plant origin as the body portion or the petroleum-derived film may be used.

実施例1同様に、スクリュー径30mmφ押出機を用いて、サトウキビ由来直鎖状低密度ポリエチレン系樹脂(樹脂組成物1)であるブラスケム社C4LL−LL318(d=0.918、MFR=2.7g/10分)を200℃で溶融混練し、樹脂組成物を得た。次いで、Tダイキャスト製膜機により、押出し温度220℃、回転数45rpmの加工条件において樹脂組成物を成形することで、厚み120μm(1種3層)の安定して外観の優れるフィルムを製膜することができ、そのバイオマス度を測定すると、約88%であった。 Similar to Example 1, using an extruder with a screw diameter of 30 mmφ, Braskem C4LL-LL318 (d = 0.918, MFR = 2.7 g), which is a linear low-density polyethylene resin derived from sugar cane (resin composition 1). / 10 min) was melt-kneaded at 200 ° C. to obtain a resin composition. Next, the resin composition is molded by a T-die cast film forming machine under processing conditions of an extrusion temperature of 220 ° C. and a rotation speed of 45 rpm to form a stable film having a thickness of 120 μm (3 layers of 1 type) and having an excellent appearance. When the biomass degree was measured, it was about 88%.

実施例1同様に、スクリュー径30mmφ押出機を用いて、サトウキビ由来直鎖状低密度ポリエチレン系樹脂(樹脂組成物1)であるブラスケム社C4LL−LL318(d=0.918、MFR=2.7g/10分)と、三井化学C6LL−エボリューSP2020(d=0.918、MFR=3.8g/10分)とを7:3で200℃において混練溶融し、Tダイキャスト製膜機により、押出し温度220℃、回転数45rpmの加工条件において樹脂組成物を成形することで、厚み120μm(1種3層)の安定して外観の優れるフィルムを製膜することができ、そのバイオマス度を測定すると、約59%であった。 Similar to Example 1, using an extruder with a screw diameter of 30 mmφ, Braskem C4LL-LL318 (d = 0.918, MFR = 2.7 g), which is a linear low-density polyethylene resin derived from sugar cane (resin composition 1). / 10 min) and Mitsui Chemicals C6LL-Evolu SP2020 (d = 0.918, MFR = 3.8 g / 10 min) are kneaded and melted at 7: 3 at 200 ° C. and extruded by a T-die cast film forming machine. By molding the resin composition under the processing conditions of a temperature of 220 ° C. and a rotation speed of 45 rpm, a stable film having a thickness of 120 μm (3 layers of 1 type) and having an excellent appearance can be formed, and the degree of biomass thereof is measured. , About 59%.

以上詳述したように、この例のポリエチレン系樹脂からなるフィルムF1〜F4は、気相重合法にて得られた直鎖状低密度の植物由来ポリエチレン系樹脂を含む樹脂組成物1からなるものである。また、これらフィルムF1〜F4をシーラントフィルムとし、基材フィルム5と積層させた積層フィルム3とするとともに、包装袋6は、この積層フィルム3からなるものである。 As described in detail above, the films F1 to F4 made of the polyethylene-based resin of this example are made of the resin composition 1 containing the linear low-density plant-derived polyethylene-based resin obtained by the vapor phase polymerization method. Is. Further, these films F1 to F4 are used as a sealant film, and the laminated film 3 is laminated with the base film 5, and the packaging bag 6 is made of the laminated film 3.

なお、この発明は、ポリエチレン系樹脂からなるフィルムおよび、このフィルムで構成された包装袋や容器など、ポリエチレン系樹脂を用いたあらゆる製品に適用することができる。 The present invention can be applied to any product using a polyethylene resin, such as a film made of a polyethylene resin and a packaging bag or container made of the film.

1 樹脂組成物
2 石油由来ポリエチレン系樹脂
3 積層フィルム
4 シーラントフィルム
5 基材フィルム
6 包装袋
7,8 側面シート
9 底面シート
F1〜F4 フィルム
1 Resin composition 2 Petroleum-derived polyethylene resin 3 Laminated film 4 Sealant film 5 Base film 6 Packaging bag 7, 8 Side sheet 9 Bottom sheet F1 to F4 film

Claims (11)

植物由来エチレンと石油由来α−オレフィンとが共重合された植物由来の直鎖状低密度ポリエチレン系樹脂を含む単層構成のフィルムからなり、
該植物由来の直鎖状低密度ポリエチレン系樹脂は、放射性炭素年代測定14Cの測定値から算定するバイオマス度が80〜100%未満のエチレン−α−オレフィン共重合体であって、密度が0.910〜0.925g/cm3、メルトフローレートが0.7〜3.5 g/10分の物性を有し、
前記植物由来の直鎖状低密度ポリエチレン系樹脂を含む単層は、植物由来の直鎖状低密度ポリエチレン系樹脂を5重量%以上90重量%以下含むことを特徴とする包装材用ヒートシール性フィルム。
It consists of a single-layer film containing a plant-derived linear low-density polyethylene-based resin in which plant-derived ethylene and petroleum-derived α-olefin are copolymerized.
The plant-derived linear low-density polyethylene-based resin is an ethylene-α-olefin copolymer having a biomass degree of less than 80 to 100% calculated from the measured value of radiocarbon dating 14C , and has a density of 0. .910-0.925 g / cm 3 , melt flow rate 0.7-3.5 g / 10 minutes,
The single layer containing the plant-derived linear low-density polyethylene-based resin contains 5% by weight or more and 90% by weight or less of the plant-derived linear low-density polyethylene-based resin, and has a heat-sealing property for packaging materials. the film.
植物由来エチレンと石油由来α−オレフィンとが共重合された植物由来の直鎖状低密度ポリエチレン系樹脂を含む層を少なくとも1層含む多層構成のフィルムからなり、
該植物由来の直鎖状低密度ポリエチレン系樹脂は、放射性炭素年代測定14Cの測定値から算定するバイオマス度が80〜100%未満のエチレン−α−オレフィン共重合体であって、密度が0.910〜0.925g/cm3、メルトフローレートが0.7〜3.5g/10分の物性を有し、
前記植物由来の直鎖状低密度ポリエチレン系樹脂を含む層は、植物由来の直鎖状低密度ポリエチレン系樹脂を5重量%以上90重量%以下含むことを特徴とする包装材用ヒートシール性フィルム。
It is composed of a multi-layered film containing at least one layer containing a plant-derived linear low-density polyethylene-based resin obtained by copolymerizing plant-derived ethylene and petroleum-derived α-olefin.
The plant-derived linear low-density polyethylene-based resin is an ethylene-α-olefin copolymer having a biomass degree of less than 80 to 100% calculated from the measured value of radiocarbon dating 14C , and has a density of 0. .910-0.925 g / cm 3 , melt flow rate 0.7-3.5 g / 10 minutes,
The layer containing the plant-derived linear low-density polyethylene-based resin contains 5% by weight or more and 90% by weight or less of the plant-derived linear low-density polyethylene-based resin, and is a heat-sealing film for packaging materials. ..
前記α−オレフィンが、ブテン−1またはヘキセン−1またはこれらの混合物であることを特徴とする請求項1または2に記載の包装材用ヒートシール性フィルム。 The heat-sealable film for a packaging material according to claim 1 or 2, wherein the α-olefin is butene-1, hexene-1, or a mixture thereof. 少なくとも、基材フィルムと、請求項1ないし3のいずれか1項に記載の包装材用ヒートシール性フィルムとからなり、
前記基材フィルムが、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂のいずれかである包装材用積層フィルム。
At least, it comprises a base film and the heat-sealing film for packaging material according to any one of claims 1 to 3.
A laminated film for a packaging material in which the base film is any one of polypropylene-based resin, polyester-based resin, and polyamide-based resin.
請求項4に記載の包装材用積層フィルムを用いてなることを特徴とする容器。 A container using the laminated film for packaging material according to claim 4. 請求項4に記載の包装材用積層フィルムを用いてなることを特徴とする包装袋。 A packaging bag using the laminated film for packaging material according to claim 4. 請求項4に記載の包装材用積層フィルムを用いてなることを特徴とする蓋材。 A lid material using the laminated film for packaging material according to claim 4. 請求項4に記載の包装材用積層フィルムを用いてなることを特徴とするラベル。 A label according to claim 4, wherein the laminated film for a packaging material is used. 請求項4に記載の包装材用積層フィルムを用いてなることを特徴とするラミネートチューブ。 A laminated tube using the laminated film for a packaging material according to claim 4. 請求項1ないし3のいずれか1項に記載の包装材用ヒートシール性フィルムを用いてなることを特徴とする容器。 A container using the heat-sealing film for packaging material according to any one of claims 1 to 3. 請求項1ないし3のいずれか1項に記載の包装材用ヒートシール性フィルムを用いてなることを特徴とする包装袋。 A packaging bag comprising the heat-sealing film for packaging material according to any one of claims 1 to 3.
JP2020021264A 2020-02-12 2020-02-12 Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene. Active JP6766974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021264A JP6766974B2 (en) 2020-02-12 2020-02-12 Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021264A JP6766974B2 (en) 2020-02-12 2020-02-12 Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018218098A Division JP6662437B2 (en) 2018-11-21 2018-11-21 Sealant film for packaging material using plant-derived polyethylene, laminated film for packaging material, and packaging bag

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020122500A Division JP6852830B2 (en) 2020-07-17 2020-07-17 Sealant film for packaging materials using plant-derived polyethylene, laminated film for packaging materials, and packaging bags

Publications (2)

Publication Number Publication Date
JP2020079118A JP2020079118A (en) 2020-05-28
JP6766974B2 true JP6766974B2 (en) 2020-10-14

Family

ID=70802344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021264A Active JP6766974B2 (en) 2020-02-12 2020-02-12 Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene.

Country Status (1)

Country Link
JP (1) JP6766974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175285A (en) * 2020-07-30 2021-01-05 上海森韦得实业有限公司 Preparation method of heat-shrinkable film capable of reducing carbon emission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041110B2 (en) * 2000-09-01 2012-10-03 東洋紡績株式会社 Polyolefin resin film and laminated packaging material
JP4812411B2 (en) * 2005-11-25 2011-11-09 旭化成ケミカルズ株式会社 Heat shrinkable multilayer film
AU2008331448B2 (en) * 2007-12-05 2013-12-19 Braskem S.A. Integrated process for the production of ethylene-butylene copolymer, an ethylene-butylene copolymer and the use of ethylene and 1-butylene, as comonomer, sourced from renewable natural raw materials
JP2010162748A (en) * 2009-01-15 2010-07-29 Toppan Cosmo Inc Decorative sheet
JP6439779B2 (en) * 2016-12-22 2018-12-19 大日本印刷株式会社 Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene

Also Published As

Publication number Publication date
JP2020079118A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP5799520B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6350589B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP7300379B2 (en) Films and packaging bags using plant-derived polyethylene resin
JP2013151623A (en) Film and packaging bag using polyethylene-based resin derived from plant
JP6011585B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6439779B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP2023010731A (en) Film and packaging bag using plant-derived polyethylene-based resin
JP6638758B2 (en) Film and packaging bag using plant-based polyethylene resin
JP6299653B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6763907B2 (en) Films and packaging bags made of plant-derived polyethylene resin
JP6766974B2 (en) Sealant film for packaging materials, laminated film for packaging materials, and packaging bags using plant-derived polyethylene.
JP6443432B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6265233B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6614203B2 (en) Film and packaging bag using plant-derived polyethylene resin
JP6705573B1 (en) Sealant film for packaging material using plant-derived polyethylene, laminated film for packaging material, and packaging bag
JP6662437B2 (en) Sealant film for packaging material using plant-derived polyethylene, laminated film for packaging material, and packaging bag
JP6699710B2 (en) Sealant film for packaging material using plant-derived polyethylene, laminated film for packaging material, and packaging bag
JP6508319B2 (en) Sealant film for packaging material using plant-derived polyethylene, laminated film for packaging material, and packaging bag
JP6642541B2 (en) Film and packaging bag using plant-based polyethylene resin
JP6852830B2 (en) Sealant film for packaging materials using plant-derived polyethylene, laminated film for packaging materials, and packaging bags
JP6197820B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6699779B2 (en) Sealant film for packaging material using plant-derived polyethylene, laminated film for packaging material, and packaging bag
JP2016145370A (en) Sealant resin composition
JP6432589B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6172197B2 (en) Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200729

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157