JP6766016B2 - Method for producing tin-containing oxide glass - Google Patents

Method for producing tin-containing oxide glass Download PDF

Info

Publication number
JP6766016B2
JP6766016B2 JP2017153774A JP2017153774A JP6766016B2 JP 6766016 B2 JP6766016 B2 JP 6766016B2 JP 2017153774 A JP2017153774 A JP 2017153774A JP 2017153774 A JP2017153774 A JP 2017153774A JP 6766016 B2 JP6766016 B2 JP 6766016B2
Authority
JP
Japan
Prior art keywords
glass
oxide
mol
precursor
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153774A
Other languages
Japanese (ja)
Other versions
JP2019031419A (en
Inventor
山本 哲
哲 山本
吉田 幹
幹 吉田
貴明 新妻
貴明 新妻
徹 西部
徹 西部
博和 正井
博和 正井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2017153774A priority Critical patent/JP6766016B2/en
Publication of JP2019031419A publication Critical patent/JP2019031419A/en
Application granted granted Critical
Publication of JP6766016B2 publication Critical patent/JP6766016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、スズ含有酸化物ガラスの低温溶融製造方法に関するThe present invention relates to a method for producing a tin-containing oxide glass by melting at a low temperature.

近年、3次元レーザプリンタに代表されるように、簡便に複雑な形状を作り上げられる技術に注目が集まっている。このような材料としては、一般的には、有機高分子が用いられているが、ガス透過性や化学的耐久性の観点からは、無機材料、特に成型加工が容易な酸化物ガラスが望ましい。しかしながら、通常の酸化物ガラスは、酸化物原料粉末を一旦1000℃以上の高温で溶融し、アモルファス化する一般的な溶融法で作製されており、このような用途には不適である。 In recent years, as represented by a three-dimensional laser printer, attention has been focused on a technique for easily creating a complicated shape. As such a material, an organic polymer is generally used, but from the viewpoint of gas permeability and chemical durability, an inorganic material, particularly an oxide glass that can be easily molded, is desirable. However, ordinary oxide glass is produced by a general melting method in which an oxide raw material powder is once melted at a high temperature of 1000 ° C. or higher and amorphized, and is not suitable for such applications.

また、1000℃以上の高温で溶融する場合には、溶融に用いる容器から成分のコンタミが懸念され、設計通りの組成を得ることが難しく、ゆえに高品質化が難しいという問題がある。 Further, when melting at a high temperature of 1000 ° C. or higher, there is a concern about contamination of components from the container used for melting, and it is difficult to obtain the composition as designed, and therefore it is difficult to improve the quality.

一方で、酸化物ガラスの中にも、550℃以下の低温で溶融する低融点ガラスというガラス部材が存在する。この低融点ガラスは、低融点化成分として鉛を多く含有しており、主として電子部品の被覆・封止材料等として用いられてきた。特に、最近のハイパワーLEDの開発に伴い、従来用いられてきた有機封止材料では適応が困難なデバイスが生じてきている。特に、可視領域の透明性と低温での軟化特性を兼ね備えた低融点酸化物ガラスが必要とされている。しかしながら、前述の低融点酸化物ガラスに含まれる鉛成分は、環境負荷物質としてRoHS規制などにより禁止されたり、規制外用途でも使用が敬遠されており、その利用が困難である。そのため、鉛を含まない低温で成型加工が可能な低融点酸化物ガラスの開発は、産業界から切望されている。 On the other hand, even in oxide glass, there is a glass member called low melting point glass that melts at a low temperature of 550 ° C. or lower. This low melting point glass contains a large amount of lead as a low melting point component, and has been mainly used as a coating / sealing material for electronic parts. In particular, with the recent development of high-power LEDs, there are some devices that are difficult to adapt with the conventionally used organic encapsulant materials. In particular, there is a need for low melting point oxide glass that has both transparency in the visible region and softening properties at low temperatures. However, the lead component contained in the above-mentioned low melting point oxide glass is prohibited as an environmentally hazardous substance by RoHS regulations and the like, and its use is avoided even in non-regulated applications, and its use is difficult. Therefore, the development of low melting point oxide glass that does not contain lead and can be molded at a low temperature is eagerly desired by the industrial world.

このようなRoHS規制の課題を解決するため、鉛を含む低融点酸化物ガラスの代替ガラスとして、ビスマス系、バナジウム系、リン系等の低融点酸化物ガラス(例えば、特許文献1〜4)が開発されている。この中でビスマス系低融点酸化物ガラスの主成分Biは現在規制されていないが、将来規制対象になる可能性の問題がある。バナジウム系低融点酸化物化ガラスは黒色に着色したガラスとなり、透明性を求める用途には使用できない問題がある。リン系低融点酸化物ガラスは規制対象になる可能性は少なく、透明性ガラスを作製できる点で魅力がある。 In order to solve such the problem of RoHS regulation, low melting point oxide glass such as bismuth type, vanadium type and phosphorus type (for example, Patent Documents 1 to 4) is used as an alternative glass for low melting point oxide glass containing lead. It is being developed. Among these, the main component Bi of bismuth-based low melting point oxide glass is not currently regulated, but there is a problem that it may be subject to regulation in the future. The vanadium-based low melting point oxide glass becomes a glass colored black, and has a problem that it cannot be used for applications requiring transparency. Phosphorus-based low melting point oxide glass is unlikely to be subject to regulation, and is attractive in that transparent glass can be produced.

リン系低融点酸化物ガラスの代表組成としては、リン以外に亜鉛を含有したP−Zn系、スズを含有したP−Sn系が代表的であるが、亜鉛を主体に含有したP−Zn系はスズ含有のP−Sn系に比べ耐水性(化学的耐久性)に乏しい欠点があった。そのため、応用には耐水性を要求されない条件下での適用や、そのガラスに別途コーティングやカバーを掛けたりする必要があった。 Typical compositions of phosphorus-based low melting point oxide glass are P-Zn-based, which contains zinc in addition to phosphorus, and P-Sn-based, which contains tin, but P-Zn-based, which mainly contains zinc. Has a drawback of poor water resistance (chemical durability) as compared with the tin-containing P-Sn system. Therefore, it is necessary to apply the glass under conditions that do not require water resistance, or to separately coat or cover the glass.

P−Zn系に比べ耐水性に優れるスズ含有のP−Sn系も条件によっては失透しやすく、そのためにガラスが白濁する問題があり、P−Sn系リン酸ガラスの結晶化を抑制し、耐水性を上げることが必要とされる。 The tin-containing P-Sn system, which has better water resistance than the P-Zn system, also easily devitrifies depending on the conditions, which causes a problem that the glass becomes cloudy, and suppresses the crystallization of the P-Sn phosphoric acid glass. It is necessary to increase the water resistance.

特開2001−261369号公報Japanese Unexamined Patent Publication No. 2001-261369 特開2003−26439号公報Japanese Unexamined Patent Publication No. 2003-26439 特開2005−162570号公報Japanese Unexamined Patent Publication No. 2005-162570 特開2006−342018号公報Japanese Unexamined Patent Publication No. 2006-342018

本発明は、鉛を含まず透明性かつ耐水性を有する酸化物ガラスを550℃以下の低温溶融にて製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing lead-free, transparent and water-resistant oxide glass by melting at a low temperature of 550 ° C. or lower.

本発明者らは、上記のような事情を鑑み、鋭意検討を重ねた結果、P、SnO、アルカリ金属酸化物RO(R=Li、Na、K、Cs、Rb・・・)及び希土類酸化物M(M=Ce、La、Y、Nd、・・・)(x、y=1,2,3,・・・)の出発原料を特定の割合で混合し、得られた前駆体を熱処理することにより、550℃以下の溶融温度で、透明性かつ耐水性を有するスズ含有酸化物ガラス部材が得られることを見出し、さらに検討を加えて本発明を完成するに至った。 In view of the above circumstances, the present inventors have conducted diligent studies, and as a result, P 2 O 5 , SnO, alkali metal oxide R 2 O (R = Li, Na, K, Cs, Rb ... ) And the starting materials of the rare earth oxide M x Oy (M = Ce, La, Y, Nd, ...) (X, y = 1, 2, 3, ...) Are mixed in a specific ratio. By heat-treating the obtained precursor, it was found that a transparent and water-resistant tin-containing oxide glass member can be obtained at a melting temperature of 550 ° C. or lower, and further studies are carried out to complete the present invention. I arrived.

本発明のスズ含有酸化物ガラスの製造方法は、酸化物基準のモル%表示で、P:35〜55モル%、SnO:34〜59モル%、アルカリ金属酸化物RO(R=Li、Na、K、Cs、Rb・・・):0.2〜20モル%希土類酸化物M(M=Ce、La、Y、Nd、・・・)(x、y=1,2,3,・・・):〜5モル%、SiO 、Al 、B 、ZnO、アルカリ土類金属酸化物RO(R=Mg、Ca、Sr、Ba・・・)及び遷移金属酸化物の合計:5モル%以下となるように、リン酸類及びスズ化合物及びアルカリ金属化合物を含む原料を混合してすべての出発原料が均一に分散した液である前駆体を作製し、得られた前駆体を550℃以下のアモルファスになる溶融温度で熱処理する、ことを特徴とするものである。 Method for producing a tin-containing oxide glass of the present invention, as represented by mol% based on oxides, P 2 O 5: 35~55 mol%, SnO: thirty-four to fifty-nine mol%, the alkali metal oxides R 2 O (R = Li, Na, K, Cs, Rb ...): 0.2 to 20 mol% , rare earth oxide M x Oy (M = Ce, La, Y, Nd, ...) (X, y = 1,2,3, ...): 0 to 5 mol% , SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO, alkaline earth metal oxide RO (R = Mg, Ca, Sr, Ba.・ ・) And transition metal oxides: A precursor that is a liquid in which raw materials containing phosphoric acids, tin compounds, and alkali metal compounds are mixed so that all starting materials are uniformly dispersed so as to be 5 mol% or less. Is produced, and the obtained precursor is heat-treated at a melting temperature at which it becomes amorphous at 550 ° C. or lower.

なお、前記溶融温度が350〜550℃であり、溶融時間が10〜120分であることが好ましい。 It is preferable that the melting temperature is 350 to 550 ° C. and the melting time is 10 to 120 minutes.

本発明のスズ含有酸化物ガラスの製造方法によれば、従来のガラスフリットのような1000℃以上の高温溶融法を用いて作製することなく、透明性と耐水性を兼ね備えた酸化物ガラスを550℃以下の低温溶融で製造することができる。また、本発明の方法によれば、多様な形状のスズ含有酸化物ガラスを低温で作製することが可能である。この方法は、雰囲気制御をおこなった高温溶融法を用いないため、作製に係るエネルギーを削減できるという点で有利である。また、550℃以下の低温で溶融するため、溶融に用いる容器を侵食する恐れが少ないので、容器からの成分溶出が殆どない、したがって従来の1000℃付近の高温溶融に比べ容器からのコンタミが少なく、高品質なガラスが作製できる利点がある。 According to the method for producing tin-containing oxide glass of the present invention, 550 oxide glass having both transparency and water resistance is produced without producing by using a high-temperature melting method of 1000 ° C. or higher as in the conventional glass frit. It can be manufactured by melting at a low temperature of ° C or lower. Further, according to the method of the present invention, tin-containing oxide glass having various shapes can be produced at a low temperature. Since this method does not use the high-temperature melting method in which the atmosphere is controlled, it is advantageous in that the energy required for production can be reduced. Further, since it melts at a low temperature of 550 ° C. or lower, there is little risk of eroding the container used for melting, so that there is almost no elution of components from the container. There is an advantage that high quality glass can be produced.

本発明の方法で得られるスズ含有酸化物ガラス部材は、透明性、及び耐水性を兼ね備えており、さらに溶融温度が550℃以下と低いため、種々の形状を有するガラス部材としての適用が期待される。また、本発明のスズ含有酸化物ガラス部材は、照明、光学部材、蛍光標識、ガラスコーティング、封止材、陶磁器、装飾用ガラス等にも使用可能である。 The tin-containing oxide glass member obtained by the method of the present invention has both transparency and water resistance, and has a low melting temperature of 550 ° C. or lower, so that it is expected to be applied as a glass member having various shapes. To. Further, the tin-containing oxide glass member of the present invention can also be used for lighting, optical members, fluorescent labels, glass coatings, sealing materials, ceramics, decorative glass and the like.

以下に本発明の実施形態を説明する。この実施形態では、例えばLED素子封着用粉末ガラスとして用いられる場合のスズ含有酸化物ガラスの低温溶融製造方法及びスズ含有酸化物ガラス部材について述べる。 An embodiment of the present invention will be described below. In this embodiment, for example, a method for producing a tin-containing oxide glass at a low temperature and a tin-containing oxide glass member when used as a powder glass for sealing an LED element will be described.

本発明におけるスズ含有酸化物ガラス部材は、必須成分としてP、SnO、アルカリ金属酸化物RO(例えばKO、NaO、LiO、CsO、RbO等)の1種類以上、および希土類酸化物M(例えばCeO、Y、La、Nd等)(x、y=1,2,3・・・)の1種類以上が含有されている。 The tin-containing oxide glass member in the present invention contains P 2 O 5 , SnO, alkali metal oxide R 2 O (for example, K 2 O, Na 2 O, Li 2 O, Cs 2 O, Rb 2 O, etc.) as essential components. ), And rare earth oxides M x O y (eg, CeO 2 , Y 2 O 3 , La 2 O 3 , Nd 2 O 3, etc.) (x, y = 1, 2, 3 ...) Contains one or more types.

また、本発明のスズ含有酸化物ガラス部材は、任意成分としてSiO、Al、B、ZnOおよびアルカリ土類金属酸化物RO(例えばMgO、CaO、SrO、BaO等)、が含有されても良い。 Further, the tin-containing oxide glass member of the present invention contains SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO and an alkaline earth metal oxide RO (for example, MgO, CaO, SrO, BaO, etc.) as optional components. May be contained.

さらに、本発明のスズ含有酸化物ガラス部材は、透明性を阻害しない範囲でFe、Co、Ni、Cu、V、Cr等の遷移金属酸化物が含有されても良い。 Further, the tin-containing oxide glass member of the present invention may contain transition metal oxides such as Fe, Co, Ni, Cu, V and Cr as long as the transparency is not impaired.

スズ含有酸化物ガラス部材の組成範囲は、酸化物基準のモル%表示で、Pが35〜55モル%、好ましくは35〜45モル%、SnOが34〜59モル%、好ましくは44〜54モル%、RO(例えばKO、NaO、LiO、CsO、RbO等)が0.2〜20モル%、好ましくは5〜15モル%であり、さらに、M(例えばCeO、Y、La、Nd等)(x、y=1,2,3・・・)が0.1〜5モル%、好ましくは0.1〜2モル%である。 The composition range of the tin-containing oxide glass member is expressed in mol% based on the oxide, P 2 O 5 is 35 to 55 mol%, preferably 35 to 45 mol%, SnO is 34 to 59 mol%, preferably 44. ~ 54 mol%, R 2 O (eg K 2 O, Na 2 O, Li 2 O, Cs 2 O, Rb 2 O, etc.) is 0.2 to 20 mol%, preferably 5 to 15 mol% . Further , M x O y (for example, CeO 2 , Y 2 O 3 , La 2 O 3 , Nd 2 O 3, etc.) (x, y = 1, 2, 3 ...) Is 0.1 to 5 mol%, It is preferably 0.1 to 2 mol%.

全成分の合計が100モル%になるように、任意成分は酸化物基準のモル%表示で、0.1〜5モル%、好ましくは0.1〜2モル%の範囲で含有されても良い。 The optional component may be contained in the range of 0.1 to 5 mol%, preferably 0.1 to 2 mol% in terms of oxide-based mol% so that the total of all components is 100 mol%. ..

次に各成分の範囲理由を述べる。
はガラス形成成分であり、低温溶融促進成分でもある。35モル%未満の場合は550℃以下の溶融温度では十分溶融せず、ガラス化が困難である。55モル%より多いと耐水性が著しく低下する。好ましいPの範囲は35〜45モル%である。
Next, the reason for the range of each component will be described.
P 2 O 5 is a glass forming component and also a low temperature melting promoting component. If it is less than 35 mol%, it does not melt sufficiently at a melting temperature of 550 ° C. or lower, and vitrification is difficult. If it is more than 55 mol%, the water resistance is significantly lowered. The preferred range for P 2 O 5 is 35-45 mol%.

SnOはガラス形成成分である。34モル%未満の場合は耐水性が低下する。59モル%より多いと550℃以下での溶融温度では溶融せず、ガラス化が困難である。好ましいSnOの範囲は44〜54モル%である。 SnO is a glass-forming component. If it is less than 34 mol%, the water resistance is lowered. If it is more than 59 mol%, it does not melt at a melting temperature of 550 ° C. or lower, and vitrification is difficult. The preferred SnO range is 44-54 mol%.

O(R=Li、Na、K、Cs、Rb・・・)はガラス形成修飾成分であり、低温溶融促進成分でもある。1種類以上のROの合計が0.2モル%未満の場合はガラスが失透しやすくなる。20モル%より多い場合はガラスの耐水性が低下し、ガラスの安定性が低下する。好ましいROの範囲は5〜15モル%である。 R 2 O (R = Li, Na, K, Cs, Rb ...) Is a glass forming modifying component and a low temperature melting promoting component. 1 Total or more R 2 O tends glass devitrification of less than 0.2 mol%. If it is more than 20 mol%, the water resistance of the glass is lowered and the stability of the glass is lowered. Preferred R 2 O in the range from 5 to 15 mol%.

(例えばCeO、Y、La、Nd等)(x、y=1,2,3・・・)は、本発明で発見したガラスの耐水性を向上させる特徴的な成分である。0.1モルより少ない場合は耐水性向上の効果が認められない。5モル%よりも多い場合はガラスの溶融温度が上がり、550℃の溶融ではガラス化しにくくなる。好ましいMの範囲は0.1〜2モル%である。 M x O y (for example, CeO 2 , Y 2 O 3 , La 2 O 3 , Nd 2 O 3, etc.) (x, y = 1, 2, 3 ...) Is the water resistance of the glass found in the present invention. It is a characteristic ingredient that improves. If it is less than 0.1 mol, the effect of improving water resistance is not recognized. If it is more than 5 mol%, the melting temperature of the glass rises, and melting at 550 ° C makes it difficult to vitrify. The preferred range of M x O y is from 0.1 to 2 mol%.

任意成分SiO、Al、B、ZnOおよびアルカリ土類金属酸化物RO(例えばMgO、CaO、SrO、BaO等)、Fe、Co、Ni、Cu、V、Cr等の遷移金属酸化物は、550℃での溶融性、及び透明性を妨げない範囲0.1〜5モルの範囲で添加しても良い。好ましくは0.1〜2モル%の範囲である。 Transition of optional components SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO and alkaline earth metal oxide RO (for example, MgO, CaO, SrO, BaO, etc.), Fe, Co, Ni, Cu, V, Cr, etc. The metal oxide may be added in a range of 0.1 to 5 mol % that does not interfere with the meltability at 550 ° C. and the transparency. It is preferably in the range of 0.1 to 2 mol%.

本発明のスズ含有酸化物ガラス部材の製造方法は、出発原料として、Pはリン酸類、SnOはスズ化合物、ROはアルカリ金属化合物、及びMは希土類化合物を用い、所望の組成に混合して前駆体を作製し、その前駆体を550℃以下の溶融温度で熱処理し、ガラス化する方法である。 The method of manufacturing a tin-containing oxide glass member of the present invention, as a starting material, P 2 O 5 is phosphoric acids, SnO tin compounds, R 2 O is an alkali metal compound, and M x O y is used a rare earth compound, This is a method in which a precursor is prepared by mixing with a desired composition, and the precursor is heat-treated at a melting temperature of 550 ° C. or lower to vitrify it.

の出発原料としてはリン酸類を用いることができる。
リン酸類はガラスを安定化させる成分であり、透明性を有するガラスを製造できる組成範囲が広いことから、オルトリン酸またはピロリン酸、ポリリン酸を用いることが好ましい。出発原料としてオルトリン酸を用いる場合には、水を含有する状態のものを使用してもよい。オルトリン酸における水の含有量は特に限定されず、例えば、無水オルトリン酸、85%リン酸等を使用することが可能である。
Phosphoric acids can be used as a starting material for P 2 O 5 .
Phosphoric acids are components that stabilize glass, and since the composition range in which transparent glass can be produced is wide, it is preferable to use orthophosphoric acid, pyrophosphoric acid, or polyphosphoric acid. When orthophosphoric acid is used as a starting material, one containing water may be used. The content of water in orthophosphoric acid is not particularly limited, and for example, anhydrous orthophosphoric acid, 85% phosphoric acid and the like can be used.

SnOの出発原料としてはスズ化合物を用いることができる。
スズ化合物は、リン酸類と同じくガラスネットワークを形成する成分である。透明性を有するガラスを製造できる組成範囲が広い酸化第一錫、ピロリン酸スズ、シュウ酸スズ、酢酸スズ等が好ましい。
A tin compound can be used as a starting material for SnO.
Similar to phosphoric acids, tin compounds are components that form a glass network. Stannous oxide, tin pyrophosphate, tin oxalate, tin acetate and the like having a wide composition range capable of producing transparent glass are preferable.

アルカリ金属酸化物ROの出発原料としてはアルカリ金属化合物を用いることができる。
アルカリ金属化合物は、ガラス修飾酸化物となり、ガラスの溶融温度を下げ、ガラスを安定化させる成分である。リン酸類と相溶性のあるピロリン酸塩、リン酸水素二塩、リン酸二水素塩、炭酸塩、水酸化物が好ましい。
The starting material for the alkali metal oxides R 2 O may be used an alkali metal compound.
The alkali metal compound becomes a glass-modified oxide and is a component that lowers the melting temperature of the glass and stabilizes the glass. Pyrophosphate, hydrogen phosphate dihydrogen, dihydrogen phosphate, carbonate, and hydroxide compatible with phosphoric acids are preferable.

希土類酸化物Mの出発原料としては希土類元素化合物を用いることができる。
希土類元素化合物は、ガラスを安定化させ、耐水性を向上させる特徴的な成分である。リン酸類と相溶性のある酸化物、水酸化物、硝酸塩が好ましい。
The starting materials of the rare earth oxide M x O y may be used a rare earth element compound.
Rare earth element compounds are characteristic components that stabilize glass and improve water resistance. Oxides, hydroxides and nitrates that are compatible with phosphoric acids are preferable.

任意成分としてSiO、Al、B、ZnO等を用いる場合は、酸化物、リン酸塩、炭酸塩、水酸化物を用いることができる。 When SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO or the like is used as an optional component, oxides, phosphates, carbonates, hydroxides and the like can be used.

任意成分としてアルカリ土類金属酸化物RO(例えばCaO、MgO、SrO、BaO等)を用いる場合の出発原料は、そのアルカリ土類元素の、酸化物、リン酸塩、炭酸塩、水酸化物の化合物を用いることができる。 When alkaline earth metal oxide RO (for example, CaO, MgO, SrO, BaO, etc.) is used as an optional component, the starting material is an oxide, phosphate, carbonate, hydroxide of the alkaline earth element. Compounds can be used.

任意成分としてFe、Co、Ni、Cu、V、Cr等の遷移金属酸化物を用いる場合の出発原料は、その遷移金属の、酸化物、リン酸塩、炭酸塩、水酸化物の化合物を用いることができる。 When a transition metal oxide such as Fe, Co, Ni, Cu, V, or Cr is used as an optional component, a compound of the transition metal oxide, phosphate, carbonate, or hydroxide is used as a starting material. be able to.

バッチ成分の還元を防ぎ、溶解を促進するために酸化剤を添加することができる。酸化剤は例えば硝酸ナトリウム、硝酸カリウム、硝酸バリウム、酸化マンガン等がある。 Oxidizing agents can be added to prevent reduction of batch components and promote dissolution. Examples of the oxidizing agent include sodium nitrate, potassium nitrate, barium nitrate, manganese oxide and the like.

混合に用いる容器は吸湿性の無い容器であれば任意の容器を用いることができるが、溶融工程まで連続で使用できることが望ましく、ホウ珪酸ガラス製容器が好ましい。
単一容器で連続使用することにより、コンタミの少ないガラス作製が可能となる。
Any container can be used as long as it is a non-hygroscopic container, but it is desirable that the container can be used continuously until the melting step, and a borosilicate glass container is preferable.
By continuously using it in a single container, it is possible to produce glass with less contamination.

出発原料の混合順序は、すべての出発原料が均一に分散した前駆体を得ることができれば、いかなる順序で混合してもよい。出発原料が、リン酸類、スズ化合物、アルカリ金属化合物、及び希土類元素化合物の4成分の場合には、例えば、4成分を一度に混合してもよいし、先に2成分を混合し、そこに残りの2成分を順番に添加して混合してもよいし、先に3成分を一度に混合し、そこに残りの1成分を添加して混合してもよい。 The starting material may be mixed in any order as long as a precursor in which all the starting materials are uniformly dispersed can be obtained. When the starting material is four components of a phosphoric acid, a tin compound, an alkali metal compound, and a rare earth element compound, for example, the four components may be mixed at once, or the two components may be mixed first, and then there. The remaining two components may be added in order and mixed, or the three components may be mixed at once and the remaining one component may be added and mixed.

出発原料として、上記4成分に加えて他の成分を含む場合には、他の成分は上記のどの段階で添加してもよい。例えば、上記4成分及び他の成分を一度に混合してもよいし、先に4成分の内の1成分及び他の成分を混合し、そこに残りの3成分を添加して混合してもよいし、先に4成分の内の2成分及び他の成分を混合し、そこに残りの2成分を添加して混合しても良い。 When other components are included as a starting material in addition to the above four components, the other components may be added at any of the above steps. For example, the above four components and other components may be mixed at once, or one of the four components and the other component may be mixed first, and the remaining three components may be added and mixed. Alternatively, two of the four components and the other components may be mixed first, and the remaining two components may be added and mixed.

混合の手法は例えばスターラー回転子、攪拌ミキサー、自転公転攪拌等を用いることができる。また攪拌時に混合液を加熱しながら攪拌しても良い。 As a mixing method, for example, a stirrer rotor, a stirring mixer, rotation / revolution stirring, or the like can be used. Further, the mixed solution may be stirred while being heated at the time of stirring.

次に、出発原料を混合して得られた前駆体を所定の温度条件で溶融し、急冷することでスズ含有酸化物ガラスを作製する。 Next, the precursor obtained by mixing the starting materials is melted under a predetermined temperature condition and rapidly cooled to prepare a tin-containing oxide glass.

溶融温度(加熱温度)及び溶融時間は、用いる出発原料により適宜決定することができる。溶融温度は、通常350〜550℃である。350℃未満の場合は温度不足によりガラス化が不十分であり、550℃より高い場合はガラスの失透が起こりやすくなる。好ましい溶融温度は400〜500℃である。 The melting temperature (heating temperature) and melting time can be appropriately determined depending on the starting material used. The melting temperature is usually 350 to 550 ° C. If the temperature is lower than 350 ° C, vitrification is insufficient due to insufficient temperature, and if the temperature is higher than 550 ° C, devitrification of the glass is likely to occur. The preferred melting temperature is 400-500 ° C.

また、溶融時間は、5分〜120分である。5分未満の場合は完全に溶融せず溶け残りや気泡が残留する。120分より長い場合はガラスの失透が起こりやすくなる。好ましい溶融時間は10分〜60分程度である。 The melting time is 5 minutes to 120 minutes. If it is less than 5 minutes, it will not melt completely and undissolved residue and air bubbles will remain. If it is longer than 120 minutes, devitrification of the glass is likely to occur. The preferable melting time is about 10 to 60 minutes.

本発明において溶融時に発生する気泡を除去するために、真空装置により気泡を吸引しながら溶融することもできる。 In the present invention, in order to remove the bubbles generated at the time of melting, the bubbles can be sucked and melted by a vacuum device.

本発明の溶融温度は、従来のガラス製造方法である1000℃以上の溶融法と比較すると十分低温であり、ガラス製造のエネルギーを抑制することができるため、環境負荷が小さく優れた製造方法である。 The melting temperature of the present invention is sufficiently low as compared with the melting method of 1000 ° C. or higher, which is a conventional glass manufacturing method, and the energy for glass manufacturing can be suppressed, so that the manufacturing method is excellent with a small environmental load. ..

上記方法で得られるスズ含有酸化物ガラス部材(P−SnO−RO−M系)は、透明性を持ち、溶融温度が550℃以下と低い。そのため、LEDの封止材料としても利用することが可能である。 Tin-containing oxide glass member obtained by the above methods (P 2 O 5 -SnO-R 2 O-M x O y type) has a transparency, it is less and less 550 ° C. melt temperature. Therefore, it can also be used as a sealing material for LEDs.

本発明の酸化物ガラスは、照明、光学部材、蛍光標識、ガラスコーティング、封止材、陶磁器、装飾用ガラス等にも使用可能である。 The oxide glass of the present invention can also be used for lighting, optical members, fluorescent labels, glass coatings, encapsulants, ceramics, decorative glass and the like.

本発明の酸化物ガラスは単独でも用いることができるが、他の材料を混合し、複合化した状態でも使用できる。 The oxide glass of the present invention can be used alone, but it can also be used in a composite state by mixing other materials.

本ガラスの透明性は例えば分光光度計((株)日立製作所製 U−3500)を用いて透過率を測定し、JIS R3106の手法で可視光透過率を算出し、評価した。可視光透過率が70%以上、好ましくは80%以上が透明性ありとした。 The transparency of this glass was evaluated by measuring the transmission rate using, for example, a spectrophotometer (U-3500 manufactured by Hitachi, Ltd.), and calculating the visible light transmission rate by the method of JIS R3106. A visible light transmittance of 70% or more, preferably 80% or more was considered to be transparent.

本発明の酸化物ガラスの耐水性は、直径30mm厚み5mmに成形した試料ガラスを蒸留水に浸漬し、50℃72時間浸漬した後の単位面積当たりの重量減少値(g/mm)を測定し、評価した。耐水試験における重量減少値が1.0×10−4g/mm以下、好ましくは1.0×10−5g/mm以下が耐水性ありと判定した。 For the water resistance of the oxide glass of the present invention, the weight loss value (g / mm 2 ) per unit area after immersing the sample glass formed to a diameter of 30 mm and a thickness of 5 mm in distilled water and immersing it at 50 ° C. for 72 hours is measured. And evaluated. A weight reduction value of 1.0 × 10 -4 g / mm 2 or less, preferably 1.0 × 10 -5 g / mm 2 or less in the water resistance test was determined to be water resistant.

以下に本発明の実施例を示すことにより、本発明を詳細に説明するが、本発明はこれによって何ら限定されるものではない。 The present invention will be described in detail by showing examples of the present invention below, but the present invention is not limited thereto.

実施例1
ガラスの組成が、酸化物基準のモル%で、P 35.0%、SnO 50.0%、KO 15.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で120分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、71.09%であり、50℃72時間後の耐水性を測定したところ、重量減少値は4.01×10−5g/mmであった。
Example 1
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 35.0%, SnO 50.0%, K 2 O 15.0% in mol% based on the oxide. , Potassium pyrophosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. While the precursor was placed in the above-mentioned beaker, it was heated and melted in the air at 550 ° C. for 120 minutes in a tabletop furnace, and the melt was poured into a stainless steel mold to obtain bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 71.09%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 4.01 × 10-5 g /. It was mm 2 .

実施例2
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 50.0%、LiO 5.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、70.45%であり、50℃72時間後の耐水性を測定したところ、重量減少値は5.21×10−5g/mmであった。
Example 2
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 45.0%, SnO 50.0%, Li 2 O 5.0% in mol% based on the oxide. , Lithium phosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 70.45%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 5.21 × 10-5 g /. It was mm 2 .

実施例3
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 44.0%、NaO 3.0%、KO 8.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸ナトリウム、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、81.19%であり、50℃72時間後の耐水性を測定したところ、重量減少値は4.85×10−5g/mmであった。
Example 3
85% so that the composition of the glass is P 2 O 5 45.0%, Sn O 44.0%, Na 2 O 3.0%, K 2 O 8.0% in terms of oxide-based mol%. Orthophosphoric acid, and tin oxide, sodium pyrophosphate, and potassium pyrophosphate were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 81.19%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 4.85 × 10-5 g /. It was mm 2 .

実施例4
ガラスの組成が、酸化物基準のモル%で、P 50.0%、SnO 44.0%、KO 5.0%、B 1.0%となるように、ピロリン酸、及び酸化第一錫、ピロリン酸カリウム、無水ホウ酸を秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中400℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、75.23%であり、50℃72時間後の耐水性を測定したところ、重量減少値は7.02×10−5g/mmであった。
Example 4
Pyrrolinic so that the composition of the glass is P 2 O 5 50.0%, Sn O 44.0%, K 2 O 5.0%, B 2 O 3 1.0% in terms of oxide-based mol%. The acid, tin oxide, potassium pyrophosphate, and boric anhydride were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 400 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 75.23%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 7.02 × 10-5 g /. It was mm 2 .

実施例5
ガラスの組成が、酸化物基準のモル%で、P 41.0%、SnO 44.0%、LiO 5.0%、KO 10.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウム、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、84.24%であり、50℃72時間後の耐水性を測定したところ、重量減少値は3.40×10−5g/mmであった。
Example 5
85% so that the composition of the glass is P 2 O 5 41.0%, Sn O 44.0%, Li 2 O 5.0%, K 2 O 10.0% in terms of oxide-based mol%. Orthophosphoric acid, and tin oxide, lithium phosphate, and potassium pyrophosphate were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 84.24%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 3.40 × 10-5 g /. It was mm 2 .

実施例6
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 34.0%、LiO 5.0%、KO 15.0%、SiO 1.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウム、ピロリン酸カリウム、TEOSを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中400℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、76.02%であり、50℃72時間後の耐水性を測定したところ、重量減少値は4.46×10−5g/mmであった。
Example 6
The composition of the glass is P 2 O 5 45.0%, SnO 34.0%, Li 2 O 5.0%, K 2 O 15.0%, SiO 2 1.0% in mol% based on oxide. 85% orthophosphoric acid, tin oxide, lithium phosphate, potassium pyrophosphate, and TEOS were weighed so as to be. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 400 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 76.02%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 4.46 × 10-5 g /. It was mm 2 .

実施例7
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 54.0%、NaO 0.2%、BaO 0.8%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二ナトリウム、酸化バリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中500℃で10分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、75.82%であり、50℃72時間後の耐水性を測定したところ、重量減少値は5.60×10−5g/mmであった。
Example 7
The composition of the glass, in mole percent on the oxide basis, P 2 O 5 45.0%, SnO 54.0%, Na 2 O 0.2%, so that 0.8% BaO, 85% orthophosphoric acid , And stannous oxide, disodium hydrogen phosphate, and barium oxide were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 500 ° C. for 10 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 75.82%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 5.60 × 10-5 g /. It was mm 2 .

実施例8
ガラスの組成が、酸化物基準のモル%で、P 55.0%、SnO 44.0%、LiO 0.2%、Al 0.8%となるように、ピロリン酸、及び酸化第一錫、リン酸リチウム、水酸化アルミニウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中350℃で60分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、80.12%であり、50℃72時間後の耐水性を測定したところ、重量減少値は9.01×10−5g/mmであった。
Example 8
Pyrrolinate so that the composition of the glass is P 2 O 5 55.0%, Sn O 44.0%, Li 2 O 0.2%, Al 2 O 3 0.8% in terms of molar% based on oxides. The acid and stannous oxide, lithium phosphate and aluminum hydroxide were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. While the precursor was placed in the above-mentioned beaker, it was heated and melted in the air at 350 ° C. for 60 minutes in a tabletop furnace, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 80.12%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 9.01 × 10-5 g /. It was mm 2 .

実施例9
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 59.0%、NaO 1.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二ナトリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、74.26%であり、50℃72時間後の耐水性を測定したところ、重量減少値は8.50×10−6g/mmであった。
Example 9
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 40.0%, SnO 59.0%, Na 2 O 1.0% in mol% based on the oxide. , Disodium hydrogen phosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 74.26%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 8.50 × 10-6 g /. It was mm 2 .

実施例10
ガラスの組成が、酸化物基準のモル%で、P 41.0%、SnO 54.0%、NaO 5.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二ナトリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、77.73%であり、50℃72時間後の耐水性を測定したところ、重量減少値は6.50×10−5g/mmであった。
Example 10
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 41.0%, Sn O 54.0%, Na 2 O 5.0% in mol% based on the oxide. , Disodium hydrogen phosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 77.73%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 6.50 × 10-5 g /. It was mm 2 .

実施例11
ガラスの組成が、酸化物基準のモル%で、P 35.0%、SnO 45.0%、KO 15.0%、ZnO 5.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二カリウム、酸化亜鉛を秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で60分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、72.59%であり、50℃72時間後の耐水性を測定したところ、重量減少値は6.00×10−5g/mmであった。
Example 11
The composition of the glass, in mole percent on the oxide basis, P 2 O 5 35.0%, SnO 45.0%, K 2 O 15.0%, so that 5.0% ZnO, 85% orthophosphoric acid , And stannous oxide, dipotassium hydrogen phosphate, and zinc oxide were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 550 ° C. for 60 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 72.59%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 6.00 × 10-5 g /. It was mm 2 .

実施例12
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 50.0%、KO 10.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で120分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、78.80%であり、50℃72時間後の耐水性を測定したところ、重量減少値は3.60×10−5g/mmであった。
Example 12
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 40.0%, Sn O 50.0%, K 2 O 10.0% in mol% based on the oxide. , Potassium pyrophosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 120 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 78.80%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 3.60 × 10-5 g /. It was mm 2 .

実施例13
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 50.0%、KO 7.5%、RbO 2.5%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二カリウム、リン酸水素二ルビジウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、85.56%であり、50℃72時間後の耐水性を測定したところ、重量減少値は3.00×10−5g/mmであった。
Example 13
85% so that the composition of the glass is P 2 O 5 40.0%, Sn O 50.0%, K 2 O 7.5%, Rb 2 O 2.5% in terms of oxide-based mol%. Orthophosphoric acid, and stannous oxide, dipotassium hydrogen phosphate, and dirubidium hydrogen phosphate were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 85.56%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 3.00 × 10-5 g /. It was mm 2 .

実施例14
ガラスの組成が、酸化物基準のモル%で、P 38.0%、SnO 47.0%、LiO 5.0%、KO 10.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウム、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で60分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、82.92%であり、50℃72時間後の耐水性を測定したところ、重量減少値は4.70×10−5g/mmであった。
Example 14
85% so that the composition of the glass is P 2 O 5 38.0%, Sn O 47.0%, Li 2 O 5.0%, K 2 O 10.0% in terms of oxide-based mol%. Orthophosphoric acid, and tin oxide, lithium phosphate, and potassium pyrophosphate were weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 60 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 82.92%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 4.70 × 10-5 g /. It was mm 2 .

実施例15
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 50.0%、RbO 5.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二ルビジウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中400℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、81.23%であり、50℃72時間後の耐水性を測定したところ、重量減少値は8.50×10−5g/mmであった。
Example 15
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 45.0%, SnO 50.0%, Rb 2 O 5.0% in mol% based on the oxide. , Dirubidium hydrogen phosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 400 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 81.23%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 8.50 × 10-5 g /. It was mm 2 .

実施例16
ガラスの組成が、酸化物基準のモル%で、P 35.0%、SnO 44.0%、KO 20.0%、Y 0.1%、B 0.9%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化イットリウム、無水ホウ酸を秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で60分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、72.68%であり、50℃72時間後の耐水性を測定したところ、重量減少値は2.50×10−5g/mmであった。
Example 16
The composition of the glass is P 2 O 5 35.0%, SnO 44.0%, K 2 O 20.0%, Y 2 O 3 0.1%, B 2 O 30 in mol% based on oxide. 85% orthophosphoric acid and stannous oxide, potassium pyrophosphate, yttrium oxide, and boric anhydride were weighed to 9.9%. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 550 ° C. for 60 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 72.68%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 2.50 × 10-5 g /. It was mm 2 .

実施例17
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 48.0%、LiO 5.0%、CeO 2.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウム、酸化セリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、75.68%であり、50℃72時間後の耐水性を測定したところ、重量減少値は5.43×10−5g/mmであった。
Example 17
85% orthrin so that the composition of the glass is P 2 O 5 45.0%, SnO 48.0%, Li 2 O 5.0%, and CeO 2 2.0% in terms of oxide-based mol%. The acid and stannous oxide, lithium phosphate and cerium oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 75.68%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 5.43 × 10-5 g /. It was mm 2 .

実施例18
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 44.0%、NaO 1.0%、KO 8.0%、La 2.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸ナトリウム、ピロリン酸カリウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、79.59%であり、50℃72時間後の耐水性を測定したところ、重量減少値は4.89×10−5g/mmであった。
Example 18
The composition of the glass is P 2 O 5 45.0%, SnO 44.0%, Na 2 O 1.0%, K 2 O 8.0%, La 2 O 3 2. 85% orthophosphoric acid, tin oxide, sodium pyrophosphate, potassium pyrophosphate, and lanthanum oxide were weighed so as to be 0%. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 79.59%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 4.89 × 10-5 g /. It was mm 2 .

実施例19
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 44.0%、LiO 5.0%、KO 10.0%、CeO 0.5%、Nd 0.5%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウム、ピロリン酸カリウム、酸化セリウム、酸化ネオジムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で20分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、71.38%であり、50℃72時間後の耐水性を測定したところ、重量減少値は8.92×10−6g/mmであった。
Example 19
The composition of the glass is P 2 O 5 40.0%, SnO 44.0%, Li 2 O 5.0%, K 2 O 10.0%, CeO 2 0.5% in mol% based on oxide. , Nd 2 O 3 0.5%, 85% orthophosphoric acid, and stannous oxide, lithium phosphate, potassium pyrophosphate, cerium oxide, and neodymium oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 20 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 71.38%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 8.92 × 10-6 g /. It was mm 2 .

実施例20
ガラスの組成が、酸化物基準のモル%で、P 55.0%、SnO 34.0%、RbO 6.0%、La 5.0%となるように、ピロリン酸、及び酸化第一錫、リン酸水素二ルビジウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中350℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、71.02%であり、50℃72時間後の耐水性を測定したところ、重量減少値は8.51×10−5g/mmであった。
Example 20
Pyrrolinic so that the composition of the glass is P 2 O 5 55.0%, SnO 34.0%, Rb 2 O 6.0%, La 2 O 3 5.0% in terms of oxide-based mol%. The acid and stannous oxide, dirubidium hydrogen phosphate and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 350 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 71.02%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 8.51 × 10-5 g /. It was mm 2 .

実施例21
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 44.0%、LiO 9.0%、La 2.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸リチウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中500℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、80.14%であり、50℃72時間後の耐水性を測定したところ、重量減少値は7.92×10−5g/mmであった。
Example 21
85 so that the composition of the glass is P 2 O 5 45.0%, SnO 44.0%, Li 2 O 9.0%, La 2 O 3 2.0% in terms of oxide-based mol%. % Orthophosphoric acid, and tin oxide, lithium phosphate, and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 500 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 80.14%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 7.92 × 10-5 g /. It was mm 2 .

実施例22
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 59.0%、NaO 0.2%、Y 0.1%、BaO 0.7%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸ナトリウム、酸化イットリウム、酸化バリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、81.06%であり、50℃72時間後の耐水性を測定したところ、重量減少値は5.10×10−6g/mmであった。
Example 22
The composition of the glass is P 2 O 5 40.0%, SnO 59.0%, Na 2 O 0.2%, Y 2 O 3 0.1%, BaO 0.7%, based on the oxide-based mol%. 85% orthophosphoric acid, and tin oxide, sodium pyrophosphate, yttrium oxide, and barium oxide were weighed so as to be. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 81.06%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 5.10 × 10-6 g /. It was mm 2 .

実施例23
ガラスの組成が、酸化物基準のモル%で、P 38.0%、SnO 46.9%、KO 15.0%、La 0.1%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、85.22%であり、50℃72時間後の耐水性を測定したところ、重量減少値は2.30×10−5g/mmであった。
Example 23
85 so that the composition of the glass is P 2 O 5 38.0%, Sn O 46.9%, K 2 O 15.0%, La 2 O 3 0.1% in terms of oxide-based mol%. % Orthophosphoric acid, and tin oxide, potassium pyrophosphate, and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 85.22%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 2.30 × 10-5 g /. It was mm 2 .

実施例24
ガラスの組成が、酸化物基準のモル%で、P 40.5%、SnO 54.0%、NaO 5.0%、CeO 0.5%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸ナトリウム、酸化セリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中500℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、76.78%であり、50℃72時間後の耐水性を測定したところ、重量減少値は2.90×10−5g/mmであった。
Example 24
85% orthrin so that the composition of the glass is P 2 O 5 40.5%, SnO 54.0%, Na 2 O 5.0%, CeO 2 0.5% in mol% based on oxide. Acids and stannous oxide, sodium pyrophosphate and cerium oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 500 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 76.78%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 2.90 × 10-5 g /. It was mm 2 .

実施例25
ガラスの組成が、酸化物基準のモル%で、P 38.0%、SnO 46.0%、KO 15.0%、CeO 0.1%、B 0.9%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化セリウム、無水ホウ酸を秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、86.03%であり、50℃72時間後の耐水性を測定したところ、重量減少値は4.60×10−5g/mmであった。
Example 25
The composition of the glass is P 2 O 5 38.0%, SnO 46.0%, K 2 O 15.0%, CeO 2 0.1%, B 2 O 3 0.9 in mol% based on oxide. 85% orthophosphoric acid, and stannous oxide, potassium pyrophosphate, cerium oxide, and boric anhydride were weighed so as to be%. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 86.03%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 4.60 × 10-5 g /. It was mm 2 .

実施例26
ガラスの組成が、酸化物基準のモル%で、P 35.0%、SnO 49.5%、KO 15.0%、La 0.5%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二カリウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で120分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、75.23%であり、50℃72時間後の耐水性を測定したところ、重量減少値は5.30×10−5g/mmであった。
Example 26
85 so that the composition of the glass is P 2 O 5 35.0%, SnO 49.5%, K 2 O 15.0%, La 2 O 3 0.5% in terms of oxide-based mol%. % Orthophosphoric acid, tin oxide, dipotassium hydrogen phosphate, and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. While the precursor was placed in the above-mentioned beaker, it was heated and melted in the air at 550 ° C. for 120 minutes in a tabletop furnace, and the melt was poured into a stainless steel mold to obtain bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 75.23%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 5.30 × 10-5 g /. It was mm 2 .

実施例27
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 49.5%、KO 10.0%、La 0.5%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中500℃で10分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、83.70%であり、50℃72時間後の耐水性を測定したところ、重量減少値7.80×10−6g/mmであった。
Example 27
85 so that the composition of the glass is P 2 O 5 40.0%, SnO 49.5%, K 2 O 10.0%, La 2 O 3 0.5% in terms of oxide-based mol%. % Orthophosphoric acid, and tin oxide, potassium pyrophosphate, and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 500 ° C. for 10 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 83.70%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 7.80 × 10-6 g / mm. It was 2 .

実施例28
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 49.0%、KO 10.0%、CeO 1.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化セリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、82.88%であり、50℃72時間後の耐水性を測定したところ、重量減少値は1.60×10−6g/mmであった。
Example 28
85% orthophosphoric acid so that the composition of the glass is P 2 O 5 40.0%, SnO 49.0%, K 2 O 10.0%, and CeO 2 1.0% in terms of oxide-based mol%. The acid and stannous oxide, potassium pyrophosphate and cerium oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 82.88%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 1.60 × 10-6 g /. It was mm 2 .

実施例29
ガラスの組成が、酸化物基準のモル%で、P 39.5%、SnO 50.0%、KO 10.0%、Nd 0.5%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化ネオジムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で60分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、78.07%であり、50℃72時間後の耐水性を測定したところ、重量減少値は6.87×10−6g/mmであった。
Example 29
85 so that the composition of the glass is P 2 O 5 39.5%, Sn O 50.0%, K 2 O 10.0%, Nd 2 O 3 0.5% in mol% based on the oxide. % Orthophosphoric acid, and tin oxide, potassium pyrophosphate, and neodymium oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 60 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 78.07%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 6.87 × 10-6 g /. It was mm 2 .

実施例30
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 50.0%、RbO 5.0%、La 5.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二ルビジウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で120分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、72.30%であり、50℃72時間後の耐水性を測定したところ、重量減少値は7.89×10−6g/mmであった。
Example 30
85 so that the composition of the glass is P 2 O 5 40.0%, SnO 50.0%, Rb 2 O 5.0%, La 2 O 3 5.0% in mol% based on the oxide. % Orthophosphoric acid, and tin oxide, dirubidium hydrogen phosphate, and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 120 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 72.30%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 7.89 × 10-6 g /. It was mm 2 .

比較例1
ガラスの組成が、酸化物基準のモル%で、P 25.0%、SnO 74.0%、KO 1.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で120分間加熱溶融したが、ガラス化せず、バルクガラスを得ることができなかった。
Comparative Example 1
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 25.0%, Sn O 74.0%, K 2 O 1.0% in mol% based on the oxide. , Potassium pyrophosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 550 ° C. for 120 minutes in the above-mentioned beaker while still in the beaker, but it was not vitrified and bulk glass could not be obtained.

比較例2
ガラスの組成が、酸化物基準のモル%で、P 65.0%、SnO 30.0%、KO 5.0%となるように、85%オルトリン酸、及び酸化第一錫、リン酸水素二カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中350℃で10分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、80.12%であり、50℃72時間後の耐水性を測定したところ、重量減少値は2.50×10−2g/mmであり、耐水性が劣る結果となった。
Comparative Example 2
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 65.0%, SnO 30.0%, K 2 O 5.0% in mol% based on the oxide. , Dipotassium hydrogen phosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 350 ° C. for 10 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 80.12%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 2.50 × 10 -2 g /. It was mm 2 , resulting in inferior water resistance.

比較例3
ガラスの組成が、酸化物基準のモル%で、P 45.0%、SnO 55.0%となるように、85%オルトリン酸、及び酸化第一錫を秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中400℃で10分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、78.23%であり、50℃72時間後の耐水性を測定したところ、重量減少値は6.87×10−4g/mmであり、耐水性が劣る結果となった。
Comparative Example 3
The composition of the glass, in mole percent on the oxide basis, P 2 O 5 45.0%, so that the SnO 55.0%, 85% orthophosphoric acid, and were weighed stannous oxide. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 400 ° C. for 10 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 78.23%, and when the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 6.87 × 10 -4 g /. It was mm 2 , resulting in inferior water resistance.

比較例4
ガラスの組成が、酸化物基準のモル%で、P 35.0%、SnO 65.0%となるように、85%オルトリン酸、及び酸化第一錫を秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中450℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、17.13%となり、白濁ガラスであった。50℃72時間後の耐水性を測定したところ、重量減少値は5.89×10−4g/mmであり、耐水性が劣る結果となった。
Comparative Example 4
The composition of the glass, in mole percent on the oxide basis, P 2 O 5 35.0%, so that the SnO 65.0%, 85% orthophosphoric acid, and were weighed stannous oxide. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 450 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 17.13%, which was cloudy glass. When the water resistance after 72 hours at 50 ° C. was measured, the weight reduction value was 5.89 × 10 -4 g / mm 2 , resulting in inferior water resistance.

比較例5
ガラスの組成が、酸化物基準のモル%で、P 30.0%、SnO 60.0%、KO 10.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で30℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で120分間加熱溶融したが、ガラス化せず、バルクガラスを得ることができなかった。
Comparative Example 5
85% orthophosphoric acid and stannous oxide so that the composition of the glass is P 2 O 5 30.0%, SnO 60.0%, K 2 O 10.0% in mol% based on the oxide. , Potassium pyrophosphate was weighed. Then, these weighed raw materials were mixed and stirred in a borosilicate beaker at 30 ° C. for 120 minutes to obtain a precursor. This precursor was heated and melted in the air at 550 ° C. for 120 minutes in the above-mentioned beaker while still in the beaker, but it was not vitrified and bulk glass could not be obtained.

比較例6
ガラスの組成が、酸化物基準のモル%で、P 63.0%、SnO 30.0%、KO 5.0%、La 2.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸カリウム、酸化ランタンを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中400℃で30分間加熱溶融し、融液をステンレス型に流し込むことで直径約30mm、厚み5mmのバルクガラスを得た。
このバルクガラスをJIS R3106に基づき可視光透過率を測定したところ、15.89%となり、白濁ガラスであった。50℃72時間後の耐水性を測定したところ、重量減少値は2.68×10−3g/mmであり、耐水性が劣る結果となった。
Comparative Example 6
85 so that the composition of the glass is P 2 O 5 63.0%, SnO 30.0%, K 2 O 5.0%, La 2 O 3 2.0% in terms of oxide-based mol%. % Orthophosphoric acid, and tin oxide, potassium pyrophosphate, and lanthanum oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 400 ° C. for 30 minutes in the above-mentioned beaker, and the melt was poured into a stainless steel mold to obtain a bulk glass having a diameter of about 30 mm and a thickness of 5 mm.
When the visible light transmittance of this bulk glass was measured based on JIS R3106, it was 15.89%, which was cloudy glass. When the water resistance after 72 hours at 50 ° C. was measured, the weight loss value was 2.68 × 10 -3 g / mm 2 , resulting in inferior water resistance.

比較例7
ガラスの組成が、酸化物基準のモル%で、P 40.0%、SnO 45.0%、NaO 5.0%、Y 10.0%となるように、85%オルトリン酸、及び酸化第一錫、ピロリン酸ナトリウム、酸化イットリウムを秤量した。次いで、これらの秤量した原料をホウ珪酸製ビーカー中で50℃120分混合攪拌し、前駆体を得た。この前駆体を、前述のビーカーにいれたまま、卓上炉にて大気中550℃で60分間加熱溶融したが、ガラス化せず、バルクガラスを得ることができなかった。
Comparative Example 7
85 so that the composition of the glass is P 2 O 5 40.0%, SnO 45.0%, Na 2 O 5.0%, Y 2 O 3 10.0% in mol% based on the oxide. % Orthophosphoric acid, and tin oxide, sodium pyrophosphate, and yttrium oxide were weighed. Then, these weighed raw materials were mixed and stirred at 50 ° C. for 120 minutes in a beaker made of borosilicate to obtain a precursor. This precursor was heated and melted in the air at 550 ° C. for 60 minutes in the above-mentioned beaker while still in the beaker, but it was not vitrified and bulk glass could not be obtained.

Claims (2)

酸化物基準のモル%表示で、P:35〜55モル%、SnO:34〜59モル%、アルカリ金属酸化物RO(R=Li、Na、K、Cs、Rb・・・):0.2〜20モル%、希土類酸化物M (M=Ce、La、Y、Nd、・・・)(x、y=1,2,3,・・・):0〜5モル%、SiO 、Al 、B 、ZnO、アルカリ土類金属酸化物RO(R=Mg、Ca、Sr、Ba・・・)及び遷移金属酸化物の合計:5モル%以下となるように、リン酸類及びスズ化合物及びアルカリ金属化合物を含む原料を混合してすべての出発原料が均一に分散した液である前駆体を作製し、得られた前駆体を550℃以下のアモルファスになる溶融温度で熱処理する、スズ含有酸化物ガラスの製造方法。 In terms of oxide-based mol%, P 2 O 5 : 35 to 55 mol%, SnO: 34 to 59 mol%, alkali metal oxide R 2 O (R = Li, Na, K, Cs, Rb ... ): 0.2 to 20 mol%, rare earth oxide M x O y (M = Ce , La, Y, Nd, ···) (x, y = 1,2,3, ···): 0~ Total of 5 mol%, SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO, alkaline earth metal oxide RO (R = Mg, Ca, Sr, Ba ...) and transition metal oxide: 5 mol A precursor is prepared by mixing raw materials containing phosphoric acid, a tin compound and an alkali metal compound so as to be % or less, and all starting materials are uniformly dispersed , and the obtained precursor is 550 ° C. or less. A method for producing tin-containing oxide glass, which is heat-treated at a melting temperature at which it becomes amorphous. 前記溶融温度が350〜550℃であり、溶融時間が10〜120分である請求項1に記載のスズ含有酸化物ガラスの製造方法。 The method for producing a tin-containing oxide glass according to claim 1, wherein the melting temperature is 350 to 550 ° C. and the melting time is 10 to 120 minutes .
JP2017153774A 2017-08-09 2017-08-09 Method for producing tin-containing oxide glass Active JP6766016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153774A JP6766016B2 (en) 2017-08-09 2017-08-09 Method for producing tin-containing oxide glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153774A JP6766016B2 (en) 2017-08-09 2017-08-09 Method for producing tin-containing oxide glass

Publications (2)

Publication Number Publication Date
JP2019031419A JP2019031419A (en) 2019-02-28
JP6766016B2 true JP6766016B2 (en) 2020-10-07

Family

ID=65524006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153774A Active JP6766016B2 (en) 2017-08-09 2017-08-09 Method for producing tin-containing oxide glass

Country Status (1)

Country Link
JP (1) JP6766016B2 (en)

Also Published As

Publication number Publication date
JP2019031419A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP5354445B2 (en) Glass for metal coating and semiconductor sealing material
US3904423A (en) Alkali resistant glass
CA2745050C (en) Glass fiber composition
TW201404757A (en) Coloured glasses
JPWO2010084925A1 (en) Glass composition and member comprising the same on a substrate
JP2012158494A (en) Glass composition
JP5271483B2 (en) Optical glass
JPWO2007049622A1 (en) Phosphate optical glass
JP5033339B2 (en) Glass composition
JP2012031048A (en) Lead-free glass for semiconductor
KR100985979B1 (en) Process for producing glass
JP3897194B2 (en) Alkali-free glass and method for producing the same
CN102050577A (en) Special environment-friendly seal glass
WO2008015834A1 (en) Dielectric material for plasma display panel
JP6766016B2 (en) Method for producing tin-containing oxide glass
JP2010202418A (en) Optical glass
JPH07126037A (en) Glass for bonding and sealing
CN102633435A (en) Lead-free low-temperature glass for manufacturing diode glass shell
JP2012082085A (en) Glass
JPH07330372A (en) Glass having low melting point
JP2012072040A (en) Glass
JPH07126035A (en) Low-melting glass
JP5181861B2 (en) Infrared transmission glass
WO2001092177A1 (en) DURABLE Sb-STABILIZED Mo+W PHOSPHATE GLASSES
JP7333103B2 (en) Phosphate glass and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6766016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250