JP6765582B1 - Water treatment equipment and water treatment method - Google Patents

Water treatment equipment and water treatment method Download PDF

Info

Publication number
JP6765582B1
JP6765582B1 JP2020528185A JP2020528185A JP6765582B1 JP 6765582 B1 JP6765582 B1 JP 6765582B1 JP 2020528185 A JP2020528185 A JP 2020528185A JP 2020528185 A JP2020528185 A JP 2020528185A JP 6765582 B1 JP6765582 B1 JP 6765582B1
Authority
JP
Japan
Prior art keywords
water
water treatment
circular tube
treated
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020528185A
Other languages
Japanese (ja)
Other versions
JPWO2021130882A1 (en
Inventor
学 生沼
学 生沼
稲永 康隆
康隆 稲永
佑 神谷
佑 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6765582B1 publication Critical patent/JP6765582B1/en
Publication of JPWO2021130882A1 publication Critical patent/JPWO2021130882A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Abstract

水処理装置(100)は、筒状で誘電体からなり、一端の側で開放され一端の側を上にして鉛直方向に起立して設けられ、接地された支持部材(11)に支持されている円管(4)と、円管(4)の内側に、鉛直方向に起立して設けられ、接地との間で電圧が印可される中心電極(3)と、一端の側で、円管(4)より離れた位置から円管(4)の内側と外周面に向けて導電性を備えた被処理水(6)を供給する散水部(5)とを備えている。The water treatment device (100) is tubular and made of a dielectric material, is opened on one end side, is provided upright in the vertical direction with one end side facing up, and is supported by a grounded support member (11). The central electrode (3), which is provided upright inside the circular tube (4) and the circular tube (4), and a voltage is applied between it and the ground, and the circular tube on one end side. It is provided with a sprinkling portion (5) for supplying conductive water to be treated (6) from a position distant from (4) toward the inner side and the outer peripheral surface of the circular pipe (4).

Description

本願は、水処理装置及び水処理方法に関するものである。 The present application relates to a water treatment apparatus and a water treatment method.

水処理において、オゾンまたは塩素が一般的に用いられている。しかしながら、工業廃水等には、既存のオゾン処理装置では除去できない難分解性物質が含まれることがある。特に、ダイオキシン類及びジオキサン等の除去が大きな課題となっている。そこで、放電によりオゾン(O)よりも活性の高いヒドロキシルラジカル(OHラジカル)を発生させ、被処理水に作用させることで、高効率に難分解性物質を除去する方法が提案されている。Ozone or chlorine is commonly used in water treatment. However, industrial wastewater and the like may contain persistent substances that cannot be removed by existing ozone treatment equipment. In particular, removal of dioxins and dioxanes has become a major issue. Accordingly, ozone is generated (O 3) highly active hydroxyl radical than (OH radicals) by discharge, by acting on the water to be treated, a method of removing a hardly decomposable substance with high efficiency has been proposed.

例えば、金属材料からなる円筒状電極とその内部に配置された線状電極を備え、これらの間に高電圧を印加することで生じるストリーマ放電空間内に被処理水を水滴にして供給し、水滴中の被処理物を分解処理する水処理装置が開示されている(例えば、特許文献1参照)。また、外周を金属メッシュで覆った円筒形状のガラス管とその中心に同軸に配置された金属ボルトを備え、これらの間にパルス状の高電圧を印加して放電を形成し、ガラス管の内部に向けて上方から被処理水を散布することで被処理水の処理を行う水処理装置が開示されている(例えば、非特許文献1参照)。 For example, a cylindrical electrode made of a metal material and a linear electrode arranged inside the cylindrical electrode are provided, and water to be treated is supplied as water droplets in a streamer discharge space generated by applying a high voltage between them, and the water droplets are provided. A water treatment apparatus for decomposing an object to be treated is disclosed (see, for example, Patent Document 1). In addition, a cylindrical glass tube whose outer circumference is covered with a metal mesh and a metal bolt arranged coaxially with the center thereof are provided, and a high pulsed voltage is applied between them to form a discharge, and the inside of the glass tube is formed. A water treatment apparatus that treats the water to be treated by spraying the water to be treated from above is disclosed (see, for example, Non-Patent Document 1).

特開2012−236130号公報Japanese Unexamined Patent Publication No. 2012-236130

Y. Nakagawa et al., “Decolorization of Rhodamine B in Water by Pulsed High-Voltage Gas Discharge”, Jpn. J. Appl. Phys. Vol. 42, pp.1423-28 (2003)Y. Nakagawa et al., “Decolorization of Rhodamine B in Water by Pulsed High-Voltage Gas Discharge”, Jpn. J. Appl. Phys. Vol. 42, pp.1423-28 (2003)

上記特許文献1における水処理装置では、円筒状電極の上端、下端で留まった水の塊によるスパークが発生しないため、ストリーマ放電による水処理を長時間安定して行うことができる。しかしながら、円筒状電極の中ほどでは金属材料からなる電極が空隙を介して直接対向する構成であるため、条件によっては局所的に強い放電、すなわちスパーク放電が発生することがある。特に印可電圧が高い場合、または放電の繰返し周波数が高い場合、単位体積あたりに投入される電力が増加して、電極間のガス温度が増加するため、スパーク放電が発生しやすくなる。また、電極間距離に偏りが生じたり、電極に被処理水が付着したりして局所的に空隙が狭まるとスパーク放電が発生しやすくなる。スパーク放電が発生すると、放電が局在化し局所的に温度が増加するため、水処理に有用なOおよびH等の生成効率が低下し、水処理効率が低下するという課題があった。また、スパーク放電が頻発すると、局所的な温度上昇またはスパッタリングにより、いずれかの電極が消耗、あるいは損傷するという課題があった。In the water treatment apparatus according to Patent Document 1, since sparks are not generated by water lumps staying at the upper and lower ends of the cylindrical electrode, water treatment by streamer discharge can be stably performed for a long time. However, in the middle of the cylindrical electrode, the electrodes made of a metal material are directly opposed to each other through the voids, so that a strong discharge, that is, a spark discharge may occur locally depending on the conditions. In particular, when the applied voltage is high or the discharge repetition frequency is high, the electric power applied per unit volume increases and the gas temperature between the electrodes increases, so that spark discharge is likely to occur. Further, if the distance between the electrodes is biased or the water to be treated adheres to the electrodes and the voids are locally narrowed, spark discharge is likely to occur. When a spark discharge occurs, the discharge is localized and the temperature rises locally, so that there is a problem that the production efficiency of O 3 and H 2 O 2, which are useful for water treatment, decreases, and the water treatment efficiency decreases. It was. Further, when spark discharge occurs frequently, there is a problem that one of the electrodes is consumed or damaged due to a local temperature rise or sputtering.

上記非特許文献1における水処理装置では、高電圧が印加される金属ボルトと接地された金属メッシュが、ガラス管を介して対向配置された誘電体バリア型の電極構成となっているため、スパーク放電の発生は抑制される。しがしながら、金属メッシュとガラス管外周面の間に不可避的に形成される微小なギャップにおいて、異常放電が発生することがある。異常放電が発生すると、水処理に寄与しない無効な電力消費が生じるだけでなく、異常放電箇所に局所的に高い電力が投入されガラス管が破損するという課題があった。 In the water treatment apparatus according to Non-Patent Document 1, a metal bolt to which a high voltage is applied and a metal mesh grounded are formed of a dielectric barrier type electrode configured so as to face each other via a glass tube, and thus spark. The generation of discharge is suppressed. However, abnormal discharge may occur in a minute gap that is inevitably formed between the metal mesh and the outer peripheral surface of the glass tube. When an abnormal discharge occurs, there is a problem that not only invalid power consumption that does not contribute to water treatment occurs, but also high power is locally applied to the abnormal discharge portion and the glass tube is damaged.

本願は前記のような課題を解決するためになされたものであり、スパーク放電および異常放電の発生を抑制した水処理装置を得ることを目的とする。 The present application has been made to solve the above-mentioned problems, and an object of the present application is to obtain a water treatment apparatus that suppresses the occurrence of spark discharge and abnormal discharge.

本願に開示される水処理装置は、筒状で誘電体からなり、一端の側で開放され前記一端の側を上にして鉛直方向に起立して設けられ、接地された支持部材に支持されている円管と、前記円管の内側に、鉛直方向に起立して設けられ、接地との間で電圧が印可される中心電極と、前記一端の側で、前記円管より離れた位置から前記円管の内側と外周面に向けて導電性を備えた被処理水を供給する散水部とを備え、前記円管の前記外周面に形成された前記被処理水の水膜が接地とつながる導電層となるものである。


The water treatment apparatus disclosed in the present application is tubular and made of a dielectric material, is opened on one end side, is provided upright in the vertical direction with the one end side facing up, and is supported by a grounded support member. The circular tube, the center electrode provided upright inside the circular tube and applying a voltage to the ground, and the one end side of the circular tube from a position away from the circular tube. It is provided with a sprinkling portion for supplying water to be treated having conductivity toward the inside and the outer peripheral surface of the circular tube, and the water film of the water to be treated formed on the outer peripheral surface of the circular tube is connected to the ground. It is a layer .


本願に開示される水処理装置によれば、スパーク放電および異常放電を抑制することができる。 According to the water treatment apparatus disclosed in the present application, spark discharge and abnormal discharge can be suppressed.

実施の形態1に係る水処理装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the water treatment apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る水処理装置における水処理を示すフローチャートである。It is a flowchart which shows the water treatment in the water treatment apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る別の水処理装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of another water treatment apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided in the water treatment apparatus which concerns on Embodiment 2. FIG. 図4の一点鎖線A−Aにおける断面図である。FIG. 5 is a cross-sectional view taken along the alternate long and short dash line AA of FIG. 実施の形態3に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided with the water treatment apparatus which concerns on Embodiment 3. FIG. 実施の形態4に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided in the water treatment apparatus which concerns on Embodiment 4. FIG. 実施の形態5に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided in the water treatment apparatus which concerns on Embodiment 5. FIG. 実施の形態6に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided with the water treatment apparatus which concerns on Embodiment 6. 実施の形態7に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided in the water treatment apparatus which concerns on Embodiment 7. 実施の形態8に係る水処理装置が備えた放電ユニットの斜視図である。It is a perspective view of the discharge unit provided in the water treatment apparatus which concerns on Embodiment 8. 実施の形態9に係る水処理装置が備えた放電ユニットの断面図である。It is sectional drawing of the electric discharge unit provided in the water treatment apparatus which concerns on Embodiment 9. FIG.

以下、本願の実施の形態による水処理装置を図に基づいて説明するが、各図において同一、または相当部材、部位については同一符号を付して説明する。 Hereinafter, the water treatment apparatus according to the embodiment of the present application will be described with reference to the drawings, but the same or corresponding members and parts will be described with the same reference numerals in each drawing.

実施の形態1.
図1は水処理装置100の全体構成を示す断面図である。水処理装置100は、工業廃水等の被処理水6に含まれる有機化合物に対して、放電9を利用して酸化分解する処理を行う装置である。水処理装置100は、ステンレス、チタン等の耐食性に優れ、導電性を備えた金属材料からなる処理槽1の内部に、中心電極3および円管4を備えた放電ユニット2と、被処理水6を放電ユニット2に供給する散水部5とを備えて構成される。以下、各部の詳細について説明する。
Embodiment 1.
FIG. 1 is a cross-sectional view showing the overall configuration of the water treatment apparatus 100. The water treatment device 100 is a device that performs a treatment of oxidatively decomposing an organic compound contained in water 6 to be treated such as industrial wastewater by using an electric discharge 9. The water treatment device 100 includes a discharge unit 2 having a center electrode 3 and a circular tube 4 inside a treatment tank 1 made of a metal material having excellent corrosion resistance such as stainless steel and titanium and having conductivity, and water 6 to be treated. Is provided with a watering unit 5 for supplying the discharge unit 2. The details of each part will be described below.

処理槽1の下部には、取水配管16を備えた取水ポンプ13と、排水配管17を備えた排水ポンプ14が設けられる。取水ポンプ13を稼働させて、取水配管16から被処理水6が処理槽1の底部の水溜部18に取水される。排水ポンプ14を稼働させて、排水配管17から処理された水が処理槽1の外部に排水される。水溜部18と散水部5は、循環ポンプ12を備えた循環配管15でつながる。循環ポンプ12を稼働させて、循環配管15から被処理水6が散水部5に供給される。循環配管15は処理槽1の外部に設けられ、処理槽1の壁面を貫通して循環配管15は散水部5に連結される。 At the lower part of the treatment tank 1, an intake pump 13 provided with an intake pipe 16 and a drainage pump 14 provided with a drainage pipe 17 are provided. The water intake pump 13 is operated, and the water to be treated 6 is taken into the water reservoir 18 at the bottom of the treatment tank 1 from the water intake pipe 16. The drainage pump 14 is operated, and the water treated from the drainage pipe 17 is drained to the outside of the treatment tank 1. The water reservoir 18 and the sprinkler 5 are connected by a circulation pipe 15 provided with a circulation pump 12. The circulation pump 12 is operated, and the water to be treated 6 is supplied to the sprinkler portion 5 from the circulation pipe 15. The circulation pipe 15 is provided outside the treatment tank 1, penetrates the wall surface of the treatment tank 1, and is connected to the sprinkler portion 5.

処理槽1の上部には、ガス供給部19と排気部20が設けられる。ガス供給部19は、酸素を含むガスを処理槽1の内部に予め定めた流量で供給する。排気部20は、ガス供給部19が供給したガスと同量のガスを処理槽1の外部に排気する。ガス供給部19と排気部20の動作により、処理槽1の内部はガス供給部19により供給されたガスで置換される。供給されるガスは酸素ガスを含んでいればよく、例えば、酸素、空気、あるいは酸素に対して窒素または希ガスを任意の割合で混合させたガスである。アルゴン、ヘリウム等の希ガスを用いた場合、比較的低い電圧においても放電9を安定的に形成することができ、空気を用いた場合、ガスコストを削減できる。なお、一般に酸素濃度が高いほどオゾンの生成効率が高くなることから、酸素濃度を80%以上にすることが好ましく、例えば、空気中の酸素分離するPSA(Pressure Swing Adsorption)装置を用いて発生させた酸素を用いることもできる。 A gas supply unit 19 and an exhaust unit 20 are provided on the upper portion of the processing tank 1. The gas supply unit 19 supplies a gas containing oxygen to the inside of the processing tank 1 at a predetermined flow rate. The exhaust unit 20 exhausts the same amount of gas as the gas supplied by the gas supply unit 19 to the outside of the processing tank 1. By the operation of the gas supply unit 19 and the exhaust unit 20, the inside of the processing tank 1 is replaced with the gas supplied by the gas supply unit 19. The gas to be supplied may contain oxygen gas, for example, oxygen, air, or a gas obtained by mixing nitrogen or a rare gas with oxygen at an arbitrary ratio. When a rare gas such as argon or helium is used, the discharge 9 can be stably formed even at a relatively low voltage, and when air is used, the gas cost can be reduced. In general, the higher the oxygen concentration, the higher the ozone generation efficiency. Therefore, it is preferable to set the oxygen concentration to 80% or more. For example, it is generated by using a PSA (Pressure Swing Adsorption) device that separates oxygen in the air. Ozone can also be used.

放電ユニット2は、ステンレス、チタン等の耐食性に優れ、導電性を備えた金属材料からなる支持部材11の上部に配置される。支持部材11は、処理槽1の底部と接して、処理槽1の内部に配置される。円管4は、筒状で誘電体からなり、一端の側で開放され一端の側を上にして鉛直方向に起立して設けられる。円管4は、接地された支持部材11に支持される。円管4には、誘電特性を備えた材料が用いられ、耐酸化性に優れるガラスまたはセラミック管が好適である。中心電極3は、円管4の内側で円管4と同軸に、絶縁部材10を介して支持部材11に鉛直方向に起立して設けられる。中心電極3には、導電性を備えた棒状あるいは線状の金属部材が用いられ、特にステンレスまたはチタン等の耐食性に優れた金属製ロッドまたはワイヤーが好適である。中心電極3には、接地との間で電圧が印可される。絶縁部材10は、ガラス、樹脂、セラミックを用いることができる。特にセラミックは絶縁耐力および耐久性の観点から最も好適である。支持部材11には開口11aが設けられ、円管4の内部を流下した被処理水6は、開口11aから水溜部18に流下する。 The discharge unit 2 is arranged above a support member 11 made of a metal material having excellent corrosion resistance such as stainless steel and titanium and having conductivity. The support member 11 is arranged inside the processing tank 1 in contact with the bottom of the processing tank 1. The circular tube 4 is tubular and made of a dielectric, is open on one end side, and is provided upright in the vertical direction with one end side facing up. The circular tube 4 is supported by the grounded support member 11. A material having a dielectric property is used for the circular tube 4, and a glass or ceramic tube having excellent oxidation resistance is preferable. The center electrode 3 is provided inside the circular tube 4 coaxially with the circular tube 4 and upright on the support member 11 via the insulating member 10 in the vertical direction. A rod-shaped or linear metal member having conductivity is used for the center electrode 3, and a metal rod or wire having excellent corrosion resistance such as stainless steel or titanium is particularly preferable. A voltage is applied to the center electrode 3 to and from the ground. As the insulating member 10, glass, resin, or ceramic can be used. In particular, ceramic is most suitable from the viewpoint of dielectric strength and durability. The support member 11 is provided with an opening 11a, and the water 6 to be treated that has flowed down inside the circular pipe 4 flows down from the opening 11a into the water reservoir 18.

水処理装置100は、処理槽1の外部に高圧電源8を備える。高圧電源8の高電圧出力端子8aは、中心電極3に接続される。高圧電源8のグランド端子8bは処理槽1に接続され、処理槽1と支持部材11は接地される。導電性を備えた被処理水6が放電ユニット2に供給された際、中心電極3に高電圧を印可することで、円管4の内周面と中心電極3との間に放電9が形成される。高圧電源8にはパルス電源が好適に用いられるが、安定して放電が形成できれば、交流電源を用いてもよい。なお、高圧電源8としてパルス電源を用いる際に出力される電圧の極性、電圧波高値、繰り返し周波数、パルス幅等は、中心電極3の構造およびガス種等の諸条件に応じて適宜決定することができる。一般に、電圧波高値は1kV〜50kVが望ましい。これは、1kV未満では安定した放電が形成されず、また、50kV超の場合、電源の大型化及び電気絶縁の困難化によりコストが著しく増加するためである。さらに、繰り返し周波数は、10pps(pulse−per−second)以上、100kpps以下とすることが望ましい。これは、10pps未満では十分な放電電力を投入するために非常に高い電圧が必要となり、100kppsよりも大きくすると、水処理の効率が低下するためである。また、被処理水6の成分、濃度、あるいは流量等の条件に応じて、電圧、パルス幅、パルス繰り返し周波数を調整するようにしても構わない。 The water treatment device 100 includes a high-voltage power supply 8 outside the treatment tank 1. The high voltage output terminal 8a of the high voltage power supply 8 is connected to the center electrode 3. The ground terminal 8b of the high-voltage power supply 8 is connected to the processing tank 1, and the processing tank 1 and the support member 11 are grounded. When the water 6 to be treated having conductivity is supplied to the discharge unit 2, a high voltage is applied to the center electrode 3, so that the discharge 9 is formed between the inner peripheral surface of the circular tube 4 and the center electrode 3. Will be done. A pulse power supply is preferably used for the high-voltage power supply 8, but an AC power supply may be used as long as a stable discharge can be formed. The polarity of the voltage output when the pulse power supply is used as the high voltage power supply 8, the voltage peak value, the repetition frequency, the pulse width, etc. shall be appropriately determined according to various conditions such as the structure of the center electrode 3 and the gas type. Can be done. Generally, the voltage peak value is preferably 1 kV to 50 kV. This is because a stable discharge is not formed when the voltage is less than 1 kV, and when the voltage exceeds 50 kV, the cost increases remarkably due to the increase in size of the power source and the difficulty of electrical insulation. Further, the repetition frequency is preferably 10 pps (pulse-per-second) or more and 100 kpps or less. This is because if it is less than 10 pps, a very high voltage is required to input sufficient discharge power, and if it is larger than 100 pps, the efficiency of water treatment decreases. Further, the voltage, pulse width, and pulse repetition frequency may be adjusted according to conditions such as the component, concentration, and flow rate of the water to be treated 6.

円管4の内周面と中心電極3の外周面の間には、所定の寸法の空隙が設けられる。この空隙の寸法は、高圧電源8の仕様または処理槽1の内部のガス組成に応じて決定する。所定の空隙の寸法とは、1mmから100mm程度が好適である。空隙の寸法が1mm以下の場合、被処理水6と放電9の接触面積が小さくなり効率的な水処理が行われない。また空隙の寸法を100mm以上とすると、放電9の形成に非常に高い電圧が必要となり、高圧電源8のコスト増大と、装置全体の絶縁設計の困難度が増加する。 A gap having a predetermined size is provided between the inner peripheral surface of the circular tube 4 and the outer peripheral surface of the center electrode 3. The size of this gap is determined according to the specifications of the high-voltage power supply 8 or the gas composition inside the treatment tank 1. The size of the predetermined gap is preferably about 1 mm to 100 mm. When the size of the gap is 1 mm or less, the contact area between the water to be treated 6 and the discharge 9 becomes small, and efficient water treatment cannot be performed. Further, when the size of the gap is 100 mm or more, a very high voltage is required to form the discharge 9, the cost of the high-voltage power supply 8 increases, and the difficulty of the insulation design of the entire device increases.

散水部5は、円管4の一端の側で、円管4より離れた位置から円管4の内側と外周面に向けて導電性を備えた被処理水6を供給する。散水部5は、散水領域を制限したノズル35を備える。ノズル35は、例えば充円錐型が用いられ、円管4の内側と外周面に適切に被処理水6が供給されるように噴出方向が調節される。散水領域が円管4の外径よりも広くなるようにノズル35を設けることで、被処理水6の一部は円管4の内部を流下し、残りの一部は円管4の外周面に付着して水膜7を形成しながら流下する。放電9により生成されたO等により円管4の壁面が親水化するため、円管4の外周面には均一な水膜7が形成される。水処理装置100の運転開始直後は放電9が発生しておらず、円管4の外周面の親水化が十分でない場合があるが、運転に伴い外周面は親水化され、外周面に均一な水膜7が形成される。導電性を備えた被処理水6から形成された水膜7は、円管4の外周の導電層として実質的に機能する。円管4は接地されている支持部材11に支持されるため、水膜7は接地電位の導電層となる。水処理装置100は長期間の連続運転となることが多く、円管4の外周面が一度親水化されれば、それ以降は均一な放電9が維持される。なお、散水部5は円管4の内部と外周面に対して被処理水6を供給し水膜7を形成できる機構を備えていればよく、ノズル35設けた構成に限るものではない。散水部5に、例えば、シャワープレートもしくはメッシュ状部材が用いられても構わない。The sprinkler portion 5 supplies the water to be treated 6 having conductivity from a position away from the circular pipe 4 toward the inside and the outer peripheral surface of the circular pipe 4 on one end side of the circular pipe 4. The watering unit 5 includes a nozzle 35 that limits the watering area. For example, the nozzle 35 has a conical shape, and the ejection direction is adjusted so that the water to be treated 6 is appropriately supplied to the inner and outer peripheral surfaces of the circular tube 4. By providing the nozzle 35 so that the sprinkling area is wider than the outer diameter of the circular pipe 4, a part of the water to be treated 6 flows down the inside of the circular pipe 4, and the remaining part is the outer peripheral surface of the circular pipe 4. It flows down while adhering to and forming a water film 7. Since the wall surface of the circular tube 4 by O 3 or the like generated by discharge 9 is hydrophilic, the outer peripheral surface of the circular tube 4 uniform water film 7 is formed. Immediately after the start of operation of the water treatment device 100, the discharge 9 is not generated, and the outer peripheral surface of the circular tube 4 may not be sufficiently hydrophilized. A water film 7 is formed. The water film 7 formed from the conductive water 6 to be treated substantially functions as a conductive layer on the outer periphery of the circular tube 4. Since the circular tube 4 is supported by the grounded support member 11, the water film 7 becomes a conductive layer having a ground potential. The water treatment device 100 is often operated continuously for a long period of time, and once the outer peripheral surface of the circular tube 4 is hydrophilized, a uniform discharge 9 is maintained thereafter. The sprinkler portion 5 may be provided with a mechanism capable of supplying the water to be treated 6 to the inner and outer peripheral surfaces of the circular pipe 4 to form the water film 7, and is not limited to the configuration provided with the nozzle 35. For example, a shower plate or a mesh-like member may be used for the sprinkler portion 5.

次に、水処理装置100における水処理方法について説明する。図2は、実施の形態1に係る水処理装置100における水処理を示すフローチャートである。最初に、処理槽1の内部を、ガス供給部19から供給したガスで置換する(ステップS101)。次に、取水ポンプ13を稼働させて、被処理水6を水溜部18に取水する(ステップS102)。次に、循環ポンプ12を稼働させて、水溜部18から被処理水6を吸引して散水部5に供給する(ステップS103)。次に、散水部5が備えたノズル35から、円管4の一端の側で、円管4より離れた位置から円管4の内側と外周面に向けて導電性を備えた被処理水6を供給し、円管4の外周面に被処理水6による水膜7を形成する(ステップS104)。次に、高圧電源8を稼働させて、中心電極3と処理槽1との間に電圧を印可することで、中心電極3と水膜7との間に電圧を印可し、中心電極3と水膜7との間に電界を生じさせ、円管4の内側に放電9を形成する(ステップS105)。被処理水6に含まれる有機化合物を、放電9を利用して酸化分解して処理する(ステップS106)。処理された水は排水される(ステップS107)。円管4の内部と外周面に供給された被処理水6は水溜部18に流下するため、循環ポンプ12の稼働により循環水流が形成される。処理された水は、例えば河川に放流されるが、水処理装置100の後段に活性炭等を備えた処理設備を設けても構わない。処理の間、水溜部18が所定の水位を維持するように、取水ポンプ13は取水を行う。 Next, the water treatment method in the water treatment apparatus 100 will be described. FIG. 2 is a flowchart showing water treatment in the water treatment apparatus 100 according to the first embodiment. First, the inside of the processing tank 1 is replaced with the gas supplied from the gas supply unit 19 (step S101). Next, the water intake pump 13 is operated to take the water to be treated 6 into the water reservoir 18 (step S102). Next, the circulation pump 12 is operated to suck the water to be treated 6 from the water reservoir 18 and supply it to the watering unit 5 (step S103). Next, the water to be treated 6 having conductivity from the nozzle 35 provided in the sprinkler portion 5 toward the inside and the outer peripheral surface of the circular pipe 4 from a position away from the circular pipe 4 on one end side of the circular pipe 4. Is supplied, and a water film 7 made of the water to be treated 6 is formed on the outer peripheral surface of the circular pipe 4 (step S104). Next, by operating the high-voltage power supply 8 and applying a voltage between the center electrode 3 and the treatment tank 1, a voltage is applied between the center electrode 3 and the water film 7, and the center electrode 3 and water are applied. An electric field is generated between the film and the film 7 to form a discharge 9 inside the circular tube 4 (step S105). The organic compound contained in the water to be treated 6 is oxidatively decomposed and treated using the electric discharge 9 (step S106). The treated water is drained (step S107). Since the water to be treated 6 supplied to the inside and the outer peripheral surface of the circular pipe 4 flows down to the water reservoir 18, a circulating water flow is formed by the operation of the circulation pump 12. The treated water is discharged into a river, for example, but a treatment facility equipped with activated carbon or the like may be provided after the water treatment device 100. During the treatment, the water intake pump 13 takes water so that the water reservoir 18 maintains a predetermined water level.

被処理水6の中の有機化合物を、放電9を利用して酸化分解する処理の詳細について説明する。処理槽1の内部では、放電9により、酸素と水蒸気を原料にOHラジカル、O、過酸化水素(H)などの酸化力を備えた活性種が生成される。酸素はガス供給部19から供給され、水蒸気は被処理水6が蒸発することで供給される。被処理水6は処理槽1の内部で気液平衡状態となるため、処理槽1の内部の水蒸気濃度は通常1〜3%程度となる。活性種の中で、特にOHラジカルは高い酸化力を有し、多くの有機化合物を酸化分解することができる。円管4の内部を流下する被処理水6が放電9と接触する際に、活性種を取り込むことで被処理水6に溶存する有機化合物が分解される。また、OとHは比較的長寿命であるため、被処理水6が放電ユニット2を通過した後もOとHの一部が被処理水6に残留し、水溜部18に輸送される。また、放電9で生成されたOとHの一部は気相状態で処理槽1の内部を拡散するため、円管4の外周面あるいは円管4の外部を流下する被処理水6に溶解し、水溜部18に輸送される。水溜部18に含まれるOとHは、水中反応によりOHラジカルを生成し、被処理水6の中の有機化合物を酸化分解する。このように、被処理水6に含まれる有機化合物の分解は、放電ユニット2を被処理水6が通過する際の活性種との反応と、水溜部18において被処理水6に溶存するOおよび水中反応で生じたOHラジカルとの反応の双方によって進行する。The details of the treatment for oxidatively decomposing the organic compound in the water to be treated 6 by using the electric discharge 9 will be described. Inside the treatment tank 1, by discharge 9, OH radicals of oxygen and water vapor as a raw material, O 3, the active species having oxidizing power, such as hydrogen peroxide (H 2 O 2) is generated. Oxygen is supplied from the gas supply unit 19, and water vapor is supplied by evaporating the water to be treated 6. Since the water to be treated 6 is in a vapor-liquid equilibrium state inside the treatment tank 1, the water vapor concentration inside the treatment tank 1 is usually about 1 to 3%. Among active species, OH radical has high oxidizing power and can oxidatively decompose many organic compounds. When the water 6 to be treated flowing down inside the circular tube 4 comes into contact with the discharge 9, the organic compound dissolved in the water 6 to be treated is decomposed by taking in the active species. Further, since O 3 and H 2 O 2 have a relatively long life, a part of O 3 and H 2 O 2 remains in the water to be treated 6 even after the water to be treated 6 has passed through the discharge unit 2. It is transported to the water reservoir 18. Further, since a part of O 3 and H 2 O 2 generated by the discharge 9 diffuses inside the processing tank 1 in the vapor phase state, the surface to be treated flows down the outer peripheral surface of the circular tube 4 or the outside of the circular tube 4. It dissolves in water 6 and is transported to the water reservoir 18. O 3 and H 2 O 2 contained in the water reservoir 18 generate OH radicals by an underwater reaction to oxidatively decompose the organic compound in the water to be treated 6. Thus, O 3 decomposition of the organic compound contained in the treated water 6, which dissolved the discharge unit 2 and the reaction of the active species when the treatment water 6 passes, the water to be treated 6 in the water reservoir 18 It proceeds by both reaction with OH radicals generated in the water reaction.

以上では、循環配管15と循環ポンプ12を備えて被処理水6を散水部5に供給する構成としたが、被処理水6を散水部5に供給する構成はこれに限るものではない。被処理水6に含まれる有機化合物の濃度が低く、被処理水6が処理槽1を一度通過するだけで十分な水処理効果が得られる場合は、図3に示すように、取水ポンプ13を備えた取水配管16を散水部5につなげる構成でも構わない。 In the above, the configuration in which the water to be treated 6 is supplied to the sprinkling section 5 is provided with the circulation pipe 15 and the circulation pump 12, but the configuration for supplying the water to be treated 6 to the sprinkling section 5 is not limited to this. When the concentration of the organic compound contained in the water to be treated 6 is low and a sufficient water treatment effect can be obtained only by passing the water to be treated 6 through the treatment tank 1 once, the intake pump 13 is used as shown in FIG. The water intake pipe 16 provided may be connected to the water sprinkler portion 5.

以上のように、実施の形態1による水処理装置100は、誘電体からなる円管4の少なくとも外周面に導電性を備えた被処理水6による水膜7が形成され、水膜7と中心電極3の間の電界により円管4の内周面と中心電極3の間に誘電体バリア放電が形成されるため、スパーク放電を抑制することができる。また、スパーク放電が抑制されるため、中心電極3の消耗あるいは損傷を抑制することができる。また、スパーク放電が抑制されるため、局所的な温度上昇が抑制され、水処理に有用なO、H等の生成が効率的に行われ、効率的に水処理を行うことができる。また、少なくとも円管4の外周面には均一な水膜7が形成されるため、円管4の外周面で発生し得る異常放電を抑制することができる。また、異常放電が抑制されるため、無効な電力消費と円管4の破損を抑制することができる。また、散水部5がノズル35を備えた場合、容易に散水領域を制限し、円管4の内部と外周面に被処理水6を適切に供給することができる。また、ノズル35から放電ユニット2に供給される被処理水6が円管4と接しながら流下するため、被処理水6が実質的な冷却水として機能し、放電9による円管4の温度上昇に起因した円管4の破損を抑制することができる。また、水膜7が実質的に接地電極として機能し、従来の誘電体バリア放電の構成のように円管4の外周に金属導電層を設ける必要がないため、放電ユニット2の製造コストを抑制することができ、金属導電層の腐食の問題が生じない。As described above, in the water treatment apparatus 100 according to the first embodiment, the water film 7 made of the water to be treated 6 having conductivity is formed on at least the outer peripheral surface of the circular tube 4 made of a dielectric material, and the water film 7 and the center thereof. Since a dielectric barrier discharge is formed between the inner peripheral surface of the circular tube 4 and the center electrode 3 by the electric field between the electrodes 3, spark discharge can be suppressed. Further, since the spark discharge is suppressed, the consumption or damage of the center electrode 3 can be suppressed. Furthermore, since the spark discharge is suppressed, local temperature rise is suppressed, useful in water treatment O 3, H 2 O 2 or the like generated in is performed efficiently, be performed efficiently water treatment it can. Further, since a uniform water film 7 is formed on at least the outer peripheral surface of the circular tube 4, it is possible to suppress an abnormal discharge that may occur on the outer peripheral surface of the circular tube 4. Further, since abnormal discharge is suppressed, invalid power consumption and damage to the circular tube 4 can be suppressed. Further, when the watering portion 5 is provided with the nozzle 35, the watering area can be easily limited, and the water to be treated 6 can be appropriately supplied to the inner and outer peripheral surfaces of the circular pipe 4. Further, since the water to be treated 6 supplied from the nozzle 35 to the discharge unit 2 flows down while being in contact with the circular pipe 4, the water to be treated 6 functions as substantial cooling water, and the temperature of the circular pipe 4 rises due to the discharge 9. It is possible to suppress the damage of the circular tube 4 caused by the above. Further, since the water film 7 substantially functions as a ground electrode and it is not necessary to provide a metal conductive layer on the outer periphery of the circular tube 4 as in the conventional dielectric barrier discharge configuration, the manufacturing cost of the discharge unit 2 is suppressed. The problem of corrosion of the metal conductive layer does not occur.

実施の形態2.
実施の形態2に係る水処理装置100について説明する。図4は水処理装置100が備えた放電ユニット2の断面図、図5は図4の一点鎖線A−Aにおける断面図である。実施の形態2に係る水処理装置100は、円管4の外周面の側に、導電性部材21と鉛直部材27が配置された構成になっている。なお図5には、円管4と導電性部材21と鉛直部材27のみを示している。
Embodiment 2.
The water treatment apparatus 100 according to the second embodiment will be described. FIG. 4 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100, and FIG. 5 is a cross-sectional view taken along the alternate long and short dash line AA of FIG. The water treatment device 100 according to the second embodiment has a configuration in which a conductive member 21 and a vertical member 27 are arranged on the outer peripheral surface side of the circular pipe 4. Note that FIG. 5 shows only the circular tube 4, the conductive member 21, and the vertical member 27.

鉛直部材27は、円管4の外周面の側に、支持部材11から鉛直に伸長して設けられる。図5に示すように、対向して2本の鉛直部材27が設けられるが、鉛直部材27の本数は2本に限るものではない。導電性部材21は、円管4の外周面の側に、水膜7と接するように、円管4を取り囲んで鉛直部材27に保持される。図4に示すように、ここでは2個の導電性部材21を設けたが、導電性部材21の個数は2個に限るものではない。導電性部材21と鉛直部材27はともに導電性を備えた材料からなり、例えば耐食性に優れたステンレスまたはチタンである。導電性部材21と鉛直部材27は、支持部材11を介して接地される。 The vertical member 27 is provided on the outer peripheral surface side of the circular pipe 4 so as to extend vertically from the support member 11. As shown in FIG. 5, two vertical members 27 are provided facing each other, but the number of the vertical members 27 is not limited to two. The conductive member 21 surrounds the circular tube 4 and is held by the vertical member 27 on the outer peripheral surface side of the circular tube 4 so as to be in contact with the water film 7. As shown in FIG. 4, two conductive members 21 are provided here, but the number of the conductive members 21 is not limited to two. Both the conductive member 21 and the vertical member 27 are made of a conductive material, and are, for example, stainless steel or titanium having excellent corrosion resistance. The conductive member 21 and the vertical member 27 are grounded via the support member 11.

被処理水6の導電率が低いとき、水膜7の導通が十分に得られない場合がある。この場合、支持部材11の近傍においては放電9が形成されるものの、支持部材11から離れるに従い放電9が形成されにくくなる。複数の導電性部材21を設けることで水膜7が鉛直方向の複数個所で接地されるため、被処理水6の導電率が低い場合であっても水膜7の導通を十分に得ることができ、円管4の内部において均一な放電が形成される。 When the conductivity of the water 6 to be treated is low, the water film 7 may not be sufficiently conductive. In this case, although the discharge 9 is formed in the vicinity of the support member 11, the discharge 9 is less likely to be formed as the distance from the support member 11 increases. By providing the plurality of conductive members 21, the water film 7 is grounded at a plurality of points in the vertical direction, so that sufficient conductivity of the water film 7 can be obtained even when the conductivity of the water to be treated 6 is low. A uniform discharge is formed inside the circular tube 4.

なお、導電性部材21の形状、数、位置は、被処理水6の素性に応じて任意に決定する。被処理水6の導電率が低いほど、導電性部材21の数を増やし、間隔を狭めることが好適である。例えば、導電性部材21の鉛直部材27への保持構造を嵌め合いとし、導電性部材21の増減を容易に行える構造としてもよい。また、導電性部材21の形状は、図5に示すように、円管4の外径よりもわずかに大きな内径を有する環状とすることが好適である。この形状によれば、水膜7の流れを妨げることなく、水膜7を接地することができる。 The shape, number, and position of the conductive member 21 are arbitrarily determined according to the features of the water to be treated 6. As the conductivity of the water to be treated 6 is lower, it is preferable to increase the number of conductive members 21 and narrow the intervals. For example, the holding structure of the conductive member 21 to the vertical member 27 may be fitted so that the conductive member 21 can be easily increased or decreased. Further, as shown in FIG. 5, the shape of the conductive member 21 is preferably an annular shape having an inner diameter slightly larger than the outer diameter of the circular tube 4. According to this shape, the water film 7 can be grounded without obstructing the flow of the water film 7.

以上のように、実施の形態2による水処理装置100は、円管4の外周面の側に、水膜7と接した導電性部材21を備え、導電性部材21は接地されているため、被処理水6の導電率が低いときも水膜7の導通を十分に得ることができ、円管4の内部において均一な放電9を形成することができる。均一な放電9が形成されるため、効率的に水処理を行うことができる。 As described above, the water treatment apparatus 100 according to the second embodiment includes the conductive member 21 in contact with the water film 7 on the outer peripheral surface side of the circular tube 4, and the conductive member 21 is grounded. Even when the conductivity of the water 6 to be treated is low, the water film 7 can be sufficiently conductive, and a uniform discharge 9 can be formed inside the circular tube 4. Since a uniform discharge 9 is formed, water treatment can be performed efficiently.

実施の形態3.
実施の形態3に係る水処理装置100について説明する。図6は水処理装置100が備えた放電ユニット2の断面図で、金属ワイヤー22を模式的に追記している。実施の形態3に係る水処理装置100は、導電性部材として導電線が円管4に配置された構成になっている。
Embodiment 3.
The water treatment apparatus 100 according to the third embodiment will be described. FIG. 6 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100, and the metal wire 22 is schematically added. The water treatment device 100 according to the third embodiment has a configuration in which a conductive wire is arranged in a circular tube 4 as a conductive member.

導電性部材として、導電線である金属ワイヤー22が円管4の外周面に沿って、予め定めたピッチで螺旋状に巻回される。金属ワイヤー22の一端の側は開放端で、他端の側は支持部材11に接続される。金属ワイヤー22は、支持部材11を介して接地される。金属ワイヤー22は、例えば、ステンレスまたはチタンなどの耐食性に優れた材料からなる。 As the conductive member, the metal wire 22 which is a conductive wire is spirally wound along the outer peripheral surface of the circular tube 4 at a predetermined pitch. One end side of the metal wire 22 is an open end, and the other end side is connected to the support member 11. The metal wire 22 is grounded via the support member 11. The metal wire 22 is made of a material having excellent corrosion resistance, such as stainless steel or titanium.

金属ワイヤー22は接地された導体であるため、被処理水6の導電率が低い場合であっても円管4の外周面の広範囲において水膜7を接地することができる。金属ワイヤー22の径と巻き付けのピッチは、材料強度、加工性、被処理水6の導電率に応じて適宜決めることができる。被処理水6の導電率が低いほど、金属ワイヤー22を巻回するピッチを狭めることが好適である。 Since the metal wire 22 is a grounded conductor, the water film 7 can be grounded over a wide range of the outer peripheral surface of the circular tube 4 even when the conductivity of the water to be treated 6 is low. The diameter of the metal wire 22 and the winding pitch can be appropriately determined according to the material strength, workability, and the conductivity of the water to be treated 6. It is preferable that the lower the conductivity of the water to be treated 6 is, the narrower the pitch around which the metal wire 22 is wound.

以上のように、実施の形態3による水処理装置100は、円管4の外周面の側に巻回された金属ワイヤー22を備え、金属ワイヤー22は接地されているため、被処理水6の導電率が低いときも水膜7の導通を十分に得ることができ、円管4の内部において均一な放電9を形成することができる。均一な放電9が形成されるため、効率的に水処理を行うことができる。導電性部材として巻回された金属ワイヤー22を用いることで、簡易な構成で水膜7を複数箇所で容易に接地することができる。 As described above, the water treatment apparatus 100 according to the third embodiment includes the metal wire 22 wound on the outer peripheral surface side of the circular tube 4, and the metal wire 22 is grounded, so that the water to be treated 6 is treated. Sufficient conduction of the water film 7 can be obtained even when the conductivity is low, and a uniform discharge 9 can be formed inside the circular tube 4. Since a uniform discharge 9 is formed, water treatment can be performed efficiently. By using the wound metal wire 22 as the conductive member, the water film 7 can be easily grounded at a plurality of places with a simple structure.

実施の形態4.
実施の形態4に係る水処理装置100について説明する。図7は水処理装置100が備えた放電ユニット2の断面図で、金属メッシュ23を模式的に追記している。実施の形態4に係る水処理装置100は、導電性部材として円管4の外周面を覆う金属部材が配置された構成になっている。
Embodiment 4.
The water treatment apparatus 100 according to the fourth embodiment will be described. FIG. 7 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100, and the metal mesh 23 is schematically added. The water treatment device 100 according to the fourth embodiment has a configuration in which a metal member covering the outer peripheral surface of the circular tube 4 is arranged as a conductive member.

導電性部材として、円管4の外周面を覆う金属部材である金属メッシュ23が円管4の外周面に沿って設けられる。金属メッシュ23は、金属線が円筒状に編まれて伸縮性を有したものである。筒状の金属メッシュ23の一端の側は開放端で、他端の側は支持部材11に接続される。金属メッシュ23は、支持部材11を介して接地される。金属メッシュ23は、例えば、ステンレスまたはチタンなどの耐食性に優れた材料からなる。 As the conductive member, a metal mesh 23, which is a metal member covering the outer peripheral surface of the circular tube 4, is provided along the outer peripheral surface of the circular tube 4. The metal mesh 23 is made by knitting a metal wire into a cylindrical shape and having elasticity. One end side of the tubular metal mesh 23 is an open end, and the other end side is connected to the support member 11. The metal mesh 23 is grounded via the support member 11. The metal mesh 23 is made of a material having excellent corrosion resistance, such as stainless steel or titanium.

金属メッシュ23は接地された導体であるため、被処理水6の導電率が低い場合であっても円管4の外周面の広範囲において水膜7を接地することできる。金属メッシュ23の線径と開口率は、材料強度、加工性、被処理水6の導電率に応じて適宜決めることができる。被処理水6の導電率が低いほど、金属メッシュ23の開口率を下げることが好適である。 Since the metal mesh 23 is a grounded conductor, the water film 7 can be grounded over a wide range of the outer peripheral surface of the circular tube 4 even when the conductivity of the water to be treated 6 is low. The wire diameter and aperture ratio of the metal mesh 23 can be appropriately determined according to the material strength, processability, and the conductivity of the water to be treated 6. It is preferable that the lower the conductivity of the water to be treated 6 is, the lower the aperture ratio of the metal mesh 23 is.

なお、金属メッシュ23として、金属線のメリヤス編み等により形成された筒状体を用いることも好適である。特に筒状体で伸縮性を持たせれば、円管4の外周に被せることで導電性部材が設けられるため、水処理装置100の組み立てが容易になる。さらに金属メッシュ23と円管4が密着し、金属メッシュ23の脱落を抑制できる。円管4の外周面を覆う金属部材は必ずしも金属メッシュ23である必要はなく、例えば金属薄板またはパンチングメタルを筒状に成形したものを用いても構わない。 As the metal mesh 23, it is also preferable to use a tubular body formed by knitting a metal wire or the like. In particular, if the tubular body is made elastic, the conductive member is provided by covering the outer periphery of the circular tube 4, so that the water treatment device 100 can be easily assembled. Further, the metal mesh 23 and the circular tube 4 are in close contact with each other, and the metal mesh 23 can be prevented from falling off. The metal member covering the outer peripheral surface of the circular tube 4 does not necessarily have to be a metal mesh 23, and for example, a thin metal plate or a punched metal formed into a tubular shape may be used.

以上のように、実施の形態4による水処理装置100では、円管4の外周面を覆う金属メッシュ23を備え、金属メッシュ23は接地されているため、被処理水6の導電率が低いときも水膜7の導通を十分に得ることができ、円管4の内部において均一な放電9を形成することができる。均一な放電9が形成されるため、効率的に水処理を行うことができる。導電性部材として円管4の外周面を覆う金属メッシュ23を用いることで、簡易な構成で水膜7を複数箇所で容易に接地することができる。 As described above, the water treatment apparatus 100 according to the fourth embodiment includes the metal mesh 23 that covers the outer peripheral surface of the circular tube 4, and the metal mesh 23 is grounded. Therefore, when the conductivity of the water to be treated 6 is low. The water film 7 can be sufficiently conductive, and a uniform discharge 9 can be formed inside the circular tube 4. Since a uniform discharge 9 is formed, water treatment can be performed efficiently. By using the metal mesh 23 that covers the outer peripheral surface of the circular tube 4 as the conductive member, the water film 7 can be easily grounded at a plurality of places with a simple structure.

実施の形態5.
実施の形態5に係る水処理装置100について説明する。図8は水処理装置100が備えた放電ユニット2の断面図である。実施の形態5に係る水処理装置100は、複数の円管4と中心電極3が配置された構成になっている。
Embodiment 5.
The water treatment apparatus 100 according to the fifth embodiment will be described. FIG. 8 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100. The water treatment device 100 according to the fifth embodiment has a configuration in which a plurality of circular tubes 4 and a center electrode 3 are arranged.

放電ユニット2は、水平方向に一列に並べて配列された複数の円管4であるガラス管41と、複数のガラス管41のそれぞれに中心電極3である金属ボルト40を備える。図8においては、7本の金属ボルト40と7本のガラス管41を設けているが、これらの本数は7本に限るものではない。配列についても水平方向に一列に並べる構成に限らず、マトリクス状にこれらを並べても構わない。 The discharge unit 2 includes a glass tube 41 which is a plurality of circular tubes 4 arranged in a row in the horizontal direction, and a metal bolt 40 which is a center electrode 3 in each of the plurality of glass tubes 41. In FIG. 8, seven metal bolts 40 and seven glass tubes 41 are provided, but the number of these bolts is not limited to seven. The arrangement is not limited to the configuration in which they are arranged in a row in the horizontal direction, and these may be arranged in a matrix.

金属ボルト40とガラス管41を支持する支持部は、ベース板24、第1のガラス管支持材25、第2のガラス管支持材26、および鉛直部材27から構成される。ベース板24、第1のガラス管支持材25、第2のガラス管支持材26、および鉛直部材27は、いずれもステンレスまたはチタン等の耐食性に優れ、導電性を備えた金属部材からなる。鉛直部材27は、ベース板24から鉛直に伸長させて設けられる。第1のガラス管支持材25と第2のガラス管支持材26は、ベース板24に対向して設けられ、鉛直部材27で保持される。第2のガラス管支持材26は複数設けられ、図7においては2枚設けているが、第2のガラス管支持材26の枚数はこれに限るものではない。 The support portion that supports the metal bolt 40 and the glass tube 41 is composed of a base plate 24, a first glass tube support member 25, a second glass tube support member 26, and a vertical member 27. The base plate 24, the first glass tube support member 25, the second glass tube support member 26, and the vertical member 27 are all made of a metal member having excellent corrosion resistance such as stainless steel or titanium and having conductivity. The vertical member 27 is provided so as to extend vertically from the base plate 24. The first glass tube support member 25 and the second glass tube support member 26 are provided so as to face the base plate 24 and are held by the vertical member 27. A plurality of the second glass tube support members 26 are provided, and two are provided in FIG. 7, but the number of the second glass tube support members 26 is not limited to this.

第1のガラス管支持材25と第2のガラス管支持材26には、ガラス管41を設ける位置に貫通穴が設けられ、スロット部が形成される。円管支持材である第1のガラス管支持材25の貫通穴は、ガラス管41の内径と同程度の直径を有し、ガラス管41の他端の側が第1のガラス管支持材25と接して保持される。第2のガラス管支持材26の貫通穴は、ガラス管41の外径よりも僅かに大きい直径を有する。第2のガラス管支持材26は、実施の形態2で示した導電性部材21として機能する。ガラス管41は、鉛直上方からスロット部に挿入され、鉛直に起立して第1のガラス管支持材25に保持される。 The first glass tube support member 25 and the second glass tube support member 26 are provided with through holes at positions where the glass tubes 41 are provided, and slot portions are formed. The through hole of the first glass tube support material 25, which is a circular tube support material, has a diameter similar to the inner diameter of the glass tube 41, and the other end side of the glass tube 41 is the first glass tube support material 25. Hold in contact. The through hole of the second glass tube support member 26 has a diameter slightly larger than the outer diameter of the glass tube 41. The second glass tube support member 26 functions as the conductive member 21 shown in the second embodiment. The glass tube 41 is inserted into the slot portion from above vertically, stands upright vertically, and is held by the first glass tube support member 25.

複数の金属ボルト40のそれぞれは、絶縁部材10を介してベース板24に鉛直に起立して設けられる。金属ボルト40は、ガラス管41の内部に、ガラス管41に同軸に配置される。金属ボルト40は、絶縁部材10にねじ込むことで、絶縁部材10に容易に設けられる。複数の金属ボルト40は、高圧電源8と並列に接続される。高圧電源8のグランドは鉛直部材27と接続され、第1のガラス管支持材25および第2のガラス管支持材26は接地される。高圧電源8を動作させることで、複数のガラス管41のそれぞれの内面とそれぞれの金属ボルト40との間に放電が形成される。 Each of the plurality of metal bolts 40 is vertically erected on the base plate 24 via the insulating member 10. The metal bolt 40 is arranged coaxially with the glass tube 41 inside the glass tube 41. The metal bolt 40 is easily provided on the insulating member 10 by screwing it into the insulating member 10. The plurality of metal bolts 40 are connected in parallel with the high voltage power supply 8. The ground of the high-voltage power supply 8 is connected to the vertical member 27, and the first glass tube support member 25 and the second glass tube support member 26 are grounded. By operating the high-voltage power supply 8, a discharge is formed between each inner surface of the plurality of glass tubes 41 and each metal bolt 40.

以上のように、実施の形態5による水処理装置100では、並べて配列された複数のガラス管41と、複数のガラス管41のそれぞれに金属ボルト40を備えたため、より広い領域で放電が形成され、大流量の被処理水6を一括して処理することができる。また、複数のガラス管41は、第1のガラス管支持材25と第2のガラス管支持材26で形成されるスロット部に差し込むことで保持されるため、簡易な構成で水処理装置100が実現でき、水処理装置100を容易に組み立てることができる。また、中心電極3に金属ボルト40を用いたため、金属ボルト40の表面の山部と谷部に伴う電界集中により比較的低い電圧でも放電9を形成することができる。 As described above, in the water treatment apparatus 100 according to the fifth embodiment, since the plurality of glass tubes 41 arranged side by side and the metal bolts 40 are provided for each of the plurality of glass tubes 41, an electric discharge is formed in a wider area. , A large amount of water to be treated 6 can be treated at once. Further, since the plurality of glass tubes 41 are held by being inserted into the slot portions formed by the first glass tube support member 25 and the second glass tube support member 26, the water treatment device 100 has a simple configuration. This can be realized and the water treatment device 100 can be easily assembled. Further, since the metal bolt 40 is used for the center electrode 3, the discharge 9 can be formed even at a relatively low voltage due to the electric field concentration associated with the peaks and valleys on the surface of the metal bolt 40.

実施の形態6.
実施の形態6に係る水処理装置100について説明する。図9は水処理装置100が備えた放電ユニット2の断面図で、金属メッシュ23を模式的に追記している。実施の形態6に係る水処理装置100は、中心電極支持材28に中心電極3である複数の金属ボルト40が保持された構成になっている。
Embodiment 6.
The water treatment apparatus 100 according to the sixth embodiment will be described. FIG. 9 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100, and the metal mesh 23 is schematically added. The water treatment device 100 according to the sixth embodiment has a configuration in which a plurality of metal bolts 40, which are the center electrodes 3, are held by the center electrode support member 28.

中心電極支持材28はベース板24に対向し、ベース板24と第1のガラス管支持材25との間で、絶縁碍子30を介してベース板24に設けられる。中心電極支持材28は、ステンレスまたはチタン等の耐食性に優れ、導電性を備えた金属部材からなる。金属ボルト40のそれぞれは、中心電極支持材28に鉛直に起立して設けられる。金属ボルト40は、ガラス管41の内部に、ガラス管41に同軸に配置される。金属ボルト40のそれぞれの下部に、少なくとも第1のガラス管支持材25と同一高さの箇所を覆うように絶縁保護管29が装着される。絶縁保護管29を設けたことにより、第1のガラス管支持材25と金属ボルト40との間における金属部材間の放電が抑制される。絶縁保護管29は絶縁性を備えた管状の部材で、金属ボルト40の外周に被せることが可能であればよく、例えばガラス管またはセラミック管が好適である。 The center electrode support member 28 faces the base plate 24, and is provided on the base plate 24 between the base plate 24 and the first glass tube support member 25 via an insulating insulator 30. The center electrode support member 28 is made of a metal member having excellent corrosion resistance such as stainless steel or titanium and having conductivity. Each of the metal bolts 40 is provided upright on the center electrode support member 28. The metal bolt 40 is arranged coaxially with the glass tube 41 inside the glass tube 41. An insulating protective tube 29 is attached to each lower portion of the metal bolt 40 so as to cover at least a portion having the same height as the first glass tube support member 25. By providing the insulating protective tube 29, the electric discharge between the metal members between the first glass tube support member 25 and the metal bolt 40 is suppressed. The insulation protection tube 29 is a tubular member having an insulating property, and may be covered on the outer periphery of the metal bolt 40. For example, a glass tube or a ceramic tube is suitable.

図9に示すように、放電ユニット2は1枚の第2のガラス管支持材26が設けられ、金属部材である金属メッシュ23がガラス管41のそれぞれの外周面に沿って設けられる。第2のガラス管支持材26を1枚に減らしても、金属メッシュ23を設けたことで、被処理水6の導電率が低いときも水膜7の導通を十分に得ることができる。 As shown in FIG. 9, the discharge unit 2 is provided with one second glass tube support member 26, and a metal mesh 23, which is a metal member, is provided along the outer peripheral surfaces of the glass tubes 41. Even if the number of the second glass tube support member 26 is reduced to one, by providing the metal mesh 23, sufficient conductivity of the water film 7 can be obtained even when the conductivity of the water to be treated 6 is low.

中心電極支持材28は、高圧電源8に接続される。高圧電源8のグランドは鉛直部材27と接続され、第1のガラス管支持材25、第2のガラス管支持材26および金属メッシュ23は接地される。高圧電源8を動作させることで、複数のガラス管41のそれぞれの内面とそれぞれの金属ボルト40との間に放電が形成される。 The center electrode support member 28 is connected to the high voltage power supply 8. The ground of the high-voltage power supply 8 is connected to the vertical member 27, and the first glass tube support member 25, the second glass tube support member 26, and the metal mesh 23 are grounded. By operating the high-voltage power supply 8, a discharge is formed between each inner surface of the plurality of glass tubes 41 and each metal bolt 40.

以上のように、実施の形態6による水処理装置100では、それぞれの金属ボルト40を保持する導電性を備えた中心電極支持材28を備え、高圧電源8と個々の金属ボルト40を接続することなく金属ボルト40に電圧を印可できるため、水処理装置100の構成を簡素化することができる。中心電極支持材28とベース板24を絶縁する絶縁碍子30を備え、ベース板24と個々の金属ボルト40を個別に絶縁部材10で絶縁することなく一括して絶縁できるため、水処理装置100の構成を簡素化することができる。 As described above, the water treatment apparatus 100 according to the sixth embodiment includes the central electrode support member 28 having conductivity for holding each metal bolt 40, and connects the high voltage power supply 8 and the individual metal bolts 40. Since the voltage can be applied to the metal bolt 40 without any problem, the configuration of the water treatment device 100 can be simplified. The water treatment apparatus 100 is provided with an insulator 30 that insulates the center electrode support member 28 and the base plate 24, and can collectively insulate the base plate 24 and the individual metal bolts 40 without being individually insulated by the insulating member 10. The configuration can be simplified.

実施の形態7.
実施の形態7に係る水処理装置100について説明する。図10は水処理装置100が備えた放電ユニット2の断面図で、金属メッシュ23を模式的に追記している。実施の形態7に係る水処理装置100は、中心電極3が絶縁保護管29で覆われた構成になっている。
Embodiment 7.
The water treatment apparatus 100 according to the seventh embodiment will be described. FIG. 10 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100, and the metal mesh 23 is schematically added. The water treatment device 100 according to the seventh embodiment has a configuration in which the center electrode 3 is covered with an insulating protective tube 29.

中心電極3の全ては、筒状の誘電材料からなる絶縁保護管29で覆われている。高圧電源8を動作させることで、円管4のそれぞれの内面とそれぞれの絶縁保護管29の外周面との間に放電が形成される。放電9と金属部材が接触しない構成なため、金属成分の溶出またはスパッタリングに起因して、金属成分が被処理水6に混入することはない。 All of the center electrodes 3 are covered with an insulating protective tube 29 made of a tubular dielectric material. By operating the high-voltage power supply 8, a discharge is formed between each inner surface of the circular tube 4 and the outer peripheral surface of each insulation protection tube 29. Since the discharge 9 and the metal member do not come into contact with each other, the metal component does not mix with the water to be treated 6 due to the elution or sputtering of the metal component.

以上のように、実施の形態7による水処理装置100では、筒状の誘電材料からなる絶縁保護管29で中心電極3が覆われているため、放電と金属部材が接触せず、金属成分の被処理水6への混入を抑制することができる。 As described above, in the water treatment apparatus 100 according to the seventh embodiment, since the center electrode 3 is covered with the insulating protective tube 29 made of a tubular dielectric material, the electric discharge does not come into contact with the metal member, and the metal component is contained. Mixing into the water to be treated 6 can be suppressed.

実施の形態8.
実施の形態8に係る水処理装置100について説明する。図11は水処理装置100が備えた放電ユニット2の斜視図である。実施の形態8に係る水処理装置100は、散水部5と円管4との間にガイド板32が配置された構成になっている。
Embodiment 8.
The water treatment apparatus 100 according to the eighth embodiment will be described. FIG. 11 is a perspective view of the discharge unit 2 included in the water treatment device 100. The water treatment device 100 according to the eighth embodiment has a configuration in which a guide plate 32 is arranged between the sprinkler portion 5 and the circular pipe 4.

ガイド板32は、散水部5と円管4の一端の側との間に設けられ、それぞれの円管4の一端の側と対向した貫通穴33を備えた、板状の部材である。図11においては、5本の円管4を設けているため、ガイド板32には5つの貫通穴33が設けられる。貫通穴33は、散水部5から円管4の一端の側に向けて供給された被処理水6がガイド板32を通過する領域を制限するものである。貫通穴33の形状は、被処理水6が円管4の内部と円管4の外周面に集中的に流下するよう決められる。具体的には、貫通穴33の直径が円管4の外径より僅かに大きくなるように、貫通穴33は形成される。 The guide plate 32 is a plate-shaped member provided between the sprinkler portion 5 and one end side of the circular pipe 4 and provided with a through hole 33 facing the one end side of each circular pipe 4. In FIG. 11, since the five circular tubes 4 are provided, the guide plate 32 is provided with five through holes 33. The through hole 33 limits the area through which the water to be treated 6 supplied from the sprinkler portion 5 toward one end of the circular pipe 4 passes through the guide plate 32. The shape of the through hole 33 is determined so that the water to be treated 6 flows down to the inside of the circular pipe 4 and the outer peripheral surface of the circular pipe 4 in a concentrated manner. Specifically, the through hole 33 is formed so that the diameter of the through hole 33 is slightly larger than the outer diameter of the circular tube 4.

放電で生成される活性種の密度は、放電の近傍で高く、放電から離れると低くなる。このため、被処理水6が放電に近接した箇所を流下することで、高い水処理効果が得られる。一方、被処理水6が円管4から離れた箇所を流下すると、高い水処理効果は得られない。ガイド板32を設けたことで、被処理水6は円管4の内部と円管4の外周面を集中的に流下する。このため、高い水処理効果が得られ、効率的な水処理が可能となる。 The density of active species produced by the discharge is high near the discharge and low away from the discharge. Therefore, a high water treatment effect can be obtained by allowing the water 6 to be treated to flow down a portion close to the discharge. On the other hand, if the water to be treated 6 flows down a portion away from the circular pipe 4, a high water treatment effect cannot be obtained. By providing the guide plate 32, the water to be treated 6 flows down the inside of the circular pipe 4 and the outer peripheral surface of the circular pipe 4 in a concentrated manner. Therefore, a high water treatment effect can be obtained, and efficient water treatment becomes possible.

以上のように、実施の形態8による水処理装置100では、散水部5と円管4の一端の側との間に、円管4の一端の側に対向した貫通穴33を備えたガイド板32を設けたため、被処理水6は円管4の内部と円管4の外周面を集中的に流下し、高い水処理効果を得ることができる。 As described above, in the water treatment apparatus 100 according to the eighth embodiment, a guide plate provided with a through hole 33 facing the one end side of the circular pipe 4 between the sprinkling portion 5 and one end side of the circular pipe 4. Since 32 is provided, the water to be treated 6 flows down the inside of the circular pipe 4 and the outer peripheral surface of the circular pipe 4 in a concentrated manner, and a high water treatment effect can be obtained.

実施の形態9.
実施の形態9に係る水処理装置100について説明する。図12は水処理装置100が備えた放電ユニット2の断面図である。実施の形態9に係る水処理装置100は、円管4の中間部で円管4が支持部材11に支持された構成になっている。
Embodiment 9.
The water treatment apparatus 100 according to the ninth embodiment will be described. FIG. 12 is a cross-sectional view of the discharge unit 2 provided in the water treatment device 100. The water treatment device 100 according to the ninth embodiment has a configuration in which the circular pipe 4 is supported by the support member 11 at the intermediate portion of the circular pipe 4.

実施の形態1から実施の形態8では、円管4は他端の側で接地された支持部材11に支持された構成であったが、円管4の支持は他端の側に限るものではない。図12に示すように、円管4の中間部で支持部材11に支持された構成であっても構わない。円管4の外周の一部が中間部で支持部材11に挟まれて、円管4は支持部材11に支持される。円管4が支持される箇所は一か所に限るものではなく、複数の箇所で支持されるものでも構わない。支持された箇所の近傍で放電は形成されやすくなる。 In the first to eighth embodiments, the circular tube 4 is supported by the support member 11 grounded on the other end side, but the support of the circular tube 4 is not limited to the other end side. Absent. As shown in FIG. 12, the configuration may be such that the intermediate portion of the circular tube 4 is supported by the support member 11. A part of the outer circumference of the circular tube 4 is sandwiched between the support members 11 at the intermediate portion, and the circular tube 4 is supported by the support member 11. The place where the circular tube 4 is supported is not limited to one place, and may be supported by a plurality of places. Discharges are likely to form in the vicinity of the supported location.

以上のように、実施の形態9による水処理装置100では、円管4の中間部で円管4が接地された支持部材11に支持されているため、支持された箇所の近傍で放電は形成されやすくなる。 As described above, in the water treatment apparatus 100 according to the ninth embodiment, since the circular pipe 4 is supported by the support member 11 grounded at the intermediate portion of the circular pipe 4, an electric discharge is formed in the vicinity of the supported portion. It becomes easy to be done.

また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
The present application also describes various exemplary embodiments and examples, although the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 処理槽、2 放電ユニット、3 中心電極、4 円管、5 散水部、6 被処理水、7 水膜、8 高圧電源、8a 高電圧出力端子、8b グランド端子、9 放電、10 絶縁部材、11 支持部材、11a 開口、12 循環ポンプ、13 取水ポンプ、14 排水ポンプ、15 循環配管、16 取水配管、17 排水配管、18 水溜部、19 ガス供給部、20 排気部、21 導電性部材、22 金属ワイヤー、23 金属メッシュ、24 ベース板、25 第1のガラス管支持材、26 第2のガラス管支持材、27 鉛直部材、28 中心電極支持材、29 絶縁保護管、30 絶縁碍子、32 ガイド板、33 貫通穴、40 金属ボルト、41 ガラス管、100 水処理装置 1 Treatment tank, 2 Discharge unit, 3 Center electrode, 4 Circular pipe, 5 Sprinkler, 6 Water to be treated, 7 Water film, 8 High voltage power supply, 8a High voltage output terminal, 8b ground terminal, 9 Discharge, 10 Insulation member, 11 Support member, 11a opening, 12 Circulation pump, 13 Intake pump, 14 Drainage pump, 15 Circulation pipe, 16 Intake pipe, 17 Drainage pipe, 18 Water reservoir, 19 Gas supply part, 20 Exhaust part, 21 Conductive member, 22 Metal wire, 23 metal mesh, 24 base plate, 25 first glass pipe support material, 26 second glass pipe support material, 27 vertical member, 28 center electrode support material, 29 insulation protection tube, 30 insulation porcelain, 32 guides Plate, 33 through holes, 40 metal bolts, 41 glass pipes, 100 water treatment equipment

Claims (12)

筒状で誘電性材料から構成してあり、一端の側で開放され前記一端の側を上にして鉛直方向に起立して設けられ、接地された支持部材に支持されている円管と、
前記誘電性材料とは異なる導電性材料から構成してあり、前記円管の内側に、鉛直方向に起立して設けられ、接地との間で電圧が印可される中心電極と、
前記一端の側で、前記円管より離れた位置から前記円管の内側と外周面に向けて導電性を備えた被処理水を供給する散水部と、を備え、
前記誘電性材料から構成される前記円管の前記外周面に形成された前記導電性の前記被処理水の水膜が接地とつながる導電層となり、前記円管と前記中心電極との間に誘電体バリア放電を形成することを特徴とする水処理装置。
A circular tube that is tubular and made of a dielectric material , is open on one end side, is provided upright in the vertical direction with the one end side facing up, and is supported by a grounded support member.
A center electrode, which is made of a conductive material different from the dielectric material, is provided upright inside the circular tube in the vertical direction, and a voltage is applied to the ground.
On the side of the one end, a sprinkler portion for supplying water to be treated having conductivity toward the inside and the outer peripheral surface of the circular pipe from a position away from the circular pipe is provided.
Between the dielectric material from the outer peripheral surface the conductive formed of the circular tube comprised the Ri water film of water to be treated Do the conductive layer connected to the ground, the center electrode and the circular tube water treatment device according to claim that you form a dielectric barrier discharge.
前記外周面の側に導電性部材を備え、
前記導電性部材は、接地されていることを特徴とする請求項1に記載の水処理装置。
A conductive member is provided on the outer peripheral surface side.
The water treatment apparatus according to claim 1, wherein the conductive member is grounded.
前記導電性部材は、前記外周面に沿って巻回された導電線であることを特徴とする請求項2に記載の水処理装置。 The water treatment apparatus according to claim 2, wherein the conductive member is a conductive wire wound along the outer peripheral surface. 前記導電性部材は、前記外周面を覆う金属部材であることを特徴とする請求項2に記載の水処理装置。 The water treatment apparatus according to claim 2, wherein the conductive member is a metal member that covers the outer peripheral surface. 前記金属部材は、金属線が円筒状に編まれて伸縮性を有した金属メッシュであることを特徴とする請求項4に記載の水処理装置。 The water treatment apparatus according to claim 4, wherein the metal member is a metal mesh in which a metal wire is woven into a cylindrical shape and has elasticity. 並べて配列された複数の前記円管と、
複数の前記円管のそれぞれに前記中心電極を備えたことを特徴とする請求項1から請求項5のいずれか1項に記載の水処理装置。
A plurality of the above-mentioned circular tubes arranged side by side,
The water treatment apparatus according to any one of claims 1 to 5, wherein each of the plurality of circular tubes is provided with the center electrode.
前記円管を支持する円管支持材と、
それぞれの前記中心電極を支持する導電性を備えた中心電極支持材と、を備えたことを特徴とする請求項6に記載の水処理装置。
A circular tube support material that supports the circular tube and
The water treatment apparatus according to claim 6, further comprising a conductive center electrode support material that supports each of the center electrodes.
前記散水部は、散水領域を制限したノズルを備えたことを特徴とする請求項1から請求項7のいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 7, wherein the water sprinkling unit includes a nozzle having a limited water sprinkling area. 前記散水部と前記円管の一端の側との間に設けられ、前記円管の一端の側と対向した貫通穴を備えたガイド板を備えたことを特徴とする請求項1から請求項8のいずれか1項に記載の水処理装置。 Claims 1 to 8 include a guide plate provided between the watering portion and one end side of the circular pipe and having a through hole facing the one end side of the circular pipe. The water treatment apparatus according to any one of the above. 筒状の誘電材料からなる絶縁保護管で、前記中心電極が覆われていることを特徴とする請求項1から請求項9のいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 9, wherein the center electrode is covered with an insulating protective tube made of a tubular dielectric material. 筒状で誘電性材料から構成してあり、一端の側で開放され前記一端の側を上にして鉛直方向に起立して設けられ、接地された支持部材に支持されている円管と、前記誘電性材料とは異なる導電性材料から構成してあり、前記円管の内側に、鉛直方向に起立して設けられた中心電極と、を備えた水処理装置における水処理方法であって、
前記一端の側で、前記円管より離れた位置から前記円管の内側と外周面に向けて導電性を備えた被処理水を供給し、前記誘電性材料から構成される前記円管の外周面に前記導電性の前記被処理水による水膜を形成するステップと、
接地電位の導電層である前記水膜と前記中心電極との間に電圧を印可し、前記円管と前記中心電極との間に誘電体バリア放電を形成するステップと、を備えたことを特徴とする水処理方法。
A circular tube which is tubular and is made of a dielectric material, is provided upright in the vertical direction with one end side facing up, and is supported by a grounded support member, and the above-mentioned. A water treatment method in a water treatment apparatus , which is composed of a conductive material different from a dielectric material and is provided with a center electrode standing upright in the vertical direction inside the circular tube.
On one end side, water to be treated having conductivity is supplied from a position away from the circular tube toward the inside and the outer peripheral surface of the circular tube, and the outer periphery of the circular tube made of the dielectric material is supplied. A step of forming a water film of the conductive water to be treated on the surface,
It is characterized by comprising a step of applying a voltage between the water film which is a conductive layer of a ground potential and the center electrode and forming a dielectric barrier discharge between the circular tube and the center electrode. Water treatment method.
筒状で誘電体からなり、一端の側で開放され前記一端の側を上にして鉛直方向に起立して設けられ、接地された支持部材に支持されている円管と、 A circular tube that is tubular and made of a dielectric, is open on one end side, stands upright in the vertical direction with the one end side facing up, and is supported by a grounded support member.
前記円管の内側に、鉛直方向に起立して設けられ、接地との間で電圧が印可される中心電極と、 A center electrode, which is provided upright inside the circular tube in the vertical direction and a voltage is applied to and from the ground,
前記一端の側で、前記円管より離れた位置から前記円管の内側と外周面に向けて導電性を備えた被処理水を供給する散水部と、 On the one end side, a sprinkler portion that supplies water to be treated having conductivity toward the inside and the outer peripheral surface of the circular pipe from a position away from the circular pipe.
前記散水部と前記円管の一端の側との間に設けられ、前記円管の一端の側と対向した貫通穴を備えたガイド板とを備え、 A guide plate provided between the sprinkling portion and one end side of the circular pipe and having a through hole facing the one end side of the circular pipe is provided.
前記円管の前記外周面に形成された前記被処理水の水膜が接地とつながる導電層となることを特徴とする水処理装置。 A water treatment apparatus characterized in that a water film of the water to be treated formed on the outer peripheral surface of the circular tube serves as a conductive layer connected to grounding.
JP2020528185A 2019-12-25 2019-12-25 Water treatment equipment and water treatment method Active JP6765582B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050750 WO2021130882A1 (en) 2019-12-25 2019-12-25 Water treatment device and water treatment method

Publications (2)

Publication Number Publication Date
JP6765582B1 true JP6765582B1 (en) 2020-10-07
JPWO2021130882A1 JPWO2021130882A1 (en) 2021-07-01

Family

ID=72706621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020528185A Active JP6765582B1 (en) 2019-12-25 2019-12-25 Water treatment equipment and water treatment method

Country Status (2)

Country Link
JP (1) JP6765582B1 (en)
WO (1) WO2021130882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203289B1 (en) * 2022-02-02 2023-01-12 三菱電機株式会社 Water treatment device and water treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320373A (en) * 2002-04-26 2003-11-11 Toshiba Corp Treating device by radical
JP2009241017A (en) * 2008-03-31 2009-10-22 Toto Ltd Discharge device and discharge method
WO2010055729A1 (en) * 2008-11-12 2010-05-20 積水化学工業株式会社 Water treatment device
CN102531097A (en) * 2012-01-18 2012-07-04 苏州大学 Water-film mixed discharge reactor
JP2012236130A (en) * 2011-05-11 2012-12-06 Sekisui Chem Co Ltd Water treatment equipment
JP2013206767A (en) * 2012-03-29 2013-10-07 Asahi Organic Chemicals Industry Co Ltd Plasma generation method and device
JP2015171672A (en) * 2014-03-11 2015-10-01 三菱電機株式会社 Water treatment apparatus and method
WO2019180864A1 (en) * 2018-03-22 2019-09-26 三菱電機株式会社 Water treatment device and water treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320373A (en) * 2002-04-26 2003-11-11 Toshiba Corp Treating device by radical
JP2009241017A (en) * 2008-03-31 2009-10-22 Toto Ltd Discharge device and discharge method
WO2010055729A1 (en) * 2008-11-12 2010-05-20 積水化学工業株式会社 Water treatment device
JP2012236130A (en) * 2011-05-11 2012-12-06 Sekisui Chem Co Ltd Water treatment equipment
CN102531097A (en) * 2012-01-18 2012-07-04 苏州大学 Water-film mixed discharge reactor
JP2013206767A (en) * 2012-03-29 2013-10-07 Asahi Organic Chemicals Industry Co Ltd Plasma generation method and device
JP2015171672A (en) * 2014-03-11 2015-10-01 三菱電機株式会社 Water treatment apparatus and method
WO2019180864A1 (en) * 2018-03-22 2019-09-26 三菱電機株式会社 Water treatment device and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203289B1 (en) * 2022-02-02 2023-01-12 三菱電機株式会社 Water treatment device and water treatment method
WO2023148845A1 (en) * 2022-02-02 2023-08-10 三菱電機株式会社 Water treatment device and water treatment method

Also Published As

Publication number Publication date
WO2021130882A1 (en) 2021-07-01
JPWO2021130882A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
KR20070083762A (en) Gas excitation device having insulation film layer carrying electrode and gas excitation method
US9593030B2 (en) Liquid treatment apparatus and liquid treatment method
CN105963749A (en) Diffusive plasma air treatment and material processing
KR101984437B1 (en) Water treating apparatus using plasma
JP6765582B1 (en) Water treatment equipment and water treatment method
KR101661135B1 (en) Water treatment device using plasma
JP5654946B2 (en) Water treatment equipment
JP2013049015A (en) Water treatment apparatus
US9868655B1 (en) Water treatment apparatus and water treatment method
KR101280445B1 (en) Underwater discharge apparatus for purifying water
US20190031539A1 (en) Water treatment apparatus and water treatment method
JP6400259B1 (en) Water treatment apparatus and water treatment method
KR101141834B1 (en) Apparatus for removing malodor at sewage or waste treatment facility using glow discharge of high voltage
JP2002159973A (en) Method and device for treating liquid
US11530142B2 (en) Water treatment apparatus
JP2010063991A (en) Water treating apparatus
KR100304461B1 (en) Apparatus cleaning water
WO2012134350A1 (en) Device for removing organic and chemical microbic pollutants from water
KR101479261B1 (en) Water Feeder and Plasma Water Treatment Apparatus using the Same
KR101953691B1 (en) Underwater dielectic barrier discharge plasma generating device
KR20000067547A (en) A discharge-electrode of an ozonizer system
KR20160056565A (en) Liquid processing device using plasma
JP5879530B2 (en) Liquid processing equipment
KR100358499B1 (en) An apparatus for cleaning aluminum wire surface
JPH08151201A (en) Ozonizer and cistern cleaning device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200521

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R151 Written notification of patent or utility model registration

Ref document number: 6765582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250