JP6765393B2 - 血管の内腔輪郭の自動化された決定のための方法および装置 - Google Patents

血管の内腔輪郭の自動化された決定のための方法および装置 Download PDF

Info

Publication number
JP6765393B2
JP6765393B2 JP2018088554A JP2018088554A JP6765393B2 JP 6765393 B2 JP6765393 B2 JP 6765393B2 JP 2018088554 A JP2018088554 A JP 2018088554A JP 2018088554 A JP2018088554 A JP 2018088554A JP 6765393 B2 JP6765393 B2 JP 6765393B2
Authority
JP
Japan
Prior art keywords
segment
diameter
blood vessel
segments
stent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018088554A
Other languages
English (en)
Other versions
JP2018140207A (ja
Inventor
シュミット,ジョーゼフ,エム
ベザーラ,ヒラム
ペトロフ,クリストファー
ゴピナス,アジャイ
Original Assignee
ライトラボ・イメージング・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライトラボ・イメージング・インコーポレーテッド filed Critical ライトラボ・イメージング・インコーポレーテッド
Publication of JP2018140207A publication Critical patent/JP2018140207A/ja
Application granted granted Critical
Publication of JP6765393B2 publication Critical patent/JP6765393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Urology & Nephrology (AREA)
  • Transplantation (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Endoscopes (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Prostheses (AREA)

Description

関連出願
本出願は、2012年12月12日に出願された米国仮出願第61/736,226号の優先権を主張し、その全体でその開示を参照により本明細書に組み込む。
背景
ほとんどの心臓専門医はステント法(stenting procedure)の間、血管造影法に頼って、正確に寸法を決め、ステントを位置させる。不幸なことに、血管造影プロジェクションを使用する場合には、内腔の断面の偏心が、ステントの寸法を決めるための血管径の正確な測定を困難にする。さらに、血管造影法は、血管壁中の血小板を直接可視化することができないため、び慢性病変中の正常および疾患セグメントの分化もまた困難である。血管造影法のこれらの制限により、適切なステントの寸法決めおよび位置決めが課題となる。不適切なステントの寸法決めにより、ステントが大きすぎる場合には血管に著しい損傷を与え得るか、またはステントが小さい場合には不十分な治療価値を生じ得る。
光干渉断層撮影法(OCT)および血管内超音波法(IVUS)は、血管造影法に固有の制限を受けないが、OCTおよびIVUS画像診断技術は、血管内手法のわずかに小さな画分において、ステントの展開をガイドする。ステント展開のためのOCTおよびIVUS造影の制限された使用についての1つの理由は、ステントの最適な直径および長さを決定するための現在の手法が、主体的であり、時間がかかることである。適切に寸法を決めてステントを展開するための、血管内画像情報を適用して、正常な血管輪郭の最良の可能な復元を得るための簡易で迅速な方法についての必要性がある。
本発明は、この必要性などに対処する。
本発明の要約
1つの側面において、本発明は、狭窄した血管の輪郭の復元のための、ステントの寸法を決めて調節するための方法に関する。一態様において、前記方法は、以下のステップ:前記血管を複数のセグメントに分割し、各セグメントを、前記血管の枝間の空間として定義すること;実質的に血小板を有しないと思われる出発点を選択すること;この点で最大径となる直径を定義すること;べき法則(power law)に従い、隣接する(next adjacent)セグメントの最大径を計算すること;隣接するセグメントの実際の直径を計算すること;どちらの直径がより大きいかにより、前記計算された最大径または前記測定された最大径のいずれかを選択すること;前記選択された最大径を使用して、この次のセグメントの最大径を見つけること;ステントが置かれる前記血管のセグメント毎を検査するまで、繰り返して継続すること;および、近位および遠位セグメントの直径に応じて、ステントを選択すること、を含む。
一態様において、セグメントの最大径を、その測定された直径、その計算された平均直径およびその質に応じて決定する。別の態様において、べき法則は、以下:
ε(i+1)=Dε(i)+D ε(i)
の式により与えられ、
式中、Dは、前記セグメントの直径であり、Dは、前記枝の直径であり、εは、指数である。さらになお別の態様において、εは、約2.0〜約3.0の値を有する。別の態様において、前記組織の正常性を、自動化された組織性状診断(tissue characterization)、ユーザ識別および形態の群から選択された方法により、決定する。別の態様において、前記自動化された組織性状診断の方法は、血管の隣接領域間のOCTシグナルの相互相関を利用する。なお別の態様において、前記自動化された組織性状診断の方法は、OAに対するIM比を利用する。なお別の態様において、関心の対象であるフレームは、ガボールフィルタで第1にフィルタされる。さらになお別の態様において、前記自動化された組織性状診断の方法は、フレームに基づく強度プロファイルを利用する。別の態様において、前記方法は、血管に存在する疾患の量を決定することにより、前記血管中のどこで前記ステントを接触させるべきかを決定することをさらに含む。
別の態様において、本発明は、血管中での位置決めのための、ステントの寸法を決めるための装置に関する。一態様において、前記装置は、血管のための画像データを有するプロセッサを含み、前記プロセッサは、以下のステップ:前記血管を複数のセグメントに分割し、各セグメントを、前記血管の枝間の空間として定義すること;実質的に血小板を有しないと思われる出発点を選択すること;この点で最大径となる直径を定義すること;べき法則に従い、隣接するセグメントの最大径を測定すること;隣接するセグメントの実際の直径を計算すること;どちらの直径がより大きいかにより、前記計算された最大径または前記測定された最大径のいずれかを選択すること;前記選択された最大径を使用して、この次のセグメントの最大径を見つけること;およびステントが置かれる前記血管のセグメント毎を検査するまで、繰り返して継続すること;および、結果を表示して、近位および遠位セグメントの直径に応じて、ユーザがステントを選択することを可能にすること、を有するプログラムを実行する。
一態様において、前記プロセッサは、セグメントの前記測定された直径、前記セグメントの前記計算された直径、および前記セグメントの質に応じて前記セグメントの最大径を決定する。別の態様において、前記プロセッサは、以下:
ε(i+1)=Dε(i)+D ε(i)
の式により与えられるべき法則から、セグメントの前記計算された直径を計算し、
式中、Dは、前記セグメントの直径であり、Dは、前記枝の直径であり、εは、指数である。さらに別の態様において、εは、約2.0〜約3.0の値を有する。さらになお別の態様において、前記装置は、組織の正常性を、自動化された組織性状診断、ユーザ識別および形態の群から選択された方法により、決定する。一態様において、自動化された組織性状診断は、血管の隣接領域間の前記OCTシグナルの相互相関を利用する。別の態様において、自動化された組織性状診断は、OAに対するIM比を利用する。なお別の態様において、前記プロセッサは、ガボールフィルタを使用して、前記血管セグメントの画像データを第1にフィルタする。さらになお別の態様において、前記プロセッサは、自動化された組織性状診断を、フレームに基づく強度プロファイルを利用して行う。別の態様において、前記プロセッサは、前記血管に存在する疾患の量を決定することにより、前記血管中のどこで前記ステントを接触させるべきかを決定する。
別の側面において、本発明は、血管の断面の表現を表示する、プロセッサに基づく方法に関する。一態様において、前記方法は、光干渉断層撮影システムを使用して、前記血管の前記断面の距離の測定に応じた、1セットのデータを生じさせることを含み、前記セットは、前記断面に沿った複数の位置で複数の断面エリアを含み;第1軸および第2軸を有する第1パネルを表示し、前記第1パネルは、前記血管の第1の縦画像断面図(first longitudinal image view of the section)を含み、ここで、前記第1軸は、直径の値に相当し、ここで、前記第2軸は、前記血管の断面に沿った位置に相当し;および、前記血管の断面についての最小内腔面積を表示する。別の態様において、前記直径の値は、平均直径または測定された直径として表示される。なお別の態様において、前記第1縦図を発生させる前記ステップは、複数の平均断面直径を使用する。
別の態様において、前記方法は、第2パネルに、前記血管の縦断面図を表示することを含み、ここで、前記第1軸は、直径の値に相当し、ここで、前記第2軸は、垂直バーとしての、前記血管および前記血管の枝の断面に沿った位置に相当する。なお別の態様において、前記バーの幅は、前記枝の幅に等しくなるような寸法に決められる。
図面は、必ずしも正確な縮尺ではなく、代わりに例示的原則により一般的に強調される。全ての側面において図面を例示的であるとして考慮すべきであり、本発明を限定することを意図せず、その範囲は、特許請求の範囲によってのみ定義される。
図1は、本発明に従って構築されたシステムの態様のブロック図であり; 図2aは、血管の断面の表示を示す、OCTディスプレイスクリーンの態様であり; 図2bは、前記血管の縦断面を示す、OCTディスプレイスクリーンの態様であり; 図3は、ステントを行うことを決定するのに使用される、縦断面の平均直径プロファイルの大まかな概略表現の例であり; 図4は、本発明の血管内腔輪郭の自動化された分析のための、枝間のセグメントおよび関連する注記による平均直径プロファイルの態様であり; 図5は、血管壁中の血小板の特性について入手可能な情報がない場合に、狭窄した血管の最適なステント輪郭を決定するための手法の態様を概説するフローチャートであり; 図6は、血管壁中の血小板の特性について情報が入手可能である場合に、狭窄した血管の最適なステント輪郭を決定するための手法の別の態様を概説するフローチャートであり; 図7は、図6に示された本発明の前記態様に従ってOCTデータから誘導された最適内腔輪郭の態様を示し; 図8aは、本発明の態様により得られる、正常な血管の画像フレームについての、ピクセル深さに対する強度のプロットであり; 図8bは、本発明の態様により得られる、血小板を有する血管の画像フレームについての、ピクセル深さに対する強度のプロットであり; 図9aは、本発明の態様により得られる、Aラインデータセットを有する前記Aラインパッチの相関のプロットであり; 図9bは、図9aの前記Aラインパッチの画像であり; 図10aは、本発明の態様により得られる、各フレームについてのOA(外膜(outer adventitia))に対するIM(内膜中膜(intima media))の比のプロットであり; 図10bは、本発明の態様により得られる、図10aの前記プロット中に示される種々のフレームに対応する一連の画像であり、図10cは、本発明の態様により加工された、図10bの前記画像であり; 図11aは、本発明の態様により、正常な参照フレームとして定義された正常な組織の画像であり、図11bは、本発明の態様により、疾患フレームとして定義された疾患組織の画像であり; 図12は、本発明の態様により、前記ステント膨張指標を計算するための測定点を示す概略図であり; 図13は、膨張指標の使用を示す、ステントされた領域の概略図であり; 図14は、前記システムのグラフィックインターフェースの態様のスクリーンショットであり; 図15は、ステント位置決めのために選択された内腔の断面を有する、図14に示された前記システムの前記グラフィックインターフェースのスクリーンショットであり; 図16は、ステント位置決めのために選択された内腔の別の断面を有する、図14に示された前記システムの前記グラフィックインターフェースのスクリーンショットであり; 図17は、ステント位置決めのために選択された内腔のなお別の断面を有する、図14に示された前記システムの前記グラフィックインターフェースのスクリーンショットであり; 図18は、前記標的ステントプロファイルおよび標的血管プロファイル間の差を示す、前記グラフィックインターフェースの一部のスクリーンショットである。
詳細な説明
光干渉断層撮影法(OCT)、血管内超音波法(IVUS)および他の血管内画像診断は、血管の寸法および血小板特性についての有益な情報を提供する。しかしながら、現在の画像システムは、適切なステントの選択および展開について容易に解釈される方法で、この情報を提示しない。
図1は、本発明に従って構築されたOCTシステム10の態様のブロック図である。前記システム10は、関心のある前記血管14中への挿入のために寸法決めされた光学プローブ12を含む。光が、前記プローブ12中を通過し、前記プローブ12から受け取った組織からの光の反射とともに、干渉電子モジュール16へ通過する(Light is passed into the probe 12 and light reflections from the tissue received from the probe 12 and passed to an interferometric and electronics module 16)。前記プローブ12から受け取った光に対応する前記電子シグナルが、プロセッサモジュール14へ送られ、本明細書において記載されるとおりに操作される。結果が、グラフィックディスプレイおよび制御ユニット20上に表示される。
図2aおよび2bは、冠状動脈から得られた画像を描く、商業的に入手可能なOCTシステムディスプレイの態様を示す。血管の単一横断面画像が、前記血管内でユーザ選択された角度および位置で、(図1bの前記縦画像を通る縦線(a−a’)として示される)単一縦断面に沿って、ユーザ選択された縦位置(図2a)で表示される。前記ユーザが、図2bの前記縦画像中で種々の位置を選択すると、その位置での前記断面が、図2aに現れる。
記録された画像をガイドとして使用して、心臓専門医は、典型的には、マルチステッププロセスを用いて、例えば、血小板により引き起こされる狭窄などの病変を処置するための、ステントの適切な寸法および長さを選択するのに必要な情報を抽出する。一般的に要求される前記ステップは:もっとも狭い内腔断面を見つけるための、画像のセットに目を通すこと;最小内腔面積(MLA)を測定すること;前記現在のMLAを有する前記フレームから出発する遠位方向で画像のセットに目を通して、最も低い血小板負荷および最も大きな内腔直径を有する前記血管断面を定める。次に、前記心臓専門医は、この断面の平均直径を遠位参照直径Dとして測定して記録し、前記心臓専門医が、遠位方向の代わりに近位方向に前記画像のセットをスクロールすることを除いて、最も低い血小板負荷および最も大きな内腔直径を有する前記血管断面についての探索を繰り返す。この断面が見つかった場合には、前記心臓専門医は、この断面の平均直径を近位参照直径Dとして測定して記録する。次に、前記心臓専門医は、前記縦切断面を回転させて、前記ステントの位置決めおよびその膨張直径に影響を与え得る、あらゆる大きな枝および血小板特性を定める。
必要な場合には、前記心臓専門医は、次いで、近くの枝の存在を説明するための(to account for)前記参照断面の位置を再調整する。これがいったん完了すると、前記心臓専門医は、次いで、前記近位および遠位参照断面間の拒理Lをmmで測定して、前記セグメント長さLより大きな長さを有し、DおよびD間の直径を有するステントを選択しなければならず、これにより、膨張後に、動脈壁を拡張し過ぎずに良好なストラット圧着(strut apposition)を確保するであろう。必要な場合には、前記心臓専門医は、次いで、バルーンカテーテルにより拡張後について計画して、前記ステントの直径をテーパー状にして、前記血管内腔の正常なテーパーを有する、より良好な適合性を達成しなければならない。
繁忙なカテーテル検査室では、これらのステップは、過剰に時間がかかり、確実に実行することが難しいものになり得る。前記病変がび慢性で血小板が画像化されたセグメント全体にわたって存在する場合に、または1つまたは2つ以上の大きな側枝が存在し、それにより参照フレームを識別することが困難で血管のテーパー状化の程度を評価することが困難である場合に、追加の合併症(added complication)が生じ得る。
OCTおよびIVUSが、予備介入ステント計画についての重要な方法であるだけでなく、OCTおよびIVUS造影もまた、移植後のステント膨張の質を評価するのに有益である。前記ステント展開手法におけるとおり、前記移植されたステントの近位および遠位に位置する血管断面を参照として使用して、前記ステントが適切に膨張したか否かを判断する。現在の実務では、これらの参照断面を、通常、上記で概説したものに類似する主体的な手動による手法を使用することにより見つける。結果として、内腔のテーパー状化および側枝との同様の困難性にしばしば遭遇し、これは、現在使用されているとおりのバルーン拡張のための標的直径の定量を妨げる。
本発明は、血管内画像の自動化された加工を介して枝分かれした血管の平均直径プロファイルを構築するための特許出願(米国特許出願公開第2011/0071404号明細書)中に開示された方法に基づく。この先の出願を、その全体で参照により本明細書中に組み込む。図3は、従来技術に知られていた内腔の平均直径の表示の簡易バージョンの態様である。黒色で塗られた領域(solid black region)は、血管セグメントの内腔の平均直径のバリエーションならびに縦位置および前記セグメント内の側枝の直径を示す。横軸は、画像フレーム番号を表し、これは、血管の軸に沿った距離に相当する。
一態様において、内腔面積が最小である(MLA断面)画像フレームは、1つまたは2つ以上の参照フレームで測定される断面に対する、狭窄面積パーセント(percent area stenosis)の測定のためのマーカーとしての役割を果たす。前記参照直径は、前記血管および前記ステントの端部間の接触の許容し得る点である、前記血管のセグメント中の内腔の直径を表すことが意図される。接触の最良点は、内腔面積が局所最大であり、血小板が最小である、動脈の領域のものである(すなわち、内膜は薄くて均一である)。
平均直径プロファイルの表示は、動脈のステントのための有用なガイドを提供するが、このタイプの表示は、正常および疾患セグメント間を区別しない。さらに、平均直径プロファイルは、前記血管の自然なテーパー状化の確実な指標を提供しない。すなわち、血管の直径は、典型的には、心臓から離れて血管に沿って進むにつれて、テーパー状化する。好適な正常参照断面を定めるために、ユーザは、直径が最大である領域内の画像フレームのセットを通じて手動でなお探索して、最良の候補を選択しなければならない。いったん好適な参照フレームを定めると、前記血管中のテーパー状化の量の大まかな基準(measure)を、MLAフレームの近位におよび遠位に位置する、対の参照フレームでそれぞれ測定された平均直径の差から得ることができる。不幸なことに、多くの場合、単一の参照断面のみを見つけることができ、よって、前記標的セグメント内の血管テーパー状化の程度を測定することができない。平均直径プロファイルに示された前記枝の位置は、前記ステントの位置決めに有用であるが、血管のテーパー状化についての前記枝の効果を、容易に識別することはできない。
本明細書において開示される本発明の意図は、ステント計画、評価および調整を、ステントされた血管の最適な内腔輪郭を決定するための手法を自動化することにより簡素化することである。この最適な輪郭は、ステントの寸法決め、展開およびステント後の評価についての客観的ガイドとしての役割を果たすことが意図される。前記最適な内腔輪郭の決定は、血小板の厚さ、側枝の寸法および位置ならびに血管のテーパー状化を説明する(account for)、定量的画像加工法に基づく。本発明の種々の態様は、正常参照断面の選択およびステント寸法を決めるためのテーパー状化された正常血管プロファイルの見積もりを伴う手動操作を排除することにより、OCTまたはIVUS誘導された平均直径データの有用性を拡張する。
図4を参照すると、一般的に、前記方法の一態様は、複数(N個)のセグメントに前記血管を分割する。各セグメントを、血管の枝間の空間として定義する。図4において、血管の外周の周りの枝の実際の配向にかかわらず、血管の各枝が、血管から下流に向かって広がる縦線として示される。枝の位置および直径を、血管断面の内腔輪郭の外周中の不連続を、自動的に定めて測定するソフトウエアアルゴリズムにより決定する。前記方法は、次いで、例えば、実質的に狭窄していないと思われる、ステントを位置させることが意図される一般的領域中の血管の最遠位セグメント(1)などの出発点を使用する。現在の最大径Dmax(1)が、この位置で定義されることが想定される。
前記方法は、次いで、この場合には隣接近位セグメントである次のセグメント(2)を評価し、現在のセグメントの直径、前記セグメント間の枝の直径および血管が以下に記載されるとおりのベキの法則(power rule)によりテーパー状化されるという知見により、次の近位セグメント(2)の最大径がいくつにならなければならないかを計算する。次の近位セグメントの実際の直径を測定し、より大きな(測定されるかまたは計算された)直径を、この次のセグメントの最大径Dmax(2)として使用する。前記プロセスは、次いで、次の近位セグメントへ進み、ステントが置かれるべき血管の全長が検査されるまで続く。この点で、ステントの両端の膨張直径を定義する。
別の態様は、最大径の質(疾患の重篤性の程度)を決定することを除き、以前検討された態様と同様である。セグメント内で最大径を有するセグメントが、罹患したと思われる場合には、そのセグメント内の他の画像フレームを検査して、より罹患していないフレームを最大径に選択する。このようにして、使用される最大径フレームは、実際により小さな物理的直径を有し得るが、また、内腔のより小さな疾患部分を有し得、より実際の内腔直径を示すと思われる。
より詳細には、上記のとおり、自然の内腔のテーパー状化は、冠血管系中の血流の分析から誘導されるべきスケーリング法則(power scaling rule)に従い、冠状動脈の枝分かれから主にもたらされると予測される。この法則は:
ε(i+1)=Dε(i)+D ε(i) [方程式1]
で示され、
式中、D(i)およびD(i+1)は、それぞれi番目の枝への遠位および近位の血管セグメント中の内腔直径である。i番目の側枝は、直径D(i)を有する。指数εは、経験的に決定されるとおり、約2〜約3.0の値を有する、べき法則スケーリング指数である。εの最良値の選択は、OCTの統計的分析および血管造影画像データベースに基づき、ここで、血管のテーパー状化およびそれらの血管の枝の直径を測定する。正常患者では、前記値は、典型的には、約2.5である。
図4を参照すると、本発明の方法の一態様において、複数のフレームから構成される血管の画像を、N+1個の枝間のセグメントに分割し、ここで、Nは、側枝の数である。セグメント内の複数のフレームのそれぞれは、前記セグメントの断面に相当する。各枝間セグメントの平均直径を、次いで、前記セグメントを作り上げる前記フレームを検査することにより決定する。内腔直径が、そのセグメントの最大値に等しい、各セグメント中の画像フレームが、正常参照セグメントの候補となり、すなわち、狭窄のない血管内の最大径となる。未加工の血管内画像データに適用する場合には、例えば、米国特許出願公開第2011/0071404号明細書などに記載されるとおりの境界線追跡法(boundary tracing method)を使用して、平均内腔および枝直径を自動的に測定することができる。
手短にいえば、血管の内腔を検出する境界線追跡法の一態様には、まず画像マスクを作成して、内腔壁の一般的輪郭を定めることが含まれる。一態様において、前記マスクは、2成分である。前記マスクは、複数のスキャンラインから作製され、各スキャンラインは、組織エリアの始めと終わりを定義する。血液アーチファクトなどにより、スキャンラインは、1より多い組織の領域を含んでもよい場合があるので、重量は、組織の各領域に関連する。次に、秤量された組織のリストを作り出し、潜在的な輪郭を定義する。一態様において、最長の輪郭セグメントを、根本の輪郭セグメントとして定義する。時計回りおよび反時計回りの両方に隣接する輪郭セグメントを、次いで同定する。
有効な(valid)次の輪郭セグメントは、角度、半径方向およびユークリッドの距離および長さの両方の閾値を通ったものである。すなわち、その角度範囲は、特定の閾値よりも大きくなければならず;その半径方向の位置は、他のセグメントと同様でなければならず;および、隣接する輪郭セグメントへのその直接接続距離(ユークリッド距離)は、特定の閾値よりも大きくなければならない。最後に、潜在的な輪郭セグメントの長さを決定し、最長のものを、実際の輪郭セグメントとして選択する。輪郭セグメント間で欠落した輪郭データを、次いで内挿して、輪郭内の欠落部を除去する。この点で、内腔の全輪郭が、所定の血管セグメントの各フレーム中で定義された。
ここで生じ得る、上記で一般的に説明された前記方法の2つの態様に対応する2つの状況がある。1つの状況では、正常または非疾患領域を定義することができないような、血管についての不十分な情報があるかまたは情報がないことである。他の状況では、血管が損傷された血小板および正常組織エリアの両方を含む。
壁中の血小板の特性についての情報が特定の血管セグメントの正常性の程度を決定するのに利用可能でない場合に、本発明の1つの特定の態様を第1の状況に適用する。造影診断により疾患または正常組織を区別できない場合に、または画像の質が劣化した場合に、この場合が生じ得る。
図5を参照すると、フローチャートは、正常血管直径についての情報が入手可能でない場合に、血管の最適ステントプロファイルを決定するために使用される、計算および決定の一態様を示す。示される前記方法の1つの特徴は、前記方法が、ステントの過膨張を妨げるように設計されている一方で、なお全ての枝間セグメントからの情報を組み入れることである。まず、各セグメントおよび側枝の平均直径を測定する。(ステップ1)。平均直径は、前記セグメント中のその位置での血管の断面と同じ面積を有する円の直径である。
出発条件として、血管画像の最遠位セグメント(所定の添え字(i=1)であるセグメント)におけるOCT画像を使用して測定されたとおりの最大平均直径(Dmax(1))を、最適遠位正常参照直径(np):Dnp(1)=Dmax(1)、として定義する(ステップ2)。この点から、遠位から近位への前記(N+1)個のセグメントのそれぞれの最適直径を、方程式2に示される形式の方程式1のべきスケーリング法則を使用して計算する(ステップ3)。
np(i+1)=exp{(1/ε)ln[Dnp ε(i)+D ε(i)]} [方程式2]
しかしながら、隣接する近位セグメントにおける計算された最適ステント直径である、Dnp(i+1)が、セグメント(i+1)の測定された最大径より小さい場合には、隣接する近位セグメント(i+1)を、Dmax(i+1)に設定する(ステップ4)。すなわち:
np(i+1)<Dmax(i+1)]である場合には、Dnp(i+1)=Dmax(i+1) [方程式3]
である。
条件として方程式3を有する(with Eqn. 3 as a condition)、方程式2による計算の反復プロセスを、全てのセグメントが評価されるまで繰り返す(ステップ5)。方程式3により記載される条件が、入口部の疾患により、特に血小板負荷が重度の領域において狭窄した枝によりもたらされる、スケールされた直径の誤差を補償するために含まれる。
上記で検討された本発明の第2の態様を、特定の血管セグメントの正常性の程度を血小板の厚さおよび別の造影加工アルゴリズムにより血管内データから誘導された他の変数により格付けされた、より一般的な場合に適用する。前記方法の一態様において、前記格付けスキームは、1〜Kの段階の整数を各画像フレームに割り当て、ここで、1は、正常(罹患していない)を示し、Kは、正常でない(重度の罹患)を示す。Kは、典型的には、2〜5の小さな整数である。外周全体にわたって極めて薄い(数百マイクロメートルの厚み未満の)内膜を有する非疾患画像断面のみが、格付け1に割り当てられる。
疾患断面に、内膜層の厚みおよび内膜肥大の角度範囲に従って、最大値Kまでより高い数字を割り当てる。例えば、内膜は、例えば、血管断面の外周の90°の弧にわたって有意な血小板を有しない薄いものであり、残りの270°にわたって(血小板の存在により)厚いものであると思われ得る。この断面は、例えば、180°にわたる薄い内膜および残りの180°の外周にわたって厚い内膜を有する血管より高い数字の格付け(より罹患している)を与えられるであろう。OCT画像データからのこれらの格付けを計算するための具体的な方法を、本明細書において記載する。
図6は、上記の本発明の態様による、最適化されたステント内腔輪郭を決定するプロセスのためのフローチャートであり、これは、各画像断面について以下:
1≦L≦K
の正常性の格付けを使用する。この態様において、(i)は、再びセグメント番号を示し、mmは、計数指標であり、kkは、記憶された指標であり、Nは、セグメントの合計数である。以前の態様におけるとおり、計算は、最遠位フレームで開始し、最適な直径を、方程式1により記載されるスケーリング法則により決定する。しかしながら、断面近くの正常性の格付けLがより低い場合には、正常性の格付けを含むことは、現在のセグメントにおいて測定された最大径を超える遠位セグメント中のステントの膨張を許容する。所定のセグメントについての最良の参照直径を、より良好な正常性の格付けを有する、最近接近位セグメント中の最大径として選択する。最大径条件は、入口部の疾患により、狭窄した枝によりもたらされる、スケールされた直径の誤差を補償するために含まれる。
正常性を使用するこの方法は、他の態様におけるとおり、セグメントの平均直径および側枝データを獲得することにより開始する(ステップ1)。各枝間セグメントについての最大径を、次に決定する(ステップ2)。正常性の格付けを、最大径フレームのそれぞれにおいて決定する(ステップ3)。一時的な最適直径を、次いで決定する(ステップ4)。この点において、Dmaxがより正常で、正常性の格付けであるLが、予め決定した閾値よりも低いセグメントについて、近位の探索がなされる(ステップ5)。各セグメントを、最大径について探索する(ステップ6)。前の最大径より大きな最大径を有するフレームが位置する場合には、それが新しい最適直径となる(ステップ7)。全てのフレームを探索した後(ステップ8)、セグメント内の最適直径を決定する(ステップ9)。全てのセグメントを探索した後、血管内のステントされた内腔についての最適直径が決定された。
図7は、図6に記載される本発明の態様に従ってOCTデータから誘導された、最適な内腔輪郭の例を示す。ハッチングで示されたエリアは、ステントの直径および長さを選択するためのガイドとしての役割を果たすことが意図される。最大平均直径フレームのそれぞれにおけるOCT画像の断面を、参照のために示す。この例において、内腔の直径は、フレーム255を中心とする側枝の存在により、血管セグメントの近位端部での直径において穏やかなステップで、平均で約2.84mmから約2.03mmに、比較的スムーズにテーパー状化する。計算された輪郭および血管内膜が最も薄い断面の内腔直径間の良好な適合性は、明らかである。約0.2mmのフレーム空間について、病変の最も重篤な部分を覆うのに必要なステント長さは、およそ27mmであり;すなわち、画像フレーム125から画像フレーム260までである。
一態様において、ユーザは、ステントの端部の好ましい接触位置を設定するために計算された輪郭上で位置を選択してもよい。接触位置の計画を促進するために、高い正常性の格付けを有する画像の領域を、いくつかの態様において、色分けされたバーまたは他の指標として表示する。参照フレーム検出および格付け方法は、画像加工およびコンピュータ視覚アルゴリズムを使用して、内膜中膜(IM)の厚さおよび外膜(OA)領域を決定する。これは、未加工のAライン、画像の中心から外側へのスキャンデータ、および再構築されたフレームに直接作用するアプローチの組合せを使用してなされる。一態様において、前記システムは、遠位接触点が血管の実質的に正常な領域中にない場合には、ユーザに警告する。
正常性を定義するための1つのアプローチは、光学閾値を決定することである。一態様において、最適強度閾値を、各フレーム中の全てのAラインに沿って組み合わせた画像強度プロファイルに基づいて決定する。閾値は、前記Aラインの強度プロファイル中の矢印により示される変曲(inflection)の領域のものとなるように選択される(図8a)。この閾値をまた、内腔壁から固定された距離(例えば、約0.56mmなど)での領域に相当する平均強度値を計算することにより決定することができる。この距離は、組織学研究において測定されたとおりの内膜中膜(IM)領域に相当する。血小板を有するフレームについては、強度プロファイルの肥大があり(図8b)、これは適切に閾値を修正する。変曲点の耐性因子(tolerance factor)内にある強度閾値を使用して、分離されたフォアグラウンドおよびバックグラウンドを有する二値画像を作り出す。前記二値画像の前記フォアグラウンドは、IM領域に相当し、その厚さが測定される。前記IM領域の平均の厚さは、正常性の程度を示す。血小板を有するフレームは、肥大したIM領域を有する一方で、正常な非疾患フレームは、均一で小さなIMの厚さを有する。
別のアプローチは、罹患していない参照フレームが、前記フレーム中の全てのAラインについて均一なテクスチャおよび強度特性を有することを考慮することである。この均一性の特性を、相互相関および構造類似性手法の両方を使用して捕捉する。各Aラインおよびその付近のAラインを一緒にしてグループ化し、何がAラインパッチと称されるか(what is termed an A−line patch)を作り出す。前記パッチを、次いで、正規化された相互相関を使用して、Aラインデータセット全体および相関数値を合わせて、相互相関させる。このプロセスを、Aラインパッチ毎にAラインデータ全体にわたって相互相関するまで、次の重複するAラインパッチにより繰り返す。
相関数値を、次いでプロットする(図9)。付近のAラインと比較してより低い相関数値を有するAラインは、非均一性を示し、血小板の存在を示唆する。正常な、非血小板フレームは、理想的には、全てのAラインにわたって均一な相関数値を有するであろう。グラフ中の黒色エリアは、誘導線の影の領域に相当する。例えば、相互相関に沿って強度類似性を測定する、Z. Wang et al.らの“Image quality assessment: From error visibility to structural similarity”, IEEE Trans. Image Proc, vol 14, no 4, 2004におけるものなどの、構造類似性評価基準(structure similarity metric)(SSIM)はまた、正常および疾患フレームを区別するのに使用することができる均一性の特性を提供するであろう。前記Wangのアプローチは、2つの隣接するパッチ中の各ピクセルに中心のあるウインドウ中の強度の平均および標準偏差を使用して、前記2つのパッチ間の構造の知覚的変化のための評価基準を計算する。全てのパッチにわたってより均一なSSIMを有するフレームは、正常である傾向がある一方で、血小板を有するものは、非均一なSSIM値を有するであろう。
正常性の別の基準は、OAに対するIM比である。この比を得るために、関心のあるフレームをまず、ローパスおよびガボールフィルタの組み合わせからなる(consists of a combination low pass and Gabor filters)フィルタバンクを使用して、まずフィルタする。基礎ガボールフィルタ(方程式4)は、正弦波関数で変調されたガウスフィルタである。これは、バンドパスフィルタとして振舞い、血管画像の周りの異なる半径方向に配向することができる。ガウスは、以下の方程式中の位相項を変化させることにより、予め決定された異なる配向に沿って向き、正常フレームの前記OA領域中で見られる特徴的な反射領域を捕捉する。前記フィルタの一般的形式は:
式中、μは、振動数であり、φは、位相であり、δおよびδは、ガウスエンベロープパラメータである。xおよびyの選択により、任意の配向を有するガボールフィルタが得られる。ガボールフィルタバンクは、セグメンテーションおよびパターン認識用途、特に、テクスチャ分類に、広く使用されてきた。前記フィルタバンクについてのフィルタパラメータの最適なセットを、反射特性を、特に前記OA領域の角度および寸法強度のバリエーションを強調するパラメータの範囲を識別する、学習プロセスにより得る。
一態様において、学習のために、OA領域のセットを、ユーザにより識別し、ガボールフィルタを前記セットに適用する。例えば、前記φ、δおよびδなどの前記フィルタパラメータは、広範囲の値にわたって異なる。IM領域への低応答を有する前記OA領域に最も大きな応答を与える前記セットのパラメータを、最良のセットのパラメータとして選択して、前記OA領域をフィルタする。いったんこれらの最適なパラメータが決定されると、それらを全てのデータセットに使用することができる。正常フレーム中の前記IMおよびOA領域間の、主要な際立った特徴は、外膜中の緩いコラーゲン(loose collagen)または血管周囲脂肪の存在を示す反射特徴の存在である。前記フィルタは、いったん同調されると、これらの特徴を強調することを試みる一方で、他の全てを抑制する。
上記のフィルタバンクを使用する前記フレームのフィルタ後、得られた前記IM領域および前記反射OA領域を、バックグラウンドと比較して、高輝度色(high intensity color)で強調する。次のステップで、2セットの輪郭を、前記フィルタした画像上で;一方を、前記画像の中心から外側へ、および他方を前記画像の外側境界線から内側へ、発現させる。すなわち、2セットの輪郭が発現し、一方は、前記IMおよびOA間の境界線を中心から外側に向かって移動して定義することを試み、一方は、外側から内側に向かって移動する。前記輪郭は、下部の画像の強度およびテクスチャ特性に基づいて伝播する。前記画像は、前記IMおよびOAテクスチャを強調してフィルタされる。前記IM輪郭は、下部の領域が、前記IM領域の特性である均一なテクスチャを有する場合には、一定の速度で伝播する。前記OA領域のテクスチャ特性により、領域に到達すると、その伝播は遅くなって停止する。前記画像の外側の境界線から出発する前記OA輪郭は、遅くなって停止する点である、前記OAテクスチャ領域に到達するまで、ノイズを経て伝播する。
内側の輪郭は、外側に向かって内腔境界線から伝播し、これは、既に標準OCTソフトウエアにより検出されてきた。各点でのこの輪郭の伝播のためのステップの寸法を、前記画像中のその点での下部の強度特性に基づいて決定し;明るい均一な領域が大きなステップを示唆する一方で、低強度および高強度勾配は、小さなステップ寸法を示唆する。前記IM領域の端部に相当する端部勾配に到達したところで、前記輪郭は伝播を停止する。図10Cは、前記IMおよびOA領域を描く。
外側の輪郭は、中心に向かって前記画像の外側端部から伝播される。内側の輪郭と同様に、この輪郭の各ステップは、前記下部の強度特性に基づく。ここで、強度値が低い場合には、前記ステップ寸法は大きく、端部または高強度領域に到達すると、前記輪郭は伝播を停止させる。これは、典型的には、前記OA領域の前記端部に相当する。前記外側の輪郭は、前記内側の輪郭が発達を終えた後に成長する。前記OA領域中で不十分にフィルタされた反射特徴がある場合に生じる(典型的には血小板中で起こる)、前記外側の輪郭が、前記内側の輪郭に近づく場合には、その伝播は終了する。前記内側および外側の輪郭間の前記領域は、前記セグメントされたOA領域に相当する。血小板を有するフレームがより薄いOA領域を有するであろう一方で、血小板を有さず、前記テクスチャフィルタステップ後に強調される強い反射特徴を有するものは、より厚くなるであろう。
これにより、2つの輪郭は、前記フレームのIMおよびOA領域中にパーティションまたはセグメンテーションを作り出す(図10b)。各Aラインにおける前記OA幅に対する前記IM幅の比により、正常性の指標が提供される(図10a)。血小板領域は、高いIMおよび極めて低いOA領域を有する一方で、正常領域は、ほぼ等しいIMおよびOA幅を有する。誘導線領域を無視して、前記フレーム中の全てのAラインについての平均の比は、図10aにクラスタリングにより例示されるとおりの正常性の指標である。血小板を有しないフレームは、OAに対するIMの低い平均の比を有する一方で、血小板を有するものは、OAに対するIMの大きな比を有する。
より詳細には、図10aは、フレームのサンプリングについての、OAに対するIMの平均の比の散乱プロットを示す。OAに対するIMの比の上位50%およびOAに対するIMの比の上位33%の平均の散乱をまた、プロットする。約2よりも大きい、OAに対するIMの平均の比を有するフレームは、罹患である一方で、約2よりも低いものは正常である。約2よりも小さい比を有するこれらのフレームを、参照フレームとして使用する。種々の平均の比により、前記参照フレームの格付けとして使用される、正常性の基準が提供される。図10cにおいて、底部の前記フレームは、前記フィルタの出力および輪郭成長ステップであり、IMおよびOAの仕切りを示す。これを使用して、そのフレームについての前記OAに対するIMの比を計算する。血小板を有するフレームは、全体にわたってより小さなOAの厚さを示し、よって、そのOAに対するIMの比は、血小板を有しない前記フレームよりずっと高い。
一態様において、1〜5の格付けを、各フレームに提供し、ここで、1は、正常組織の画像フレームを示し、5は、疾患組織の画像フレームを示す。前記格付けは、前記IM領域が、特定の閾値をより大きな厚みを有する象限の数に基づく。図11aに示される前記フレームは、1に格付けされる一方で、図11bに示される前記フレームは、5に格付けされる。前記内側の輪郭100および外側の輪郭110は、前記IMおよびOA領域をセグメントする、内側のおよび外側の輪郭である。各象限中の平均IMの厚みを、前記内側の輪郭に基づいて計算する。全ての象限中の厚いIMは、疾患を示し、より低い格付けを与えられる。
前記計算されたステントプロファイルを、前記内腔直径と比較して、前記計算された理想プロファイルおよび現在の内腔プロファイル間の誤差または偏差の基準を提供する指標値を決定する(図12および13参照)。各フレームにおいて、前記計算されたステントプロファイル面積および現在の内腔面積間のパーセントの差を計算する。
ステント膨張誤差指標=(面積理想−面積現在)/面積現在 方程式5
各フレームにおいて計算された前記誤差を合わせて、プルバック(pullback)全体についての単一の指標を得る。より低い番号が、より小さな誤差を示すであろう(図13)。
図14を参照すると、前記システムの前記グラフィックインターフェース210の態様には、多数のパネルまたはサブスクリーンが含まれる。第1パネル214は、OCTにより画像化される血管の縦断面である。明るいエリア218は、前記血管の内腔壁を示す一方で、黒色エリア219は、血管の内腔である。第2パネル222は、前記白色縦線226により占めされる前記第1パネル214中の位置で示される血管の横断面である。
前記システムまたはその構成要素により検出されたとおりの血管内腔は、破線でセグメントされた境界線(dotted segmented boundary)230により示される。前記画像中の影234は前記プローブを向けるのに使用される誘導線により生じた影である。前記プローブ238の中心を、同心円により囲まれる白色ドット242として画像化する。最も明るい同心円246は、前記プローブの前記壁内の酸化チタン目盛層である。ドット250を有する斜線は、血管の縦軸を通る画像切断面の配向を表す。最大径251および最小径252が表示される。さらに、一連の制御ボックス253が、オペレータが、種々の方法で前記画像を操作できるように表示される。
第3パネル254は、内腔の内部がより暗く[256]、内腔の外部がより明るい[257]、血管の内腔のシルエット表現である。縦の黒色領域258(説明のために1つのみをラベルしたもの)またはバーは、側枝であり、前記側枝を、それらが内腔から離れる際(as they leave the lumen)のそれらの実際の配向にかかわらず、前記内腔から縦にぶら下がって描かれる(depending vertically from the lumen)。縦の黒色領域の幅は、前記側枝の基準である。
第4パネル262は、第2パネル222中の内腔画像上に何が示されているかおよびあらゆる基準を示す情報パネルである。この例264において、前記内腔の面積を計算して、最大径および最小径の測定が表示される。
図15を参照すると、この例においては、ユーザは、(横断面フレーム214中の約45mmでの線287として示される)横断面位置指標を動かし、前記MLAが、パネル4中で前記MLAボックス273をチェックすることにより計算されなければならないことを示した。それに応じて、前記システムは、遠位境界線マーカー274および近位境界線マーカー278を発生させ、前記ユーザに、所望の場合には、各線をドラックしてドロップすることによりそれらの各線を別々に位置させることを可能にする。パネル3は、どこに遠位および近位境界線が位置するか282、283を示し、所定の内腔領域(白色ハッシュ線(white hashed lines))286についての標的内腔直径を表示する。前記標的内腔直径は、血管を断裂する可能性があるので、ステント直径を超えてはならない血管の最も大きな寸法である。側枝で内腔が減少するにつれて、前記白色ハッシュ線が、枝でステップダウンする(例えば、290などを参照)ことに留意せよ。さらに、前記実際の内腔壁および前記ハッシュ白色線で示された前記標的内腔直径の差として、前記システムは、例えば、ハッチングまたはコントラスト色などで、領域294中で次第に変化する。前記システムは、前記近位境界線および遠位境界線指標296間の距離を表示する。よって、一態様において、前記ソフトウエアを、所定のユーザインターフェースの一部として、実際の内腔壁および標的内腔直径間の差が、可視指標を使用して表示されるように構成することができる。
図16を参照すると、示されるとおり、前記ユーザは、下部境界線マーカー274および上部境界線マーカー278を動かし、前記システムは、この新たな範囲について前記MLAを再計算し、前記パネル中にそれ300を表示する。さらに、前記システムは、前記遠位および近位境界線指標間の差を再計算し、この測定296’を表示する。前記ユーザは、前記遠位および近位境界線指標について種々の位置を試すことを継続して(図17)、種々の測定をすることができ、これにより、前記ステントを置くための最良の位置、前記ステントがどのくらいの長さであるべきか、および前記ステントがどのくらいの半径であるべきかを判断することができる。このようにして、血管および内腔の前記OCT表現を、異なるステントの位置決めのシナリオを試験することが可能な、変形可能なまたは修正可能な表現として構成する。
結果として、前記ユーザは、1つより多いステントが必要かどうかを決定すること;前記ステントが多すぎる枝の血管をブロックするであろうか否か;および、前記ステントの端部の位置(「着地ゾーン」)により、それらが狭窄のエリアに置かれることをもたらすであろうか否か、を決定することができる。前記システムはまた、前記境界線指標282、282’のそれぞれにおいて、血管の直径297、297’をラベルする。存在する前記2つの番号は、現在の血管内腔直径(より小さい番号)および標的内腔直径(より大きい番号)である。前記システムはまた、現在の内腔直径(より小さい番号)および標的内腔直径(より大きい番号)(一般的には、303)を挙げる、前記内腔302中の所定の点についてのラベル300、前記MLA304ならびに狭窄の面積(AS)パーセント305を提供し、前記狭窄の面積(AS)パーセント305は、以下の方程式:
AS=(最適面積−現在の面積)/最適面積 方程式6
により与えられる。
前記システムはまた、前記ステント端部の前記標的ステント直径を決定することができる。前記標的ステントプロファイルを、前記血管内腔の前記直径を使用して計算する。これを行うために、前記アルゴリズムは、いくつかの推測をする。まず、枝間の前記内腔である、内腔セグメントの直径は一定である。前記内腔が枝を横切ると、前記内腔の直径は、前記内腔の近位直径が遠位直径より大きくなるように減少する。内腔のセグメント間での内腔直径の、この増加する減少は、前記内腔セグメント間の前記枝直径に比例する。最後に、前記式および直径計算の前記ソフトウエアに基づく実装および本明細書において記載される他のステップには、前記ステントの端部が、断裂し得る脂質またはカルシウム狭窄のエリア中に置かれたことを前記ユーザへ警告する警報が含まれる。
結果として、遠位または近位ステント境界線を有するセグメント中の前記標的ステントプロファイルの直径は、その遠位または近位境界線における前記内腔の実際のものに、実質的に等しい。さらに、近位および遠位境界線間の前記面積の差は、前記セグメント間の枝の直径に比例する、前記2つの境界線間の前記セグメントの中に分布する。これは、2つのセグメント間の面積の減少が、前記2つのセグメント間の前記枝の直径に比例することを意味する。
N個の枝がある場合には、枝面積(枝A)を有する各枝(n)での前記ステントの面積δの増加の変化を決定するためのトーン法(tone method)またはアルゴリズムは、以下:
Δ=近位端面積−遠位端面積 方程式7
であり、式中、Δは、面積の差である。これは、各枝における面積の増加の変化の合計に等しく、全ての(N個の)枝にわたって合計される。
Δ=ΣnからNまでδ 方程式8
δは、枝Aに比例 方程式9
δ=(枝A*Δ)/ΣnからNまで枝A 方程式10
よって、各枝における直径の変化は:
=√(4 δ/π) 方程式11
である。
検討の価値のある、特別な場合がいくつかある。例えば、前記ステントが、1つのセグメント内に置かれるのに十分に小さい場合には、前記ステントプロファイルは、前記2つの端部に接続する直線であり、前記2つの端部は、同じ直径である。近位カーソルの前記内腔の直径が、遠位カーソルの直径より小さい場合には、ステントプロファイルは、前記2つの端部を接続する直線であるが、前記2つの端部は、異なる直径を有する。
図18を参照すると、前記標的ステントプロファイル310および標的内腔直径プロファイル286間の差を描く、グラフィックインターフェースの一部が示される。使用の際、前記内腔のOCTスキャンからのデータをデータベースから収集または読み出して、前記標的内腔プロファイルを、前記システム、方法または記載される別の構成要素により生成する。前記システムは、次いで1つまたは2つ以上のアルゴリズムおよび本明細書に記載される方法を使用して、前記標的ステント直径を計算する。代替的に、前記システムは、前記ユーザインターフェース中の前記ステント中でユーザが選択した位置に基づき、異なるステントの位置決めを試みることができる。
上記の説明は、本明細書に記載される本発明の前記方法を行うのに好適なデバイスハードウェアおよび他の操作構成要素の概要を提供することを意図する。この説明は、適用される環境または本発明の範囲を限定することを意図するものではない。同様に、前記ハードウエアおよび他の操作構成要素は、上記の装置の一部として好適であり得る。本発明を、パーソナルコンピュータ、マルチプロセッサシステム、マイクロプロセッサ系またはプログラマブル電子デバイス、ネットワークPC、ミニコンピュータ、メインフレームコンピュータなどを含む、他のシステム構成と共に実施することができる。
前記詳細な説明のいくつかの部分を、コンピュータメモリ内のデータビット上での操作のアルゴリズムおよび記号表現の観点から提示する。当業者は、これらのアルゴリズムの説明および表現を、前記コンピュータおよびソフトウエア関連分野中で使用することができる。一態様において、アルゴリズムを、一般的に、所望の結果を導く、首尾一貫したシーケンスの操作として定義する。方法ステップまたは本明細書において記載される別のものとして行われる操作は、物理量の物理的操作を必要とするものである。通常、必ずしも必要ではないが、これらの量は、保存、移動、組合せ、変換、比較および別の操作が可能な、電気的または磁気的シグナルの形式を取る。
以下の検討から明らかなとおり、具体的に述べない限り、前記説明を通じて、例えば、「プロセシング」または「計算(computing)」または「表示」または「計算(caliculating)」または「比較」、「調整」、「生成」または「決定」または「表示」などの用語を使用する検討は、コンピュータシステムの作用およびプロセスまたは類似の電子計算デバイスを指すことが十分に理解され、これは、前記コンピュータシステムのレジスタおよびメモリ内の物理(電子的)量として表現されたデータを操作するか、あるいは、前記コンピュータシステムメモリまたはレジスタまたは他のかかる情報保存、伝送またはディスプレイデバイス内の物理量として同様に表現される他のデータに変換する。
いくつかの態様において、本発明はまた、本明細書における前記操作を行うための装置に関する。この装置は、所望の目的のために具体的に構築され、または汎用コンピュータを含んでもよく、これは、前記コンピュータ中に保存されたコンピュータプログラムにより選択的に起動されるかまたは再構成される。
本明細書において提示される前記アルゴリズムおよびディスプレイは、いかなる特定のコンピュータまたは他の装置に、固有に関連するものではない。種々の汎用システムを、本明細書における教示に従って、プログラムと共に使用してもよく、またはより特別な装置を構築して所望の方法ステップを行うことが都合がよいことを証明し得る。種々のこれらのシステムについて所望される構造は、以下の説明から明らかであろう。
本発明の態様を、多くの異なる形態で具現化してもよく、これに限定されないが、プロセッサと使用するためのコンピュータプログラムロジック(例えば、マイクロプロセッサ、マイクロコントローラ、デジタルシグナルプロセッサまたは汎用コンピュータなど)、プログラマブル論理デバイスと使用するためのプログラマブル論理(例えば、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array)(FPGA)または他のPLDなど)、個別部品、集積回路(例えば、特定用途向け集積回路(ASIC)など)、あるいはこれらのあらゆる組み合わせを含むあらゆる他の手段を含む。本発明の典型的な態様において、OCTプローブおよび前記プロセッサ系システムを使用して収集されたデータの、いくつかのまたは全てのプロセシングを、コンピュータプログラム指示のセットとして実装し、これは、コンピュータ実行可能形式に変換され、自体がコンピュータ可読媒体中に保存され、操作システムの制御の下でマイクロプロセッサにより実行される。よって、クエリー応答および入力データを、OCTデータの生成、輪郭の生成および伝播、データのフィルタ、領域の表示、面積および体積の測定、パラメータに基づくまたは応答する、医療用デバイス特有の作動、上記のその他の特徴および態様の実行、に好適な、プロセッサが理解可能な指示に変換する。
本明細書において上に記載される機能性の全てまたは一部を実装するコンピュータプログラムロジックを、種々の形式で具現化してもよく、これに限定されないが、ソースコード形式、コンピュータ実行可能形式および種々の中間形式(例えば、アセンブラー、コンパイラー、リンカーまたはロケーターにより生成される形式など)を含む。ソースコードは、種々の操作システムまたは操作環境と使用するための、種々のプログラミング言語(例えば、オブジェクトコード、アセンブリ言語、または例えば、Fortran、C、C++、JAVA、またはHTMLなどの高レベル言語など)のいずれかで実装された一連のコンピュータプログラム指示を含んでもよい。前記ソースコードは、種々のデータ構造および通信メッセージを定義して使用してもよい。前記ソースコードは、(例えば、インタープリターなどにより)コンピュータ実行可能形式であってもよく、または前記ソースコードは、(例えば、トランスレーター、アセンブラーまたはコンパイラーなどにより)コンピュータ実行可能形式に変換されてもよい。
前記コンピュータプログラムを、例えば、半導体メモリデバイス(例えば、RAM、ROM、PROM、EEPROMまたはフラッシュプログラマブルRAMなど)、磁気メモリデバイス(例えば、ディスケットまたは固定されたディスクなど)、光学メモリデバイス(例えば、CD−ROMなど)、PCカード(例えば、PCMCIAカードなど)または他のメモリデバイスなどの、有形保存媒体中に、永久的にまたは一時的に、のいずれかで、あらゆる形式(例えば、ソースコード形式、コンピュータ実行可能形式または中間形式など)で固定してもよい。前記コンピュータプログラムを、例えば、これに限定されないが、アナログ技術、デジタル技術、光学技術、ワイヤレス技術(例えば、Bluetoothなど)、ネットワーク技術、およびインターネットワーキング技術などを含む種々の通信技術のいずれかを使用して、コンピュータへ送信可能なあらゆるシグナルの形式で固定してもよい。前記コンピュータプログラムは、付随する印刷されたまたは電子文書(例えば、市販のソフトウエアなど)で取り外し可能な保存媒体としてのあらゆる形式で頒布されるか、(例えば、ROMまたは固定されたディスクなどに)コンピュータシステムで予めロードされるか、または通信システム(例えば、インターネットまたはワールドワイドウェブなど)上にサーバまたは電子掲示板から頒布されてもよい。
プログラマブル論理を、例えば、半導体メモリデバイス(例えば、RAM、ROM、PROM、EEPROMまたはフラッシュプログラマブルRAMなど)、磁気メモリデバイス(例えば、ディスケットまたは固定されたディスクなど)、光学メモリデバイス(例えば、CD−ROMなど)またはその他のメモリデバイスなどの、有形保存媒体中に、永久的にまたは一時的に、のいずれかで固定してもよい。前記プログラマブル論理を、例えば、これに限定されないが、アナログ技術、デジタル技術、光学技術、ワイヤレス技術(例えば、Bluetoothなど)、ネットワーク技術、およびインターネットワーキング技術などを含む種々の通信技術のいずれかを使用して、コンピュータへ送信可能なシグナルの形式で固定してもよい。前記プログラマブル論理は、付随する印刷されたまたは電子文書(例えば、市販のソフトウエアなど)で取り外し可能な保存媒体として頒布されるか、(例えば、システムROMまたは固定されたディスクなどに)コンピュータシステムで予めロードされるか、または通信システム(例えば、インターネットまたはワールドワイドウェブなど)上にサーバまたは電子掲示板から頒布されてもよい。
好適なプロセシングモジュールの種々の例を、以下でより詳細に検討する。本明細書において使用するとおり、モジュールは、特定のデータプロセシングまたはデータ送信タスクを行うのに好適なソフトウエア、ハードウエアまたはフィルムウエアを指す。典型的には、好ましい態様において、モジュールは、指示または例えば、測定されたプローブパラメータ、定量的パラメータ、エンコーディングスキーム、デコーディングスキーム、キャリブレーションデータ、プローブ長、プローブ測定、プローブ強度、および関心のある他の情報などの種々のタイプのデータを、受信、変換、ルーチン、およびプロセシングするのに好適な、ソフトウエアルーチン、プログラムまたは他のメモリ常駐用途を指す。
本明細書において記載するコンピュータおよびコンピュータシステムには、例えば、データを入手し、プロセシングし、および/または通信するのに使用される、ソフトウエアアプリケーションを保存するためのメモリなどの、動作可能な関連コンピュータ可読媒体が含まれてもよい。かかるメモリは、その動作可能な関連コンピュータまたはコンピュータシステムに関し、内部、外部、リモートまたはローカルであり得ることが十分に理解されることができる。
メモリにはまた、例えば、これに限定されないが、ハードディスク、光学ディスク、フロッピーディスク、DVD(デジタル多用途ディスク)、CD(コンパクトディスク)、メモリスティック、フラッシュメモリ、ROM(リードオンリーメモリ)、RAM(ランダムアクセスメモリ)、DRAM(ダイナミックランダムアクセスメモリ)、PROM(プログラマブルROM)、EEPROM(拡大された消去可能なPROM)、および/または他のコンピュータ可読媒体などを含む、ソフトウエアまたは他の指示を保存するためのあらゆる手段が含まれてもよい。
一般に、本明細書において記載する、本発明の態様に関連して適用されるコンピュータ可読メモリ媒体には、プログラマブル装置により実行される指示を保存することができる、あらゆるメモリ媒体が含まれてもよい。妥当な場合には、本明細書において記載する方法ステップを、コンピュータ可読メモリ媒体またはメモリ媒体上に保存された指示として、具現化または実行してもよい。これらの指示は、例えば、C++、C、Javaなどの種々のプログラミング言語、および/または本発明の態様に従って、指示を作り出すために適用され得る、種々の他の種類のソフトウエアプログラミング言語で具現化されたソフトウエアであってもよい。
本発明の前記側面、態様、特長および例は、全ての観点で例示的であると考えられなければならず、本発明を限定することを意図せず、その範囲は、特許請求の範囲にのみにより定義される。他の態様、修正、および使用は、請求項に係る発明の趣旨および範囲から逸脱せずに、当業者には明らかであろう。
本願における見出しおよびセクションの使用は、本発明を限定することを意図するものではなく;各セクションを、本発明のあらゆる側面、態様、または特徴に適用することができる。
本願を通じて、構成が、特定の構成要素を、有する、含む(including)、または含む(comprising)ものとして記載されている場合、あるいは、プロセスが、特定のプロセスステップを、有する、含む(including)、または含む(comprising)ものとして記載されている場合、本願の教示の前記構成はまた、実質的に前記記載された構成要素からなり、または前記記載された構成要素からなり、本願の教示の前記プロセスはまた、実質的に前記記載されたプロセスステップからなり、または前記記載されたプロセスステップからなる。
本願において、要素または構成要素が、記載された要素または構成要素のリストに含まれる、および/または記載された要素または構成要素のリストから選択される、という場合には、前記要素または構成要素が、前記記載された要素または構成要素のいずれか1つであり得ること、および前記記載された要素または構成要素の2つまたは3つ以上からなる群から選択され得ることが理解されなければならない。さらに、本明細書において記載する、構成、装置、または方法の要素および/または特徴を、本明細書において明示的または黙示的であるか否かにかかわらず、本発明の教示の趣旨および範囲から逸脱せずに、種々の意味で組み合わせることができることが理解されなければならない。
用語「含む(include)」、「含む(includes)」、「含む(including)」、「有する(have)」、「有する(has)」または「有する(having)」の使用は、具体的な記載のない限り、一般に、オープンエンドおよび非限定的であるとして理解されなければならない。
本明細書における単数の使用には、具体的な記載のない限り、複数形が含まれる(およびその反対も同様)。さらに、単数形「a」、「an」および「the」には、文脈が明確に示さない限り、複数形が含まれる。さらに、用語「約」の使用が、定量的値の前である場合には、本願の教示にはまた、具体的な記載のない限り、具体的な定量的値自体が含まれる。
ステップの順番または特定の動作を行う順番は、本願の教示が動作可能である限り、無関係であることが理解されなければならない。さらに、2つまたは3つ以上のステップまたは動作を、同時に行ってもよい。
値の範囲またはリストが提供される場合には、値のその範囲またはリストの上限および下限間の各中間値(intervening value)は、独立的と考えられ(individually contemplated)、各値が、本明細書において具体的に列挙されたものとして、本発明内に包含される。さらに、所定の範囲の上限および下限間の、および所定の範囲の上限および下限を含む、より小さな範囲は、本発明内であると考えられ、包含される。例示的な値または範囲の列挙は、所定の範囲の上限および下限間の、および所定の範囲の上限および下限を含む、他の値または範囲を除くものではない。

Claims (28)

  1. 血管の内腔における位置決めのためのステントの寸法を決めるための装置の作動方法であって、前記方法は、以下:
    前記血管の画像を複数のセグメントに分割するステップであって、各セグメントは、前記血管の隣接する枝間の空間として定義される、ステップ;
    前記内腔の最大径として出発点で直径を定義するステップであって、ここで、前記出発点は、前記複数のセグメントの最遠位セグメントであり、実質的に狭窄を有しないステップ;
    前記複数のセグメントの次の近位のセグメントの第1の最大径を計算するステップ;
    前記次の近位のセグメントの次の近位である前記複数のセグメントの別のセグメントの第2の最大径を計算するステップ;
    各N個のセグメントについて、N番目の最大径を反復して決定するステップ;および
    前記複数のセグメントの最位セグメントの決定された前記N番目の最大径および前記複数のセグメントの最位セグメントの定義された前記最大径に応じて、ステントを選択するステップ、
    を含む、方法。
  2. 前記出発点の近位に位置する各セグメントの前記最大径を、前記セグメントの測定された直径および前記セグメントの前記計算された直径に応じて決定する、請求項1に記載の方法。
  3. 前記第1の最大径は、べき法則に従って計算され、前記べき法則が、以下:
    ε(i+1)=Dε(i)+D ε(i)
    であり、
    式中、Dが、前記セグメントの前記直径であり、Dが、前記セグメントとその次の近位のセグメントとの間の枝の直径であり、εが、指数であり、D(i)及びD(i+1)は、i番目の枝のそれぞれ遠位及び近位のセグメントにおける直径である、請求項1に記載の方法。
  4. εが、2.0〜3.0の値を有する、請求項3に記載の方法。
  5. 前記装置が、組織の正常性を、自動化された組織性状診断、ユーザによる識別および形態の群から選択された方法により決定する、請求項1に記載の方法。
  6. 自動化された組織性状診断の前記方法が、前記血管の隣接の領域間の光干渉断層撮影法のシグナルを相互相関させることを含む、請求項5に記載の方法。
  7. 自動化された組織性状診断の前記方法が、外膜(OA)に対する内膜中膜(IM)比を使用する、請求項5に記載の方法。
  8. 前記血管のセグメントの画像を、まずガボールフィルタでフィルタする、請求項7に記載の方法。
  9. 自動化された組織性状診断の前記方法が、フレームに基づく強度プロファイルを使用する、請求項5に記載の方法。
  10. 前記装置が、さらに、前記血管中に存在する疾患の量を決定することにより、前記血管中でのステントの接触位置を決定する、請求項1に記載の方法。
  11. 血管中での位置決めのためにステントの寸法を決めるための装置であって、前記装置は、以下:
    前記血管のための画像データを有するプロセッサ、
    を含み、前記プロセッサは、以下のステップ:
    前記血管の画像を複数のセグメントに分割するステップであって、各セグメントは、前記血管の隣接する枝間の空間として定義される、ステップ;
    最大径となる出発セグメントの直径を定義するステップであって、ここで、前記出発セグメントは、前記複数のセグメントの最遠位セグメントであり、実質的に狭窄を有しないステップ;
    前記複数のセグメントの次の近位のセグメントの最大径を計算するステップ;
    前記複数のセグメントの次の近位のセグメントの前記計算された最大径を選択するステップ;
    前記次の近位のセグメントの次の近位である前記複数のセグメントの別のセグメントの最大径を計算するステップ;
    前記複数のセグメントにおける各セグメントが検査されるまで反復して続けるステップ;および
    結果を表示して、ユーザが、前記複数のセグメントの最位セグメントの決定された前記最大径および前記複数のセグメントの最位セグメントの定義された前記最大径に応じて、ステントを選択することを可能にするステップ、
    を有するプログラムを実行する、装置。
  12. 前記プロセッサが、前記出発セグメントの近位に位置する各セグメントの前記最大径を、前記セグメントの測定された直径および前記セグメントの前記計算された直径に応じて決定する、請求項11に記載の装置。
  13. 前記プロセッサが、以下の式:
    ε(i+1)=Dε(i)+D ε(i)
    により与えられる、べき法則から、前記セグメントの前記最大径を計算し、
    式中、Dが、前記セグメントの前記直径であり、Dが、前記セグメントとその次の近位のセグメントとの間の枝の前記直径であり、εが、指数であり、D(i)及びD(i+1)は、i番目の枝のそれぞれ遠位及び近位のセグメントにおける直径である
    請求項11に記載の装置。
  14. εが、2.0〜3.0の値を有する、請求項13に記載の装置。
  15. 前記プロセッサが、自動化された組織性状診断を行い、組織の正常性を評価する、請求項11に記載の装置。
  16. 自動化された組織性状診断が、前記血管の隣接の領域間の光干渉断層撮影法(OCT)シグナルを相互相関させることを含む、請求項15に記載の装置。
  17. 自動化された組織性状診断が、OAに対するIM比を使用する、請求項15に記載の装置。
  18. 前記プロセッサが、前記血管セグメントの画像データを、ガボールフィルタを使用してまずフィルタする、請求項17に記載の装置。
  19. 前記プロセッサが、自動化された組織性状診断を、フレームに基づく強度プロファイルを使用して行う、請求項15に記載の装置。
  20. 前記プロセッサが、前記血管の狭窄のレベルを決定することにより、前記血管中で前記ステントがどこで接触するべきかを決定する、請求項11に記載の装置。
  21. 血管の断面の表現を表示するための装置の作動方法であって、前記方法は、以下:
    前記装置が、光干渉断層撮影システムにより測定可能である前記血管の前記断面の距離に応じた1セットのデータを生じさせるステップであって、前記セットは、前記断面に沿った複数の位置で複数の断面エリアを含む、ステップ;
    前記装置が、第1軸および第2軸を有する第1パネルを表示するステップであって、前記第1パネルは、前記血管の第1の縦画像断面図を含み、ここで、前記第1軸は、直径の値に相当し、ここで、前記第2軸は、前記血管の前記断面に沿った位置に相当するステップ;および
    前記装置が、前記血管の前記断面についての最小内腔面積を表示するステップ、
    を含む、方法。
  22. 前記装置が、第2パネルに、前記血管の縦断面図を表示するステップをさらに含み、ここで、前記第1軸は、直径の値に相当し、ここで、前記第2軸は、バーとして、前記血管および前記血管の枝の断面に沿った位置に相当する、請求項21に記載の方法。
  23. 前記装置が、前記バーの幅を、前記血管の枝の幅に等しくなるような寸法に決め、さらに、標的内腔直径を表示する、請求項22に記載の方法。
  24. 前記装置が、前記血管の断面画像を含む第3パネルを表示するステップをさらに含む、請求項21に記載の方法。
  25. 前記装置が、異なるステントの位置決めのシナリオに応じて、ユーザにフィードバックを提供するように構成された、血管のOCT生成表現を表示するステップをさらに含む、請求項21に記載の方法。
  26. 前記装置が、可視指標を使用して、実際の内腔壁および標的内腔の直径の差を表示するステップをさらに含む、請求項21に記載の方法。
  27. 前記装置が、近位参照境界線および遠位参照境界線を表示するステップをさらに含む、請求項21に記載の方法。
  28. 前記装置が、近位参照境界線および遠位参照境界線間の距離を表示するステップをさらに含む、請求項27に記載の方法。
JP2018088554A 2012-12-12 2018-05-02 血管の内腔輪郭の自動化された決定のための方法および装置 Active JP6765393B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261736226P 2012-12-12 2012-12-12
US61/736,226 2012-12-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015547917A Division JP6336471B2 (ja) 2012-12-12 2013-03-12 血管の内腔輪郭の自動化された決定のための方法および装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020117405A Division JP2020179196A (ja) 2012-12-12 2020-07-07 血管の内腔輪郭の自動化された決定のための方法および装置

Publications (2)

Publication Number Publication Date
JP2018140207A JP2018140207A (ja) 2018-09-13
JP6765393B2 true JP6765393B2 (ja) 2020-10-07

Family

ID=48096170

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015547917A Active JP6336471B2 (ja) 2012-12-12 2013-03-12 血管の内腔輪郭の自動化された決定のための方法および装置
JP2018088554A Active JP6765393B2 (ja) 2012-12-12 2018-05-02 血管の内腔輪郭の自動化された決定のための方法および装置
JP2020117405A Pending JP2020179196A (ja) 2012-12-12 2020-07-07 血管の内腔輪郭の自動化された決定のための方法および装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015547917A Active JP6336471B2 (ja) 2012-12-12 2013-03-12 血管の内腔輪郭の自動化された決定のための方法および装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020117405A Pending JP2020179196A (ja) 2012-12-12 2020-07-07 血管の内腔輪郭の自動化された決定のための方法および装置

Country Status (8)

Country Link
US (2) US11923067B2 (ja)
EP (3) EP3272282B1 (ja)
JP (3) JP6336471B2 (ja)
CN (2) CN108836280B (ja)
AU (2) AU2013360356B2 (ja)
CA (1) CA2892810C (ja)
ES (1) ES2641487T3 (ja)
WO (1) WO2014092755A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352287B2 (ja) 2012-11-19 2018-07-04 ライトラボ・イメージング・インコーポレーテッド マルチモーダル・イメージングシステム、プローブ及び方法
US20150305631A1 (en) * 2014-04-25 2015-10-29 Medtronic, Inc. Real-Time Relationship Between Geometries of an Instrument and a Structure
EP3140757B1 (en) * 2014-05-05 2020-06-24 Siemens Healthcare GmbH Method and system for non-invasive functional assessment of coronary artery stenosis using flow computations in models based on diseased patients and hypothetical normal anatomical models
JP6682526B2 (ja) * 2014-07-24 2020-04-15 ライトラボ・イメージング・インコーポレーテッド 血管内のステント配備を評価する為の、プロセッサベースの自動システムの作動方法、及び血管内のステント配備を評価する為の、プロセッサベースの自動システム
WO2016136579A1 (ja) * 2015-02-25 2016-09-01 テルモ株式会社 画像診断装置、その制御方法、プログラム及びコンピュータ可読記憶媒体
EP3282921B1 (en) 2015-04-16 2022-02-16 Gentuity LLC Micro-optic probes for neurology
US10140712B2 (en) 2015-05-17 2018-11-27 Lightlab Imaging, Inc. Detection of stent struts relative to side branches
US10222956B2 (en) 2015-05-17 2019-03-05 Lightlab Imaging, Inc. Intravascular imaging user interface systems and methods
US10646198B2 (en) * 2015-05-17 2020-05-12 Lightlab Imaging, Inc. Intravascular imaging and guide catheter detection methods and systems
US10109058B2 (en) 2015-05-17 2018-10-23 Lightlab Imaging, Inc. Intravascular imaging system interfaces and stent detection methods
US9996921B2 (en) 2015-05-17 2018-06-12 LIGHTLAB IMAGING, lNC. Detection of metal stent struts
CN107920745B (zh) 2015-07-25 2022-01-28 光学实验室成像公司 血管内数据可视化方法
EP3344126A4 (en) 2015-08-31 2019-05-08 Gentuity LLC IMAGING SYSTEM COMPRISING IMAGING PROBE AND DELIVERY DEVICES
JP6961589B2 (ja) 2015-11-18 2021-11-05 ライトラボ・イメージング・インコーポレーテッド 側枝に対するステントストラットの検出
EP3381014B1 (en) 2015-11-23 2020-12-16 Lightlab Imaging, Inc. Detection of and validation of shadows in intravascular images
EP3443536B1 (en) * 2016-04-14 2021-12-15 Lightlab Imaging, Inc. Identification of branches of a blood vessel
WO2017201026A1 (en) 2016-05-16 2017-11-23 Lightlab Imaging, Inc. Intravascular absorbable stent detection and diagnostic methods and systems
US11883107B2 (en) 2016-09-28 2024-01-30 Lightlab Imaging, Inc. Stent planning systems and methods using vessel representation obtained via intravascular probe by determining stent effectiveness score and fractional flow reserve
EP3691520A1 (en) 2017-10-02 2020-08-12 Lightlab Imaging, Inc. Intravascular data collection probes and related assemblies
EP3700406A4 (en) 2017-11-28 2021-12-29 Gentuity LLC Imaging system
CN108335284B (zh) * 2018-01-09 2022-06-28 北京理工大学 一种冠脉血管中心线匹配方法和系统
WO2019175032A1 (en) * 2018-03-14 2019-09-19 Koninklijke Philips N.V. Scoring intravascular lesions and stent deployment in medical intraluminal ultrasound imaging
EP3764915A1 (en) * 2018-03-15 2021-01-20 Koninklijke Philips N.V. Determination and visualization of anatomical landmarks for intraluminal lesion assessment and treatment planning
JP7075371B2 (ja) 2018-05-03 2022-05-25 キヤノン ユーエスエイ,インコーポレイテッド マルチプルイメージングモダリティにわたって関心領域を強調するためのデバイス、システム、および方法
EP3811333A1 (en) 2018-05-29 2021-04-28 Lightlab Imaging, Inc. Stent expansion display, systems, and methods
CN109009001B (zh) * 2018-07-02 2019-07-09 博动医学影像科技(上海)有限公司 血管压力差修正方法、装置和设备
US20200129158A1 (en) * 2018-10-26 2020-04-30 Volcano Corporation Graphical longitudinal display for intraluminal ultrasound imaging and associated devices, systems, and methods
EP3909016A1 (en) 2019-01-13 2021-11-17 Lightlab Imaging, Inc. Systems and methods for classification of arterial image regions and features thereof
WO2020154904A1 (zh) * 2019-01-29 2020-08-06 深圳市科曼医疗设备有限公司 一种超声图像血管直径自动测量方法
CA3133449A1 (en) * 2019-03-17 2020-09-24 Lightlab Imaging, Inc. Arterial imaging and assessment systems and methods and related user interface based-workflows
JP7157098B2 (ja) * 2019-10-30 2022-10-19 i-PRO株式会社 血管内視鏡システムおよび血管径測定方法
WO2021115958A1 (en) * 2019-12-10 2021-06-17 Koninklijke Philips N.V. Intraluminal image-based vessel diameter determination and associated devices, systems, and methods
WO2021156215A1 (en) * 2020-02-04 2021-08-12 Koninklijke Philips N.V. Automatic intraluminal imaging-based target and reference image frame detection and associated devices, systems, and methods
TWI740600B (zh) * 2020-08-10 2021-09-21 台灣基督長老教會馬偕醫療財團法人馬偕紀念醫院 用以評估動脈阻塞程度的方法
CN114145733B (zh) * 2020-09-07 2024-10-01 先健科技(深圳)有限公司 测量装置、测量系统和测量方法
US20230190227A1 (en) * 2021-12-16 2023-06-22 Philips Image Guided Therapy Corporation Plaque burden indication on longitudinal intraluminal image and x-ray image
CN115153503A (zh) * 2022-06-23 2022-10-11 北京悦唯医疗科技有限责任公司 一种血管直径测量探头及装置
WO2024059136A1 (en) * 2022-09-14 2024-03-21 Boston Scientific Scimed, Inc. Graphical user interface for intravascular ultrasound stent display
US20240086025A1 (en) * 2022-09-14 2024-03-14 Boston Scientific Scimed, Inc. Graphical user interface for intravascular ultrasound automated lesion assessment system
WO2024071121A1 (ja) * 2022-09-28 2024-04-04 テルモ株式会社 コンピュータプログラム、情報処理方法、及び情報処理装置
CN115869013B (zh) * 2022-12-08 2024-07-12 合肥合滨智能机器人有限公司 一种用于血管超声自主扫查的血管定位和导航方法
CN117179894B (zh) * 2023-11-07 2024-03-15 北京唯迈医疗设备有限公司 介入手术支架辅助选型和定位的装置、系统和存储介质

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477858A (en) 1986-07-30 1995-12-26 Siemens Medical Systems, Inc. Ultrasound blood flow/tissue imaging system
US5662109A (en) 1990-12-14 1997-09-02 Hutson; William H. Method and system for multi-dimensional imaging and analysis for early detection of diseased tissue
US5054492A (en) 1990-12-17 1991-10-08 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter having rotational image correlation
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
DE69227902T3 (de) 1991-04-29 2010-04-22 Massachusetts Institute Of Technology, Cambridge Vorrichtung für optische abbildung und messung
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US5325449A (en) 1992-05-15 1994-06-28 David Sarnoff Research Center, Inc. Method for fusing images and apparatus therefor
US5509093A (en) 1993-10-13 1996-04-16 Micron Optics, Inc. Temperature compensated fiber fabry-perot filters
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5619368A (en) 1995-05-16 1997-04-08 Massachusetts Inst. Of Technology Optical frequency shifter
WO1997001167A1 (en) 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
US5810007A (en) 1995-07-26 1998-09-22 Associates Of The Joint Center For Radiation Therapy, Inc. Ultrasound localization and image fusion for the treatment of prostate cancer
US5771895A (en) 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US6148095A (en) 1997-09-08 2000-11-14 University Of Iowa Research Foundation Apparatus and method for determining three-dimensional representations of tortuous vessels
US5989189A (en) 1997-10-24 1999-11-23 Mentor Corporation Ophthalmic ultrasound imaging
US20020161351A1 (en) 1998-09-01 2002-10-31 Samson Wilfred J. Method and apparatus for treating acute myocardial infarction with selective hypothermic perfusion
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6385332B1 (en) 1999-02-19 2002-05-07 The John P. Roberts Research Institute Automated segmentation method for 3-dimensional ultrasound
US6471656B1 (en) 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
US6381350B1 (en) 1999-07-02 2002-04-30 The Cleveland Clinic Foundation Intravascular ultrasonic analysis using active contour method and system
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6785409B1 (en) 2000-10-24 2004-08-31 Koninklijke Philips Electronics, N.V. Segmentation method and apparatus for medical images using diffusion propagation, pixel classification, and mathematical morphology
JP4241038B2 (ja) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション 組織分析のための光学的な方法及びシステム
US20020115931A1 (en) 2001-02-21 2002-08-22 Strauss H. William Localizing intravascular lesions on anatomic images
US6768756B2 (en) 2001-03-12 2004-07-27 Axsun Technologies, Inc. MEMS membrane with integral mirror/lens
US6570659B2 (en) 2001-03-16 2003-05-27 Lightlab Imaging, Llc Broadband light source system and method and light source combiner
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US6585660B2 (en) 2001-05-18 2003-07-01 Jomed Inc. Signal conditioning device for interfacing intravascular sensors having varying operational characteristics to a physiology monitor
US7329223B1 (en) 2001-05-31 2008-02-12 Abbott Cardiovascular Systems Inc. Catheter with optical fiber sensor
US6716178B1 (en) 2001-05-31 2004-04-06 Advanced Cardiovascular Systems, Inc. Apparatus and method for performing thermal and laser doppler velocimetry measurements
US7532920B1 (en) 2001-05-31 2009-05-12 Advanced Cardiovascular Systems, Inc. Guidewire with optical fiber
US6697667B1 (en) 2001-05-31 2004-02-24 Advanced Cardiovascular Systems, Inc. Apparatus and method for locating coronary sinus
US6706004B2 (en) 2001-05-31 2004-03-16 Infraredx, Inc. Balloon catheter
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
US6947040B2 (en) 2001-10-23 2005-09-20 Siemens Corporate Research, Inc. Vessel detection by mean shift based ray propagation
US6868736B2 (en) 2002-02-22 2005-03-22 Sentec Corporation Ultra-miniature optical pressure sensing system
US7937660B2 (en) * 2002-04-19 2011-05-03 Medtronic Vascular, Inc. Computer-based methods and structures for stent-graft selection
US7134994B2 (en) 2002-05-20 2006-11-14 Volcano Corporation Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display
US6891984B2 (en) 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
US7359554B2 (en) 2002-08-26 2008-04-15 Cleveland Clinic Foundation System and method for identifying a vascular border
EP1593087A4 (en) 2003-01-30 2006-10-04 Chase Medical Lp METHOD AND SYSTEM FOR IMAGE PROCESSING AND CONTOUR EVALUATION
US8465452B2 (en) * 2003-02-21 2013-06-18 3Dt Holdings, Llc Devices, systems, and methods for removing stenotic lesions from vessels
JP2006518623A (ja) 2003-02-25 2006-08-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血管内撮像
US20100076320A1 (en) 2003-04-25 2010-03-25 Lightlab Imaging, Llc Flush catheter with flow directing sheath
US7241286B2 (en) 2003-04-25 2007-07-10 Lightlab Imaging, Llc Flush catheter with flow directing sheath
US7998188B2 (en) * 2003-04-28 2011-08-16 Kips Bay Medical, Inc. Compliant blood vessel graft
DE10325298B4 (de) 2003-06-04 2007-07-05 Siemens Ag Verfahren und Vorrichtung zur Erfassung der Rauigkeit von Gefäßen
CN103181753B (zh) 2003-10-27 2016-12-28 通用医疗公司 用于使用频域干涉测量法进行光学成像的方法和设备
CA2449080A1 (en) 2003-11-13 2005-05-13 Centre Hospitalier De L'universite De Montreal - Chum Apparatus and method for intravascular ultrasound image segmentation: a fast-marching method
WO2005070299A1 (en) 2004-01-16 2005-08-04 The University Of Houston System Methods and apparatus for medical imaging
US20050238067A1 (en) 2004-04-26 2005-10-27 Choi Youngmin A Simple fiber optic cavity
US7397935B2 (en) 2004-05-10 2008-07-08 Mediguide Ltd. Method for segmentation of IVUS image sequences
KR20120062944A (ko) 2004-08-24 2012-06-14 더 제너럴 하스피탈 코포레이션 혈관절편 영상화 방법 및 장치
WO2006037001A1 (en) 2004-09-24 2006-04-06 Lightlab Imaging, Inc. Fluid occluding devices and methods
US8983582B2 (en) 2004-12-20 2015-03-17 Advanced Cardiovascular Systems, Inc. Methods and apparatuses for positioning within an internal channel
EP1835855B1 (en) 2005-01-11 2017-04-05 Volcano Corporation Vascular image co-registration
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
EP2838167A1 (en) 2005-01-20 2015-02-18 Massachusetts Institute of Technology Mode locking methods and apparatus
EP1856777A4 (en) 2005-01-24 2009-04-29 Thorlabs Inc COMPACT MULTIMODE LASER WITH QUICK SPECTRAL SCAN
US8054075B2 (en) 2005-02-03 2011-11-08 The Johns Hopkins University Method for magnetic resonance imaging using inversion recovery with on-resonant water suppression including MRI systems and software embodying same
EP1850735A2 (en) 2005-02-10 2007-11-07 Lightlab Imaging, Inc. Optical coherence tomography apparatus and methods
US7892177B2 (en) 2005-02-28 2011-02-22 Scimed Life Systems, Inc. Systems and methods for estimating the length and position of a stent to be applied within a patient
US7415049B2 (en) 2005-03-28 2008-08-19 Axsun Technologies, Inc. Laser with tilted multi spatial mode resonator tuning element
CN1305448C (zh) 2005-04-08 2007-03-21 北京思创贯宇科技开发有限公司 一种血管支架定位及术前选取的方法及系统
WO2007002685A2 (en) 2005-06-24 2007-01-04 Volcano Corporation Co-registration of graphical image data representing three-dimensional vascular features
DE102005032961A1 (de) 2005-07-14 2007-01-18 Siemens Ag Verfahren und Vorrichtung zur Erzeugung eines Bildes mittels optischer Kohärenztomographie
US7843572B2 (en) 2005-09-29 2010-11-30 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US7450241B2 (en) 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
EP1933704B1 (en) 2005-10-13 2019-01-09 Volcano Corporation Component-based catheter lab intravascular ultrasound system
US7697740B2 (en) 2005-10-21 2010-04-13 Kabushiki Kaisha Toshiba Medical image processing system and medical image processing method
US7729746B2 (en) 2005-11-04 2010-06-01 Siemens Aktiengesellschaft Three-dimensional co-registration between intravascular and angiographic data
WO2007061769A2 (en) 2005-11-18 2007-05-31 Duke University Method and system of coregistrating optical coherence tomography (oct) with other clinical tests
US7801343B2 (en) 2005-11-29 2010-09-21 Siemens Medical Solutions Usa, Inc. Method and apparatus for inner wall extraction and stent strut detection using intravascular optical coherence tomography imaging
US7650179B2 (en) 2005-12-09 2010-01-19 Siemens Aktiengesellschaft Computerized workflow method for stent planning and stenting procedure
US8184367B2 (en) * 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
US7619646B2 (en) 2006-03-09 2009-11-17 Visicon Inspection Technologies Llc System and method to illuminate and image the inside diameter of a stent
WO2007109771A2 (en) 2006-03-22 2007-09-27 Volcano Corporation Automated lesion analysis based upon automatic plaque characterization according to a classification criterion
US7785286B2 (en) 2006-03-30 2010-08-31 Volcano Corporation Method and system for imaging, diagnosing, and/or treating an area of interest in a patient's body
CN1871998A (zh) 2006-04-20 2006-12-06 北京思创贯宇科技开发有限公司 一种血管三维重建及虚拟支架置入的方法和系统
US7831078B2 (en) 2006-07-24 2010-11-09 Siemens Medical Solutions Usa, Inc. System and method for statistical shape model based segmentation of intravascular ultrasound and optical coherence tomography images
US8029447B2 (en) 2006-10-10 2011-10-04 Volcano Corporation Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition including an enhanced dynamically configured graphical display
US8223143B2 (en) 2006-10-27 2012-07-17 Carl Zeiss Meditec, Inc. User interface for efficiently displaying relevant OCT imaging data
EP2081486B1 (en) 2006-11-08 2014-04-09 Lightlab Imaging, Inc. Opto-acoustic imaging device
CN105581776B (zh) 2007-01-10 2018-10-16 光学实验室成像公司 用于可调谐滤波器线性化的装置和方法以及线性化可调谐滤波器
US20110282586A1 (en) * 2007-01-23 2011-11-17 Kassab Ghassan S Systems and methods to determine optimal diameters of vessel segments in bifurcation
DK3473093T3 (da) 2007-04-12 2021-02-01 Massachusetts Gen Hospital Biomimetisk vaskulært netværk
US8582934B2 (en) 2007-11-12 2013-11-12 Lightlab Imaging, Inc. Miniature optical elements for fiber-optic beam shaping
US7813609B2 (en) 2007-11-12 2010-10-12 Lightlab Imaging, Inc. Imaging catheter with integrated reference reflector
JP5002429B2 (ja) 2007-11-20 2012-08-15 テルモ株式会社 光干渉断層画像診断装置
US8983580B2 (en) 2008-01-18 2015-03-17 The Board Of Trustees Of The University Of Illinois Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors
US8180438B2 (en) 2008-01-30 2012-05-15 Greatbatch Ltd. Minimally invasive physiologic parameter recorder and introducer system
US9480826B2 (en) * 2008-03-21 2016-11-01 Cagent Vascular, Llc Intravascular device
US20110190586A1 (en) 2008-03-28 2011-08-04 Volcano Corporation Methods and systems for intravascular imaging and flushing
US20090306520A1 (en) * 2008-06-02 2009-12-10 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
DE102008045634A1 (de) 2008-09-03 2010-03-04 Ludwig-Maximilians-Universität München Wellenlängenabstimmbare Lichtquelle
EP2344020B1 (en) 2008-10-14 2020-05-20 Lightlab Imaging, Inc. Stent strut detection and related measurement and display using optical coherence tomography
CN101493940B (zh) 2009-02-27 2011-02-16 东南大学 基于弹性小球动态平衡的医学图像中血管参数测量方法
US8909323B2 (en) 2009-08-06 2014-12-09 Siemens Medical Solutions Usa, Inc. System for processing angiography and ultrasound image data
WO2011038048A1 (en) 2009-09-23 2011-03-31 Lightlab Imaging, Inc. Apparatus, systems, and methods of in-vivo blood clearing in a lumen
US20180344174A9 (en) 2009-09-23 2018-12-06 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
AU2010298333B2 (en) 2009-09-23 2014-04-17 Lightlab Imaging, Inc. Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods
US8206377B2 (en) 2009-12-22 2012-06-26 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US8926590B2 (en) 2009-12-22 2015-01-06 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US8478384B2 (en) 2010-01-19 2013-07-02 Lightlab Imaging, Inc. Intravascular optical coherence tomography system with pressure monitoring interface and accessories
US8948613B2 (en) 2010-03-17 2015-02-03 Lightlab Imaging, Inc. Intensity noise reduction methods and apparatus for interferometric sensing and imaging systems
US20110257545A1 (en) * 2010-04-20 2011-10-20 Suri Jasjit S Imaging based symptomatic classification and cardiovascular stroke risk score estimation
US8750615B2 (en) 2010-08-02 2014-06-10 Case Western Reserve University Segmentation and quantification for intravascular optical coherence tomography images
BR112013005592A2 (pt) 2010-09-10 2017-06-20 Acist Medical Sys Inc aparelho e método para busca de imagens médicas
JP2012157384A (ja) 2011-01-28 2012-08-23 Fujifilm Corp 診断支援装置、診断支援方法、病変部検出装置、及び病変部検出方法
US8582619B2 (en) 2011-03-15 2013-11-12 Lightlab Imaging, Inc. Methods, systems, and devices for timing control in electromagnetic radiation sources
JP2012200532A (ja) 2011-03-28 2012-10-22 Terumo Corp 画像診断装置及び表示方法
US9164240B2 (en) 2011-03-31 2015-10-20 Lightlab Imaging, Inc. Optical buffering methods, apparatus, and systems for increasing the repetition rate of tunable light sources
CA2837577C (en) 2011-05-27 2018-05-29 Lightlab Imaging, Inc. Optical coherence tomography and pressure based systems and methods
US9610064B2 (en) 2011-05-31 2017-04-04 Desmond Adler Multimodal imaging system, apparatus, and methods
US20140309536A1 (en) 2011-06-30 2014-10-16 Lightlab Imaging, Inc. Catheter with flush valve and related systems and methods
US8582109B1 (en) 2011-08-01 2013-11-12 Lightlab Imaging, Inc. Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography
WO2013019840A1 (en) 2011-08-03 2013-02-07 Lightlab Imaging, Inc. Systems, methods and apparatus for determining a fractional flow reserve
EP2744400B1 (en) 2011-08-20 2017-05-24 Volcano Corporation Devices, systems, and methods for visually depicting a vessel and evaluating treatment options
US20130051728A1 (en) 2011-08-31 2013-02-28 Lightlab Imaging, Inc. Optical Imaging Probes and Related Methods
US8953911B1 (en) 2011-10-28 2015-02-10 Lightlab Imaging, Inc. Spectroscopic imaging probes, devices, and methods
US8581643B1 (en) 2011-10-28 2013-11-12 Lightlab Imaging, Inc. Phase-lock loop-based clocking system, methods and apparatus
US8831321B1 (en) 2011-11-07 2014-09-09 Lightlab Imaging, Inc. Side branch detection methods, systems and devices
US20140024931A1 (en) 2012-07-20 2014-01-23 Lightlab Imaging, Inc. Data Encoders for Medical Devices and Related Methods
US8687201B2 (en) 2012-08-31 2014-04-01 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
WO2014077880A1 (en) 2012-11-16 2014-05-22 Lightlab Imaging, Inc. Automated fluid delivery catheter and system
JP6352287B2 (ja) 2012-11-19 2018-07-04 ライトラボ・イメージング・インコーポレーテッド マルチモーダル・イメージングシステム、プローブ及び方法
US9702762B2 (en) 2013-03-15 2017-07-11 Lightlab Imaging, Inc. Calibration and image processing devices, methods, and systems

Also Published As

Publication number Publication date
WO2014092755A1 (en) 2014-06-19
US20150297373A1 (en) 2015-10-22
JP2016508750A (ja) 2016-03-24
EP2931115B1 (en) 2017-07-26
ES2641487T3 (es) 2017-11-10
JP2018140207A (ja) 2018-09-13
CN105072980A (zh) 2015-11-18
CN108836280A (zh) 2018-11-20
AU2017206136A1 (en) 2017-08-03
AU2013360356A1 (en) 2015-06-11
JP2020179196A (ja) 2020-11-05
EP3272282A2 (en) 2018-01-24
CA2892810C (en) 2020-07-07
EP4445837A2 (en) 2024-10-16
EP3272282A3 (en) 2018-05-02
EP3272282B1 (en) 2024-09-11
AU2017206136B2 (en) 2019-10-31
US11923067B2 (en) 2024-03-05
CN108836280B (zh) 2021-04-30
US20240177829A1 (en) 2024-05-30
CN105072980B (zh) 2018-05-04
CA2892810A1 (en) 2014-06-19
AU2013360356B2 (en) 2017-04-20
EP2931115A1 (en) 2015-10-21
JP6336471B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6765393B2 (ja) 血管の内腔輪郭の自動化された決定のための方法および装置
Ughi et al. Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage
Wang et al. Automatic stent strut detection in intravascular optical coherence tomographic pullback runs
Zahnd et al. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming
JP2012505669A (ja) 光コヒーレンス断層撮影法を使用するステントストラット検出ならびに関連する測定および表示のための方法
CN114424290A (zh) 冠状动脉钙负荷的纵向显示
US20220277456A1 (en) Method and apparatus for analysing intracoronary images
Cheimariotis et al. ARCOCT: Automatic detection of lumen border in intravascular OCT images
Pociask et al. Fully automated lumen segmentation method for intracoronary optical coherence tomography
Chatzizisis et al. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images
Athanasiou et al. Fully automated lumen segmentation of intracoronary optical coherence tomography images
JP7497390B2 (ja) 血管内機器の検出及び圧着測定のためのシステム及び方法
Dubuisson et al. Automated peroperative assessment of stents apposition from OCT pullbacks
Wang et al. Automatic segmentation of vessel lumen in intravascular optical coherence tomography images
Tung et al. Automatic detection of coronary stent struts in intravascular OCT imaging
Ughi et al. Automated volumetric stent analysis of in-vivo intracoronary Optical Coherence Tomography three-dimensional datasets
Gharaibeh COMPUTATIONAL IMAGING AS APPLIED TO CORONARY ARTERY OPTICAL CO-HERENCE TOMOGRAPHY
Real et al. Enhanced delineation of degradation in aortic walls through OCT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250