JP6765361B2 - Hard coatings and drills for cutting tools - Google Patents

Hard coatings and drills for cutting tools Download PDF

Info

Publication number
JP6765361B2
JP6765361B2 JP2017201604A JP2017201604A JP6765361B2 JP 6765361 B2 JP6765361 B2 JP 6765361B2 JP 2017201604 A JP2017201604 A JP 2017201604A JP 2017201604 A JP2017201604 A JP 2017201604A JP 6765361 B2 JP6765361 B2 JP 6765361B2
Authority
JP
Japan
Prior art keywords
film
hard
film layer
cutting tools
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201604A
Other languages
Japanese (ja)
Other versions
JP2019072818A (en
Inventor
鈴木 俊太郎
俊太郎 鈴木
佐藤 彰
彰 佐藤
幸義 星
幸義 星
遊星 水野
遊星 水野
喬紀 山谷
喬紀 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION TOOL Co
Original Assignee
UNION TOOL Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION TOOL Co filed Critical UNION TOOL Co
Priority to JP2017201604A priority Critical patent/JP6765361B2/en
Priority to TW107122262A priority patent/TWI731249B/en
Priority to CN201810993308.9A priority patent/CN109676179B/en
Priority to KR1020180106368A priority patent/KR102280954B1/en
Publication of JP2019072818A publication Critical patent/JP2019072818A/en
Application granted granted Critical
Publication of JP6765361B2 publication Critical patent/JP6765361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves

Description

本発明は、エンドミルやドリル等の切削工具に被覆される切削工具用硬質皮膜及び当該皮膜を被覆したドリルに関するものである。 The present invention relates to a hard coating for a cutting tool coated on a cutting tool such as an end mill or a drill, and a drill coated with the coating.

従来、切削加工用工具に被覆する硬質耐摩耗皮膜としてTiN,TiCN若しくはTiAlNが使用されてきた。特に、特許文献1及び特許文献2に代表されるTiAlN系皮膜はTiNにAlを添加することで硬度と耐熱性を改良したもので、耐摩耗性に優れ広く用いられている。 Conventionally, TiN, TiCN or TiAlN has been used as a hard wear-resistant film to be coated on a cutting tool. In particular, the TiAlN-based coatings represented by Patent Documents 1 and 2 have improved hardness and heat resistance by adding Al to TiN, and are widely used because of their excellent wear resistance.

また、TiNの代わりにCrNをベースとすることでTiAlN皮膜よりも耐熱性を向上させた特許文献3等に開示されるようなAlCrN皮膜も提案されている。 Further, an AlCrN film as disclosed in Patent Document 3 and the like in which heat resistance is improved as compared with the TiAlN film by using CrN instead of TiN has also been proposed.

ところで、特許文献4に開示されるように、近年、プリント配線板は、小型化,薄型化及び軽量化が進み、信頼性向上のために高耐熱化及び高剛性化が進んでおり、ガラス繊維含有プリント配線板(以下、「PCB」という。)に含まれるガラス繊維樹脂の強度向上や密度の増加及びフィラーの充填量増加に伴い、PCBが難削化している。 By the way, as disclosed in Patent Document 4, in recent years, printed wiring boards have been made smaller, thinner and lighter, and have been made more heat resistant and more rigid in order to improve reliability. PCBs are becoming more difficult to cut as the strength and density of the glass fiber resin contained in the contained printed wiring board (hereinafter referred to as "PCB") increases and the filling amount of the filler increases.

そのため、AlCrN皮膜を被覆した穴明け工具を用いても穴位置精度の悪化は避けられず、PCBに対する耐摩耗性の更なる向上が要望されている。 Therefore, even if a drilling tool coated with an AlCrN film is used, deterioration of hole position accuracy is unavoidable, and further improvement in wear resistance to PCB is required.

特開昭62−56565号公報Japanese Unexamined Patent Publication No. 62-56565 特開平2−194159号公報Japanese Patent Application Laid-Open No. 2-194159 特許第3039381号公報Japanese Patent No. 3039381 特開2014−213414号公報Japanese Unexamined Patent Publication No. 2014-21314

本発明は、上述のような現状に鑑み、本発明者等が切削工具用硬質皮膜における皮膜層構成について研究し、AlCrN皮膜に第三元素を添加することにより上記課題を解決できるとの知見を得て完成したもので、従来のAlCrN皮膜に比し、PCBに対する耐摩耗性が向上し穴位置精度の悪化を抑制できる極めて実用的な切削工具用硬質皮膜及びドリルを提供するものである。 In view of the above-mentioned current situation, the present inventors have studied the film layer structure of a hard coating for cutting tools and found that the above problems can be solved by adding a third element to the AlCrN coating. It is a product obtained and completed, and provides an extremely practical hard film for cutting tools and a drill capable of improving wear resistance to PCB and suppressing deterioration of hole position accuracy as compared with a conventional AlCrN film.

本発明の要旨を説明する。 The gist of the present invention will be described.

基材上に形成された切削工具用硬質皮膜であって、金属成分が原子%で、
Al(100-X-Y)Cr(X)Cu(Y)
ただし、30≦X≦67,0<Y≦5
と表され、非金属元素として少なくともNを含み不可避不純物を含む表面皮膜層を有することを特徴とする切削工具用硬質皮膜に係るものである。
A hard film for cutting tools formed on a base material, with a metal component of atomic%.
Al (100-XY) Cr (X) Cu (Y)
However, 30 ≦ X ≦ 67,0 <Y ≦ 5
The present invention relates to a hard coating for cutting tools, which is represented by the above and has a surface coating layer containing at least N as a non-metal element and containing unavoidable impurities.

また、請求項1記載の切削工具用硬質皮膜において、前記基材の表面に形成され、第4A族,第5A族,第6A族,Al及びSiからなる群から選択される1種以上の元素の窒化物,炭窒化物若しくは炭化物からなり、厚さ0.1μm以上1.0μm以下である下地膜層と、この下地膜層の上に形成される前記表面皮膜層とで構成されていることを特徴とする切削工具用硬質皮膜に係るものである。 Further, in the hard coating for cutting tools according to claim 1, one or more elements formed on the surface of the base material and selected from the group consisting of Group 4A, Group 5A, Group 6A, Al and Si. It is characterized by being composed of a nitride, carbonitride or carbide having a thickness of 0.1 μm or more and 1.0 μm or less, and the surface film layer formed on the base film layer. It relates to a hard coating for cutting tools.

また、請求項1記載の切削工具用硬質皮膜において、金属成分が原子%で、
Al(100-z)Cr(z)
ただし、30≦Z≦70
と表され、非金属元素として少なくともNを含み不可避不純物を含む下地膜層と、この下地膜層の上に形成される前記表面皮膜層とで構成されていることを特徴とする切削工具用硬質皮膜に係るものである。
Further, in the hard coating for cutting tools according to claim 1, the metal component is atomic%.
Al (100-z) Cr (z)
However, 30 ≤ Z ≤ 70
A hard material for cutting tools, which is composed of a base film layer containing at least N as a non-metal element and containing unavoidable impurities, and the surface film layer formed on the base film layer. It is related to the film.

また、請求項2,3いずれか1項に記載の切削工具用硬質皮膜において、前記下地膜層がNaCl型結晶構造を有することを特徴とする切削工具用硬質皮膜に係るものである。 Further, the hard film for a cutting tool according to any one of claims 2 and 3, wherein the base film layer has a NaCl-type crystal structure.

また、請求項1〜4いずれか1項に記載の切削工具用硬質皮膜において、前記表面皮膜層の破断面から観察される結晶組織が柱状晶を有することを特徴とする切削工具用硬質皮膜に係るものである。 Further, in the hard film for cutting tools according to any one of claims 1 to 4, the hard film for cutting tools is characterized in that the crystal structure observed from the fracture surface of the surface film layer has columnar crystals. It is related.

また、請求項1〜5いずれか1項に記載の切削工具用硬質皮膜において、総膜厚が1μm以上10μm以下であることを特徴とする切削工具用硬質皮膜に係るものである。 The hard film for a cutting tool according to any one of claims 1 to 5, wherein the hard film for a cutting tool has a total film thickness of 1 μm or more and 10 μm or less.

また、請求項1〜6いずれか1項に記載の切削工具用硬質皮膜において、前記基材はタングステンカーバイド(WC)を含む硬質粒子とコバルト(Co)を含む結合材とから成る超硬合金であることを特徴とする切削工具用硬質皮膜に係るものである。 Further, in the hard coating for cutting tools according to any one of claims 1 to 6, the base material is a cemented carbide composed of hard particles containing tungsten carbide (WC) and a binder containing cobalt (Co). It relates to a hard film for a cutting tool, which is characterized by being present.

また、切り屑排出溝を有するガラス繊維含有プリント配線板加工用のドリルであって、請求項1〜7いずれか1項に記載の切削工具用硬質皮膜が被覆されており、この硬質皮膜はドリルの先端面及び切り屑排出溝の内面には設けられていないことを特徴とするドリルに係るものである。 Further, it is a drill for processing a glass fiber-containing printed wiring board having a chip discharge groove, and is coated with the hard film for a cutting tool according to any one of claims 1 to 7, and this hard film is a drill. The present invention relates to a drill, which is not provided on the tip surface of the drill and the inner surface of the chip discharge groove.

本発明は上述のように構成したから、従来のAlCrN皮膜に比し、PCBに対する耐摩耗性が向上し穴位置精度の悪化を抑制できる極めて実用的な切削工具用硬質皮膜及びドリルとなる。 Since the present invention is configured as described above, it is an extremely practical hard coating for cutting tools and a drill capable of improving wear resistance to PCB and suppressing deterioration of hole position accuracy as compared with the conventional AlCrN coating.

AlCrN皮膜のPCBに対する耐摩耗性及び穴位置精度のCr量との関係を示すグラフである。It is a graph which shows the relationship between the wear resistance of AlCrN film with respect to PCB, and the Cr amount of hole position accuracy. Al/(Al+Cr)=0.6のAlCrCuN皮膜の結晶組織のCu量依存性を示す当該皮膜の破断面の電子顕微鏡写真である。It is an electron micrograph of the fracture surface of the AlCrCuN film of Al / (Al + Cr) = 0.6 showing the Cu amount dependence of the crystal structure of the film. Al/(Al+Cr)=0.6のAlCrCuN皮膜のPCBに対する耐摩耗性及び穴位置精度のCu量との関係を示すグラフである。It is a graph which shows the relationship between the wear resistance of the AlCrCuN film of Al / (Al + Cr) = 0.6 with respect to PCB, and the amount of Cu of hole position accuracy.

好適と考える本発明の実施形態を、本発明の作用を示して簡単に説明する。 Embodiments of the present invention which are considered to be suitable will be briefly described by showing the operation of the present invention.

AlCrN皮膜に所定量のCuを添加することで、硬度と靱性の両立が可能となり、当該硬質皮膜を被覆した切削工具(ドリル)のPCB切削加工時の損傷を抑制することができる。従って、切削工具のPCBに対する耐摩耗性が向上し、また、穴位置精度の悪化を抑制できる。 By adding a predetermined amount of Cu to the AlCrN film, both hardness and toughness can be achieved, and damage to the cutting tool (drill) coated with the hard film during PCB cutting can be suppressed. Therefore, the wear resistance of the cutting tool to the PCB can be improved, and deterioration of the hole position accuracy can be suppressed.

本発明の具体的な実施例について図面に基づいて説明する。 Specific examples of the present invention will be described with reference to the drawings.

本実施例は、基材上に形成された切削工具用硬質皮膜であって、金属成分として少なくともAlとCrとCuを含み、非金属元素として少なくともNを含み不可避不純物を含む表面皮膜層を有するものである。 This embodiment is a hard coating for a cutting tool formed on a base material, and has a surface coating layer containing at least Al, Cr, and Cu as metal components and at least N as a non-metal element and containing unavoidable impurities. It is a thing.

各部を具体的に説明する。 Each part will be described in detail.

基材は、WCを含有する硬質粒子とCoを含有する結合材から成る超硬合金製のものが採用されている。具体的には、前記WC粒子の平均粒径が0.1μm以上2.0μm以下に設定され、前記Co含有量が質量%で5以上15%以下に設定されたものが採用されている。 As the base material, one made of a cemented carbide composed of hard particles containing WC and a binder containing Co is adopted. Specifically, those in which the average particle size of the WC particles is set to 0.1 μm or more and 2.0 μm or less and the Co content is set to 5 or more and 15% or less in mass% are adopted.

この基材直上(基材表面)には、第4A族,第5A族,第6A族,Al及びSiからなる群から選択される1種以上の元素の窒化物,炭窒化物若しくは炭化物からなり、厚さ0.1μm以上1.0μm以下である下地膜層を設けている。なお、本実施例における前記第4A族の元素はチタン(Ti),ジルコニウム(Zr)若しくはハフニウム(Hf)であり、第5A族の元素はバナジウム(V),ニオブ(Nb)若しくはタンタル(Ta)であり、第6A族の元素はクロム(Cr),モリブデン(Mo)若しくはタングステン(W)である。 Immediately above this base material (base material surface), it is composed of a nitride, carbon nitride or carbide of one or more elements selected from the group consisting of Group 4A, Group 5A, Group 6A, Al and Si. A base film layer having a thickness of 0.1 μm or more and 1.0 μm or less is provided. The element of Group 4A in this example is titanium (Ti), zirconium (Zr) or hafnium (Hf), and the element of Group 5A is vanadium (V), niobium (Nb) or tantalum (Ta). The element of Group 6A is chromium (Cr), molybdenum (Mo) or tungsten (W).

この下地膜層の上には、金属成分が原子%で、
Al(100-X-Y)Cr(X)Cu(Y)
ただし、30≦X≦67,0<Y≦5
と表され、非金属元素として少なくともNを含み、不可避不純物を含む表面皮膜層が設けられている。
On this base film layer, the metal component is atomic%,
Al (100-XY) Cr (X) Cu (Y)
However, 30 ≦ X ≦ 67,0 <Y ≦ 5
A surface coating layer containing at least N as a non-metal element and containing unavoidable impurities is provided.

上記構成を採用した理由及び上記構成による作用効果を以下に説明する。 The reason for adopting the above configuration and the action and effect of the above configuration will be described below.

先ず、表面皮膜層(AlCrCuN皮膜)について、その組成を上述の範囲に設定した理由を述べる。 First, the reason why the composition of the surface film layer (AlCrCuN film) is set within the above range will be described.

本発明者等は、金属成分比の異なるAlCrN皮膜を研究し、そのCr量(CrとAlの含有比率)がPCBに対する加工において穴位置精度及び耐摩耗性に大きく影響することを発見した(図1参照)。 The present inventors studied AlCrN films having different metal component ratios, and found that the amount of Cr (content ratio of Cr and Al) greatly affects the hole position accuracy and wear resistance in processing with respect to PCB (Fig.). 1).

そこで、本発明者等は、AlCr系の皮膜においては、Al量の増加は硬度の向上と靱性の低下を、Cr量の増加は硬度の低下と靱性の向上を示していると考えた。即ち、PCBをAlCrN皮膜が被覆された工具で穴明け加工するにあたり、当該皮膜の靱性は耐摩耗性向上に寄与し、硬度は穴位置精度向上に寄与していると考えた。 Therefore, the present inventors considered that in the AlCr-based film, an increase in the amount of Al indicates an increase in hardness and a decrease in toughness, and an increase in the amount of Cr indicates a decrease in hardness and an improvement in toughness. That is, when drilling a PCB with a tool coated with an AlCrN film, it was considered that the toughness of the film contributed to the improvement of wear resistance and the hardness contributed to the improvement of the hole position accuracy.

しかし、上述のような関係が、皮膜の硬度と靱性に依存しているのであれば,穴位置精度と耐摩耗性はトレードオフの関係にあり、AlCrN皮膜を用いる限り両者を同時に向上させることは難しい。そこで、本発明者等は、当該皮膜に第3元素を添加し、その粒界を制御することで、硬度と靱性の向上を試みた。 However, if the above relationship depends on the hardness and toughness of the film, there is a trade-off between hole position accuracy and wear resistance, and as long as the AlCrN film is used, both can be improved at the same time. difficult. Therefore, the present inventors have attempted to improve hardness and toughness by adding a third element to the film and controlling the grain boundaries thereof.

即ち、靱性値の高い材料を粒界に配することで、系全体の靱性を向上させるとともに、この粒界により、母相の結晶成長を抑制し微結晶化させることで硬度の向上を試みた。 That is, by arranging a material having a high toughness value at the grain boundary, the toughness of the entire system was improved, and at the same time, the grain boundary suppressed the crystal growth of the matrix phase and attempted to improve the hardness by microcrystallization. ..

具体的には、NaCl型結晶構造を持たず、且つ、実用的な金属の中で最も窒化が難しいCuの添加によって、高い耐摩耗性向上効果が見られた。より具体的には、添加されるCuが、金属のみの原子%で0.1%以上添加することで耐摩耗性向上効果が表れた。しかし、添加量が多すぎると、耐摩耗性が急激に低下することがある。 Specifically, a high wear resistance improving effect was observed by adding Cu, which does not have a NaCl-type crystal structure and is the most difficult to nitride among practical metals. More specifically, the effect of improving wear resistance was exhibited by adding 0.1% or more of Cu as the atomic% of the metal only. However, if the amount added is too large, the wear resistance may drop sharply.

即ち、AlとCrの含有比率により耐摩耗性が急激に低下するときのCu添加量は少し異なるが、Cu添加量が10%を超えると、いずれのAlとCrの含有比率であっても耐摩耗性が低下した。これは、Cuの添加量が多すぎて、母相となるNaCl構造体の応力緩和およびNaCl型からウルツ鉱型へ、その構造が変態してしまうことが要因と考えられる(図2,3参照)。具体的には、図2に図示したように、Cu添加量が10at.%を超えると結晶構造が変化し、3at.%及び5at.%で見られた柱状晶が見られなくなり、径減量及び穴位置精度はともに大きく劣化する。よって、Cuの含有量は5原子%以下とした。好ましくは1原子%以上4原子%以下である。 That is, the amount of Cu added when the wear resistance sharply decreases depending on the content ratio of Al and Cr is slightly different, but when the amount of Cu added exceeds 10%, the resistance to any Al and Cr content ratio Abrasion is reduced. It is considered that this is because the amount of Cu added is too large and the stress relaxation of the NaCl structure as the matrix and the structure is transformed from the NaCl type to the wurtzite type (see FIGS. 2 and 3). ). Specifically, as shown in FIG. 2, when the amount of Cu added exceeds 10 at.%, The crystal structure changes, and the columnar crystals seen at 3 at.% And 5 at.% disappear, resulting in diameter reduction and weight loss. Both hole position accuracy deteriorates significantly. Therefore, the Cu content was set to 5 atomic% or less. It is preferably 1 atomic% or more and 4 atomic% or less.

また、AlCrCuN皮膜を施したPCBドリルの加工において、当該皮膜中のCrが、金属のみの原子%で30%を下回ると、急激に耐摩耗性および穴位置精度が悪化した(後述の実験例参照)。これは、CrN中へのAlの添加量が、その固溶限を超えてしまったためであると考えられ、Crは30原子%以上含まれている方が良い。ただし、金属元素がCr及びCuのみとなりAlが含まれないと、その硬度が低下しすぎてしまい良好な穴位置精度が得られない。よって、Crの含有量は30原子%以上67原子%以下とした。 Further, in the processing of a PCB drill coated with an AlCrCuN film, if the Cr in the film is less than 30% in terms of atomic% of the metal alone, the wear resistance and hole position accuracy deteriorate sharply (see the experimental example described later). ). It is considered that this is because the amount of Al added to CrN exceeds the solid solution limit, and it is preferable that Cr is contained in an amount of 30 atomic% or more. However, if the metal elements are only Cr and Cu and Al is not contained, the hardness thereof is excessively lowered and good hole position accuracy cannot be obtained. Therefore, the Cr content was set to 30 atomic% or more and 67 atomic% or less.

次に、下地膜層を設けた理由及びその選定理由について述べる。 Next, the reason for providing the base film layer and the reason for its selection will be described.

添加したCu量により、その程度は異なるが、基材直上に上述のAlCrCuN皮膜を設けると、密着性が悪いためか、耐摩耗性・穴位置精度共に従来のAlCrN皮膜より悪化する場合がある。これに対し、同じNaCl型構造を有する窒化膜や炭化膜または炭窒化膜を基材直上に下地膜層として成膜し、その上にAlCrCuN皮膜を設けると、改善傾向が見られた(後述の実験例参照)。 Although the degree varies depending on the amount of Cu added, if the above-mentioned AlCrCuN film is provided directly on the base material, the wear resistance and hole position accuracy may be worse than those of the conventional AlCrN film, probably because of poor adhesion. On the other hand, when a nitride film, a carbonized film or a carbonized film having the same NaCl type structure was formed as a base film layer directly on the substrate and an AlCrCuN film was provided on the film, an improvement tendency was observed (described later). See experimental example).

ただし、選択された下地膜層により適切な膜厚は異なるが、その膜厚が薄すぎると密着性が改善されないためか、下地膜層が無い時同様、その耐摩耗性および穴位置精度が、従来のAlCrN皮膜より劣る場合がある。逆に膜厚が厚過ぎると、下地膜層の特徴が色濃く表れるようになり、上述のようなAlCrCuN皮膜の特徴が見られなくなった。特に、硬質皮膜の総膜厚に対し50%を超える膜厚では、選択したどの膜種であっても、下地膜層の特徴が色濃く表れ、硬度と靱性を両立するような特徴は見られなくなった。よって、例えば硬質皮膜の総膜厚を1μm〜10μmとする場合、表面皮膜層の厚さを0.9μm〜9.9μmとし、下地膜層の厚さを0.1μm以上1.0μm以下で且つ硬質皮膜の層厚さの50%を超えない値に設定すると良い。 However, although the appropriate film thickness differs depending on the selected base film layer, if the film thickness is too thin, the adhesion will not be improved, and the wear resistance and hole position accuracy will be the same as when there is no base film layer. It may be inferior to the conventional AlCrN film. On the contrary, when the film thickness is too thick, the characteristics of the base film layer appear deeply, and the characteristics of the AlCrCuN film as described above cannot be seen. In particular, when the film thickness exceeds 50% of the total film thickness of the hard film, the characteristics of the underlying film layer appear deeply regardless of the selected film type, and the characteristics of achieving both hardness and toughness are not observed. It was. Therefore, for example, when the total film thickness of the hard film is 1 μm to 10 μm, the thickness of the surface film layer is 0.9 μm to 9.9 μm, the thickness of the base film layer is 0.1 μm or more and 1.0 μm or less, and the hard film layer. It is recommended to set the value not to exceed 50% of the thickness.

また、AlCrNを下地膜とした際、最適な組成比の組み合わせがあるものの、もっとも幅広い領域にて良好な耐摩耗性と穴位置精度が得られた。ただし、AlCrN中のCr量が、金属原子比にて30%を下回ると、NaCl型構造を維持できないためか、AlCrCuN皮膜がいずれの組成比であったとしても、耐摩耗性および穴位置精度共に悪化した。さらには、AlCrN中のCr量が、金属原子比にて70%を上回ると硬度が低下しすぎるためか、下地膜の膜厚を極端に薄くしない限り、良好な穴位置精度が得られなくなった。よって、下地膜層のAlCrN皮膜中のCr量は、金属原子比にて30%以上70%以下が良い。 Further, when AlCrN was used as the base film, good wear resistance and hole position accuracy were obtained in the widest range, although there was an optimum combination of composition ratios. However, if the amount of Cr in AlCrN is less than 30% in terms of metal atom ratio, the NaCl type structure cannot be maintained, and regardless of the composition ratio of the AlCrCuN film, both wear resistance and hole position accuracy are both. It got worse. Furthermore, if the amount of Cr in AlCrN exceeds 70% in terms of metal atom ratio, the hardness will be too low, and unless the film thickness of the base film is extremely thin, good hole position accuracy cannot be obtained. .. Therefore, the amount of Cr in the AlCrN film of the base film layer is preferably 30% or more and 70% or less in terms of metal atomic ratio.

次に、ドリルへの被覆形態について述べる。 Next, the coating form on the drill will be described.

本実施例の基材はドリルであって、ガラス繊維含有プリント配線板を加工するに際し、その穴位置精度は、当て板への食いつき時の穴位置精度が大きく寄与する。そこで、工具先端の逃げ面とすくい面との交差稜線部に存在する切れ刃を被覆せず、刃物角を鋭利に保ち食いつき性を向上させることで、当て板への食いつき時の穴位置精度を向上させた(特許第5702431号参照)。即ち、硬質皮膜は、基材であるドリルの先端面(逃げ面)及び切り屑排出溝の内面には設けず、ドリル外周面にのみ設けるのが好ましい。 The base material of this embodiment is a drill, and when processing a glass fiber-containing printed wiring board, the hole position accuracy greatly contributes to the hole position accuracy when biting into the backing plate. Therefore, by not covering the cutting edge existing at the intersection ridge between the flank of the tool tip and the rake face, the blade angle is kept sharp and the biting property is improved, so that the hole position accuracy at the time of biting to the backing plate is improved. Improved (see Patent No. 5702431). That is, it is preferable that the hard film is not provided on the tip surface (relief surface) of the drill, which is the base material, and the inner surface of the chip discharge groove, but is provided only on the outer peripheral surface of the drill.

本実施例は、上述のように構成したから、硬度と靱性の両立が可能となり、当該硬質皮膜を被覆した切削工具(ドリル)のPCB切削加工時の損傷を抑制することができる。従って、切削工具のPCBに対する耐摩耗性が向上し、また、穴位置精度の悪化を抑制できる。 Since this embodiment is configured as described above, it is possible to achieve both hardness and toughness, and it is possible to suppress damage during PCB cutting of a cutting tool (drill) coated with the hard film. Therefore, the wear resistance of the cutting tool to the PCB can be improved, and deterioration of the hole position accuracy can be suppressed.

よって、本実施例は、従来のAlCrN皮膜に比し、PCBに対する耐摩耗性が向上し穴位置精度の悪化を抑制できる極めて実用的なものとなる。 Therefore, this embodiment is extremely practical because the wear resistance to PCB is improved and the deterioration of hole position accuracy can be suppressed as compared with the conventional AlCrN film.

以下、本実施例の効果を裏付ける実験例について説明する。 Hereinafter, experimental examples that support the effects of this example will be described.

成膜装置としてアーク放電式イオンプレーティング装置を用い、金属の蒸発源として所定の組成を有するターゲットを成膜装置内に取り付け、反応ガスとしてNガスを成膜装置内に導入して,超硬合金製ドリルにAlCrCuN皮膜を形成したサンプルを作製し、その総膜厚を約5.0μmとした。 An arc discharge type ion plating apparatus used as a film forming apparatus, installed in the film forming apparatus a target having a predetermined composition as evaporation sources of metal, by introducing N 2 gas into the film forming apparatus as a reaction gas, super A sample in which an AlCrCuN film was formed on a hard alloy drill was prepared, and the total film thickness was about 5.0 μm.

ドリルの直径を測定した後、以下に示す切削条件にてPCBに穴明け加工を行った。その後、加工後のドリルの直径を再度測定し、その径変化量を算出することで耐摩耗性(径減量)を評価し、穴明けプログラム上設定された機械座標と実際の穴位置とのズレ量を最下基板裏側にて測定することで、穴位置精度を評価した。表1に下地膜層を設けない場合、表2に下地膜層を設けた場合の試験結果を示す。 After measuring the diameter of the drill, the PCB was drilled under the cutting conditions shown below. After that, the diameter of the drill after machining is measured again, and the amount of change in diameter is calculated to evaluate the wear resistance (diameter reduction), and the deviation between the machine coordinates set in the drilling program and the actual hole position. The hole position accuracy was evaluated by measuring the amount on the back side of the bottom substrate. Table 1 shows the test results when the base film layer is not provided, and Table 2 shows the test results when the base film layer is provided.

良否判定は、径減量が2.00μm以上か、または径減量が0.90μm以上で且つ穴位置精度が50μm以上のものは×、従来例に比し径減量若しくは穴位置精度の一方が同程度で他方が良化しているものか、または双方が良化しているものは〇、×及び〇に当たらないものは△、〇の中で特に好ましいものを◎とした。 The pass / fail judgment is x for those with a diameter reduction of 2.00 μm or more, or a diameter reduction of 0.90 μm or more and a hole position accuracy of 50 μm or more, and one of the diameter reduction or hole position accuracy is the same as the conventional example and the other. Those that are improved or both are improved are marked with 〇, × and those that do not correspond to 〇 are marked with Δ, and those that are particularly preferable among 〇 are marked with ⊚.

[切削条件]
ドリル :直径0.25mm,溝長4.7mm
被削材(PCB) :FR−4ハロゲンフリー材 厚さ1.2mm 6層銅箔
重ね枚数 :2枚
当て板 :アルミ板(厚さ0.15mm)
捨て板 :ベーク板(厚さ1.5mm)
回転数 :120,000min−1
送り速度 :1.8m/min
スピンドルの上昇速度:25.4m/min
穴数 :2,500hits
[Cutting conditions]
Drill: Diameter 0.25 mm, Groove length 4.7 mm
Work material (PCB): FR-4 halogen-free material Thickness 1.2 mm 6-layer copper foil Number of layers: 2 Plates: Aluminum plate (thickness 0.15 mm)
Discard plate: Bake plate (thickness 1.5 mm)
Rotation speed: 120,000min -1
Feed rate: 1.8 m / min
Spindle climbing speed: 25.4m / min
Number of holes: 2,500 hits

表1から、本実施例の表面皮膜層の構成(皮膜組成)に係る各実験例は、従来のAlCrN皮膜(従来例)及び比較例に比し、径減量と穴位置精度の両立が図られていることが認められる。 From Table 1, each experimental example relating to the composition (coating composition) of the surface coating layer of this example is capable of achieving both diameter reduction and hole position accuracy as compared with the conventional AlCrN coating (conventional example) and the comparative example. It is recognized that

表2から、下地膜層は膜厚(下地膜膜厚)を上述の数値範囲内とすることで、いずれの膜種(下地膜組成)であっても特に径減量の良化が認められる。また、表面皮膜層がいずれの皮膜組成であっても下地膜層による良化が認められる。 From Table 2, by setting the film thickness (undercoat film thickness) of the undercoat film layer within the above-mentioned numerical range, improvement in diameter reduction is particularly observed regardless of the film type (undercoat film composition). In addition, improvement by the base film layer is observed regardless of the film composition of the surface film layer.

Claims (8)

基材上に形成された切削工具用硬質皮膜であって、金属成分が原子%で、
Al(100-X-Y)Cr(X)Cu(Y)
ただし、30≦X≦67,0<Y≦5
と表され、非金属元素として少なくともNを含み不可避不純物を含む表面皮膜層を有することを特徴とする切削工具用硬質皮膜。
A hard film for cutting tools formed on a base material, with a metal component of atomic%.
Al (100-XY) Cr (X) Cu (Y)
However, 30 ≦ X ≦ 67,0 <Y ≦ 5
A hard film for a cutting tool, which has a surface film layer containing at least N as a non-metal element and containing unavoidable impurities.
請求項1記載の切削工具用硬質皮膜において、前記基材の表面に形成され、第4A族,第5A族,第6A族,Al及びSiからなる群から選択される1種以上の元素の窒化物,炭窒化物若しくは炭化物からなり、厚さ0.1μm以上1.0μm以下である下地膜層と、この下地膜層の上に形成される前記表面皮膜層とで構成されていることを特徴とする切削工具用硬質皮膜。 In the hard coating for cutting tools according to claim 1, the nitride of one or more elements formed on the surface of the base material and selected from the group consisting of Group 4A, Group 5A, Group 6A, Al and Si. It is characterized in that it is composed of a material, a carbonitride or a carbide, and is composed of a base film layer having a thickness of 0.1 μm or more and 1.0 μm or less and the surface film layer formed on the base film layer. Hard coating for cutting tools. 請求項1記載の切削工具用硬質皮膜において、金属成分が原子%で、
Al(100-z)Cr(z)
ただし、30≦Z≦70
と表され、非金属元素として少なくともNを含み不可避不純物を含む下地膜層と、この下地膜層の上に形成される前記表面皮膜層とで構成されていることを特徴とする切削工具用硬質皮膜。
In the hard coating for cutting tools according to claim 1, the metal component is atomic%.
Al (100-z) Cr (z)
However, 30 ≤ Z ≤ 70
A hard material for cutting tools, which is composed of a base film layer containing at least N as a non-metal element and containing unavoidable impurities, and the surface film layer formed on the base film layer. Film.
請求項2,3いずれか1項に記載の切削工具用硬質皮膜において、前記下地膜層がNaCl型結晶構造を有することを特徴とする切削工具用硬質皮膜。 The hard film for a cutting tool according to any one of claims 2 and 3, wherein the base film layer has a NaCl-type crystal structure. 請求項1〜4いずれか1項に記載の切削工具用硬質皮膜において、前記表面皮膜層の破断面から観察される結晶組織が柱状晶を有することを特徴とする切削工具用硬質皮膜。 The hard film for a cutting tool according to any one of claims 1 to 4, wherein the crystal structure observed from the fracture surface of the surface film layer has columnar crystals. 請求項1〜5いずれか1項に記載の切削工具用硬質皮膜において、総膜厚が1μm以上10μm以下であることを特徴とする切削工具用硬質皮膜。 The hard film for a cutting tool according to any one of claims 1 to 5, wherein the total film thickness is 1 μm or more and 10 μm or less. 請求項1〜6いずれか1項に記載の切削工具用硬質皮膜において、前記基材はタングステンカーバイド(WC)を含む硬質粒子とコバルト(Co)を含む結合材とから成る超硬合金であることを特徴とする切削工具用硬質皮膜。 In the hard coating for cutting tools according to any one of claims 1 to 6, the base material is a cemented carbide composed of hard particles containing tungsten carbide (WC) and a binder containing cobalt (Co). A hard coating for cutting tools that features. 切り屑排出溝を有するガラス繊維含有プリント配線板加工用のドリルであって、請求項1〜7いずれか1項に記載の切削工具用硬質皮膜が被覆されており、この硬質皮膜はドリルの先端面及び切り屑排出溝の内面には設けられていないことを特徴とするドリル。 A drill for processing a glass fiber-containing printed wiring board having a chip discharge groove, wherein the hard film for a cutting tool according to any one of claims 1 to 7 is coated, and this hard film is the tip of the drill. A drill characterized in that it is not provided on the surface or the inner surface of the chip discharge groove.
JP2017201604A 2017-10-18 2017-10-18 Hard coatings and drills for cutting tools Active JP6765361B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017201604A JP6765361B2 (en) 2017-10-18 2017-10-18 Hard coatings and drills for cutting tools
TW107122262A TWI731249B (en) 2017-10-18 2018-06-28 Hard film for cutting tools and drill
CN201810993308.9A CN109676179B (en) 2017-10-18 2018-08-29 Hard coating film for cutting tool and drill
KR1020180106368A KR102280954B1 (en) 2017-10-18 2018-09-06 Hard film for cutting tools and drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201604A JP6765361B2 (en) 2017-10-18 2017-10-18 Hard coatings and drills for cutting tools

Publications (2)

Publication Number Publication Date
JP2019072818A JP2019072818A (en) 2019-05-16
JP6765361B2 true JP6765361B2 (en) 2020-10-07

Family

ID=66184476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201604A Active JP6765361B2 (en) 2017-10-18 2017-10-18 Hard coatings and drills for cutting tools

Country Status (4)

Country Link
JP (1) JP6765361B2 (en)
KR (1) KR102280954B1 (en)
CN (1) CN109676179B (en)
TW (1) TWI731249B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959574A (en) * 2022-05-25 2022-08-30 宜昌永鑫精工科技股份有限公司 CrAlN coating of PCB milling cutter and processing method thereof
CN116988026B (en) * 2023-08-07 2024-04-16 苏州六九新材料科技有限公司 CrAlCu composite target material and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JPH02194159A (en) * 1988-03-24 1990-07-31 Kobe Steel Ltd Formation of wear resistant coating film
JP3039381U (en) * 1997-01-08 1997-07-15 小松エレクトロニクス株式会社 Electronic cooling type dehumidifier
DE60124061T2 (en) * 2000-12-28 2007-04-12 Kabushiki Kaisha Kobe Seiko Sho, Kobe Hard material layer for cutting tools
JP4440980B2 (en) * 2008-01-31 2010-03-24 ユニオンツール株式会社 Hard coating for cutting tools
JP5214392B2 (en) * 2008-10-06 2013-06-19 ダイジ▲ェ▼ット工業株式会社 Coated cutting tool base
KR101616600B1 (en) * 2009-11-12 2016-04-28 오에스지 가부시키가이샤 Tool coated with hard coating
CN104203466A (en) * 2012-04-02 2014-12-10 Osg株式会社 Hard coating film for cutting tool and cutting tool coated with hard coating film
JP5702431B2 (en) * 2013-04-25 2015-04-15 ユニオンツール株式会社 Drilling tool
JP6237530B2 (en) * 2014-08-08 2017-11-29 住友電気工業株式会社 Hard material, sintered body, tool using sintered body, method for manufacturing hard material, and method for manufacturing sintered body

Also Published As

Publication number Publication date
CN109676179B (en) 2021-05-11
TWI731249B (en) 2021-06-21
KR102280954B1 (en) 2021-07-23
JP2019072818A (en) 2019-05-16
CN109676179A (en) 2019-04-26
TW201923117A (en) 2019-06-16
KR20190043461A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
KR101333559B1 (en) Cutting insert, method of making a cutting insert and method for using a cutting insert
US10655211B2 (en) Tool with multi-layer arc PVD coating
US9211588B2 (en) Surface-coated cutting tool
EP2576854B1 (en) Coated cutting tool
US20190161849A1 (en) Coated cutting tool
JP5303816B2 (en) Hard coating tool
JP6491031B2 (en) Laminated hard coating and cutting tool
JP5010707B2 (en) Hard coating for cutting tools
JP2010142932A (en) Surface-coated cutting tool
US20070160843A1 (en) Coated cemented carbide inserts
JP6765361B2 (en) Hard coatings and drills for cutting tools
JP2006307323A (en) Hard film coated member
JP2008080447A (en) Hard film for cutting tool
JP6642836B2 (en) Covered drill
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2023042777A1 (en) Coated ultrafine grain cemented carbide, and cutting tool or abrasion-resistant member using same
JP6861137B2 (en) Hard coating for cutting tools
JP5093917B2 (en) Surface coated cutting tool
JP2008055558A (en) Hard coating for cutting tool
JP5713663B2 (en) Cutting tools
JP2009061572A (en) Cutting tool
JP2020127998A (en) Hard coat cutting tool
JP2009233822A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250