JP6765007B2 - Electrostatic coating machine - Google Patents

Electrostatic coating machine Download PDF

Info

Publication number
JP6765007B2
JP6765007B2 JP2019515375A JP2019515375A JP6765007B2 JP 6765007 B2 JP6765007 B2 JP 6765007B2 JP 2019515375 A JP2019515375 A JP 2019515375A JP 2019515375 A JP2019515375 A JP 2019515375A JP 6765007 B2 JP6765007 B2 JP 6765007B2
Authority
JP
Japan
Prior art keywords
air ejection
shaping air
rotary atomizing
atomizing head
coating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019515375A
Other languages
Japanese (ja)
Other versions
JPWO2019035473A1 (en
Inventor
山田 幸雄
幸雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of JPWO2019035473A1 publication Critical patent/JPWO2019035473A1/en
Application granted granted Critical
Publication of JP6765007B2 publication Critical patent/JP6765007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Description

本発明は、噴霧した塗料に高電圧を印加して塗装を行うようにした静電塗装機に関する。 The present invention relates to an electrostatic coating machine in which a high voltage is applied to a sprayed coating material to perform coating.

一般に、静電塗装機としては回転霧化頭型の静電塗装機が知られている。この静電塗装機は、接地電位に保持され、圧縮エアが供給されることにより回転軸を回転するエアモータと、前記回転軸の前側に設けられると共に接地電位に保持された筒状体からなり、前記エアモータによって回転する間に供給された塗料を前端の放出端縁から噴霧する回転霧化頭と、前記回転霧化頭よりも後側に位置して前記エアモータの外周側に設けられ複数個の電極に負の高電圧が印加されることによって前記回転霧化頭の前記放出端縁から噴霧された塗料粒子を負の電位に帯電させる外部電極部材と、導電性材料を用いて筒状に形成されると共に前端が前記回転霧化頭の長さ方向の中間部位に位置する状態で前記回転霧化頭の外周側に配置され、前記前端に前記回転霧化頭から噴霧された塗料粒子に向けてシェーピングエアを噴出する多数個のエア噴出孔が周方向の全周に亘って設けられたシェーピングエア噴出部材とを含んで構成されている(特許文献1)。 Generally, as an electrostatic coating machine, a rotary atomizing head type electrostatic coating machine is known. This electrostatic coating machine consists of an air motor that is held at the ground potential and rotates the rotating shaft by supplying compressed air, and a tubular body provided on the front side of the rotating shaft and held at the ground potential. A rotary atomizing head that sprays the paint supplied while rotating by the air motor from the discharge end edge at the front end, and a plurality of rotary atomizing heads that are located on the rear side of the rotary atomizing head and are provided on the outer peripheral side of the air motor. Formed in a tubular shape using an external electrode member that charges the paint particles sprayed from the emission edge of the rotary atomizing head to a negative potential by applying a negative high voltage to the electrodes, and a conductive material. At the same time, the front end is arranged on the outer peripheral side of the rotary atomizing head in a state of being located at an intermediate portion in the length direction of the rotary atomizing head, and is directed toward the paint particles sprayed from the rotary atomizing head on the front end. A large number of air ejection holes for ejecting shaping air are included in the shaping air ejection member provided over the entire circumference in the circumferential direction (Patent Document 1).

このように構成された静電塗装機を用いて塗装を行う場合には、エアモータによって回転霧化頭を高速回転させ、この状態で回転霧化頭に塗料を供給する。これにより、回転霧化頭に供給された塗料は、回転霧化頭が回転するときの遠心力によって微粒化され、放出端縁から塗料粒子として噴霧される。このときに、シェーピングエア噴出部材は、各エア噴出孔から噴出されるシェーピングエアを塗料粒子に噴き付ける。これにより、シェーピングエア噴出部材は、塗料粒子の被塗物方向の運動ベクトル成分を制御することで、塗料粒子の噴霧パターンを所望の形状に整える。 When painting is performed using the electrostatic coating machine configured in this way, the rotary atomizing head is rotated at high speed by an air motor, and the paint is supplied to the rotary atomizing head in this state. As a result, the paint supplied to the rotary atomizing head is atomized by the centrifugal force when the rotary atomizing head rotates, and is sprayed as paint particles from the emission edge. At this time, the shaping air ejection member injects the shaping air ejected from each air ejection hole onto the paint particles. As a result, the shaping air ejection member adjusts the spray pattern of the paint particles to a desired shape by controlling the motion vector component of the paint particles in the direction to be coated.

さらに、外部電極部材は、各電極に負の高電圧が印加されることにより、回転霧化頭の放出端縁から噴霧された塗料粒子を負極性帯電させる。これにより、回転霧化頭から噴霧された塗料粒子は、間接的に負極性帯電する。従って、静電塗装機は、帯電した塗料粒子を各電極と被塗物との間に形成された静電界に沿って飛行させ、この塗料粒子を被塗物に塗着させることができる。 Further, the external electrode member negatively charges the paint particles sprayed from the emission edge of the rotary atomizing head by applying a negative high voltage to each electrode. As a result, the paint particles sprayed from the rotary atomizing head are indirectly negatively charged. Therefore, the electrostatic coating machine can fly the charged paint particles along the electrostatic field formed between each electrode and the object to be coated, and coat the paint particles on the object to be coated.

国際公開第2013/183416号International Publication No. 2013/183416

ところで、特許文献1に記載された静電塗装機は、エアモータを覆って絶縁樹脂材料からなるカバー部材を備えている。このとき、外部電極にマイナスの高電圧が印加されると、外部電極の先端近傍にはコロナ放電によるコロナイオンが発生する。このため、カバー部材の外表面は、放電されているマイナスイオンの負極性に帯電している。この場合、カバー部材とシェーピングエアリングとが近接した状態で配置されると、カバー部材の先端部分では、シェーピングエアリングとの間で電荷の放電と充電が繰り返され、劣化し易い傾向がある。この点を考慮して、特許文献1に記載された静電塗装機では、カバー部材とシェーピングエアリングとの間に、半導電材料からなる筒状の半導電部材を設けている。これにより、カバー部材に帯電した電荷は半導電部材に対して放電するが、シェーピングエアリングに直接的に放電するのに比べて、短時間で集中的な大きな電流にはならず、緩慢な電流になる。この結果、フィルム状のカバー部材の劣化を抑制して、耐久性を高めることができる。 By the way, the electrostatic coating machine described in Patent Document 1 includes a cover member made of an insulating resin material that covers the air motor. At this time, when a negative high voltage is applied to the external electrode, corona ions due to corona discharge are generated in the vicinity of the tip of the external electrode. Therefore, the outer surface of the cover member is charged with the negative electrode property of the discharged negative ions. In this case, if the cover member and the shaping air ring are arranged in close proximity to each other, electric charges are repeatedly discharged and charged between the cover member and the shaping air ring at the tip portion of the cover member, and tend to be easily deteriorated. In consideration of this point, in the electrostatic coating machine described in Patent Document 1, a tubular semi-conductive member made of a semi-conductive material is provided between the cover member and the shaping air ring. As a result, the electric charge charged on the cover member is discharged to the semi-conductive member, but it does not become a concentrated large current in a short time as compared with the direct discharge to the shaping air ring, and the current is slow. become. As a result, deterioration of the film-shaped cover member can be suppressed and durability can be improved.

しかしながら、カバー部材から半導電部材への放電でも、カバー部材が劣化することがある。これに加えて、半導電部材からシェーピングエアリングに対して放電が生じ、半導電部材が劣化することもある。このため、カバー部材や半導電部材の劣化によって、十分な耐久性が得られないという問題がある。 However, even when the cover member is discharged from the semi-conductive member, the cover member may be deteriorated. In addition to this, electric discharge may occur from the semi-conductive member to the shaping air ring, and the semi-conductive member may deteriorate. Therefore, there is a problem that sufficient durability cannot be obtained due to deterioration of the cover member and the semi-conductive member.

本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、耐久性を高めることができるようにした静電塗装機を提供することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide an electrostatic coating machine capable of increasing durability.

本発明は、接地電位に保持され、圧縮エアが供給されることにより回転軸を回転するエアモータと、前記回転軸の前側に設けられると共に接地電位に保持された筒状体からなり、前記エアモータによって回転する間に供給された塗料を前端の放出端縁から噴霧する回転霧化頭と、前記回転霧化頭よりも後側に位置して前記エアモータの外周側に設けられ複数個の電極に負の高電圧が印加されることによって前記回転霧化頭の前記放出端縁から噴霧された塗料粒子を負の電位に帯電させる外部電極部材と、導電性材料を用いて筒状に形成されると共に前端が前記回転霧化頭の長さ方向の中間部位に位置する状態で前記回転霧化頭の外周側に配置され、前記前端に前記回転霧化頭から噴霧された塗料粒子に向けてシェーピングエアを噴出する多数個のエア噴出孔が周方向の全周に亘って設けられたシェーピングエア噴出部材と、前記シェーピングエア噴出部材の外周側に設けられ、前記シェーピングエア噴出部材の外周面を覆う絶縁材料からなる筒状の絶縁部材と、を含んで構成された静電塗装機において、前記シェーピングエア噴出部材と前記絶縁部材との間には、前記シェーピングエア噴出部材と前記絶縁部材との間を隔てる位置に円環状の自復性絶縁物からなる放電緩衝部材が設けられており、前記放電緩衝部材は、前記絶縁部材から露出した前側の沿面距離が前記絶縁部材に覆われた後側の沿面距離よりも短く形成されていることを特徴としている。

The present invention comprises an air motor that is held at the ground potential and rotates a rotating shaft by supplying compressed air, and a tubular body provided on the front side of the rotating shaft and held at the ground potential. A rotary atomizing head that sprays the paint supplied during rotation from the emission edge of the front end, and a plurality of electrodes that are located on the rear side of the rotary atomizing head and are provided on the outer peripheral side of the air motor and are negative. It is formed in a tubular shape by using an external electrode member that charges the paint particles sprayed from the emission edge of the rotary atomizing head to a negative potential by applying a high voltage of the above, and a conductive material. Shaped air is arranged on the outer peripheral side of the rotary atomizing head with the front end located in the middle portion in the length direction of the rotary atomizing head, and is directed toward the paint particles sprayed from the rotary atomizing head on the front end. A large number of air ejection holes are provided over the entire circumference in the circumferential direction, and insulation provided on the outer peripheral side of the shaping air ejection member to cover the outer peripheral surface of the shaping air ejection member. In an electrostatic coating machine configured to include a tubular insulating member made of a material, between the shaping air ejection member and the insulating member, a space between the shaping air ejection member and the insulating member is provided. A discharge buffering member made of an annular self-healing insulating material is provided at a separating position, and the discharge buffering member has a creepage distance on the front side exposed from the insulating member and a creepage surface on the rear side covered with the insulating member. It is characterized by being formed shorter than the distance .

本発明によれば、絶縁部材とシェーピングエア噴出部材との間の放電を抑制して、絶縁部材の劣化を抑制し、耐久性を高めることができる。 According to the present invention, it is possible to suppress the discharge between the insulating member and the shaping air ejection member, suppress the deterioration of the insulating member, and improve the durability.

本発明の実施の形態による間接帯電方式の回転霧化頭型静電塗装機を示す断面図である。It is sectional drawing which shows the rotary atomization head type electrostatic coating machine of the indirect charging type by embodiment of this invention. 間接帯電方式の回転霧化頭型静電塗装機を示す斜視図である。It is a perspective view which shows the rotary atomization head type electrostatic coating machine of an indirect charging type. 回転霧化頭型静電塗装機の前側部分を拡大して示す断面図である。It is sectional drawing which shows the front side part of the rotary atomization head type electrostatic coating machine enlarged. 図3中の絶縁部材、放電緩衝部材等を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing an insulating member, a discharge buffering member, and the like in FIG. 第1の変形例による絶縁部材、放電緩衝部材等を示す図4と同様位置から見た断面図である。It is sectional drawing seen from the same position as FIG. 4 which shows the insulating member, the discharge buffering member, etc. by the 1st modification. 第2の変形例による絶縁部材、放電緩衝部材等を示す図4と同様位置から見た断面図である。It is sectional drawing seen from the same position as FIG. 4 which shows the insulating member, the discharge buffering member, etc. by the 2nd modification. 第3の変形例による絶縁部材、放電緩衝部材等を示す図3と同様位置から見た断面図である。It is sectional drawing seen from the same position as FIG. 3 which shows the insulating member, the discharge buffering member and the like by the 3rd modification. 第4の変形例による外部電極部材を備えた回転霧化頭型静電塗装機を示す断面図である。It is sectional drawing which shows the rotary atomization head type electrostatic coating machine provided with the external electrode member by the 4th modification.

以下、本発明の実施の形態による間接帯電方式の回転霧化頭型静電塗装機について、添付図面に従って詳細に説明する。 Hereinafter, the indirect charging type rotary atomizing head type electrostatic coating machine according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1ないし図4は、本発明の実施の形態を示している。なお、本実施の形態では、後述する回転霧化頭型静電塗装機1について、シェーピングエアの噴出方向を前側とし、この前側と反対側を後側として配置関係を述べるものとする。 1 to 4 show embodiments of the present invention. In the present embodiment, the arrangement relationship of the rotary atomizing head type electrostatic coating machine 1 described later is described with the shaping air ejection direction as the front side and the side opposite to the front side as the rear side.

図1において、本実施の形態による回転霧化頭型静電塗装機1(以下、単に静電塗装機1という)は、後述の外部電極部材6により回転霧化頭4から噴霧された塗料を高電圧に間接的に帯電させる間接帯電方式の回転霧化頭型静電塗装機として構成されている。静電塗装機1は、例えば塗装ロボットのアーム(図示せず)の先端に取付けられている。 In FIG. 1, the rotary atomizing head type electrostatic coating machine 1 (hereinafter, simply referred to as the electrostatic coating machine 1) according to the present embodiment applies paint sprayed from the rotary atomizing head 4 by an external electrode member 6 described later. It is configured as an indirect charging type rotary atomizing head type electrostatic coating machine that indirectly charges a high voltage. The electrostatic coating machine 1 is attached to, for example, the tip of an arm (not shown) of a coating robot.

塗装機支持体2は、後述するエアモータ3の外周側で該エアモータ3を取囲み、かつエアモータ3よりも後方に延びて設けられている。塗装機支持体2は、基端側の取付筒部2Aを介して前述したアームの先端に取付けられている。ここで、塗装機支持体2は、例えば剛性を有する絶縁性樹脂材料によって構成されている。 The coating machine support 2 is provided so as to surround the air motor 3 on the outer peripheral side of the air motor 3 described later and to extend rearward from the air motor 3. The coating machine support 2 is attached to the tip of the arm described above via the mounting cylinder 2A on the base end side. Here, the coating machine support 2 is made of, for example, a rigid insulating resin material.

塗装機支持体2の先端側には、前方に開口するように、モータ収容部2Bが設けられている。モータ収容部2Bの開口側には、めねじ部2Cが設けられている。さらに、塗装機支持体2には、モータ収容部2Bの底部の中央位置(後述する回転軸3Cと同軸)に、後述するフィードチューブ5の基端側が挿嵌される挿嵌孔2Dが設けられている。 A motor accommodating portion 2B is provided on the tip end side of the coating machine support 2 so as to open forward. A female screw portion 2C is provided on the opening side of the motor accommodating portion 2B. Further, the coating machine support 2 is provided with an insertion hole 2D into which the base end side of the feed tube 5 described later is inserted at the central position of the bottom portion of the motor accommodating portion 2B (coaxial with the rotation shaft 3C described later). ing.

エアモータ3は、塗装機支持体2のモータ収容部2B内に設けられている。このエアモータ3は、圧縮エアを動力源として後述の回転軸3Cおよび回転霧化頭4を、例えば3000〜150000rpmの高速で回転させるものである。エアモータ3は、例えばアルミニウム合金等の導電性金属材料によって構成され、接地電位に保持されている。 The air motor 3 is provided in the motor accommodating portion 2B of the coating machine support 2. The air motor 3 uses compressed air as a power source to rotate the rotary shaft 3C and the rotary atomizing head 4, which will be described later, at a high speed of, for example, 3000 to 150,000 rpm. The air motor 3 is made of a conductive metal material such as an aluminum alloy and is held at a ground potential.

エアモータ3は、塗装機支持体2の前側に取付けられた段付円筒状のモータケース3Aと、該モータケース3Aの後側寄りに位置して回転可能に収容された例えば羽根車式のタービン3Bと、モータケース3Aの中心位置に回転自在に設けられ、後端側がタービン3Bに取付けられた回転軸3Cとを含んで構成されている。 The air motor 3 includes a stepped cylindrical motor case 3A attached to the front side of the coating machine support 2 and, for example, an impeller type turbine 3B which is located near the rear side of the motor case 3A and is rotatably housed. And a rotating shaft 3C rotatably provided at the center position of the motor case 3A and attached to the turbine 3B at the rear end side.

エアモータ3のモータケース3Aは、回転軸3Cと同軸な円筒体として形成されている。モータケース3Aは、塗装機支持体2のモータ収容部2B内に挿嵌される大径な大径筒3A1と、該大径筒3A1から前方に突出した小径な小径筒3A2とにより段付筒状に形成されている。 The motor case 3A of the air motor 3 is formed as a cylindrical body coaxial with the rotating shaft 3C. The motor case 3A is a stepped cylinder formed by a large-diameter large-diameter cylinder 3A1 inserted into the motor accommodating portion 2B of the coating machine support 2 and a small-diameter small-diameter cylinder 3A2 protruding forward from the large-diameter cylinder 3A1. It is formed in a shape.

モータケース3Aは、塗装機支持体2のモータ収容部2B内に挿嵌されている。この状態で、モータケース3Aは、塗装機支持体2のめねじ部2Cに螺着された円環状のねじ部材3Dによってモータ収容部2B内に固定されている。 The motor case 3A is fitted in the motor accommodating portion 2B of the coating machine support 2. In this state, the motor case 3A is fixed in the motor accommodating portion 2B by the annular screw member 3D screwed to the female thread portion 2C of the coating machine support 2.

回転軸3Cは、モータケース3A内にエア軸受(図示せず)を介して回転自在に支持された中空な筒状体として形成されている。この回転軸3Cは、後端側がタービン3Bの中央に取付けられ、前端側がモータケース3Aから前側に突出している。回転軸3Cの前端部には、螺合等の手段を用いて回転霧化頭4が取付けられている。 The rotating shaft 3C is formed as a hollow tubular body rotatably supported in the motor case 3A via an air bearing (not shown). The rear end side of the rotating shaft 3C is attached to the center of the turbine 3B, and the front end side protrudes from the motor case 3A to the front side. A rotary atomizing head 4 is attached to the front end portion of the rotary shaft 3C by means such as screwing.

回転霧化頭4は、エアモータ3の回転軸3Cの前側に設けられている。回転霧化頭4は、例えばアルミニウム合金等の導電性金属材料によって筒状体として形成され、エアモータ3を通じて接地電位に保持されている。図3に示すように、回転霧化頭4は、例えば長尺な円筒体として形成され、後側が軸方向に直線状に延びた取付部位4Aとなっている。取付部位4Aは、螺合等の手段を用いて回転軸3Cの前端部に取付けられている。 The rotary atomizing head 4 is provided on the front side of the rotary shaft 3C of the air motor 3. The rotary atomizing head 4 is formed as a tubular body by a conductive metal material such as an aluminum alloy, and is held at a ground potential through an air motor 3. As shown in FIG. 3, the rotary atomizing head 4 is formed as, for example, a long cylindrical body, and is a mounting portion 4A whose rear side extends linearly in the axial direction. The attachment portion 4A is attached to the front end portion of the rotating shaft 3C by means such as screwing.

回転霧化頭4の前側は、前方に向けて漸次拡開した拡開部位4Bとなっている。拡開部位4Bの内周面は、供給された塗料を薄膜化する塗料薄膜化面4Cとなっている。また、塗料薄膜化面4Cの先端(前端)は、薄膜化した塗料を塗料粒子として放出する放出端縁4Dとなっている。 The front side of the rotary atomizing head 4 is an expansion site 4B that gradually expands toward the front. The inner peripheral surface of the expansion portion 4B is a paint thinning surface 4C that thins the supplied paint. Further, the tip (front end) of the paint thinning surface 4C is a discharge edge 4D that discharges the thinned paint as paint particles.

そして、回転霧化頭4は、エアモータ3によって高速回転された状態で、後述のフィードチューブ5を通じて塗料が供給されると、その塗料を塗料薄膜化面4Cで薄膜化しつつ、遠心力によって放出端縁4Dから噴霧する。この場合、放出端縁4Dから噴霧された塗料粒子は、前方に配置された被塗物(図示せず)には向かわず、回転霧化頭4の遠心力によって径方向の外側に向けて(放射状に)飛行しようとする。 Then, when the paint is supplied through the feed tube 5 described later in a state where the rotary atomizing head 4 is rotated at high speed by the air motor 3, the paint is thinned on the paint thinning surface 4C and the discharge end is generated by centrifugal force. Spray from edge 4D. In this case, the paint particles sprayed from the emission edge 4D do not face the object to be coated (not shown) arranged in front, but are directed outward in the radial direction by the centrifugal force of the rotary atomizing head 4. Try to fly (radially).

しかし、放出端縁4Dから噴霧された塗料粒子は、後側から後述のシェーピングエア噴出部材9によるシェーピングエアが噴き付けられることにより、徐々に前側の被塗物に向かうように加速される。さらに、放出端縁4Dから噴霧された塗料粒子は、後述の外部電極部材6によって負極性に帯電させられることにより、接地電位に保持されている被塗物との間に形成された静電界に沿って飛行することができる。 However, the paint particles sprayed from the emission edge 4D are gradually accelerated toward the object to be coated on the front side by being sprayed with shaping air by the shaping air ejection member 9 described later from the rear side. Further, the paint particles sprayed from the emission edge 4D are negatively charged by the external electrode member 6 described later, so that an electrostatic field is formed between the paint particles and the object to be coated held at the ground potential. You can fly along.

フィードチューブ5は、回転軸3C内に挿通して設けられ、その後端側は、塗装機支持体2の挿嵌孔2D(図1参照)に挿嵌されている。一方、フィードチューブ5の前端側は、回転軸3Cから突出して回転霧化頭4内に延在している。フィードチューブ5内には塗料通路が設けられ、該塗料通路は、色替弁装置等を介して塗料供給源および洗浄流体供給源(いずれも図示せず)に接続されている。これにより、フィードチューブ5は、塗装時に塗料通路を通じて回転霧化頭4に向けて塗料供給源からの塗料を供給すると共に、洗浄時、色替時等には洗浄流体供給源からの洗浄流体(シンナ、空気等)を供給する。 The feed tube 5 is provided so as to be inserted into the rotating shaft 3C, and the rear end side thereof is inserted into the insertion hole 2D (see FIG. 1) of the coating machine support 2. On the other hand, the front end side of the feed tube 5 protrudes from the rotary shaft 3C and extends into the rotary atomizing head 4. A paint passage is provided in the feed tube 5, and the paint passage is connected to a paint supply source and a cleaning fluid supply source (neither shown) via a color change valve device or the like. As a result, the feed tube 5 supplies the paint from the paint supply source toward the rotary atomizing head 4 through the paint passage at the time of painting, and at the time of cleaning, color change, etc., the cleaning fluid from the cleaning fluid supply source ( (Shinna, air, etc.) is supplied.

外部電極部材6は、回転霧化頭4よりも後側に位置してエアモータ3の外周側、即ち、塗装機支持体2の外周側に設けられている。外部電極部材6は、後述する複数個の電極6Cに負の高電圧(例えば、−30〜−150kV)が印加されることによって、回転霧化頭4の放出端縁4Dから噴霧された塗料粒子を負の電位に帯電させるものである。 The external electrode member 6 is located on the rear side of the rotary atomizing head 4 and is provided on the outer peripheral side of the air motor 3, that is, on the outer peripheral side of the coating machine support 2. The external electrode member 6 is coated with paint particles sprayed from the emission edge 4D of the rotary atomizing head 4 by applying a negative high voltage (for example, -30 to -150 kV) to a plurality of electrodes 6C described later. Is charged to a negative potential.

外部電極部材6は、塗装機支持体2の外周側に設けられ絶縁性樹脂材料からなる環状の外部電極支持筒体6Aと、該外部電極支持筒体6Aに周方向に等間隔で複数個(例えば8個〜20個)配列された電極取付穴6B(2個のみ図示)と、該各電極取付穴6Bにそれぞれ取付けられた電極6Cとを含んで構成されている。外部電極支持筒体6Aの前側には、各電極6Cの針状部6C1に対応する個数の孔6A1が設けられている。 A plurality of external electrode members 6 are provided on the outer peripheral side of the coating machine support 2 and are formed on an annular external electrode support cylinder 6A made of an insulating resin material and a plurality of the external electrode support cylinders 6A at equal intervals in the circumferential direction. For example, 8 to 20 electrode mounting holes 6B (only 2 are shown) and electrodes 6C mounted in each of the electrode mounting holes 6B are included. On the front side of the external electrode support cylinder 6A, a number of holes 6A1 corresponding to the needle-shaped portion 6C1 of each electrode 6C are provided.

ここで、本実施の形態による外部電極部材6は、静電塗装機1を車体の内側のように狭い空間で使用するために、塗装機支持体2の後側寄りで該塗装機支持体2の外周側の近傍位置に設けられている。これに伴い、各電極6Cの針状部6C1は、回転霧化頭4に対して軸方向の後側に大きく離間した位置、即ち、エアモータ3の外周側に配置されている。さらに、各電極6Cの針状部6C1は、後述の外側カバー部材8の径方向の外側の近傍位置に配置されている。これにより、塗装作業時には、各電極6Cが周囲の部材に干渉するのを抑制することができる。 Here, in the external electrode member 6 according to the present embodiment, in order to use the electrostatic coating machine 1 in a narrow space such as the inside of the vehicle body, the coating machine support 2 is located closer to the rear side of the coating machine support 2. It is provided near the outer peripheral side of the. Along with this, the needle-shaped portion 6C1 of each electrode 6C is arranged at a position largely separated from the rotary atomizing head 4 on the rear side in the axial direction, that is, on the outer peripheral side of the air motor 3. Further, the needle-shaped portion 6C1 of each electrode 6C is arranged at a position near the outer side in the radial direction of the outer cover member 8 described later. As a result, it is possible to prevent each electrode 6C from interfering with surrounding members during painting work.

各電極6Cは、抵抗を介して高電圧発生器(いずれも図示せず)に接続されている。従って、各電極6Cには、高電圧発生器による負の高電圧が印加される構成となっている。これにより、外部電極部材6は、各電極6Cでコロナ放電が生じることによって、回転霧化頭4から噴霧された塗料粒子を負極性に帯電させる。 Each electrode 6C is connected to a high voltage generator (neither shown) via a resistor. Therefore, each electrode 6C is configured to apply a negative high voltage by a high voltage generator. As a result, the external electrode member 6 causes the coating particles sprayed from the rotary atomizing head 4 to be negatively charged by the corona discharge generated at each electrode 6C.

内側カバー部材7は、例えば絶縁性の樹脂材料を用い、前側に向け円弧状に縮径した筒状体として形成されている。内側カバー部材7は、エアモータ3を取囲むように、外部電極部材6と後述のシェーピングエア噴出部材9との間に設けられている。内側カバー部材7は、後側が塗装機支持体2の外周側に取付けられている。一方、内側カバー部材7は、前側がシェーピングエア噴出部材9の外周面9Bを構成する大径円筒部位9B1の後部に取付けられている。 The inner cover member 7 is formed as a tubular body whose diameter is reduced in an arc shape toward the front side by using, for example, an insulating resin material. The inner cover member 7 is provided between the outer electrode member 6 and the shaping air ejection member 9 described later so as to surround the air motor 3. The rear side of the inner cover member 7 is attached to the outer peripheral side of the coating machine support 2. On the other hand, the inner cover member 7 is attached to the rear portion of the large-diameter cylindrical portion 9B1 whose front side constitutes the outer peripheral surface 9B of the shaping air ejection member 9.

外側カバー部材8は、内側カバー部材7と同様に、絶縁性の樹脂材料によって前側に向け円弧状に縮径した筒状体として形成されている。外側カバー部材8は、内側カバー部材7のさらに外側からエアモータ3を取囲むように、外部電極部材6とシェーピングエア噴出部材9との間に設けられている。 Like the inner cover member 7, the outer cover member 8 is formed as a tubular body whose diameter is reduced in an arc shape toward the front side by an insulating resin material. The outer cover member 8 is provided between the outer electrode member 6 and the shaping air ejection member 9 so as to surround the air motor 3 from the outer side of the inner cover member 7.

外側カバー部材8は、後側が内側カバー部材7と外部電極部材6の内周側との間に取付けられている。また、外側カバー部材8は、前側がシェーピングエア噴出部材9の外周面9Bの前,後方向の中間部位に配置されている。この外側カバー部材8は、回転霧化頭4、シェーピングエア噴出部材9等の組立作業または分解作業を行うときに、取外すことができる。 The rear side of the outer cover member 8 is attached between the inner cover member 7 and the inner peripheral side of the outer electrode member 6. Further, the outer cover member 8 is arranged on the front side at intermediate portions in the front and rear directions of the outer peripheral surface 9B of the shaping air ejection member 9. The outer cover member 8 can be removed when assembling or disassembling the rotary atomizing head 4, the shaping air ejection member 9, and the like.

シェーピングエア噴出部材9は、前端が回転霧化頭4の長さ方向の中間部位(拡開部位4Bの後側)に位置する状態で、回転霧化頭4の外周側に配置されている。シェーピングエア噴出部材9は、例えばアルミニウム合金等の導電性金属材料によって構成され、エアモータ3を介して接地電位に保持されている。 The shaping air ejection member 9 is arranged on the outer peripheral side of the rotary atomizing head 4 with the front end located at the intermediate portion (rear side of the spreading portion 4B) in the length direction of the rotary atomizing head 4. The shaping air ejection member 9 is made of a conductive metal material such as an aluminum alloy, and is held at a ground potential via an air motor 3.

シェーピングエア噴出部材9は、回転霧化頭4を取囲む段付状の円筒体として形成されている。シェーピングエア噴出部材9の内周面9Aは、回転霧化頭4の外周面と僅かな隙間をもって対面している。一方、シェーピングエア噴出部材9の外周面9Bは、後側に位置して大径な大径円筒部位9B1と、大径円筒部位9B1の前端から前方に向けて漸次縮径したテーパ部位9B2と、テーパ部位9B2の前端から前方に向けて直線状に延びた小径な小径円筒部位9B3とからなっている。 The shaping air ejection member 9 is formed as a stepped cylindrical body surrounding the rotary atomizing head 4. The inner peripheral surface 9A of the shaping air ejection member 9 faces the outer peripheral surface of the rotary atomizing head 4 with a slight gap. On the other hand, the outer peripheral surface 9B of the shaping air ejection member 9 includes a large-diameter cylindrical portion 9B1 located on the rear side and a tapered portion 9B2 whose diameter is gradually reduced from the front end of the large-diameter cylindrical portion 9B1 toward the front. It is composed of a small-diameter cylindrical portion 9B3 having a small diameter extending linearly from the front end of the tapered portion 9B2 toward the front.

大径円筒部位9B1の後部には、内側カバー部材7の前側部位が外嵌状態で取付けられる。テーパ部位9B2と小径円筒部位9B3とは、後述する絶縁部材14によって覆われている。 The front portion of the inner cover member 7 is attached to the rear portion of the large-diameter cylindrical portion 9B1 in an outer fitting state. The tapered portion 9B2 and the small-diameter cylindrical portion 9B3 are covered with an insulating member 14 described later.

シェーピングエア噴出部材9の後端部位は、円筒状の取付ねじ部9Cとなり、該取付ねじ部9Cは、塗装機支持体2のめねじ部2Cに螺着されるものである。これにより、シェーピングエア噴出部材9は、取付ねじ部9Cを用いて塗装機支持体2の前側部位に取付けられている。 The rear end portion of the shaping air ejection member 9 is a cylindrical mounting screw portion 9C, and the mounting screw portion 9C is screwed to the female screw portion 2C of the coating machine support 2. As a result, the shaping air ejection member 9 is attached to the front portion of the coating machine support 2 by using the attachment screw portion 9C.

さらに、図2ないし図4に示すように、シェーピングエア噴出部材9の前端(前側部位)は、平坦な円環状の前面部位9Dとなっている。この前面部位9Dには、第1のエア噴出孔10と第2のエア噴出孔12が開口して設けられている。前面部位9Dは、回転霧化頭4の拡開部位4Bの後部位置の周囲に配置されている。 Further, as shown in FIGS. 2 to 4, the front end (front portion) of the shaping air ejection member 9 is a flat annular front portion 9D. A first air ejection hole 10 and a second air ejection hole 12 are opened in the front surface portion 9D. The front surface portion 9D is arranged around the rear position of the spread portion 4B of the rotary atomizing head 4.

第1のエア噴出孔10は、前面部位9Dの外径側寄りに位置して周方向の全周に亘って等間隔で多数個設けられている。この第1のエア噴出孔10は、第1のシェーピングエア通路11を通じて第1のシェーピングエア供給源(図示せず)に接続されている。第1のエア噴出孔10は、第1のシェーピングエアを回転霧化頭4の放出端縁4Dの近傍に向けて噴出するものである。 A large number of first air ejection holes 10 are provided at equal intervals over the entire circumference in the circumferential direction, located near the outer diameter side of the front surface portion 9D. The first air ejection hole 10 is connected to a first shaping air supply source (not shown) through a first shaping air passage 11. The first air ejection hole 10 ejects the first shaping air toward the vicinity of the emission edge 4D of the rotary atomizing head 4.

第2のエア噴出孔12は、第1のエア噴出孔10よりも径方向の内側に位置して前面部位9Dに周方向の全周に亘って等間隔で多数個設けられている。この第2のエア噴出孔12は、第2のシェーピングエア通路13を通じて第2のシェーピングエア供給源(図示せず)に接続されている。第2のエア噴出孔12は、第2のシェーピングエアを回転霧化頭4の背面に向けて噴出するものである。 A large number of the second air ejection holes 12 are provided on the front surface portion 9D at equal intervals over the entire circumference in the circumferential direction, which are located inside the first air ejection holes 10 in the radial direction. The second air ejection hole 12 is connected to a second shaping air supply source (not shown) through a second shaping air passage 13. The second air ejection hole 12 ejects the second shaping air toward the back surface of the rotary atomizing head 4.

これにより、第1のエア噴出孔10から噴出される第1のシェーピングエアおよび第2のエア噴出孔12から噴出される第2のシェーピングエアは、回転霧化頭4の放出端縁4Dから放出される塗料の液糸を剪断して塗料粒子の形成を促進すると共に、回転霧化頭4から噴霧された塗料粒子の噴霧パターンを整形する。このとき、第1のシェーピングエアの圧力と第2のシェーピングエアの圧力を適宜調整することによって、噴霧パターンを所望の大きさや形状に変更することができる。さらに、第1,第2のシェーピングエアは、遠心力によって回転霧化頭4の放出端縁4Dから径方向の外側に飛行する塗料粒子に噴き付けられることにより、塗料粒子の向きを徐々に被塗物に向けつつ塗料粒子を加速させる。 As a result, the first shaping air ejected from the first air ejection hole 10 and the second shaping air ejected from the second air ejection hole 12 are discharged from the emission edge 4D of the rotary atomizing head 4. The liquid yarn of the paint to be coated is sheared to promote the formation of paint particles, and the spray pattern of the paint particles sprayed from the rotary atomizing head 4 is shaped. At this time, the spray pattern can be changed to a desired size and shape by appropriately adjusting the pressure of the first shaping air and the pressure of the second shaping air. Further, the first and second shaping airs are sprayed by centrifugal force onto the paint particles flying outward in the radial direction from the emission edge 4D of the rotary atomizing head 4, so that the direction of the paint particles is gradually covered. Accelerate paint particles while aiming at the coating.

次に、本実施の形態の特徴部分となる絶縁部材14、放電緩衝部材15の構成について詳細に述べる。 Next, the configurations of the insulating member 14 and the discharge buffering member 15, which are the characteristic parts of the present embodiment, will be described in detail.

絶縁部材14は、シェーピングエア噴出部材9の外周側に設けられている。絶縁部材14は、シェーピングエア噴出部材9の外周面9Bのうち、テーパ部位9B2と小径円筒部位9B3の外周側を覆っている。絶縁部材14は、例えば、4フッ化エチレン樹脂等の高絶縁材料(例えば、体積抵抗率が1016〜1018Ωcm)からなる筒状体として形成されている。なお、絶縁部材14は、4フッ化エチレン樹脂以外の高絶縁材料によって形成してもよい。The insulating member 14 is provided on the outer peripheral side of the shaping air ejection member 9. The insulating member 14 covers the outer peripheral side of the tapered portion 9B2 and the small-diameter cylindrical portion 9B3 of the outer peripheral surface 9B of the shaping air ejection member 9. The insulating member 14 is formed as a tubular body made of a highly insulating material (for example, a volume resistivity of 10 16 to 10 18 Ωcm) such as a tetrafluorinated ethylene resin. The insulating member 14 may be formed of a highly insulating material other than the tetrafluorinated ethylene resin.

ここで、絶縁部材14の表面は、電極6Cの針状部6C1(コロナ放電電極)によって発生した帯電イオン粒子がシェーピングエア噴出部材9に向かって延びている電気力線に沿って運動することで帯電する。帯電した絶縁部材14は、同極性に帯電した塗料粒子が意図せずに近付いた場合、電気的に反発力を生じさせ、付着させないことで、汚れを軽減する。 Here, the surface of the insulating member 14 is formed by the charged ion particles generated by the needle-shaped portion 6C1 (corona discharge electrode) of the electrode 6C moving along the electric lines of force extending toward the shaping air ejection member 9. It becomes charged. When the paint particles charged with the same polarity are unintentionally approached, the charged insulating member 14 electrically generates a repulsive force to prevent the particles from adhering to the charged insulating member 14 to reduce the stain.

絶縁部材14は、後側に位置してテーパ部位9B2の外周側を覆うテーパカバー部14Aと、前記テーパカバー部14Aの小径となった前部から小径円筒部位9B3の外周側を覆うように前側に延びた筒状カバー部14Bとにより構成されている。筒状カバー部14Bの内周側には、後述する放電緩衝部材15が嵌合される嵌合部14Cが形成されている。また、筒状カバー部14Bの前端部位14B1は、後述する放電経路Aと放電経路Bとの基点C(図4参照)となっている。 The insulating member 14 is located on the rear side and covers the outer peripheral side of the tapered portion 9B2, and the front side of the tapered cover portion 14A so as to cover the outer peripheral side of the small diameter cylindrical portion 9B3 from the front portion having a small diameter. It is composed of a tubular cover portion 14B extending to the surface. On the inner peripheral side of the tubular cover portion 14B, a fitting portion 14C into which the discharge buffer member 15 described later is fitted is formed. Further, the front end portion 14B1 of the tubular cover portion 14B serves as a base point C (see FIG. 4) between the discharge path A and the discharge path B, which will be described later.

放電緩衝部材15は、シェーピングエア噴出部材9と絶縁部材14との間に設けられている。具体的には、放電緩衝部材15は、シェーピングエア噴出部材9の周囲を取囲む円環状の筒体として形成されている。 The discharge buffer member 15 is provided between the shaping air ejection member 9 and the insulating member 14. Specifically, the discharge buffer member 15 is formed as an annular cylinder that surrounds the shaping air ejection member 9.

放電緩衝部材15は、絶縁性材料であって、例えばセラミック等の自復性絶縁物を用いて形成されている。このため、接地されているシェーピングエア噴出部材9に向かって帯電している絶縁部材14から電荷が間欠的に移動する(即ち部分放電する)場合、放電緩衝部材15を介して放電が生じる。放電緩衝部材15は、セラミック以外にも、ガラス、マイカ、アルミナ等の自復性絶縁物を用いて形成することもできる。セラミックからなる放電緩衝部材15は、多孔質な性質を有している。放電緩衝部材15は、その表面に、多孔質構造を利用して空気中の水分を残留させることで、見かけ上の抵抗率を低下させ、半導電材料のように電荷の移動を緩やかに行い、電気的なストレスを緩和することができる。 The discharge buffer member 15 is an insulating material, and is formed by using a self-healing insulating material such as ceramic. Therefore, when the electric charge moves intermittently (that is, partially discharges) from the insulating member 14 which is charged toward the grounded shaping air ejection member 9, a discharge is generated through the discharge buffer member 15. The discharge buffer member 15 can be formed by using a self-healing insulator such as glass, mica, or alumina in addition to ceramic. The discharge buffer member 15 made of ceramic has a porous property. The discharge buffer member 15 uses a porous structure to retain moisture in the air on its surface, thereby lowering the apparent resistivity and slowly moving charges like a semi-conductive material. It can relieve electrical stress.

放電緩衝部材15の前端部15Aは、絶縁部材14の前端よりも前側に突出している。一方、放電緩衝部材15の後端部15Bは、絶縁部材14の嵌合部14Cに挿嵌されている。 The front end portion 15A of the discharge buffer member 15 projects to the front side of the front end of the insulating member 14. On the other hand, the rear end portion 15B of the discharge buffer member 15 is inserted into the fitting portion 14C of the insulating member 14.

ここで、シェーピングエア噴出部材9、絶縁部材14および放電緩衝部材15の軸方向(前,後方向)の配置関係について述べる。図3および図4に示すように、シェーピングエア噴出部材9の前面部位9Dから放電緩衝部材15の前端部15Aまでを寸法Hとし、放電緩衝部材15の前端部15Aから絶縁部材14の前端部位14B1までを寸法Jとし、絶縁部材14の前端部位14B1から放電緩衝部材15の後端部15Bまでを寸法Kとする。この場合、放電緩衝部材15の前端部15Aから絶縁部材14の前端部位14B1までの寸法Jを基準に、寸法Hと寸法Kについて説明する。即ち、寸法Jと寸法Kとは、下記数1の関係にある。なお、放電緩衝部材15がシェーピングエア噴出部材9に配置可能であれば、寸法Kは、寸法Jの2倍以上の値であってもよい。 Here, the arrangement relationship of the shaping air ejection member 9, the insulating member 14, and the discharge buffer member 15 in the axial direction (front and rear directions) will be described. As shown in FIGS. 3 and 4, the dimension H is defined from the front end portion 9D of the shaping air ejection member 9 to the front end portion 15A of the discharge buffer member 15, and the front end portion 15A of the discharge buffer member 15 to the front end portion 14B1 of the insulating member 14. Is dimension J, and the dimension K is from the front end portion 14B1 of the insulating member 14 to the rear end portion 15B of the discharge buffer member 15. In this case, the dimensions H and K will be described with reference to the dimension J from the front end portion 15A of the discharge buffer member 15 to the front end portion 14B1 of the insulating member 14. That is, the dimension J and the dimension K have the following relationship of the number 1. If the discharge buffer member 15 can be arranged on the shaping air ejection member 9, the dimension K may be twice or more the value of the dimension J.

Figure 0006765007
Figure 0006765007

これにより、絶縁部材14に帯電した電荷は、放電緩衝部材15の表面を沿面距離が短い前側の放電経路Aを通じ、シェーピングエア噴出部材9に流すことができる。また、寸法Hは、下記数2のように設定されている。 As a result, the electric charge charged in the insulating member 14 can flow to the shaping air ejection member 9 through the discharge path A on the front side where the creepage distance is short on the surface of the discharge buffer member 15. Further, the dimension H is set as shown in the following equation 2.

Figure 0006765007
Figure 0006765007

即ち、放電緩衝部材15の前端部15Aは、シェーピングエア噴出部材9の前面部位9Dと揃えて配置することができる。 That is, the front end portion 15A of the discharge buffer member 15 can be arranged so as to be aligned with the front portion 9D of the shaping air ejection member 9.

ここで、放電緩衝部材15は、多孔質な性質を有するセラミックによって形成されている。従って、放電緩衝部材15は、多孔質な性質を利用し、表面に水分等を残留させることができる。特に、塗装を行う塗装ブース内は、高い湿度に保たれているから、表面に水分等が残留し易くなっている。放電緩衝部材15は、表面に残留した水分を利用することにより、微小な帯電または表面での流電を可能とすることができる。これにより、絶縁部材14に帯電した電荷は、放電緩衝部材15の表面の水分を通じて徐々に流れ、シェーピングエア噴出部材9に到達することができる。 Here, the discharge buffer member 15 is formed of a ceramic having a porous property. Therefore, the discharge buffer member 15 can utilize the porous property to leave water or the like on the surface. In particular, since the inside of the painting booth where painting is performed is maintained at a high humidity, moisture and the like tend to remain on the surface. The discharge buffer member 15 can enable minute charging or galvanism on the surface by utilizing the water remaining on the surface. As a result, the electric charge charged on the insulating member 14 gradually flows through the moisture on the surface of the discharge buffer member 15 and can reach the shaping air ejection member 9.

この場合、絶縁部材14に帯電した電荷を、放電緩衝部材15の表面を介してシェーピングエア噴出部材9に対して徐々に流すことで、絶縁部材14とシェーピングエア噴出部材9との間での放電を抑制することができる。この上で、絶縁部材14とシェーピングエア噴出部材9との間で放電が生じたとしても、これらの間に配置された放電緩衝部材15は、剛性、耐熱性等に優れたセラミックによって形成されているから、放電による電気的劣化が生じることはない。 In this case, the electric charge charged on the insulating member 14 is gradually flowed to the shaping air ejecting member 9 through the surface of the discharge buffering member 15, so that the electric charge between the insulating member 14 and the shaping air ejecting member 9 is discharged. Can be suppressed. On this basis, even if a discharge occurs between the insulating member 14 and the shaping air ejection member 9, the discharge buffer member 15 arranged between them is formed of ceramic having excellent rigidity, heat resistance, and the like. Therefore, there is no electrical deterioration due to discharge.

かくして、静電塗装機1による塗装作業時には、各電極6Cと絶縁部材14の外周面との間に電気力線が形成される。この電気力線によって絶縁部材14が高電圧に帯電するから、この絶縁部材14とシェーピングエア噴出部材9との間で放電が生じてしまう。この放電が繰り返されると、絶縁部材14の前端部分に電気的劣化が生じる虞がある。 Thus, during the painting work by the electrostatic coating machine 1, electric lines of force are formed between each electrode 6C and the outer peripheral surface of the insulating member 14. Since the insulating member 14 is charged with a high voltage by the electric lines of force, an electric discharge occurs between the insulating member 14 and the shaping air ejection member 9. If this discharge is repeated, the front end portion of the insulating member 14 may be electrically deteriorated.

そこで、本実施の形態による静電塗装機1によると、シェーピングエア噴出部材9と絶縁部材14との間には、シェーピングエア噴出部材9と絶縁部材14との間を隔てる位置に筒状のセラミック(自復性絶縁物)からなる放電緩衝部材15が設けられている。これによって、絶縁部材14からシェーピングエア噴出部材9への放電が生じたとしても、これらの間に配置された放電緩衝部材15は、剛性、耐熱性等に優れたセラミックによって形成されているから、放電による電気的劣化を防止できる機能、または徐々に電荷を放電させ部分放電を無くす機能によって、耐久性を向上することができる。 Therefore, according to the electrostatic coating machine 1 according to the present embodiment, a tubular ceramic is placed between the shaping air ejection member 9 and the insulating member 14 at a position separating the shaping air ejection member 9 and the insulating member 14. A discharge buffer member 15 made of (self-healing insulating material) is provided. As a result, even if a discharge is generated from the insulating member 14 to the shaping air ejection member 9, the discharge buffer member 15 arranged between them is made of ceramic having excellent rigidity, heat resistance, and the like. Durability can be improved by a function that can prevent electrical deterioration due to discharge, or a function that gradually discharges electric charge to eliminate partial discharge.

また、放電緩衝部材15は、絶縁部材14から露出した前側の沿面距離(放電経路A)が絶縁部材14に覆われた後側の沿面距離(放電経路B)よりも短く形成されている。具体的に説明すると、絶縁部材14の表面に帯電した電荷が流れる経路としては、絶縁部材14の前端部位14B1を基点Cとし、放電緩衝部材15の前端部15Aを通ってシェーピングエア噴出部材9の外周面9Bに至る放電経路Aと、基点Cから放電緩衝部材15の後端部15Bを通ってシェーピングエア噴出部材9の外周面9Bに至る放電経路Bとがある。この場合、放電経路Bは、絶縁部材14が放電緩衝部材15を覆う長さ方向(前,後方向)の大きさによって、放電経路Aよりも長尺に形成されている。このため、放電経路Bに比べて放電経路Aによる放電を促進させることができ、放電経路Bで流電することによる絶縁部材14の電気的劣化を防止でき、耐久性や信頼性を向上することができる。 Further, the discharge buffer member 15 is formed so that the creepage distance (discharge path A) on the front side exposed from the insulating member 14 is shorter than the creepage distance (discharge path B) on the rear side covered with the insulating member 14. More specifically, as a path through which the charged charge flows on the surface of the insulating member 14, the shaping air ejection member 9 passes through the front end portion 15A of the discharge buffering member 15 with the front end portion 14B1 of the insulating member 14 as the base point C. There is a discharge path A that reaches the outer peripheral surface 9B, and a discharge path B that reaches the outer peripheral surface 9B of the shaping air ejection member 9 from the base point C through the rear end portion 15B of the discharge buffer member 15. In this case, the discharge path B is formed longer than the discharge path A due to the size of the insulating member 14 in the length direction (front and rear directions) covering the discharge buffer member 15. Therefore, it is possible to promote the discharge by the discharge path A as compared with the discharge path B, prevent the electrical deterioration of the insulating member 14 due to the galvanism in the discharge path B, and improve the durability and reliability. Can be done.

エアモータ3の外周側には、エアモータ3を取囲み、かつエアモータ3よりも後方に延びた塗装機支持体2が設けられている。これに加えて、外部電極部材6は、塗装機支持体2の外周側に設けられ絶縁性樹脂材料からなる環状の外部電極支持筒体6Aと、該外部電極支持筒体6Aの前端側に周方向に配列された複数個の電極6Cとを含んで構成されている。これにより、塗装機支持体2の外周側に外部電極部材6を絶縁状態で配置することができる。また、複数個の電極6Cをコンパクトに纏めることができるから、外部電極部材6を小型化でき、狭い場所の塗装に適した塗装機とすることができる。 On the outer peripheral side of the air motor 3, a coating machine support 2 that surrounds the air motor 3 and extends rearward from the air motor 3 is provided. In addition to this, the external electrode member 6 is provided on the outer peripheral side of the coating machine support 2 and is provided around the annular external electrode support cylinder 6A made of an insulating resin material and the front end side of the external electrode support cylinder 6A. It is configured to include a plurality of electrodes 6C arranged in the direction. As a result, the external electrode member 6 can be arranged in an insulated state on the outer peripheral side of the coating machine support 2. Further, since the plurality of electrodes 6C can be compactly assembled, the external electrode member 6 can be miniaturized, and a coating machine suitable for coating in a narrow place can be obtained.

外部電極部材6とシェーピングエア噴出部材9との間には、絶縁性材料によって筒状に形成され、エアモータ3を取囲む内側カバー部材7、外側カバー部材8が設けられている。従って、各カバー部材7,8によってエアモータ3を覆い隠すことができる。また、滑らかな円弧状に形成した外側カバー部材8は、塗料が付着したとしても、付着塗料を短時間で確実に洗浄することができる。 An inner cover member 7 and an outer cover member 8 which are formed in a tubular shape by an insulating material and surround the air motor 3 are provided between the external electrode member 6 and the shaping air ejection member 9. Therefore, the air motor 3 can be covered by the cover members 7 and 8. Further, the outer cover member 8 formed in a smooth arc shape can surely clean the adhered paint in a short time even if the paint adheres.

なお、前記実施の形態では、絶縁部材14に嵌合部14Cを設け、この嵌合部14Cに放電緩衝部材15を嵌合させた場合を例示した。しかし、本発明はこれに限らず、例えば、図5に示す第1の変形例のように構成してもよい。第1の変形例によると、シェーピングエア噴出部材21は、実施の形態によるシェーピングエア噴出部材9と同様に構成され、内周面21Aと、外周面21Bと、前端(前側部位)となる前面部位21Cとを有している。但し、シェーピングエア噴出部材21の外周面21Bには環状凹溝22が形成され、この環状凹溝22に放電緩衝部材23が嵌合されている。この場合、嵌合部を省いた絶縁部材24が、放電緩衝部材23の外周面を覆って取り付けられている。 In the above embodiment, a case where the insulating member 14 is provided with the fitting portion 14C and the discharge buffer member 15 is fitted to the fitting portion 14C is illustrated. However, the present invention is not limited to this, and may be configured as in the first modification shown in FIG. 5, for example. According to the first modification, the shaping air ejection member 21 is configured in the same manner as the shaping air ejection member 9 according to the embodiment, and has an inner peripheral surface 21A, an outer peripheral surface 21B, and a front portion serving as a front end (front portion). It has 21C. However, an annular recess 22 is formed on the outer peripheral surface 21B of the shaping air ejection member 21, and the discharge buffer member 23 is fitted in the annular groove 22. In this case, the insulating member 24 omitting the fitting portion is attached so as to cover the outer peripheral surface of the discharge buffer member 23.

また、図6に示す第2の変形例のように構成してもよい。第2の変形例では、嵌合部を省いた絶縁部材31が、放電緩衝部材15の外周面を覆って取り付けられている。 Further, it may be configured as in the second modification shown in FIG. In the second modification, the insulating member 31 excluding the fitting portion is attached so as to cover the outer peripheral surface of the discharge buffer member 15.

また、前記実施の形態によると、エアモータ3を取囲む外側カバー部材8と、シェーピングエア噴出部材9の外周側を覆う絶縁部材14とは、互いに別個に形成されるものとした。本発明はこれに限らず、例えば図7に示す第3の変形例のように、シェーピングエア噴出部材9の外周側を覆うと共に、エアモータ3を取囲むような、単一の絶縁部材41を形成してもよい。 Further, according to the embodiment, the outer cover member 8 surrounding the air motor 3 and the insulating member 14 covering the outer peripheral side of the shaping air ejection member 9 are formed separately from each other. The present invention is not limited to this, and for example, as in the third modification shown in FIG. 7, a single insulating member 41 is formed so as to cover the outer peripheral side of the shaping air ejection member 9 and surround the air motor 3. You may.

さらに、前記実施の形態によると、外部電極部材6は、塗装機支持体2の外周側に設けられた環状の外部電極支持筒体6Aと、該外部電極支持筒体6Aに周方向に等間隔で複数個配列された電極取付穴6Bと、該各電極取付穴6Bにそれぞれ取付けられた電極6Cとを含んで構成した場合を例示した。しかし、本発明はこれに限らず、例えば、図8に示す第4の変形例のように構成してもよい。即ち、第4の変形例による外部電極部材51は、塗装機支持体2の外周側に設けられた環状の外部電極支持筒体51Aと、該外部電極支持筒体51Aの前部に周方向に等間隔で複数本配列され、前方に向けて延びた電極51Bとを含んで構成されている。 Further, according to the embodiment, the external electrode member 6 is equidistantly spaced in the circumferential direction from the annular external electrode support cylinder 6A provided on the outer peripheral side of the coating machine support 2 and the external electrode support cylinder 6A. An example is shown in which a plurality of electrode mounting holes 6B arranged in the above and electrodes 6C mounted in each of the electrode mounting holes 6B are included. However, the present invention is not limited to this, and may be configured as in the fourth modification shown in FIG. 8, for example. That is, the external electrode member 51 according to the fourth modification has the annular external electrode support cylinder 51A provided on the outer peripheral side of the coating machine support 2 and the front portion of the external electrode support cylinder 51A in the circumferential direction. A plurality of electrodes are arranged at equal intervals and include electrodes 51B extending forward.

なお、前記実施の形態および前記各変形例は例示であり、異なる変形例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。 It is needless to say that the above-described embodiment and each of the modified examples are examples, and partial replacement or combination of the configurations shown in different modified examples is possible.

1 回転霧化頭型静電塗装機
2 塗装機支持体
3 エアモータ
3C 回転軸
4 回転霧化頭
4D 放出端縁(前端)
6,51 外部電極部材
6C,51B 電極
9,21 シェーピングエア噴出部材
9B,21B 外周面
9D,21C 前面部位(前側部位)
10 第1のエア噴出孔(エア噴出孔)
12 第2のエア噴出孔(エア噴出孔)
14,24,31,41 絶縁部材
15,23 放電緩衝部材
1 Rotary atomizing head type electrostatic coating machine 2 Coating machine support 3 Air motor 3C Rotating shaft 4 Rotary atomizing head 4D Emission end edge (front end)
6,51 External electrode member 6C, 51B Electrode 9,21 Shaping air ejection member 9B, 21B Outer peripheral surface 9D, 21C Front part (front part)
10 First air ejection hole (air ejection hole)
12 Second air ejection hole (air ejection hole)
14, 24, 31, 41 Insulation member 15, 23 Discharge buffer member

Claims (2)

接地電位に保持され、圧縮エアが供給されることにより回転軸を回転するエアモータと、
前記回転軸の前側に設けられると共に接地電位に保持された筒状体からなり、前記エアモータによって回転する間に供給された塗料を前端の放出端縁から噴霧する回転霧化頭と、
前記回転霧化頭よりも後側に位置して前記エアモータの外周側に設けられ複数個の電極に負の高電圧が印加されることによって前記回転霧化頭の前記放出端縁から噴霧された塗料粒子を負の電位に帯電させる外部電極部材と、
導電性材料を用いて筒状に形成されると共に前端が前記回転霧化頭の長さ方向の中間部位に位置する状態で前記回転霧化頭の外周側に配置され、前記前端に前記回転霧化頭から噴霧された塗料粒子に向けてシェーピングエアを噴出する多数個のエア噴出孔が周方向の全周に亘って設けられたシェーピングエア噴出部材と、
前記シェーピングエア噴出部材の外周側に設けられ、前記シェーピングエア噴出部材の外周面を覆う絶縁材料からなる筒状の絶縁部材と、を含んで構成された静電塗装機において、
前記シェーピングエア噴出部材と前記絶縁部材との間には、前記シェーピングエア噴出部材と前記絶縁部材との間を隔てる位置に円環状の自復性絶縁物からなる放電緩衝部材が設けられており、
前記放電緩衝部材は、前記絶縁部材から露出した前側の沿面距離が前記絶縁部材に覆われた後側の沿面距離よりも短く形成されていることを特徴とする静電塗装機。
An air motor that is held at the ground potential and rotates the rotating shaft by supplying compressed air,
A rotary atomizing head, which consists of a tubular body provided on the front side of the rotating shaft and held at the ground potential, and sprays paint supplied while rotating by the air motor from the emission end edge of the front end.
It is located on the rear side of the rotary atomizing head and is provided on the outer peripheral side of the air motor, and is sprayed from the emission end edge of the rotary atomizing head by applying a negative high voltage to a plurality of electrodes. An external electrode member that charges the paint particles to a negative potential,
It is formed in a tubular shape using a conductive material, and is arranged on the outer peripheral side of the rotary atomizing head with the front end located at an intermediate portion in the length direction of the rotary atomizing head. A shaping air ejection member in which a large number of air ejection holes for ejecting shaping air toward the paint particles sprayed from the head are provided over the entire circumference in the circumferential direction.
In an electrostatic coating machine provided on the outer peripheral side of the shaping air ejection member and configured to include a tubular insulating member made of an insulating material that covers the outer peripheral surface of the shaping air ejection member.
Between the shaping air ejection member and the insulating member, a discharge buffering member made of an annular self-healing insulating material is provided at a position separating the shaping air ejection member and the insulating member .
The electrostatic coating machine is characterized in that the discharge buffer member is formed so that the creepage distance on the front side exposed from the insulating member is shorter than the creepage distance on the rear side covered with the insulating member .
前記放電緩衝部材は、前記シェーピングエア噴出部材の周囲を取囲む円環状の筒体として形成されていることを特徴とする請求項1に記載の静電塗装機。 The electrostatic coating machine according to claim 1, wherein the discharge buffer member is formed as an annular cylinder that surrounds the shaping air ejection member.
JP2019515375A 2017-08-18 2018-08-16 Electrostatic coating machine Active JP6765007B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017158032 2017-08-18
JP2017158032 2017-08-18
PCT/JP2018/030415 WO2019035473A1 (en) 2017-08-18 2018-08-16 Electrostatic coating machine

Publications (2)

Publication Number Publication Date
JPWO2019035473A1 JPWO2019035473A1 (en) 2019-11-07
JP6765007B2 true JP6765007B2 (en) 2020-10-07

Family

ID=65362551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019515375A Active JP6765007B2 (en) 2017-08-18 2018-08-16 Electrostatic coating machine

Country Status (2)

Country Link
JP (1) JP6765007B2 (en)
WO (1) WO2019035473A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343445B2 (en) * 1999-03-16 2009-10-14 アーベーベー・パテント・ゲーエムベーハー High speed rotating atomizer with ring for blast air
JP3870794B2 (en) * 2002-02-04 2007-01-24 日産自動車株式会社 Rotary atomization coating equipment
KR20150013608A (en) * 2012-06-06 2015-02-05 에이비비 가부시키가이샤 Electrostatic painting apparatus
JP6475327B2 (en) * 2015-05-25 2019-02-27 Abb株式会社 Rotary atomizing head type coating machine

Also Published As

Publication number Publication date
JPWO2019035473A1 (en) 2019-11-07
WO2019035473A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP5215461B2 (en) Electrostatic coating equipment
JP4612048B2 (en) Electrostatic coating equipment
JP4347372B2 (en) Electrostatic coating equipment
JP6319233B2 (en) Electrostatic atomization type coating apparatus and coating method
JPH08332418A (en) Rotary atomizing head type coating apparatus
WO2013183417A1 (en) Electrostatic painting apparatus
JP5807117B2 (en) Electrostatic coating equipment
JP6434675B2 (en) Electrostatic coating machine
JP4745934B2 (en) Electrostatic coating equipment
JP6434676B2 (en) Rotary atomizing head type coating machine
JP6745987B2 (en) Electrostatic coating machine
JP6765007B2 (en) Electrostatic coating machine
JP2002538957A (en) High-speed rotary atomizer with ring for blast air
WO2016190027A1 (en) Rotary atomizing head type coating machine
JPH0450908Y2 (en)
JP2007203158A (en) Gun for electrostatic coating
JP2003236417A (en) Rotary atomizing head type coating apparatus
JP4612030B2 (en) Electrostatic coating equipment
JPH11285653A (en) Rotary atomizing electrostatic coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6765007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250